
A NOTE ON HORADAM HYBRINOMIALS

CAN KIZILATEŞ

Abstract. The hybrid numbers are a generalization of complex, hyperbolic and dual num-
bers. In this paper, we introduce the Horadam hybrid polynomials called Horadam hybrino-
mials. We also give some special cases and algebraic properties of the Horadam hybrinomials.
Finally we obtain some applications related to the Horadam hybrinomials in matrices.

1. Introduction

For a, b, p, q ∈ Z, Horadam introduced the sequence Wn = Wn(a, b; p, q) by the recurrence
relation

Wn = pWn−1 + qWn−2, n ≥ 2

with the initial values W0 = a and W1 = b. This sequence is a generalization of several
well-known sequences such as the Fibonacci, Lucas, Pell, and Pell—Lucas sequences. These
sequences in combinatorial number theory have been studied by many mathematicians for
a long time. These sequences are also of great importance in many research areas such as
algebra, geometry, combinatorics, approximation theory, statistics, and number theory. For
more information, please refer to [1—3] and closely related references therein.
In [4], the Horadam polynomials hn(x) = hn(x; a, b; p, q) were given by the recurrence rela-

tion
hn(x) = pxhn−1(x) + qhn−2(x), n ≥ 3 (1.1)

with the initial values h1(x) = a and h2(x) = bx. Let α =
px+
√
p2x2+4q
2 and β =

px−
√
p2x2+4q
2

be the real roots of the characteristic equation t2 − pxt − q = 0. Then the Binet formula for
the polynomial hn(x) is given by

hn(x) = Aαn−1 +Bβn−1, (1.2)

where A = bx−aβ√
p2x2+4q

and B = aα−bx√
p2x2+4q

.

The generating function of the Horadam polynomials is

a+ xt(b− ap)
1− pxt− qt2 =

∞∑
n=0

hn(x)tn. (1.3)

Some special cases of the Horadam polynomials hn(x) are as follows:
(1) For a = b = p = q = 1, the Horadam polynomials hn(x) = hn(x; 1, 1; 1, 1) are the

Fibonacci polynomials Fn(x);
(2) For a = 2 and b = p = q = 1, the Horadam polynomials hn(x) = hn(x; 2, 1; 1, 1)

become the Lucas polynomials Ln−1(x);
(3) For a = q = 1 and b = p = 2, the Horadam polynomials hn(x) = hn(x; 1, 2; 2, 1) reduce

to the Pell polynomials Pn(x);
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(4) For a = b = p = 2 and q = 1, the Horadam polynomials hn(x) = hn(x; 2, 2; 2, 1) are
the Pell—Lucas polynomials Qn−1(x);

(5) For a = b = 1, p = 2, and q = −1, the Horadam polynomials hn(x) = hn(x; 1, 1; 2,−1)
are the Chebyshev polynomials of the first kind Tn−1(x);

(6) For a = 1, b = p = 2, and q = −1, the Horadam polynomials hn(x) = hn(x; 1, 2; 2,−1)
become the Chebyshev polynomials of the second kind Un−1(x).

Özdemir [5] introduced the set of hybrid numbers denoted by K which contains complex,
dual and hyberbolic numbers. The set of hybrid numbers

K =
{
a+ bi+ cε+ dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = hi = ε+ i

}
.

Let Z1 = a1 + b1i+ c1ε+ d1h and Z2 = a2 + b2i+ c2ε+ d2h be any two hybrid numbers. The
equality, addition, subtraction and multiplication by scalar are defined as follows:
Z1 = Z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2 (Equality),
Z1 + Z2 = (a1 + a2) + (b1 + b2) i+ (c1 + c2) ε+ (d1 + d2)h (addition),
Z1 − Z2 = (a1 − a2) + (b1 − b2) i+ (c1 − c2) ε+ (d1 − d2)h (subtraction),
sZ1 = sa1 + sb1i+ sc1ε+ sd1h (multiplication by scalar s ∈ R).
Addition operation in the hybrid numbers is both commutative and associative. Zero 0 =

0 + 0i + 0ε + 0h is the null element. With respect to the addition operation, the inverse
element of Z is −Z = −a− bi− cε− dh. This implies that, (K,+) is an Abelian group. The
multiplication of hybrid numbers is not commutative, but it has the property of associativity.
The multiplication table of the basis of hybrid numbers are as follows:

. 1 i ε h
1 1 i ε h
i i −1 1− h ε+ i
ε ε h+ 1 0 −ε
h h −ε− i ε 1

Table 1: The multiplication table for the basis of K
Recently, many researchers have studied related to hybrid numbers. For example, in [6]

Szynal-Liana and Wloch considered the Fibonacci hybrid numbers and obtained some prop-
erties of this numbers. In [7, 8] the authors also defined and examined the Jacosthal and
Jacosthal—Lucas hybrid numbers and the Pell and Pell—Lucas hybrid numbers respectively. In
[9] Szynal-Liana generalized their results and defined the Horadam hybrid numbers. In [10]
Kızılateş defined the another generalization of hybrid numbers which called the q−Fibonacci
hybrid numbers and q−Lucas hybrid numbers. Moreover, the author gave some important
algebraic properties of these numbers. For more information, please refer to [5—12] and closely
related references therein.
We now turn to a recent investigation by Szynal-Liana and Wloch [13], who defined and

studied a family of the special polynomials and the special numbers which are related to
the Fibonacci hybrinomials and Lucas hybrinomials. The Fibonacci hybrinomials and Lucas
hybrinomials are defined as follows:

FHn(x) = Fn(x) + Fn+1(x)i+Fn+2(x)ε+Fn+3(x)h,

and
LHn(x) = Ln(x) + Ln+1(x)i+Ln+2(x)ε+Ln+3(x)h.

For n ≥ 2, the recurrence relations of the Fibonacci hybrinomials and the Lucas hybrinomials
are

FHn(x) = xFHn−1(x) + FHn−2(x),
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and
LHn(x) = xLHn−1(x) + LHn−2(x),

with the initial values FH0(x) = i+xε+(x2 + 1)h, FH1(x) = 1 + xi+(x2 + 1)ε+(x3 + 2x)h,
LH0(x) = 2+xi+(x2+2)ε+(x3+3x)h and LH1(x) = x+(x2+2)i+(x3+3x)ε+(x4+4x2+2)h,
respectively. The Fibonacci hybrinomials and the Lucas hybrinomials, namely polynomials,
which are a generalization of the Fibonacci hybrid and Lucas hybrid numbers.
Motivated by some of the above-cited recent works, we introduce here new polynomials

which are called Horadam hybrinomials. Our definitions give rise to a more general hybrid
polynomial sequence by receiving components from Horadam polynomials. Thanks to this gen-
eralization, we obtain the Fibonacci hybrinomials FHn(x), the Lucas hybrinomials LHn−1(x),
the Pell hybrinomials PHn(x), the Pell-Lucas hybrinomials QHn−1(x), the Chebyshev hybri-
nomials of the first kind THn−1(x), the Chebyshev hybrinomials of the second kind UHn−1(x).
We also obtain various results for the Horadam hybrinomials included Binet-Like formula, gen-
erating function, exponential generating function, Catalan-Like identity, Cassini-Like identity,
d’Ocagne-Like identity and summation formulas, respectively. Moreover, we give some appli-
cations of Horadam hybrinomials in matrices.

2. Horadam Hybrinomials

In this section, we define the Horadam hybrinomials. Then we give some special cases of
Horadam hybrinomials such as the Fibonacci hybrinomials, the Fibonacci hybrid numbers, the
Lucas hybrinomials, the Lucas hybrid numbers, the Pell hybrinomials, the Pell hybrid numbers,
the Pell-Lucas hybrinomials, the Pell-Lucas hybrid numbers, the Chebyshev hybrinomials of
the first kind, the Chebyshev hybrid numbers of the first kind, the Chebyshev hybrinomials
of the second kind and the Chebyshev hybrid numbers of the second kind. Finally we obtain
Binet-Like formula, generating function, exponential generating function, summation formula,
Catalan-Like identity, Cassini-Like identity and d’Ocagne-Like identity, respectively.

Definition 2.1. For n ≥ 1, the nth Horadam hybrinomials are defined by

Hn(x) = hn(x) + hn+1(x)i+ hn+2(x)ε+ hn+3(x)h. (2.1)

Some special cases of Horadam hybrinomials are as follows:
(1) For a = b = p = q = 1, the Horadam hybrinomials Hn(x) become the Fibonacci

hybrinomials FHn(x),
(2) For a = 2 and b = p = q = 1, the Horadam hybrinomials Hn(x) become the Lucas

hybrinomials LHn−1(x),
(3) For a = q = 1 and b = p = 2, the Horadam hybrinomials Hn(x) become the Pell

hybrinomials PHn(x),
(4) For a = b = p = 2 and q = 1, the Horadam hybrinomials Hn(x) become the Pell-Lucas

hybrinomials QHn−1(x),
(5) For a = b = 1, p = 2, and q = −1, the Horadam hybrinomials Hn(x) become the

Chebyshev hybrinomials of the first kind THn−1(x),
(6) For a = 1, b = p = 2, and q = −1, the Horadam hybrinomials Hn(x) become the

Chebyshev polynomials of the second kind UHn−1(x),
(7) For x = 1, the Fibonacci hybrinomials FHn(x), become the Fibonacci hybrid numbers

FHn,
(8) For x = 1, the Lucas hybrinomials LHn−1(x), become the Lucas hybrid numbers

LHn−1,
(9) For x = 1, the Pell hybrinomials PHn(x), become the Pell hybrid numbers PHn,
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(10) For x = 1, the Pell-Lucas hybrinomials QHn−1(x), become the Pell-Lucas hybrid
numbers QHn−1,

(11) For x = 1, the Chebyshev hybrinomials of the first kind THn−1(x), become the Cheby-
shev hybrid numbers of the first kind THn−1,

(12) For x = 1, the Chebyshev polynomials of the second kind UHn−1(x), become the
Chebyshev hybrid numbers of the second kind UHn−1.

From the recurrence relations (2.1) and (1.1), we obtain that for n > 2,

Hn(x) = pxhn−1(x) + qhn−2(x) + (pxhn(x) + qhn−1(x)) i

+ (pxhn+1(x) + qhn(x)) ε+ (pxhn+2(x) + qhn+1(x))h

= pxHn−1(x) + qHn−2(x)

and so
Hn(x) = pxHn−1(x) + qHn−2(x),

with the initial values H1(x) = a + bxi+(bpx2 + aq)ε+(bp2x3 + (apq + bq)x)h and H2(x) =
bx+ (bpx2 + aq)i+(bp2x3 + (apq + bq)x)ε+ (bp3x4 + (ap2q + 2bpq)x2 + aq2)h.
Now we give the Binet-Like formula for the Horadam hybrinomials.

Theorem 2.2. The Binet-Like formula for the Horadam hybrinomial Hn(x) is

Hn(x) = Aαn−1α̃+Bβn−1β̃, (2.2)

where α̃ = 1 + αi+ α2ε+ α3h and β̃ = 1 + βi+ β2ε+ β3h.

Proof. By virtue of (1.2) and (2.1), we find that

Hn(x) = (Aαn−1 +Bβn−1) + (Aαn +Bβn)i+(Aαn+1 +Bβn+1)ε+(Aαn+2 +Bβn+2)h

= Aαn−1(1 + αi+ α2ε+ α3h) +Bβn−1(1 + βi+ β2ε+ β3h)

= Aαn−1α̃+Bβn−1β̃.

�

We shall give the generating function and exponential generating function for the Horadam
hybrinomials.

Theorem 2.3. The generating function for the Horadam hybrinomial Hn(x) is
∞∑
n=0

Hn(x)tn =
H0(x) + (H1(x)− pxH0(x)) t

1− pxt− qt2 . (2.3)

Proof. We begin with the formal power series representation of the generating function for
{Hn(x)}∞n=0 ,

∞∑
n=0

Hn(x)tn = H0(x) +H1(x)t+ · · ·+Hk(x)tk + · · · . (2.4)

Hence

pxt
∞∑
n=0

Hn(x)tn = pxH0(x)t+ pxH1(x)t2 + · · ·+ pxHk(x)tk+1 + · · · , (2.5)

qt2
∞∑
n=0

Hn(x)tn = qH0(x)t2 + qH1(x)t3 + · · ·+ qHk(x)tk+2 + · · · . (2.6)
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From (2.4), (2.5) and (2.6), we find that

(1− pxt− qt2)
∞∑
n=0

Hn(x)tn = H0(x) + (H1(x)− pxH0(x)) t.

So
∞∑
n=0

Hn(x)tn =
H0(x) + (H1(x)− pxH0(x)) t

1− pxt− qt2 .

�

Corollary 2.4. ([13, Theorem 2.10]) The generating function for the Fibonacci hybrinomial
FHn(x) is

∞∑
n=0

FHn(x)tn =
i+xε+(x2 + 1)h+ (1 + ε+xh)t

1− xt− t2 .

Proof. This follows from substituting a = b = p = q = 1 in the Equation (2.3). �

Corollary 2.5. ([13, Theorem 2.11]) The generating function for the Lucas hybrinomial
LHn(x) is

∞∑
n=0

LHn(x)tn =
LH0(x) + (LH1(x)− xLH0(x)) t

1− xt− t2 .

Proof. This follows from substituting a = 2 and b = p = q = 1 in the Equation (2.3). �

Theorem 2.6. The exponential generating function for the Horadam hybrinomial Hn(x) is
∞∑
n=0

Hn(x)
tn

n!
= Aα−1α̃eαt +Bβ−1β̃eβt.

Proof. By virtue of Binet formula for the Horadam hybrinomials, we have
∞∑
n=0

Hn(x)
tn

n!
=

∞∑
n=0

(Aαn−1α̃+Bβn−1β̃)
tn

n!

=
Aα̃

α

∞∑
n=0

(αt)n

n!
+
Bβ̃

β

∞∑
n=0

(βt)n

n!

=
Aα̃

α
eαt +

Bβ̃

β
eβt

= Aα−1α̃eαt +Bβ−1β̃eβt.

So the proof is completed. �

By virtue of Binet-Like formula of the Horadam hybrinomials, we give the following inter-
esting identities.

Theorem 2.7. (Catalan-Like Identity). Let n and r be arbitrary positive integers such that
n ≥ r. Then we have

Hn+r(x)Hn−r(x)−H2n(x) = (−q)n−1AB
(
α̃β̃

((
β

α

)r
− 1

)
+ β̃α̃

((
α

β

)r
− 1

))
. (2.7)
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Proof. By using the Binet formula of the Horadam hybrinomials, we have the left hand-side
of the equality (2.7),

Hn+r(x)Hn−r(x)−H2n(x) =
(
Aαn−r−1α̃+Bβ

n−r−1
β̃
)(

Aαn+r−1α̃+Bβ
n+r−1

β̃
)

−
(
Aαn−1α̃+Bβ

n−1
β̃
)2

= AB (αβ)
n−1

α−rβrα̃β̃ +BA (βα)
n−1

β−rαrβ̃α̃

−AB (αβ)
n−1

α̃β̃ −BA (βα)
n−1

β̃α̃.

After some elementary calculations, we get

Hn+r(x)Hn−r(x)−H2n(x) = (−q)n−1AB
(
α̃β̃

((
β

α

)r
− 1

)
+ β̃α̃

((
α

β

)r
− 1

))
.

�

Theorem 2.8. (Cassini-Like Identity). For n ≥ 1, the following equality holds:

Hn+1(x)Hn−1(x)−H2n(x) = (−q)n−1AB
(
α̃β̃

(
β

α
− 1

)
+ β̃α̃

(
α

β
− 1

))
(2.8)

Proof. Since the Cassini-Like identity is a special case for r = 1 of Catalan-Like identity, the
proof is trivial. �

Theorem 2.9. (d’Ocagne-Like Identity). Let n be a nonnegative integer and m a natural
number. If m > n+ 1, then we have

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
√

∆AB(−q)n−1
(
βm−nβ̃α̃− αm−nα̃β̃

)
, (2.9)

where ∆ = p2x2 + 4q.

Proof. By using the Binet-Like formula of the Horadam hybrinomials, we have

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
(
Aαm−1α̃+Bβm−1β̃

)(
Aαnα̃+Bβnβ̃

)
−
(
Aαmα̃+Bβmβ̃

)(
Aαn−1α̃+Bβn−1β̃

)
= ABαm−1βnα̃β̃ −ABαmβn−1α̃β̃

+BAαnβm−1β̃α̃−BAαn−1βmβ̃α̃.

After some calculations, we can easily see that

Hm(x)Hn+1(x)−Hm+1(x)Hn(x) =
√

∆AB(−q)n−1
(
βm−nβ̃α̃− αm−nα̃β̃

)
.

�

If we take a = b = p = q = 1 in (2.7), (2.8) and (2.9), we obtain the Catalan-Like, the
Cassini-Like and the d’Ocagne-Like identities for the Fibonacci hybrinomials [13, Theorem
2.4], [13, Corollary 2.6] and [13, Theorem 2.7], respectively. Similarly, if we take a = 2 and
b = p = q = 1 in (2.7), (2.8) and (2.9), we obtain the Catalan-Like, the Cassini-Like and the
d’Ocagne-Like identities for the Lucas hybrinomials [13, Theorem 2.5], [13, Corollary 2.6] and
[13, Theorem 2.9], respectively.
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Theorem 2.10. Let n ≥ 2 be an integer. Then we have

n−1∑
k=1

Hk(x) =
H1(x)−Hn(x) + q (H0(x)−Hn−1(x))

1− px− q . (2.10)

Proof. By using the Binet-Like formula of the Horadam hybrinomials, we find that

n−1∑
k=1

Hk(x) =

n−1∑
k=1

(
Aαk−1α̃+Bβk−1β̃

)
= Aα̃

n−1∑
k=1

αk−1 +Bβ̃
n−1∑
k=1

βk−1

= Aα̃

(
1− αn−1

1− α

)
+Bβ̃

(
1− βn−1

1− β

)
=

Aα̃ (1− β) (1− αn−1) +Bβ̃(1− α)
(
1− βn−1

)
1− px− q .

Utilizing the last equation, we have

n−1∑
k=1

Hk(x) =
H1(x)−Hn(x) + q (H0(x)−Hn−1(x))

1− px− q .

�

Corollary 2.11. ([13, Theorem 2.13]) Let n ≥ 2 be an integer. Then we have

n−1∑
k=1

FHk(x) =
FHn(x) + FHn−1(x)− FH0(x)− FH1(x)

x
.

Proof. This follows from substituting a = b = p = q = 1 in the Equation (2.10). �

Corollary 2.12. ([13, Theorem 2.15]) Let n ≥ 2 be an integer. Then we have

n−1∑
k=1

LHk(x) =
LHn(x) + LHn−1(x)− LH0(x)− LH1(x)

x
.

Proof. This follows from substituting a = 2 and b = p = q = 1 in the Equation (2.10). �

Theorem 2.13. For nonnegative integer n, we have

qn
n∑
i=0

(
n

i

)(
px

q

)n−i
Hn−i(x) = H2n(x). (2.11)
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Proof. By virtue of the Binet-Like formula of the Horadam hybrinomials, we have the left
hand-side of the equality (2.11),

qn
n∑
i=0

(
n

i

)
(px)n−i qi

(
Aαn−i−1α̃+Bβn−i−1β̃

)
= Aα̃α−1

n∑
i=0

(
n

i

)
(pxα)n−i qi +Bβ̃β−1

n∑
i=0

(
n

i

)
(pxβ)n−i qi

= Aα̃α−1 (pxα+ q)n +Bβ̃β−1 (pxβ + q)n

= Aα̃α2n−1 +Bβ̃β2n−1

= H2n(x).

Thus the proof is completed. �

3. An Application of Horadam Hybrinomials in Matrices

In this section, we derive the matrix representation of the Horadam hybrinomials. Then we
obtain closed formula for the Horadam hybrinomialsHn(x), in terms of tridiagonal determinant
by using same methods that were used earlier in [15] (see also [16, 17]).

Theorem 3.1. Let n ≥ 1 be an integer. The following equality holds:[
Hn+3(x) Hn+2(x)
Hn+2(x) Hn+1(x)

]
=

[
H3(x) H2(x)
H2(x) H1(x)

] [
px 1
q 0

]n
. (3.1)

Proof. For the proof, we use induction method on n. The equality holds for n = 1. Now
suppose that the equality is true for n > 1. Then we can verify it for n+ 1 as follows:[

H3(x) H2(x)
H2(x) H1(x)

] [
px 1
q 0

]n+1
=

[
H3(x) H2(x)
H2(x) H1(x)

] [
px 1
q 0

]n [
px 1
q 0

]
=

[
Hn+3(x) Hn+2(x)
Hn+2(x) Hn+1(x)

] [
px 1
q 0

]
=

[
Hn+4(x) Hn+3(x)
Hn+3(x) Hn+2(x)

]
.

Thus the proof is completed. �

Corollary 3.2. ([13, Theorem 2.16]) Let n ≥ 1 be an integer. The following equality holds:[
FHn+3(x) FHn+2(x)
FHn+2(x) FHn+1(x)

]
=

[
FH3(x) FH2(x)
FH2(x) FH1(x)

] [
x 1
1 0

]n
.

Proof. This follows from substituting a = b = p = q = 1 in the Equation (3.1). �

Corollary 3.3. ([13, Theorem 2.17]) Let n ≥ 1 be an integer. The following equality holds:[
LHn+3(x) LHn+2(x)
LHn+2(x) LHn+1(x)

]
=

[
LH3(x) LH2(x)
LH2(x) LH1(x)

] [
x 1
1 0

]n
.

Proof. This follows from substituting a = 2 and b = p = q = 1 in the Equation (3.1). �

The nth term of Horadam hybrinomial can be obtained via the computation of the deter-
minant of the tridiagonal matrix Mn−1(x).
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Proposition 3.4. The n× n tridiagonal matrices

Mn(x) =



H2(x) H1(x)
−q px 1

−q px 1
. . . . . . . . .

−q px 1
−q px


,

satısfy
|Mn(x)| = Hn+1(x).

Note that, Horadam hybrinomial can be obtained using the another tridiagonal matrix.

Proposition 3.5. For n ≥ 1, we have

Hn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

H1(x) H2(x) 0 0 · · · 0 0
−1 0 q 0 · · · 0 0
0 −1 px q · · · 0 0
...

...
...

. . . . . .
...

...
0 0 0 0 · · · px q
0 0 0 0 · · · −1 px

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

4. Conclusion

In our present investigation, we have introduced and studied systematically Horadam hybri-
nomials which are defined by means of the Horadam polynomials. We have derived several in-
teresting properties of Horadam hybrinomials such as Binet—Like formula, generating function,
exponential generating function, Catalan—Like identity, Cassini—Like identity, d’Ocagne—Like
identity and summation formulas, respectively. Finally in Section 3, with the help of the two
different tridiagonal matrix, we have obtained the nth term of Horadam hybrinomials. The
Horadam hybrinomials that we have defined include previously introduced the Fibonacci hy-
brinomials FHn(x), the Fibonacci hybrid numbers FHn, the Lucas hybrinomials LHn−1(x),
the Lucas hybrid numbers LHn−1, the Pell hybrinomials PHn(x), the Pell hybrid numbers
PHn, the Pell-Lucas hybrinomials QHn−1(x), the Pell-Lucas hybrid numbers QHn−1 (see,
[13, 14]). From the definition of the Horadam hybrinomials, we also have obtained the Cheby-
shev hybrinomials of the first kind THn−1(x), the Chebyshev hybrid numbers of the first kind
THn−1, the Chebyshev hybrinomials of the second kind UHn−1(x) and the Chebyshev hybrid
numbers of the second kind UHn−1. Indeed, for the interested readers of this paper, results
presented here have the potential to motivate further researches of the subject of the Tri-
bonacci hybrinomials and Tribonacci—Lucas hybrinomials, i.e. Tribonacci hybrid polynomials
and Tribonacci—Lucas hybrid polynomials including (for example) Tribonacci hybrid numbers
and Tribonacci—Lucas hybrid numbers.
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