

1 **Supplementary Material**

2

3 **Host availability, repulsive companion planting, and predation interact and shape how a**
4 **parthenogenetic aphid population responds to a stratified ecological challenge**

5 Mouhammad Shadi Khudr^{1,*}, Lea Fliegner^{2,*}, Oksana Y. Buzhdyan², Samuel Alexander Purkiss¹

6 ¹Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, M13
7 9PT, Manchester, UK

8 ²Institute of Biology, Freie Universität Berlin, Altensteinstraße 34, 14195 Berlin, Germany

9 *These two authors contributed equally to this work.

10

11 **Corresponding author**

12 Mouhammad Shadi Khudr scholia_1@tutanota.com

13

14 **Running title:** Multiple bio-stressors alter aphid fitness

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Table S1. Experimental design.** The first column details the seven levels of experimental environment
 33 in the absence/presence of predator. The environmental context in *Experiment I* is defined as the different
 34 numbers of shallots (signifying a variable shallot perturbation effect) to the available savoy cabbage host
 35 numbers per microcosm, with and without predation. The context in *Experiment II* is defined as the
 36 different numbers of available savoy cabbage hosts per microcosm, with and without predation. There
 37 were always four plants in the microcosm. In total, we applied 7 different environments, with and without
 38 predator presence, resulting in 14 treatments and 87 microcosms.

Environment	No. of replicates	Predator (Lacewing absence [aphids alone] = 0, Lacewing present = 1)
Experiment I (Shallot perturbation, -/+ predator)		
0% Shallot (0 Shallot: 4 Cabbage hosts)	6	0
	6	1
25% Shallot (1 Shallots : 3 Cabbage hosts)	6	0
	6	1
50% Shallot (2 Shallots : 2 Cabbage hosts)	6	0
	6	1
75% Shallot (3 Shallots : 1 Cabbage host)	6	0
	6	1
Experiment II (Host gradient, -/+ predator)		
4-Cabbage (4 Cabbage hosts)	6	0
	6	1
3-Cabbage (3 Cabbage hosts)	5	0
	4	1
2-Cabbage (2 Cabbage hosts)	4	0
	5	1
1-Cabbage (1 Cabbage host)	4	0
	5	1

72 Note 1. Extra information and further contrasts on aphid aggregative abundance and dispersion,
73 Experiment I: Effects escalated shallot perturbation, predator presence, and PDB

74 On the one hand, *in predator absence*, aphids were least abundant (103 ± 28.84 SEM) in the 75%
75 Shallot context, while they were most abundant (215.33 ± 52.87 SEM) in the 25% Shallot context (1
76 Shallot : 3 Cabbage). Overall, ranking of aphid abundance relative to Shallot perturbation, minus
77 predator, revealed that the abundance (103 ± 11.77 SEM) under the highest perturbation (75% Shallot
78 context) was ~38% smaller than the abundance in the context 50% Shallot (with 11% smaller PDB);
79 ~52% smaller than the abundance in the context 25% Shallot (with 30% smaller PDB); whereas, the
80 abundance in the context 50% Shallot was ~23% smaller than in the context 25% Shallot (with 22%
81 smaller PDB). This suggests an increasing negative impact, via escalating shallot perturbation and
82 decreasing availability of cabbage-host biomass, on aphid population when the predator was absent,
83 Supplementary Material (Table S2). The rates of decrease in aphid abundance were the most pronounced
84 in the contrast (75% Shallot *versus* 25% Shallot), followed by (75% Shallot *versus* 50% Shallot).
85 However, the rates of PDB decrease were the highest in the contrast (75% Shallot *versus* 25% Shallot),
86 followed by (50% Shallot *versus* 25% Shallot). Interestingly, the decrease rates are on par for PDB and
87 aphid abundance when the context 50% Shallot is compared with the context 25% Shallot; see
88 Supplementary Material (Table S2) for further contrasts including comparisons with the optimal
89 predator-free context 0% Shallot (0 Shallot : 4 Cabbage).

90 On the other hand, *in predator presence*, aphids were least abundant (75.33 ± 21.02 SEM) in the
91 75% Shallot context, while they were most abundant (184.67 ± 72.58 SEM) in the 25% Shallot context.
92 Overall, ranking aphid abundance relative to shallot perturbation, plus predator, reveals that the
93 abundance under the highest perturbation (75% shallot context) was ~32% smaller than the abundance of
94 the context 50% shallot (with 13% larger PDB); ~59% smaller than the abundance of the context 25%
95 shallot (with 25% larger PDB); whereas, the abundance of the context 50% Shallot was ~40% smaller
96 than that of the context 25% Shallot (with 10% larger PDB). As such, a similar trend to the observations
97 in the above-mentioned predator-free cases can be seen but, however, the negative impact on aphid
98 abundance was more pronounced in the contexts 75% Shallot and 50% Shallot when respectively
99 compared to the 25% Shallot context, main text (Fig. 1) and Supplementary Material (Table S2). PDB =
100 cabbage host plant dry biomass.

101
102
103
104
105
106
107
108
109
110
111
112

113 **Table S2. Contextual comparisons in *Experiment I*.** The first column details within-context and
 114 between-contexts contrasts. The second column displays aphid abundance change per centum (larger or
 115 smaller in the focal context relative to the compared one). The third column shows host-plant dry
 116 biomass (PDB) change per centum (larger or smaller in the focal context relative to the compared one).
 117 Experiment I is an investigation of aphid abundance as function of the effects of PDB and predator
 118 presence under escalated shallot perturbation from 0% Shallot (optimal) to 75% Shallot (most hostile) in
 119 the microcosm, Pred-free = predator absent from the microcosm, +Pred = predator present in the
 120 microcosm.

Context Comparison	Abundance change%	PDB change%
+Pred compared to Pred-Free , context 0% Shallot Optimal (4 Cabbage)	73% Smaller	2% Larger
+Pred compared to Pred-Free , context 25% Shallot (1 Shallot : 3 Cabbage)	14% Smaller	26% Smaller
+Pred compared to Pred-Free , context 50% Shallot (2 Shallot : 2 Cabbage)	33% Smaller	5% Larger
+Pred compared to Pred-Free , context 75% Shallot (3 Shallot : 1 Cabbage)	27% Smaller	33% Larger
Pred-Free [(25% Shallot) compared to (0% Shallot Optimal)]	42% Smaller	2% Smaller
+Pred [(25% Shallot) compared to (0% Shallot Optimal)]	84% Larger	29% Smaller
+Pred (25% Shallot) compared to Pred-Free (0% Shallot Optimal)	~50% Smaller	27% Smaller
Pred-Free (25% Shallot) compared to +Pred (0% Shallot Optimal)	115% Larger	5% Smaller
Pred-Free [(50% Shallot) compared to (0% Shallot Optimal)]	55% Smaller	24% Smaller
+Pred [(50% Shallot) compared to (0% Shallot Optimal)]	11% Larger	22% Smaller
+Pred (50% Shallot) compared to Pred-Free (0% Shallot Optimal)	70% Smaller	20% Smaller
Pred-Free (50% Shallot) compared to +Pred (0% Shallot Optimal)	65% Larger	26% Smaller
Pred-Free [(75% Shallot) compared to (0% Shallot Optimal)]	72% Smaller	32% Smaller
+Pred [(75% Shallot) compared to (0% Shallot Optimal)]	25% Smaller	12% Smaller
+Pred (75% Shallot) compared with Pred-Free (0% Shallot Optimal)	80% Smaller	10% Smaller
Pred-Free (75% Shallot) compared to +Pred (0% Shallot Optimal)	3% Larger	34% Smaller
Pred-Free [(50% Shallot) compared to (25% Shallot)]	23% Smaller	22% Smaller
+Pred [(50% Shallot) compared to (25% Shallot)]	40% Smaller	10% Larger
+Pred (50% Shallot) compared to Pred-Free (25% Shallot)	48% Smaller	18% Smaller
Pred-Free (50% Shallot) compared with +Pred (25% Shallot)	10% Smaller	5% Larger
Pred-Free [(75% Shallot) compared to (50% Shallot)]	38% Smaller	11% Smaller
+Pred [(75% Shallot) compared to (50% Shallot)]	32% Smaller	13% Larger
+Pred (75% Shallot) compared to Pred-Free (50% Shallot)	55% Smaller	19% Larger
Pred-Free (75% Shallot) compared to +Pred (50% Shallot)	7% Smaller	15% Smaller
Pred-Free [(75% Shallot) compared to (25% Shallot)]	52% Smaller	30% Smaller
+Pred [(75% Shallot) compared to (25% Shallot)]	59% Smaller	25% Larger
+Pred (75% Shallot) compared to Pred-Free (25% Shallot)	65% Smaller	7% Smaller
Pred-Free (75% Shallot) compared to +Pred (25% Shallot)	44% Smaller	6+% Smaller

121

122

123

124 **Table S3. Test of cabbage dry biomass in *Experiment I*.** The main effects, via analysis of deviance
 125 table (Type II tests), are shown regarding the generalised linear model, with Gaussian family, to test
 126 cabbage dry biomass in the microcosm as explained by shallot density (0% Shallot [0 Shallot : 4
 127 Cabbage], 25% Shallot [1 Shallot : 3 Cabbage], 50% Shallot [2 Shallot : 2 Cabbage], 75% Shallot [3
 128 Shallot : 1 Cabbage]), and predator presence (0 or 1), and the interaction between shallot density and
 129 predator presence. There were always four plants in the microcosm.
 130

Variable	Cabbage dry biomass
Predator presence	$F_{(1,40)}=0.01; P=0.927$
Shallot density	$F_{(3,40)}=2.54; P=0.07$
Predator presence x Shallot density	$F_{(3,40)}=2.03; P=0.124$

131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141 **Table S4. Test of aphid polyphenism in *Experiment I*.** The main effects, via analysis of deviance table
 142 (Type II tests), are shown regarding the generalised linear model, with quasiPoisson family, applied to
 143 test percentage of alata production (indicating polyphenism) in the microcosm as explained by shallot
 144 perturbation (0% Shallot [0 Shallot : 4 Cabbage], 25% Shallot [1 Shallot : 3 Cabbage], 50% Shallot [2
 145 Shallot : 2 Cabbage], 75% Shallot [3 Shallot : 1 Cabbage]), predator presence (0 or 1), and cabbage
 146 host-plant dry biomass (PDB), and all possible interactions between the said explanatory variables. There
 147 were always four plants in the microcosm. Significant results are shown in bold.
 148

Variable	Aphid dispersion
Host-plant dry biomass (PDB)	$F_{(1,32)}=1.17; P=0.287$
Shallot perturbation	$F_{(3,32)}=6.42; P=\mathbf{0.002}$
Predator presence	$F_{(1,32)}=0.34; P=0.564$
PDB x Shallot perturbation	$F_{(3,32)}=1.83; P=0.161$
PDB x Predator presence	$F_{(1,32)}=0.49; P=0.49$
Shallot perturbation x Predator presence	$F_{(3,32)}=1.58; P=0.213$
PDB x Shallot perturbation x Predator presence	$F_{(3,32)}=1.02; P=0.397$

155
 156
 157
 158
 159
 160
 161
 162
 163
 164

165 Note 2. Extra information and further contrasts on aphid aggregative abundance and dispersion,
166 Experiment II: Effects of decreasing host plant availability, predator presence, and PDB

167 On the one hand, *in predator absence*, the least aphid abundance (81.25 ± 23.61 SEM) was
168 observed in the 1-Cabbage context, while the most aphid abundance (798.2 ± 77.73 SEM) was observed
169 in the 3-Cabbage context. Overall, comparing aphid abundance in the least hospitable and nourishing
170 1-Cabbage context to variable host plant availabilities, minus predator, revealed that the 1-Cabbage
171 context had 78% smaller abundance (with 2% larger PDB) than in the optimal 4-Cabbage context, 90%
172 smaller abundance (with 6% smaller PDB) than in the 3-Cabbage context; 78% smaller abundance (with
173 17% smaller PDB) than in the 2-Cabbage context. Whereas the abundance in the 2-Cabbage context was
174 53% smaller (with 14% larger PDB) than in the 3-Cabbage context; and 1+% larger in abundance (with
175 23% larger PDB) than in the optimal 4-Cabbage context. Note that the abundance in the 3-Cabbage
176 context was 116% larger (with 7% larger PDB) than in the optimal 4-Cabbage context. Comparatively,
177 the PDB values of all contexts, except the optimal 4-Cabbage, were larger than the PDB of the 1-Cabbage
178 context, and aphids were more abundant in all contexts when there were more than 1 cabbage in the
179 microcosm, (Fig. 2) and Supplementary Material (Table S5). To our surprise, in the 3-Cabbage context,
180 without predator, the PDB value (5th rank) was high notwithstanding the sharp increase in aphid
181 abundance in this context, (Fig. 2) and Supplementary Material (Table S5) for further contrasts when the
182 predator was absent. In the absence of predator, there was a notable margin of PDB difference when the
183 contextual contrast (1-Cabbage *versus* 3-Cabbage) is compared with (2-Cabbage *versus* 3-Cabbage).

184 On the other hand, *in predator presence*, the least aphid abundance (59.25 ± 27.27 SEM) was
185 observed in the 3-Cabbage context, while the most aphid abundance (241 ± 96.95 SEM) was observed in
186 the 1-Cabbage context. Overall, comparing aphid abundance in the least hospitable and nourishing
187 1-Cabbage context with other host availabilities, plus predator, shows that the abundance in the said
188 context was ~140% larger (with ~80% larger PDB) than in the optimal 4-Cabbage context, ~307% larger
189 (with 65% smaller PDB) in the 3-Cabbage context; ~3% larger (with ~17% smaller PDB) than in the
190 2-Cabbage context. Whereas the abundance in the 2-Cabbage context was ~294% larger (with ~37%
191 larger PDB) than in the 3-Cabbage context; the abundance in the 2-Cabbage context was ~133% larger
192 (with ~50% larger PDB) than in the optimal 4-Cabbage context; and the abundance in the 3-Cabbage
193 context was ~41% smaller (with ~9% larger PDB) than in the optimal 4-Cabbage context. The increases
194 in abundance were smaller in the contextual contrast (1-Cabbage *versus* 2-Cabbage) than what was
195 observed for the contrasts (1-Cabbage *versus* 3-Cabbage) and (2-Cabbage *versus* 3-Cabbage). Further,
196 compared to the 3-Cabbage and 4-Cabbage contexts, clearly there was more PDB (provision for aphid),
197 accompanied by larger aphid abundances, in the microcosms of the 1-Cabbage and 2-Cabbage contexts
198 despite having fewer hosts (smaller host densities). In the predator-free microcosm, the production of
199 alates peaked in the 3-Cabbage context which had the highest aphid abundance and relatively good
200 cabbage biomass of the 5th rank. This was followed by the 2-Cabbage context (more than two times
201 smaller abundance and ~1.14 times the PDB of the value recorded in the 3-Cabbage context), then the
202 optimal 4-Cabbage context (more than two times smaller abundance and ~0.93 times the PDB of the
203 value in the 3-Cabbage context); whereas alates were lacking in the 1-Cabbage context (9.85 times
204 smaller abundance and ~0.94 times the PDB compared to the 3-Cabbage context). By contrast, when the
205 predator was available, the largest alata proportions were observed in the 1-Cabbage context followed by
206 the 3-Cabbage context, as there were proportionally more alata production relative to population size in
207 these contexts. Apparently, predator presence induced less alates (in the 2-Cabbage context) or no alates
208 at all (in the 4-Cabbage context) compared to the 1-Cabbage and the 3-Cabbage contexts, as offspring
209 conditioning into winged morphs varied by context contingent on predation, and the interaction of
210 predation effect with cabbage density or biomass, (Fig. 2). Moreover, when comparing the optimal

211 4-Cabbage with the other contexts, the biggest difference is seen in contrast with the 3-Cabbage context
212 (when the predator was absent) and with the 1-Cabbage context (when the predator was present); PDB =
213 cabbage host-plant dry biomass.

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253 **Table S5. Contextual comparisons in *Experiment II*.** The first column details within-context and
254 between-contexts contrasts. The second column displays aphid abundance change per centum (larger or

smaller of the focal context relative to the compared one). The third column shows host-plant dry biomass (PDB) change per centum (larger or smaller of the focal context relative to the compared one). Experiment II is an investigation of aphid abundance as function of the effects of PDB and predator presence under decreasing cabbage host availability (HPA) in the microcosm (4 Cabbage hosts [optimal], 3 Cabbage hosts, 2 Cabbage hosts, 1 Cabbage host [least hospitable]), Pred-free = predator absent from the microcosm, +Pred = predator present in the microcosm.

Context Comparison	Abundance change%	PDB Change%
+Pred compared to Pred-Free , context Optimal (4 Cabbage)	73% Smaller	2% Larger
+Pred compared to Pred-Free , context (3 Cabbage)	93% Smaller	4% Larger
+Pred compared to Pred-Free , context (2 Cabbage)	37% Smaller	25% Larger
+Pred compared to Pred-Free , context (1 Cabbage)	197% Larger	82% Larger
Pred-Free [(3 Cabbage) compared to (Optimal)]	116% Larger	7% Larger
+Pred [(3 Cabbage) compared to (Optimal)]	41% Smaller	9% Larger
+Pred (3 Cabbage) compared to Pred-Free (Optimal)	84% Smaller	12% Larger
Pred-Free (3 Cabbage) compared to +Pred (Optimal)	695% Larger	5% Larger
Pre-Free [(2 Cabbage) compared to (Optimal)]	1+% Larger	23% Larger
+Pred [(2 Cabbage) compared to (Optimal)]	133% Larger	50% Larger
+Pred (2 Cabbage) compared to Pred-Free (Optimal)	37% Smaller	54% Larger
Pred-Free (2 Cabbage) compared to +Pred (Optimal)	270% Larger	20% Larger
Pre-Free [(1 Cabbage) compared to (Optimal)]	78% Smaller	2% Larger
+Pred [(1 Cabbage) compared to (Optimal)]	140% Larger	80% Larger
+Pred (1 Cabbage) compared to Pred-Free (Optimal)	35% Smaller	85% Larger
Pred-Free (1 Cabbage) compared to +Pred (Optimal)	19% Smaller	1+% Smaller
Pred-Free [(2 Cabbage) compared to (3 Cabbage)]	53% Smaller	14% Larger
+Pred [(2 Cabbage) compared to (3 Cabbage)]	294% Larger	37% Larger
+Pred (2 Cabbage) compared to Pred-Free (3 Cabbage)	71% Smaller	43% Larger
Pred-Free (2 Cabbage) compared to +Pred (3 Cabbage)	527% Larger	10% Larger
Pre-Free [(1 Cabbage) compared to (2 Cabbage)]	78% Smaller	17% Smaller
+Pred [(1 Cabbage) compared to (2 Cabbage)]	3% Larger	20% Larger
+Pred (1 Cabbage) compared to Pred-Free (2 Cabbage)	35% Smaller	50% Larger
Pred-Free (1 Cabbage) compared to +Pred (2 Cabbage)	65% Smaller	34% Smaller
Pre-Free [(1 Cabbage) compared to (3 Cabbage)]	90% Smaller	6% Smaller
+Pred [(1 Cabbage) compared to (3 Cabbage)]	307% Larger	65% Larger
+Pred (1 Cabbage) compared to Pred-Free (3 Cabbage)	70% Smaller	72% Larger
Pred-Free (1 Cabbage) compared to +Pred (3 Cabbage)	37% Larger	10% Smaller

298 **Table S6. Test of cabbage dry biomass in *Experiment II*.** The main effects, analysis of deviance table
 299 (Type II tests), are shown regarding the generalised linear model run to test cabbage dry biomass as
 300 explained by host plant availability (HPA) in the microcosm (4 Cabbage hosts [optimal], 3 Cabbage
 301 hosts, 2 Cabbage hosts, 1 Cabbage host [least hospitable]), predator presence (0 or 1), and the interaction
 302 between host availability and predator presence. There were always four plants in the microcosm.
 303 Significant results are shown in bold.

Variable	Cabbage dry biomass
Predator presence	$F_{(1,31)}=4.2$; P=0.049
HPA	$F_{(3,31)}=2.58$; $P=0.071$
Predator presence x HPA	$F_{(3,31)}=1.87$; $P=0.155$

310
 311
 312
 313
 314 **Table S7. Test of aphid polyphenism in *Experiment II*.** The main effects, via analysis of deviance table
 315 (Type II tests), are shown regarding the generalised linear model applied to test percentage of alata
 316 production (indicating polyphenism) in the microcosm as explained by host plant availability (HPA) (4
 317 Cabbage hosts [optimal], 3 Cabbage hosts, 2 Cabbage hosts, 1 Cabbage host [least hospitable]), predator
 318 presence (0 or 1), Cabbage host-plant dry biomass (PDB), and all possible interactions between the said
 319 explanatory variables. There were always four plants in the microcosm. Significant results are shown in
 320 bold.
 321

Variable	Aphid dispersion
Host-plant dry biomass (PDB)	$F_{(1,23)}=10.87$; P=0.003
Host plant availability (HPA)	$F_{(3,23)}=2.95$; $P=0.054$
Predator presence	$F_{(1,23)}=0.51$; $P=0.482$
PDB x HPA	$F_{(3,23)}=1.41$; $P=0.265$
PDB x Predator presence	$F_{(1,23)}=9.12$; P=0.006
HPA x Predator presence	$F_{(3,23)}=9.52$; P=0.0003
PDB x HPA x Predator presence	$F_{(3,23)}=2.36$; $P=0.098$

330
 331
 332
 333
 334
 335
 336
 337
 338 *Note 3: All-inclusive approach of analysing organism traits under combined stress*

In the main text, we split the concept and the analysis of the investigation into two routes, here we alternatively apply an all-inclusive approach that test aphid traits (aggregative abundance and polyphenism, respectively) within different contextual scenarios of combined biological stress where the reference frame (baseline) is the optimal context of four cabbage hosts in predator absence. The first stressor is decreasing host plant availability (HPA) spanning 4 Cabbage hosts [optimal], 3 Cabbage hosts, 2 Cabbage hosts, and 1 Cabbage host [least hospitable]). The second stressor is increasing perturbation by shallots ranging from 0% Shallot [0 Shallot : 4 Cabbage, optimal], 25% Shallot [1 Shallot : 3 Cabbage], 50% Shallot [2 Shallot : 2 Cabbage], to 75% Shallot [3 Shallot : 1 Cabbage], most perturbing). There were always universally, four plants in the microcosm. The third stressor is predator by lacewing; the pressure on aphid population increases when the predator is present in each of said contexts. This means that the aphid population resides within the sharpest hostility in the context 75% Shallot with predator. Cabbage host plant dry biomass (PDB), indicating food availability for the pest, was used as a covariate to add precision of the analysis of aphid traits under escalated compounded stress.

We tested aggregative aphid abundance (a quaternary variable: aphid counts on both sides of the leaf and on stem and off plant) as function of the mentioned predictors and all their possible interactions by applying a vectorised generalised linear model (vglm) with multinomial family, R package VGAM (Yee 2015, Yee 2017) and the main effects are shown in an analysis of deviance table using a command of ANOVA (Type II) irrespective of the order of the predictors in the model.

Aphid polyphenism (proportions of produced alates [dispersive morphs denoting polyphenism] was also tested by applying a generalised linear model with a quasiPoisson family quasi-Poisson family (due to over-dispersion and non-normal data distribution), R package multcomp (Hothorn *et al.* 2008) and the main effects are shown using in an analysis of deviance table using an ANOVA (Type II), as explained above. Additionally, cabbage dry biomass, signifying cabbage well bring in the microcosm, was examined as function of shallot density, cabbage host availability and predator effect (absence/presence) and the interactions (cabbage host availability x predator effect, and shallot density x predator effect), using a generalised linear model with Gaussian family; see Supplementary Material (Table 9) and (Fig. S2); PDB = cabbage host-plant dry biomass.

Table S8. Test of aphid abundance under combined stress. The main effects, via analysis of deviance table (Type II tests), are shown regarding a vectorised generalised linear model (vglm) with a multinomial family, R package VGAM, applied to test aphid abundance in the microcosm as explained by: cabbage host

390 plant dry biomass (PDB), host plant availability (HPA) (4 Cabbage hosts [optimal], 3 Cabbage hosts, 2
 391 Cabbage hosts, 1 Cabbage host [least hospitable]), shallot perturbation (0% Shallot [0 Shallot : 4
 392 Cabbage], 25% Shallot [1 Shallot : 3 Cabbage], 50% Shallot [2 Shallot : 2 Cabbage], 75% Shallot [3
 393 Shallot : 1 Cabbage]), predator presence (0 or 1), and the interactions (PDB x Shallot perturbation, PDB
 394 x HPA, PDB x Predator presence, Shallot perturbation x Predator presence, HPA x Predator presence,
 395 PDB x Shallot perturbation x Predator presence, PDB x HPA x Predator presence). There were always
 396 four plants in the microcosm. Significant results are shown in bold.

Variable	Aphid abundance
Host-plant dry biomass (PDB)	$F_{(18,141)}=3.78$; P<0.0001
Host plant availability (HPA)	$F_{(21,141)}=5.26$; P<0.0001
Shallot perturbation	$F_{(11,141)}=10.98$; P<0.0001
Predator presence	$F_{(17,141)}=8.76$; P<0.0001
PDB x Shallot perturbation	$F_{(9,141)}=5.53$; P<0.0001
PDB x HPA	$F_{(10,141)}=5.22$; P<0.0001
PDB x Predator presence	$F_{(6,141)}=4.03$; P=0.0009
HPA x Predator presence	$F_{(10,141)}=2.79$; P=0.004
Shallot perturbation x Predator presence	$F_{(9,141)}=4.4$; P<0.0001
PDB x Shallot perturbation x Predator presence	$F_{(9,141)}=1.73$; $P=0.087$
PDB x HPA x Predator presence	$F_{(9,141)}=4.34$; P<0.0001

421 **Table S9. Test of aphid polyphenism under combined stress.** The main effects, via analysis of
 422 deviance table (Type II tests), are shown regarding a generalised linear model (glm) with a quasi-Poisson
 423 family (due to over-dispersion and non-normal data distribution), R package multcomp, applied to test
 424 aphid alata proportions (indicating polyphenism) in the microcosm as explained by: cabbage host plant
 425 dry biomass (PDB), host plant availability (HPA) (4 Cabbage hosts [optimal], 3 Cabbage hosts, 2
 426 Cabbage hosts, 1 Cabbage host [least hospitable]), shallot perturbation (0% Shallot [0 Shallot : 4
 427 Cabbage], 25% Shallot [1 Shallot : 3 Cabbage], 50% Shallot [2 Shallot : 2 Cabbage], 75% Shallot [3
 428 Shallot : 1 Cabbage]), predator presence (0 or 1), and the interactions (PDB x Shallot perturbation, PDB
 429 x HPA, PDB x Predator presence, Shallot perturbation x Predator presence, HPA x Predator presence,
 430 PDB x Shallot perturbation x Predator presence, PDB x HPA x Predator presence). There were always
 431 four plants in the microcosm. Significant results are shown in bold.

Variable	Aphid polyphenism
Host-plant dry biomass (PDB)	$F_{(1,47)}=41.38$; P<0.0001
Host plant availability (HPA)	$F_{(3,47)}=0.91$; $P=0.442$
Shallot perturbation	$F_{(3,47)}=150.67$; P<0.0001
Predator presence	$F_{(1,47)}=560.16$; P<0.0001
PDB x Shallot perturbation	$F_{(3,47)}=2.37$; $P=0.082$
PDB x HPA	$F_{(10,47)}=0.44$; $P=0.727$
PDB x Predator presence	$F_{(1,47)}=0.12$; $P=0.735$
HPA x Predator presence	$F_{(3,47)}=2.95$; P=0.042
Shallot perturbation x Predator presence	$F_{(3,47)}=12.91$; P<0.0001
PDB x Shallot perturbation x Predator presence	$F_{(3,47)}=1.32$; $P=0.279$
PDB x HPA x Predator presence	$F_{(3,47)}=0.73$; $P=0.539$

444 **Table S10.**
 445 **Test of**
 446 **cabbage**

447 **dry biomass under combined stress of aphids.** The main effects, analysis of deviance table (Type II
448 tests), are shown regarding the generalised linear model run to test cabbage dry biomass as explained by
449 shallot perturbation effect (0% Shallot [0 Shallot : 4 Cabbage], 25% Shallot [1 Shallot : 3 Cabbage], 50%
450 Shallot [2 Shallot : 2 Cabbage], 75% Shallot [3 Shallot : 1 Cabbage]), host plant availability (HPA) in the
451 microcosm (4 Cabbage hosts [optimal], 3 Cabbage hosts, 2 Cabbage hosts, 1 Cabbage host [least
452 hospitable]), predator presence (0 or 1), and the interactions (Shallot effect x predator presence, HPA x
453 predator presence). There were always four plants in the microcosm. Significant results are shown in
454 bold.

Variable	Cabbage dry biomass
Shallot effect	$F_{(3,61)}=12.9$; P<0.0001
Predator presence	$F_{(1,61)}=3.41$; $P=0.07$
HPA	$F_{(3,61)}=3.98$; P=0.012
Shallot effect x Predator presence	$F_{(3,61)}=1.95$; $P=0.13$
HPA x Predator presence	$F_{(3,61)}=2.89$; P=0.043

462
463
464
465
466
467
468 **Fig. S1. Assimilation of the effects of the complex stress environmental from an aphid's**
469 **perspective.** The infographic provides comparative comparisons and relative understanding of the
470 applied complex environmental challenge when the embedding context included 1, 2 or 3 cabbage hosts,
471 represented respectively in each triangle part of the big triangle. From an aphid's standpoint the challenge
472 was either an added single stressor (shallot or predator) or combined stressors (shallot and predator) to
473 the cabbage embedding context. The effects on the aphid population size (abundance) were additive or
474 non-additive in a context-dependent fashion. As such, the focus here on 6 different scenarios of stress and
475 resulting in 63 microcosms. The the stress is stratified in each context as follows: predation only, shallot
476 perturbation (with variable density corresponding to the context), or predation with shallot perturbation
477 In the respective contexts, the links between the stressors signal the contrasts: shallot effect *versus*
478 predator effect, combined stress [shallot + predator] *versus* shallot effect, combined stress [shallot +
479 predator] *versus* predator effect. When an effect is larger than another in said contrasts the part of the link
480 emerging from the larger effect is thickened. The shallot effect link is purple, the predator link is orange,
481 while the combined stress effect is a mix between the purple and the orange. PDB = cabbage host-plant
482 dry biomass; predator = lacewing. This figure is available in the Figshare data repository
483 [<https://figshare.com/s/68f9c1b3f62ac5baf0ae>].

498 **Fig. S2. All-inclusive illustration of aphid aggregative abundance, polyphenism, and cabbage**
499 **host-plant dry biomass subject to stratified combined stress from an aphid's position.** From an
500 aphid's perspective, the infographic provides comparative comparisons of the applied complex
501 environmental challenge when the embedding context included the following sets of stressors: 0%
502 Shallot and 100% Cabbage (shallot-free, 4 *cabbage hosts* [6 replicates with predator, 6 replicates without
503 predator], 0% Shallot and 75% Cabbage (shallot-free, 3 *cabbage hosts* [5 replicates with predator, 4
504 replicates without predator], 25% Shallot and 75% Cabbage (1 shallot : 3 *cabbage hosts* [6 replicates
505 with predator, 6 replicates without predator], 0% Shallot and 50% Cabbage (shallot-free, 2 *cabbage hosts*
506 [4 replicates with predator, 5 replicates without predator], 50% Shallot and 75% Cabbage (2 shallots : 2
507 *cabbage hosts* [6 replicates with predator, 6 replicates without predator], 0% Shallot and 25% Cabbage
508 (shallot-free, 1 *cabbage host* [4 replicates with predator, 5 replicates without predator], 75% Shallot and
509 25% Cabbage (3 shallots : 1 *cabbage host* [6 replicates with predator, 6 replicates without predator]. At
510 the bottom of the chart, the context 0% Shallot and 100% Cabbage (minus predator) was the most
511 hospitable, nourishing and stress-free scenario; whereas, the context 5% Shallot and 25% Cabbage at the
512 top of the chart was the most hostile, least nourishing, and stress-laden scenario. The bars represent aphid
513 numerical success as aggregative abundance (mean of total numbers in the microcosm per treatment at
514 the end of the experiment \pm SE); the overall average plant dry biomass (PDB \pm SE) per treatment is shown
515 next the bars in rectangles. In total, we applied 14 different stress scenarios (single stressors [predator or
516 shallot perturbation] or combined stressors [predator (lacewing) and shallot perturbation]) with variable
517 perturbation levels, host availabilities and dry biomass in the microcosm. This made the environmental
518 challenge of aphid reproductive and phenotypic plasticities stratified and elevated by design. The
519 different proportions of aphid aggregation/spatial distribution on- and off-plant are presented in grades of
520 grey and all bar stacks are proportional. Each embedding cabbage context (of 1, 2, 3, or 4 host plants) are
521 aggrouped into with (+) predator and without (-) predator. The respective encircled percentages at the
522 end of the bars refer to the average proportions of winged aphids (dispersive morphs). This figure is
523 available in the Figshare data repository [<https://figshare.com/s/b83f8b101c972e6d7ea6>].

532 **References**

533
534 Hothorn, T., Bretz, F., and Westfall, P. 2008. Simultaneous inference in general parametric models.
535 *Biometrical Journal*, **50**: 346–363. <https://doi.org/10.1002/bimj.200810425>
536 RStudio Team. 2016. *RStudio: Integrated Development for R*. RStudio, Inc., Boston, MA.
537 URL <http://www.rstudio.com/>
538 Yee T. 2015. *Vector generalized linear and additive models: with an implementation in R*. New York,
539 USA: Springer.
540 Yee, T. 2017. VGAM: vector generalized linear and additive models. R package version 1.0-4. URL
541 <https://CRAN.R-project.org/package=VGAM>