
Weak deflection angle by Casimir wormhole using Gauss-bonnet theorem and its shadow

Wajiha Javed,1, ∗ Ali Hamza,1, † and Ali Övgün2, 3, ‡
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Here we calculate the deflection angle of photon by Casimir wormhole in weak limit approxima-
tion. First we calculate Gaussian optical curvature with the help of optical spacetime geometry and so
we use the Gauss-Bonnet theorem on Gaussian optical metric and find deflection angle of photon by
Casimir wormhole. Moreover, we calculate the photon’s deflection angle in the presence of plasma
medium and we also see the graphical nature of deflection angle in both cases. After calculating the
deflection angle of Casimir wormhole. Now, we move towards the shadow of Casimir wormhole. Af-
ter the observations of Event Horizon Telescope, the study of shadow become very important so that
we plot the shapes of shadow of Casimir wormhole, and we calculate the photon geodesic around the
Casimir wormhole.

PACS numbers: 95.30.Sf, 98.62.Sb, 97.60.Lf
Keywords: Relativity and gravitation; Casimir Wormhole; Gauss-Bonnet; Effect of Plasma. Shadow of Casimir
Wormhole.

I. INTRODUCTION

Einstein and Rosen suggested the presence of traversable wormhole in 1935 which is also known as Einstein-
Rosen bridges [1]. A wormhole is a theoretical topological factor of the spacetime which makes alternate routes
between two particular spacetimes. As of recently, nobody figure out how to demonstrate them physically, they
are just scientific idea. The idea of ”wormhole” was developed firstly in 1957 inside the seminal papers of Misner
and Wheeler [2] and Wheeler [3] so as to give a method for having ”charge without charge”. Afterward, Wheeler
demonstrated that wormholes would be unsteady and non-traversable for even a photon [4]. The investigation of
Lorentzian wormholes in circumstance of General Relativity (GR) goes back to the basic works of Morris and Thorne
in 1988 [5] where they presented a static spherical symmetric line element, they indicated that by solving the Einstein
field equation, we can find the exact solutions which represent the wormhole geometries. Later on motivated by the
Morris-Thorne paper, numerous scientists analyse wormhole in various viewpoints ([6]-[42]). Later on, different
sorts of traversable wormholes were came up as suitable answers for the conditions of GR, admitting a various
examined in a 1989 paper by Matt Visser, in this paper he popularized a way by wormhole can be built in which the
navigating way doesn’t go through an area of exotic matter [43]. They are called as thin-shell wormholes. Anyhow,
exotic matter cause trouble for creating wormholes. As of late, it is indicated that wormholes are additionally critical
to clarify the quantum entanglement [44].
Here, we calculate the deflection angle of light (DAL) from Casimir wormhole in weak field limits (WFL). In 2008,
Gibbons and Werner (GW) suggested a technique to calculate the DAL by different black holes in the WFL [45]. For
calculating deflection angle, first calculate the Gaussian optical metric using optical geometry and so applying the
Gauss-Bonnet theorem (GBT), we can easily calculate the DAL by asymptotically flat spacetimes [45]:

α = −
∫ ∫

D∞

KdS, (1)

that give us accurate answer for DAL. Different authors used this technique to calculate DAL by various black holes
and wormholes spacetime ([46]-[55]). After that, Crisnejo and Gallo has analyzed the DAL in the presence of plasma
medium [56]. Some other works can be found in Refs [57–92].
It is generally accepted that majority of the galaxies have super-massive black holes at their centers [93, 94], for
example Milky Way and Messier 87 having super-massive black hole named as Sgr A. and M87. This expose the
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way for scientist to observe the picture of those super-massive black holes that would give solid proof with respect
to their presence. Hence the investigation regarding shadow of black hole has gotten a lot of consideration recently.
Due to solid gravitational impact Black Hole throws his shadow as an optical display on bright background. As a
matter of fact, a viewer sees the photon circles about the event horizon. Event Horizon Telescope (EHT) is accessible
experimental arrangement with respect to watch the black hole’s shadow. The space experts of EHT is trying to
see the picture of super-massive black hole Sgr A. with the help of BlackHoleCam. We need a earth size telescope
for watching Sgr A. but it is difficult to make such telescope. That problem can be settled by the assistance of Very
Long Baseline Interferometry (VLBI) organize. Moreover VLBI is a astronomical interferometry, here earth-based
radio telescopes gather signals by astronomical radio stations. Those radio telescopes are circulated around the
earth with the end goal is that to develope a virtual earth-sized telescope and it can deliver most highest result at the
mm/sub-mm wavelength scale. Shadow of Schwarzschild black hole is examined by Synge [95] and it is additionally
investigated by Luminet [96]. Bardeen [97, 98] analyzed shadow cast of Kerr black hole and more propagation was
given by Falcke [99]. Some other works can be found in Refs [100–107].
Main purpose of the paper is to calculate the deflection angle in non-plasma and plasma medium and shadow caste
by Casimir wormhole. For doing this paper is unionized as: In Sect. II, we calculate the Gaussian optical metric
of Casimir wormhole and through GBT method by GW, we calculate its deflection angle in Sect. III. In Sect. IV,
we observe the graphical behavior of deflection angle in non-plasma. In Sect. V, we calculate the DAL by Casimir
wormhole in plasma medium. In Sect. VI, we analyzed the plots of Casimir wormhole in plasma medium, next we
find the null geodesic in Sect. VII and in Sect. VIII we find the shadow of Casimir wormhole and finally in Sect. IX,
we conclude our result.

II. OPTICAL METRIC OF CASIMIR WORMHOLE

The metric of a Casimir traversable wormhole in a spherically symmetric spacetime is define as [108];

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dΩ2. (2)

Where A(r) and B(r) is defined as

A(r) =

(

3r

3r + a

)2

, B(r) = 1− 2a

3r
− a2

3r2
and dΩ2 = dθ2 + sin2 θdφ2.

Here a is a constant and r is a radial coordinate such that r ∈ [a,∞]. After expanding A(r) as a series and take only
first order of a, we can write A(r) as :

A(r) = 1− 2a

3r
.

As cause and viewer are in the tropical plane and null photon is also in a similar plane, so we can assume (θ = π
2 ).

For getting optical metric we put ds2 = 0,

dt2 =
dr2

A(r)B(r)
+

r2dφ2

A(r)
. (3)

Now by using Eq. (3), the non-zero christofell symbols are defined as

Γ0
00 = − B′(r)

2B(r)
− A′(r)

2A(r)
, Γ1

01 =
1

r
− A′(r)

2A(r)

and

Γ0
11 = −rB(r) +

r2A′(r)B(r)

2A(r)
,

and RicciScalar related to the optical metric is calculated as:

R = −A(r)B′(r)

r
+

A′(r)B′(r)

2
+

A′(r)B(r)

r
+A′′(r)B(r)

− (A′(r))2B(r)

2A(r)
. (4)
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The Gaussian optical curvature that is calculated as follows:

K =
RicciScalar

2
.

After simplifying, Gaussian optical curvature is given as:

K ≈ −3a+ 2a2

9

(

1

r3

)

+
−15a2 + 4a3

27

(

1

r4

)

+O
(

1

r5

)

. (5)

III. DEFLECTION ANGLE OF CASIMIR WORMHOLE

Now by using the GBT we can obtain the DAL of Casimir wormhole. We use the GBT to the area ES , given as [45]
∫ ∫

ES

KdS +

∮

∂ES

kdt+
∑

j

ǫj = 2πY(ES), (6)

and Gaussian curvature is indicated by K and geodesic curvature is indicated by k, declared as k = ḡ(∇α̇α̇, α̈) in this
way as ḡ(α̇, α̇) = 1, α̈ represents unit acceleration vector and the ǫj represents the exterior angle at the jth vertex. As
S → ∞, both the jump angles reduce to π/2 and we get θO + θS → π. The Euler characteristic is Y(ES) = 1, as ES is
non singular. So,

∫ ∫

ES

KdS +

∮

∂ES

kdt+ ǫj = 2πY(ES), (7)

here, ǫj = π shows that both αḡ and the total jump angle is a geodesic, since the Euler characteristic number ex-

pressed by Y is 1. As S → ∞, the only interesting part to be determined is k(DS) =| ∇ḊS
ḊS |. Since, radial

component of geodesic curvature is defined as [45]

(∇ḊS
ḊS)

r = Ḋφ
S∂φḊ

r
S + Γ0

11(Ḋ
φ
S)

2. (8)

For large S, DS := r(φ) = S = const. Hence, the form of the Eq. (8) becomes (Ḋφ
S)

2 = A2(r)B(r)
r2 . As Γ0

11 =

−rB(r) + r2A′(r)B(r)
2A(r) , so it becomes

(∇Ḋr
S
Ḋr

S)
r → −1

S
. (9)

As topological defect is not present in geodesic curvature so, k(DS) → S−1. But with the help of optical metric Eq.
(5), we can write as dt = Sdφ. Hence, we get this;

k(DS)dt =
1

S
Sdφ. (10)

With the help of all above results, we obtained

∫ ∫

ES

Kds+

∮

∂ES

kdt =S→∞

∫ ∫

T∞

KdS +

∫ π+Θ

0

dφ. (11)

Light ray at 0th order in week field limit is defined as r(t) = b/ sinφ. Now, using (6) and (12), the DAL defined as
[45]

Θ = −
∫ π

0

∫ ∞

b/ sinφ

K
√

detḡ drdφ, (12)

where

√

detḡ =

(

2a

3
+

2a2

9

)

+ r +
ra

3
+

a2

6r
+

a3

18r2
dr. (13)

After putting the leading order terms of Gaussian curvature Eq. (5) into Eq. (12), the deflection angle is defined as:

Θ ≈

−4

b

[−a

3
+

a2

9
+

2a3

27

]

+O
(

1

b2

)

. (14)
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IV. GRAPHICAL ANALYSIS FOR NON-PLASMA MEDIUM

Here, in this portion we talk about the graphical behavior of DAL. We observe the relation of deflection angle Θ
with impact parameter b with the variation of a.

A. Deflection angle Θ w.r.t Impact parameter b
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Figure 1: Relation between Θ and b.

• Figure 1 display the relation of Θ w.r.t b for different values of a.

1. In left plot, we saw that for small values of a the deflection angle first decreasing from positive to negative
and then gradually increasing that indicates the balanced behavior.

2. In right figure, we observed that for choosing large values of a deflection angle is continuously decreasing
from positive to negative.

V. EFFECT OF PLASMA ON GRAVITATIONAL LENSING

This segment is based on the investigation of DAL by Casimir wormhole in the presence of plasma medium. For
Casimir wormhole the refractive index n(r) [56], is obtain as,

n2 [r, ω(r)] = 1− ω2
e(r)

ω2
∞(r)

. (15)

Refractive index is defined as;

n(r) =

√

1− ω2
e

ω2
∞

(A(r)). (16)

Where ωe is electron plasma frequency and ω∞ is photon frequency evaluated by an viewer at infinity and so the
corresponding optical metric defined as [56]

dt2 = goptlm dxldxm = n2

[

dr2

A(r)B(r)
+

r2dφ2

A(r)

]

. (17)

Here the metric function of the above optical metric is given as

A(r) = 1− 2a

3r
and B(r) = 1− 2a

3r
− a2

3r2
, (18)

the non-zero christopher symbols corresponding of optical metric are defined as:

Γ0
00 =

(

1 +
ω2
eA(r)

ω2
∞

)[

−A′(r)B(r) +A(r)B′(r)

2A(r)B(r)

(

1− ω2
eA(r)

ω2
∞

)

− ω2
eA

′(r)

2ω2
∞

]

,
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Γ1
10 =

(

1 +
ω2
eA(r)

ω2
∞

)[

1

r

(

1− ω2
eA(r)

ω2
∞

)

− A′(r)

2A(r)

(

1− ω2
eA(r)

ω2
∞

)

− ω2
eA(r)

2ω2
∞

]

and

Γ0
11 =

(

1 +
ω2
eA(r)

ω2
∞

)[

−rB(r)

(

1− ω2
eA(r)

ω2
∞

)

+
r2B(r)

2

ω2
eA

′(r)

ω2
∞

+
r2A′(r)B(r)

2A(r)

(

1− ω2
eA(r)

ω2
∞

)]

. (19)

Gaussian curvature in terms of curvature tensor can be determined as

K =
Rrφrφ(g

opt)

det(gopt)
, (20)

with the help of Eq. (20) Gaussian curvature is written as

K ≈
[−3a+ 2a2

9
+

ω2
e

ω2
∞

(
−15a+ 32a2

36
) +

ω4
e

ω4
∞

(
9a− 6a2

36
)

](

1

r3

)

+

[−15a2 + 4a3

27
+

ω2
e

ω2
∞

(
−27a2 + 10a3

36
) +

ω4
e

ω4
∞

(
−21a2 + 14a3

36
)

](

1

r4

)

+ O
(

1

r5

)

. (21)

By using GBT, we check the DAL in order to compare it with non-plasma. In this way, for finding angle in the WFL,

as the light beams pursues a straight line estimation so we utilize a case of r = b
sinφ at 0th order.

Θ = − lim
R→0

∫ π

0

∫ R

b
sinφ

KdS. (22)

Where dS=
√
gdrdφ and

√
g =

6a+ 2a2

9
+

[

3 + a

3

(

1− ω2
e

ω2
∞

)]

r +

[

a2

6

(

1− ω2
e

ω2
∞

)]

1

r
+O

(

1

r2

)

,

With the help of Eq. (11), the DAL in plasma medium is defined as;

Θ ≈

−4

b

[−a

3
+

a2

9
+

2a3

27
− aω2

e

12ω2
∞

+
23a2ω2

e

36ω2
∞

+
2a3ω2

e

9ω2
∞

+
2aω4

e

3ω4
∞

− 5a2ω4
e

6ω4
∞

− 19a3ω4
e

54ω4
∞

]

+O
(

ω6
e

ω6
∞

,
1

b2

)

. (23)

The above results tells us that photon rays are moving into medium of homogeneous plasma. We see that Eq. (23)
reduced into Eq. (14) if plasma effect can be removed.

VI. GRAPHICAL ANALYSIS FOR PLASMA MEDIUM

Now, we want to observe the deflection angle of Casimir wormhole in the presence of plasma medium. Here, we
take ωe

ω∞

=10−1 and observe behavior of DAL by changing different values of a.
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A. Deflection angle w.r.t Impact parameter
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Figure 2: Relation between Θ and b.

• Figure 2 demonstrates the relation of Θ with b for different values of a.

1. In 1st plot we examined that for small values of a the DAL first decreasing from positive to negative and
then gradually increasing as like in Figure 1.

2. In 2nd plot we observed that DAL gradually decrease for large values of a as like in Figure 1.

VII. NULL GEODESIC IN A CASIMIR WORMHOLE

The Lagrangian identifying the motion of a photon in the spacetime of the Casimir wormhole Eq. (2) is given by

2L = −
(

1− 2a

3r

)

ṫ2 +

(

1

1− 2a
3r − a2

3r2

)

ṙ2 + r2θ̇2 + r2 sin2 θφ̇2, (24)

where an overdot means derivative w.r.t the affine parameter λ. As the Lagrangian is independent of φ and t so there
are only two constants of motion named as the energy E and the angular momentum L. Where E and L are defined
as:

pt =
∂L

∂ṫ
= −(1− 2a

3r
)ṫ = −E (25)

and

pφ =
∂L

∂φ̇
= r2 sin2 θφ̇ = L. (26)

Now we can determine the geodesic conditions by utilizing these preserved measures

dt

dλ
= ṫ =

E

1− 2a
3r

,
dφ

dλ
= φ̇ =

L

r2 sin2 θ
.

The r-part and θ-part of the momentum are defined as

pr =
∂L

∂ṙ
=

ṙ

1− 2a
3 − a2

3r2

and pφ =
∂L

∂φ̇
= r2θ̇.

The r-part and θ-part of the geodesic equations can be calculated by working on the Hamilton-Jacobi equation

∂S

∂λ
= −1

2
gµν

∂S

∂xµ

∂S

∂xν
, (27)
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and for photons (m0 = 0), Eq. (27) has a result of the succeeding type

S = −Et+ Lφ+ Sr(r) + Sθ(θ), (28)

here Sr is a function or r and Sθ is the function of θ. By putting Eq. (28) into Eq. (27) and also putting the value
of contravariant metric, i.e., gµν , and differentiate the terms of variables r and θ equal to the Carter constant (±K)
[109], we get

1
√

1− 2a
3 − a2

3r2

dr

dλ
=+

−

√
R(r),

r2
dθ

dλ
=+

−

√
T (θ), (29)

here R and θ can be written as

R(r) =
E2

1− 2a
3r

− K
r2

,

T (θ) = K − L2

sin2 θ
. (30)

As we have geodesic equations now our main concern is to find the radial motion of photons across the throat of
Casimir wormhole, that can be showed by the computation of the effective potential

dr

dλ

2

+ Veff = 0, (31)

with

Veff = −
(

1− 2a

3
− a2

3r2

)

R(r). (32)

From the expression we can say that effective potential depend on constant a, radial coordinate r and on energy E.
It is advantageous to decrease the quantity of parameters by characterizing the impact parameters such as ξ = L

E

and η = K
E2 . Photon geodesics can be communicated as far as these impact parameters (ξ,η ). Now we write R, in

the form of impact parameters as pursues

(R) = E2[
1

1− 2a
3r

− η

r2
]. (33)

The investigation of effective potential expose the presence of un-stable circular orbits of fixed radius about the throat
of wormholes. Those circles are significant from the perspective of optical perceptions.

VIII. SHADOW OF CASIMIR WORMHOLE

Here, we explore the shadow cast of Casimir wormhole. As we talk about the wormhole that it is a tunnel-like
shape relating various areas of space-time and it doesn’t have any horizon or singularity inside it. Also, it is thought
that gravitational force of a wormhole is so weak that a human can tolerate it easily. Wormhole’s throat is very
important because unstable photon present here and they are spinning about throat infinite times before reaching to
the viewer.
Let us assume the circumstance here one of the space-time areas that is associated with wormholes is lighted with
a light source and a far eyewitness is additionally present here. One would note this, in the other space-time area
there is no light source present and hence photons cannot navigate from this area. As an far eyewitness can have
the option to watch the disorder photons. Moreover, the photons that are plunging, subsequently navigating from
the wormholes and can’t be seen by the eyewitness. The nonattendance of the navigated photons forms a dark spot
on the bright background known as shadow of wormhole. The non-stable round photons give the boundary of the
shadow. Conditions that check the non-stable round photons can be written in this form

R = 0, R′ = 0. (34)
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Here prime (′) denote derivative w.r.t r. Putting (33) into (34), we can easily get

η =
r2

1− 2a
3r

, r =
4a

3
. (35)

Here, impact parameter η depend on radial coordinate r and on constant a. Eq. (35) defines the shadow’s boundary
and a far eyewitness can note its projection in his sky. Therefor, we make the celestial coordinates (α,β) in the
eyewitness’s sky and associate them with impact parameters (ξ,η). The celestial coordinates written ([110],[111]) as

α =lim
r0→∞ (r20 sin θ0)

dφ

dr
,

β =lim
r0→∞ r20

dθ

dr
, (36)

here distance between wormhole and observer is denoted by r0 and θ0 is observer’s angular coordinate or we can
say it ”inclination angle”. Now putting the equations of four-velocities into Eq. (36), and doing some simple direct
calculations we get this type of celestial coordinates

α = − ξ

sin θ0
and β =

√

η − ξ2

sin θ20
. (37)

Knowing the equations of celestial coordinates and impact parameters, we now make the shadow of Casimir worm-
hole. So as to construct the shape of shadow, we plot α versus β which gives the shadow’s boundary in the eyewit-
ness’s sky. The plots of the shadow for the Casimir wormholes can be saw from Fig 3.
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Figure 3: Graphs displaying the shadow of Casimir wormhole.

By changing the values of constant (a) and radial coordinate (r), we check the behavior of shadow of Casimir
wormhole in the equatorial plan by putting θ0 = π

2 . We can see from the plots that shadow’s shape is a perfect
square and it is changed by changing values of (a) and (r) as shown in Fig. 3. It is seen from the graphs that shadow
of Casimir wormhole reduces by increasing the values of (a) and (r).

IX. CONCLUSION

In this paper, first of all we use the GBT to find the DAL by Casimir wormhole. For this we obtain the optical
gaussian curvature with the help of optical metric and apply the GBT on optical gaussian curvature and calculated
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the DAL. The deflection angle is defined as

Θ ≈

−4

b

[−a

3
+

a2

9
+

2a3

27

]

.

This shows that deflection angle only depends on the impact parameter. Next we also check the graphical behavior
of this deflection angle. In this behavior we analyzed that for small values of (a) deflection angle first decreasing
and then goes to positive increase and for large values of (a) deflection angle continue decreasing from positive
to negative side. We also discuss the deflection angle of Casimir wormhole in the presence of plasma medium.
Deflection angle of Casimir wormhole in the presence of plasma medium is defined as

Θ ≈

−4

b

[−a

3
+

a2

9
+

2a3

27
− aω2

e

12ω2
∞

+
23a2ω2

e

36ω2
∞

+
2a3ω2

e

9ω2
∞

+
2aω4

e

3ω4
∞

− 5a2ω4
e

6ω4
∞

− 19a3ω4
e

54ω4
∞

]

.

Here we note that this deflection angle is also depend only on the impact parameter. Now if we neglect the plasma
effect ( ωe

ω∞

→ 0) then this deflection angle Eq. (23) reduces into this angle Eq. (14). We also observed the graphical

behavior in the presence of plasma medium. In these plots we observed that these plots shows the same behavior as
in the non-plasma plots.
Now in the 2nd portion we calculate the shadow of Casimir wormhole. Since most recent couple of decades the
investigation of shadow cast by the compact articles particularly for black hole and wormholes has been talked about
conspicuously. Since subject has astrophysical importance in light of the fact that solid confirmations recommend
the presence of supermassive black hole at the center of giant galaxies. The examination is significant from the
perspective of talking about the idea of these astrophysical items. According to prediction of general relativity
wormholes behave as tunnel like passage, as a two dirction interface, a connection between two space-times that are
in same Universe or not. So here, in this portion, we first of all calculate the Null Geodesic of Casimir wormhole
and then we make the shadow of Casimir wormhole. We have calculated the celestial co-ordinates and impact
parameters to see the shape of Casimir wormhole’s shadow. We saw that its shadow is a perfect circle and this circle
change by changing values of r and a and we make the plots for different cases. Result of these graph is that radius
of this shadow decrease when we increase the value of r and a.
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[35] A. Övgün and M. Halilsoy, Astrophys.Space Sci., 361(7):214, 2016.
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[75] A. Övgün, Universe 5, no. 5, 115 (2019).
[76] W. Javed, R. Babar, A. Ovgun, Phys. Rev. D 99, no. 8, 084012 (2019).
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