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Abstract 

In the absence of a vaccine, current antibiotic-dependent efforts to reduce the 

prevalence of Neisseria gonorrhoeae in high prevalence populations have been 

shown to result in extremely high levels of antibiotic consumption. No randomized 

controlled trials have been conducted to validate this strategy and an important 

concern of this approach is that it may induce antimicrobial resistance. To contribute 

to this debate, we assessed if mass treatment in the related species, Neisseria 

meningitidis, was associated with the emergence of antimicrobial resistance. To this 

end, we conducted a historical review of the effect of mass meningococcal treatment 

programmes on the prevalence of N. meningitidis and the emergence of antimicrobial 

resistance. We found evidence that mass treatment programmes were associated with 

the emergence of antimicrobial resistance.  
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Introduction 

The World Health Organization’s plan to reduce the incidence of Neisseria 

gonorrhoeae by 90% by 2030 faces two growing challenges – antimicrobial resistance 

and rising rather than falling incidence of N. gonorrhoeae in many key populations [1, 

2]. A number of the strategies advocated to reduce gonococcal incidence such as 

intensified screening, partner tracing/expedited partner therapy and doxycycline pre-

exposure prophylaxis, depend on increasing antibiotic consumption [2, 3]. These 

increases can be large. Screening for gonorrhoea/chlamydia at 3 sites every 3 months 

in HIV pre-exposure prophylaxis (PrEP) cohorts, for example, has been shown to 

result in very large macrolide and cephalosporin exposures. Macrolide exposure, for 

example, can reach 4400 defined daily doses/1000 population per year which is 

approximately 20-times the population consumption of a country such as Sweden [4]. 

A concern of such high levels of antibiotic consumption is the induction of antimicrobial 

resistance (AMR) in N. gonorrhoeae and other organisms [4].  

 

To assist in the evaluation of this concern, we undertook a historical review of the 

effect of mass antimicrobial treatments on antimicrobial susceptibility of the related 

Neisseria, N. meningitidis. There have been few mass treatment trials of N. 

gonorrhoeae and only one of these investigated the effect on AMR [5, 6]. Although 

this study found a temporal association between mass treatment and the emergence 

of AMR, its contemporary relevance is reduced by the fact that it was conducted using 

penicillin in the 1960s [5, 6].    

  

Considerably more mass treatment studies have been conducted for N. meningitidis. 

These mass treatment studies involved the widespread administration of antibiotic 
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therapy (chemoprophylaxis) to a community with either excess cases of 

meningococcal disease or raised prevalence of asymptomatic N. meningitidis [7-10].  

 

Although there are important differences in mode of transmission, preferred site of 

colonization, clinical presentation and host immune response between N. meningitidis 

and N. gonorrhoeae, there are also considerable similarities [11, 12]. Despite being 

the only 2 species in the Neisseria genus that are classified as strict human pathogens, 

the majority of both infections are asymptomatic and resolve spontaneously. Both 

infections cluster in particular population groups. In the case of meningococcus and in 

keeping with its respiratory transmission, epidemics and high carriage rates are 

predominantly associated with young adults living in crowded conditions [8-10]. N. 

gonorrhoeae is sexually transmitted and thus high prevalence has been linked to 

factors such as high rates of sexual partner turnover which generate dense sexual 

networks and high equilibrium prevalences of N. gonorrhoeae [2, 13-16]. In the case 

of PrEP cohorts, for example, modelling studies suggest that the 5 to 10 sexual 

partners per 3 months reported by PrEP recipients generate the high prevalence of N. 

gonorrhoeae in these populations – typically around 10% [13, 17]. Crucially the two 

infections are genotypically closely related and able to exchange DNA between one 

another and commensal Neisseriae via well-developed systems of transformation  [18-

20]. Uptake of DNA from other Neisseriae has been established as a key way that 

both the gono- and meningococcus have acquired antimicrobial resistance [18-20]. N. 

gonorrhoeae has been noted to be more susceptible to the emergence of AMR than 

N. meningitidis [21]. These considerations suggest that if mass treatment of N. 

meningitidis is associated with the emergence of AMR this would provide a cautionary 
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warning for using antibiotic based strategies to reduce the prevalence of N. 

gonorrhoeae in high prevalence settings such as PrEP cohorts. 

 

Effect of mass treatment on prevalence of N. meningitidis, meningitis cases and 

AMR 

A recent review paper by MacNamara et al., evaluated the effect of mass treatment of 

N. meningitidis on the prevalence of the bacteria and the emergence of AMR in over 

33 studies [7]. The authors concluded that the intervention was highly effective in 

reducing cases of meningitis and, when an effective antibiotic was used at over 75% 

population coverage, this resulted in a 50 to 80% reduction in carriage in the short 

term (median follow up 6 weeks). In the one study with lower than 75% coverage there 

was no reduction in carriage [22]. This review paper did not evaluate the long-term 

effects. One of the few studies to assess this was a study from a Kibbutz, in Israel, 

that found that mass treatment resulted in a decline in carriage but this effect only 

lasted 6 months [23].  

 

Although the effect on AMR was not assessed in all studies, when it was assessed, 

AMR emerged fairly frequently. Resistance to rifampicin was particularly evident and 

found in all 3 community studies were this was assessed [7, 22, 24, 25]. Rifampicin 

resistance was also noted in cases following two mass therapy interventions in the 

United States of America (US) military [7]. Sulfadiazine was used extensively in the 

US military to prevent meningococcal disease from 1940s to the 1960s [26]. This 

widespread use was thought to play a role in the rapid and extensive of emergence of 

AMR in the 1950s and 1960s [26]. Only one study tested for ciprofloxacin resistance 

following use of this agent. This study found no ciprofloxacin resistance but only 
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evaluated for resistance 6 months after the intervention [27]. No studies evaluated the 

emergence of resistance to other antimicrobials such as ceftriaxone and azithromycin.  

 

Individual level assessment 

A systematic review of the efficacy of various antibiotics for the eradication of N. 

meningitidis carriage found that penicillin, rifampicin, minocycline, ciprofloxacin and 

ceftriaxone were effective at eradicating carriage for up to 4 weeks [28]. Eleven trials 

reported the susceptibility of persistent isolates to the antibiotic used for elimination. 

Six of these studies evaluated the induction of AMR by rifampicin. Resistance was 

found in persistent isolates in 3 of these 6 studies – prevalence of resistance between 

10 and 27% [28]. The use of other antibiotics was not associated with the selection of 

resistance. 

 

Association between overcrowding and N. meningitidis prevalence/outbreaks 

We could not find any systematic reviews on this topic but there was broad consensus 

in the literature we reviewed that overcrowding (particularly for young adults) played a 

crucial role in outbreaks of meningococcal disease and increases in prevalence [8, 10, 

23, 29]. Glover was the first to describe this association in 1917 in an outbreak of 

meningococcal disease in soldiers in military recruitment camps. Using 

nasopharyngeal cultures to evaluate meningococcal colonization prevalence he noted 

a steep increase in prevalence following overcrowding of recruits (Figure 1)  [10]. The 

camp was designed to accommodate 800 men but was accommodating close to 6000 

men by the start of the epidemic. Of note, meningococcal prevalence decreased 

following measures that included reducing overcrowding (Figure 1). A range of 

subsequent studies and reviews of the topic have produced similar findings [8, 23, 29]. 
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Discussion 

Mass treatment was fairly effective in the short term in reducing the prevalence of N. 

meningitidis but this effect did not appear to persist beyond 6 months. Mass treatments 

appeared to result in the emergence of AMR to rifampicin and sulphadiazine. There 

was little or no data for other classes of antibiotics.  

 

The utility of these findings is limited by the fact that the effect of mass treatment with 

the antibiotics currently mostly used to treat N. gonorrhoeae (azithromycin/ceftriaxone) 

was not assessed. There are also important biological differences between N. 

meningitidis and N. gonorrhoeae as well as differences between the mass 

administration of antibiotics during a meningococcal outbreak and the sustained high 

levels of antibiotic exposure in a PrEP cohort. 

 

Despite these important reservations, the fact that AMR can emerge so rapidly in the 

related N. meningitidis does provide additional motivation to be alert for the emergence 

of gonococcal AMR in PrEP and other high antibiotic exposure populations. There is 

increasing evidence that horizontal gene transfer plays an important role in the genesis 

of AMR in N. meningitidis and even more so in N. gonorrhoeae. This pathway can 

operate over much longer periods than direct selection during antibiotic therapy, as 

the antibiotics select for AMR associated genes in commensal Neisseria. These 

resistance genes can then be taken up months later by incoming gono- and 

meningococci [18-20].  We could not find any studies that evaluated the effect of mass 

treatments on the antibiotic susceptibility of commensal Neisseria species and thus 

we were unable to evaluate this effect. Unsurprisingly, however, studies have found a 
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link between antibiotic susceptibility of commensal Neisseriae and antibiotic 

consumption [30].    

 

Because the prevalence of commensal Neisseriae is close to 100%, the selection 

pressure imposed by high antibiotic consumption is likely to be seen in these 

commensals before it becomes evident in gono- and menginococci  [11]. As a result, 

commensal Neisseriae could serve as an AMR early warning sign and it may be 

prudent to monitor the antibiotic susceptibilities of these commensal Neisseriae in high 

gonococcal prevalence, high antibiotic consumption populations such as those on 

PrEP [31].  

 

A further relevant parallel between gono- and meningococci is how the prevalence of 

both infections is strongly influenced by underlying dense contact networks – sexual 

network and spatial network, respectively [14-16]. It is these underlying networks 

which are thus primary determinants of high prevalence and should be the targets of 

radical prevention [16]. The high rates of partner change reported by PrEP recipients, 

for example, are responsible for the high prevalence of N. gonorrhoeae in this group 

[13, 17]. This high network connectivity could be reduced by increased condom usage 

or reduced rates of partner turnover. Vaccination represents an enticing alternative 

strategy – as demonstrated by the efficacy of vaccination against N. meningiditis [32]. 

Although progress has been made in the development of a gonococcal vaccine, the 

best available vaccine (N. meningitidis group B outer membrane vaccine), appears to 

only have limited efficacy and for a short period [33-35]. In the absence of an effective 

vaccine, it is understandable that efforts to control increasing incidence of N. 

gonorrhoeae have focused on strategies relying on antibiotics. The evidence reviewed 
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here suggests that extensive use of antibiotics to control N. meningitidis prevalence 

runs the risk of inducing AMR. These findings provide further justification to reconsider 

antibiotic based strategies to reduce gonococcal prevalence- such as 3 monthly 

screening for gohorrhoea/chlamydia in PrEP cohorts. They also provide further 

motivation for enhanced surveillance of AMR in all Neisseriae spp. in high prevalence, 

high antibiotic consumption populations. 
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Figure 1. The temporal association between increased overcrowding (number of 
recruits) and prevalence of N. meningitidis in military recruits in a training camp in 
the South of England in 1917. Week 1 represents the first week of September 2017. 
(Based on data from [10] digitized with WebPlotDigitizer-4.2 and figure made in Stata 
16.0)   
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