Applications of Non-Standard Analysis in Topoi to Mathematical Neuroscience and Artificial Intelligence: I. Mathematical Neuroscience

Carmen-Elena Mocanu¹, Florin F. Nichita², and Ovidiu Păsărescu²*

¹ Carol Davila University of Medicine and Pharmacy, Faculty of General Medicine
8, Eroii Sanitari Avenue, District 5, Bucharest, Romania; Carmen.Mocanu@stud.umfcd.ro
² Simion Stoilow Institute of Mathematics of the Romanian Academy
21, Calea Grivitei Street, 010702 Bucharest, Romania; Florin.Nichita@imar.ro

* Author to whom correspondence should be addressed; E-Mail: Ovidiu.Pasarescu@imar.ro;
Tel: (+40) (0) 21 319 65 06; Fax: (+40) (0) 21 319 65 05

Abstract: This work - in two parts - tries to promote a new method in Mathematical Modeling, not ever used before, namely the use of the methods of Non-standard Analysis in Topoi. For the general mathematical theory of topoi (Topoi Theory) we refer to the book [10]. For non-standard analysis in the particular Boolean topos SET (the category of sets) we refer to the book [11]. This first part of the work is related, from an applicative point of view, mainly with Mathematical Neuroscience, more precisely a model of the human thinking, consciousness and subconsciousness. The connections between brain and mind will be also sketched, but a closer study also need some further topics to be studied in Part II: Artificial Intelligence, namely (Quantum) neural networks and (Quantum) Turing machine. However both parts (I. and II.) should be considered together, because they complement each other. The topoi model the intuitionistic logic (multi-valued) and have been used in Quantum Physics (see [9] and its references) while Non-Standard Analysis in SET (introduced by Abraham Robinson[31]) has been applied in Mathematical Economics (see [2] and its references); however, the combination was never used until now in Applied Mathematics. Even more, the Non-standard Analysis in Topoi is not too much studied from the point of view of Pure Mathematics either. One of the main objective of this work is to produce progress in this aria of Mathematics also, mainly for the SET-type topos and exponential topoi, those topos used in Quantum Physics and in which we need Non-Standard Analysis for our purposes. Based on the paper [13] we propose the logic of non-standard
extensions in topoi as a model of the human thinking (based on infons), these theories representing top and very difficult results in Abstract Mathematics. We will analyse the relation between brain and mind via the genetic-epigenetic interplay. More details will be provided in the Introduction, followed by a short presentation of the general theory, later connected with the (Quantum) Yang-Baxter equations in topoi. The connections between these equations and braid groups and knots, with intended applications in Neuroscience and Artificial Intelligence will be further analysed in Part II. Besides promoting a new idea of modeling, the present paper aims to promote the building of a Research Proposal for the European "Human Brain Project" (https://www.humanbrainproject.eu/en/), and the NSF-Europe Program "Collaborative Research in Computational Neuroscience" (https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5147), jointly with the new founded "National Centre for the Research of the Brain" of the Romanian Academy of Science (https://acad.ro/centreAR/CNCC/CNCC.pdf, in Romanian). "Blue Brain Project" (https://www.epfl.ch/research/domains/bluebrain/) could also be of big interest. We hope that the journals edited by MDPI (Axioms, in particular) and by the Simion Stoilow Institute of the Romanian Academy - Revue Roumaine de Mathematique Pures et Appliqués (http://imar.ro/journals/Revue/Mathematique/home_page.html) - among others - will host special issues related to the research subjects described in both parts of this work, starting with this one. For further details and some of the progress on this research subject, see www.ovidiufpasarescu.com.

Keywords: non-standard analysis, topos theory, Yang-Baxter equation, universal gate, quantum computer, brain studies

Classification: MSC 18D35, 16B50, 16T25, 18F10, 03B50, 26E35

1. Introduction

This first part of our paper is related to the Neuroscience, viewed from a mathematical perspective. Nevertheless, both parts should be considered together, because some of the notions used in this first part will be detailed in the second one, so the notions equally apply to both topics. This paper addresses to an auditorium of a great diversity: neuroscientists, informaticians, physicians, physicists, biologists, mathematicians,... aiming to produce an interdisciplinary group of research. With these things in our mind, we tried to write a paper which could be read by different kind of specialists. Even the authors of this work in two parts and their collaborators belong to various scientific areas (neuroscience, mathematics, medicine, economics; professors, researchers, students), with the hope that we produced an enough self-contained and readable paper by many categories interested in the topics. Although, due to the previous reasons the paper shortly re-explain already known notions and results, it also contains new and original contributions. The main original contribution of this paper is the idea of considering the non-standard extension of the intuitionistic logic (in topoi) as modeling the human
thinking, consciousness, and considering together both natural and artificial intelligence, as part of the global brain, as explained in section 3. We also contribute to the development of the Non-standard Analysis in set-type exponential topoi, in the area of Pure Mathematics. Information and energy represent the two facets of an elementary particle in String Theory (the string vibrates = energy in a specific way (amplitude, frequency, spin,...) = information, in order to give one or another one of the elementary particles). They do not reduce to our brain, neither to our body, they travel freely realising connections between the interior (brain, sensory organs, DNA = genetics) and the exterior (epigenetics) of the human body, generating the mind, reciprocically related to the brain (see [29], [7]). We deal with these subjects in more detail in sections 2, 3, and 4. In sections 5.- 7. we recall the basic notions of our modelling approach (based on Topos Theory and its Non-standard extension), the examples from section 7. being original (non-standard analysis in Set-type topoi). The interpretation of theories (from mathematical logic, model theory) and of the corresponding categories (models of the theories) as infons, energons, and receptons represents an original approach also. For details concerning these things, see sections 4. and 8. Finally, the use of the theory of knots and braid groups - and, as a consequence the Yang Baxter equations - in neuroscience, represents a new idea also. One of the most fascinating theories of the last centuries is the knot theory. Some of the most brilliant minds struggled with the task of classifying knots. They found polynomials which distinguish knots (and for that purpose the Yang-Baxter equation was employed). In section 9. we recall the Yang-Baxter equations and produce logical solutions in topoi, finding in such a way connections between Topoi Theory (so, intuitionistic logic) and the Yang-Baxter various equations. We intended to make this paper as self-contained as possible, in order to make it readable, being addressed to a variety of specialists, not having - usually - the same academic formation. However, there are some notions used in this first part, but not explicitly recalled as there are: (Quantum) Neural Networks, (Quantum) Turing machines, and further developments of the Non-standard Analysis in more general topoi. All these things will be considered in the second part of this paper (II. Artificial Intelligence), together with more details concerning the connections between knots, braid groups, Yang-Baxter equations, and DNA, brain, quantum computers.

2. The Role of Information in the Structure of Matter

First of all, information is related to organisation. We say that some systems or objects are more complex than others because we perceive them as containing more information. For example, it is obvious that an epithelial tissue contains more information than a cell. Epithelial cells exhibit distinct polarity, having an apical, a lateral and a basal domain. This organisation involves more information, as the molecular mechanism responsible for this arrangement is required to create a functional barrier between adjacent cells. Following Tom Stonier’s idea from [30], information is related to entropy, because the latter is a measurement of organisation. They are exponentially inverse proportional: as a consequence, if - inside a complex system - the entropy decreases, meaning that matter is more organised, the amount of incorporated information increases. We think it is really important to see how this new concept – the incorporated information – influences our lives and more specifically the role it plays in the structure of matter. How do atoms know how to bind together and form a more complex structure? How can a simple stem cell differentiate in so many other types of cells? Information dictates
all those processes. Everything contains infons (see section 8). Let’s take as an example a sound wave. We can tell for sure that it contains some kind of information, that travels through air until it reaches the human ear. Here it is transformed into a nervous impulse and travels to the brain, where it will be perceived. A sound wave is a mechanical wave that causes local regions of compression and rarefaction through the medium, deviating the local pressure from the equilibrium pressure. Therefore, sound, which is made of information, changes the structure of matter. In neuroscience it is of extreme interest to see how information affects the brain. We, as humans, are born with unconnected neurons. In the first two years, we form synapses while experiencing the world around us. As we grow up, we lose almost 50% of the already formed synapses, but we also form others while interacting with the environment. How does information influence this process? The more we interact with something, the more powerful the synapse gets. It’s like a road through a forest. At first, there’s nothing there, but as more and more people go along it, the grass disappears and a path is formed. The same thing happens in the brain. We believe that information extends one’s life. During the first part of our lives, the human organism functions in an anti-entropic way. As it gets more organised, the entropy decreases, instead of increasing. However, after this period, the entropy of the human organism continues to increase until it reaches a state of equilibrium with the environment, when the organism dies, because no more energy exchange can be done. By increasing the amount of information one takes in, the entropy of the organism decreases, meaning that it prolongs the process of ageing. Thus, learning new things delays the decay of the brain primarily, but of other organs as a consequence as well. For a much more physico-mathematical approach of such kind of things, see sections 4. and 8. of this paper.

Moreover, inside the human brain there are complicated structures formed by proteins, in particular very complicated knots, which contain information in their nodal structure. So, in order to understand how the information is encoded in the nodal structures of the proteins, we could use the mathematical connections between (Quantum)Yang-Baxter Equations (QYBE, YBE), Braid Groups, and Knots. Moreover, braid groups are also related to the study of DNA. In this paper, the first part of the work (section 9.) we recall the QYBE and YBE, and we find logical solutions of them in the classifying objects of a topos (with its Boolean or Heyting algebra structure, see section 5. and 6.). More details concerning the previous relations will be recalled in the second part (II. Artificial Intelligence).

3. Life and Information: Brain and Mind versus Genetics and Epigenetics

For further details related to this section we refer to the books [7], [29]. The Brain is the main organ where the mind is born, but the brain is far from being the only entity involved in the growth of the human mind. The mind is a by-product of the neural networks from the brain (synapses), in continuous transformations (some synapses disappear while new ones are born), representing the so-called plasticity of the brain. The synapses are born as a consequence of the learning process - schools, various experiences - through the interactions between the human being and the environment. The mind is also a by-product of other kind of communications between neurons (and the glial environment), namely the quantum networks connected by the so-called microtubules. Certainly, this interactions are between the brain, through the sensory organs, moderated by the information from the DNA molecule (genetics),
and the environment (epigenetics). The human being has much information in its DNA, but only some of it will be used in a life-long period. Simplifying, there is information that tells us to start trembling when it is cold (or to sweat when it is hot). However, if we spend a life-time period at the Ecuator we will never experience the trembling (respectively, if we spend a life-time period at the North pole we will never experience sweating). So, the information from the around 2 m long DNA molecule is read by the environment - epigenetics, the system genetics/epigenetics becoming a kind of (quantum) Turing machine, generating, in particular, the evolution of the mind, which, through plasticity, generates the evolution of the brain, and vice-versa.

We - the humans - think using both consciousness (awarness) and subconsciousness. The logic of consciousness is intuitionistic (we have, mainly, feelings about things, like about the truth of Conjectures in Mathematics, as an example), and the reunion between consciousness and subconsciousness is a conservative extension of consciousness (that is, the subconsciousness does not alter our awarness). So, the logic of human thinking is very similar to the logic of infons - see section 8., having as models non-standard objects from non-standard enlarged topoi - see section 8. again (based on sections 5.,6., and 7. also). From a mathematical point of view, is necessary to understand how the (quantum)neural networks from the brain (synapses) are influenced by the genetic-epigenetic (quantum) Turing machine. The Quantum Physics approach is better to be based on truth values than on probabilities, the truth values-approach being used in topoi (see [6]). And, another important thing. A Theorem of Mathematics is based on the work of many others, so it is a by-product of the global brain. The Global Brain includes all the human brains AND the technology, used both for getting information from the outside of the direct human perception, and for connecting the brains (libraries, social networks,...). In this case the genetic-epigenetic interaction is between the Global Brain and the Environment, generating a kind of Global Plasticity for the Global Brain. Some details concerning (quantum) neural networks and (quantum) Turing machines will be enclosed in the second part of this work (II. Artificial Intelligence). We end the section with an example from Romania.

In 1966, Nicolae Ceausescu forbid abortion and contraception in order to increase the country’s population and work force. The birth rate raised rapidly, but many families could not afford having so many children. Thus, more and more orphanages were built, and by 1989 almost 170000 children lived in them. Here children were deprived of any sensorial stimulation or affection and everything was mechanized. They had the same haircut, were dressed the same, it was like a regiment. Doctor Charles Nelson observed these institutions and evaluated 136 children between 6 months and 3 years old. He found out that their IQ level was between 60 and 80, instead of 100. Even though their physiological needs were satisfied, their brain and language were underdeveloped. He discovered as well that their EEGs showed a dramatically reduced neural activity. What is more interesting is that if the children were moved as soon as possible in a safer environment full of love and affection, they could recover this delay. This study wonderfully emphasizes the role of epigenetics in our lives. Genetics is not enough for a proper development. The information we get through our sensory organs influences the way our DNA manifests. We see that babies touch and lick almost everything. By doing so, they better interact with the environment and improve their sight, orientation and perception of height, depth and three-dimension in
Even though at birth the baby has the potential to learn any language and pronounce any sound, after hearing a certain language he/she will lose the ability to hear sounds of other languages. Every aspect of the world a child is raised in will sooner or later have an impact in his life.

4. Connections with Physics: String Theory and Emergent Quantum Mechanics

Certainly, everything happens in our real world, our real Universe, or our real Multiverse, or... This means that the human brain, human being, global brain,... represent substructures of the highest structure which must exist. There are discussions on what this highest structure is. We recall here the Theory of Multiverses belonging to Max Tegmark (see [31]). Namely, he classifies the notions of Multiverse in 4 categories: Multiverses of ranks 1, 2, 3, and 4. First of all, what is an Universe. In these theories the Universe is, by definition, the visible Universe. It is a 3D - sphere having its radius of about 14 billion light-years (the approximate period that has passed from the Big-Bang). This sphere is increasing as time passes. A rank 1 Multiverse is a family of Universes which could merge in some future in a bigger Universe. However, the General Relativity does not forbid that the space dilate with a speed higher than the speed of light. This means that two rank 1 Multiverses separated by a volume dilating faster than the speed of light will never merge at the level of a visible Universe. Such a family of rank 1 Multiverses is a rank 2 Multiverse. Because the evolutions are independent to a certain extent, the Universal constants, and even some of the laws of Physics among the rank 1 Multiverses belonging to the rank 2 Multiverse might differ. Further, there are discussions concerning the interpretations of Quantum Physics. One interpretation is based on the Copenhagen Program, based on the collapse of the waves of probabilities when measured (observed), and another one belongs to Hugh Everett III ([10]) saying that the probability waves never collapse, but what happens is in fact a bifurcation (multifurcation) of the (rank 2) Multiverse depending on all the possible situations (so, Schrodinger's cat is alive in a Multiverse and dead in another one, at the same time). This is the so-called many-world interpretation, giving the 'Tegmark’ rank 3 Multiverse (as a quantum family of rank 2 multiverses). And, finally, a rank 4 Multiverse is represented by pure Mathematics, with the Axiom saying that any non-contradictory mathematical theory should have real model(s) in the rank 4 Multiverse. This tries to explain why our Universe allows life to exist (all the Universal constants should be very, very carefully chosen: the number of Avogadro, the speed of light, the Planck distance or Planck time,...). We will restrict ourselves to a rank 3 Multiverse, as being the quantum family of our observable Universes. While the quantum logic of John von Neumann is considered as being the quantum logic in the Universe (in the sense of the previous definition), the quantum logic in topoi is considered as being the quantum logic in the Quantum Multiverse (rank 3). This is the logic which we will use, because it is the most appropriate to the human thinking, which is a product of the brain, a substructure of the Uni(Multi)verse (considered one of the most complex such substructures, along with black holes and dark matter). Coming back to the rank 4 Multiverse, it is based on the postulate that there are physical models for any non-contradictory mathematical theory. However, the best theories from physics, namely the Einstein’ Theory of (General) Relativity (modeling the Universe at the macro-level), and the Quantum Physics (modeling the smallest sub-structures on the Uni(Multi)verse, at the nano-, pico-,... level) are in contradiction in some situations (the quantum entanglement is one of
them). At the same time, the two theories should coexist in black holes, for instance. So, a new unifying theory is required, that is a theory unifying the Standard Model (which unifies the Electromagnetic, Strong, and Electroweak forces), a quantic model, with the Gravitation (modeled by the General Relativity). There are currently several approaches in this direction: String Theory, Emergent Quantum Mechanics, Loop Gravity,... We will restrict ourselves to some comments relative to the first two of them.

In String Theory (see [12]) one considers that any elementary particle is a tiny vibrating chord - string - in a 10-dimensional space, representing the direct product between the Einsteinian 4-dimensional space-time Universe (Einstein-Minkowski real 4-fold) and a complex (projective algebraic) Calabi-Yau 3-fold (so a 6-dimensional real manifold). The Calabi-Yau 3-fold is considered because it has very many symmetries, giving the so-called supersymmetric String Theory, modeling not only bosons (as the initial String Theory did) - that is particles with integer spin, but the fermions as well - particles with half integer but not integer spin. In such a situation the number of elementary particles (quarks, fotons, electrons,...) doubled, and one still look for the new elementary particles at CHERN, in Geneve. The 6 additional real dimensions of the Universe (Multiverse) are very compacted, and give only very limited possibilities to the string to vibrate, imposing conditions, as wave lenght, amplitude,... So, a string needs energy, in order to vibrate, and information, in order to vibrate in a specific way to give one or another of the elementary particles (or antiparticles). In [30] one considers hypothetical elementary particles related to information, calling them infons. It is for the first time when the notion has been considered. However, our point of view is based on the fact that these infons represent only one facet of an elementary particle, the other being represented by energons, so an elementary particle is like a coin, with two facets: the infon, and the energon. The theory of infons has been already discussed a little in section 2. After [30], a theory of infons (propositional calculus) has been built by [13]. They came to the conclusion that this theory is a conservative extension of the intuitionistic logic. However, one can show that the axiomatic of non-standard analysis in an environment using intuitionistic (many-valued) logic represents another similar notion of infon which we will use in this paper. So an infon is given here by the triplet $I=(\mathcal{L}, A, D)$, where \mathcal{L} is the usual language of the intuitionistic non-standard context (see section 8.), A is a set of propositions written in the previous language considered as being true (axioms), and D is a set of deduction rules (as modus ponens is). For details on theories and categories, with application to the previous concrete case see sections 5.- 8. In our sense, the theory of infons is a metatheory given by the theory of non-standard enlargements of the topoi of type SET^{crp} (see section 8.). In String Theory, an infon is a non-standard enlargement of a topos of the previous type, while in Emergent Quantum Mechanics an infon remains the theory itself, and the enlargement of the topos of the previous type (see Part II. Artificial Intelligence) will be called recepton. In String Theory we also need to define the energon. There are some tentatives, but:

In Emergent Quantum Mechanics [32]) one considers that the (potential) Energy is also Information, namely the information that something can move from one place to another. However, we think that we must distinguish between potential (virtual) energy and actual energy (kinetic, caloric, electromagnetic,...). The matter is considered a condensed form of (actual) energy (under the action of the strong nuclear force) related to energy by the well-known formula $E = mc^2$ (both the nuclear
fission, from the atomic power plants and the nuclear fusion, from the Sun, generates loss of mass, producing energy). But a stronger argument connecting the (potential) energy with information is represented by the Landauer Principle, quantumising the energy necessary to erase a bit of information (for details see [4]). It means that both energy and information are quantised, and they are somehow inverse proportional (not exponential, as in the case of entropy, see section 2., but in the same direction, the relation being given by a precise formula, namely $E_{\text{min}} = k_B T \ln(2)$, where k_B is the Boltzmann constant, T is the temperature of the environment and \ln is the natural logarithm. So, in Emergent Quantum Mechanics everything primordially exists as waves of informations = theories in a conservative extension of the intuitionistic logic, all of them being of infon-type. Their associated categories (of models) represent then the other facets of the coin, called receptons so, in this setting the two faces are the infon (= a theory in the non-standard enlargement of the intuitionistic logic), and the recepton, the category of models of that theory (which is a non-standard enlargement of a topos of a special type, see sections 6.7., and section 2. from Part II). We, the human beings, are, at the level of our brains, or to the level of the global brain (which include both all the network of the human brains, and the technological discoveries, artificial intelligence included, but also other kind of sensory-type machines) like the radio-sets travelling in a landscape with plenty of electromagnetic waves, and discovering them progressively, function of the increasing quality of the receptor, improved due to the technologies. So, we become progressively aware of the surrounding informational waves (theories) improving progressively our consciousness (both at the individual and global level). At the same time, the subconsciousness works, impacting at every step on the consciousness. So, the receptons become the elementary pseudoparticles of the union between consciousness and subconsciousness, the two facets of the coins being the theory and the associated category (which must be a non-standard topos). In this version of a unification theory, the Uni(QuantumMulti)verse is emerging, being stepwise discovered by brain and global brain through the measurement (collapse) of the intuitionistic informational waves. In fact, Emergent Quantum Mechanics is essentially based on information and consciousness, but there are other important other facts around, namely the non-determinism (with the meaning that not only the past influences us, but also the future), the discrete space, Gosset Polytope, E8-crystal, and golden ratio $\Phi = \lim_{n \to \infty} (F_{n+1}/F_n)$, where $(F_n)_{n \in \mathbb{N}}$ is the Fibonacci sequence. The 4D space-time is "pixelated" by the projection on \mathbb{R}^4 of the Gosset polytope from \mathbb{R}^8 with an angle which produce on \mathbb{R}^4 two similar 4-dimensional polytopes such that the quotient of their 4-volumes is equal to the golden ratio $(= (1 + \sqrt{2})/2)$. We’ll come back to Gosset polytope in section 8. In the Emergent Quantum Mechanics the consciousness become part of Physics. Both theories, String Theory, and Emerging Quantum Mechanics, are huge and complicated theories, but we do not insist here more that we already did it.

Starting with the next section, we will formalize in a mathematical language some of the previous comments. The formalism aims to produce a new mathematical approach for the Problems of Neuroscience. A list with problems from the aria is contained in the book [28].
5. Theories versus Categories; Summary on the Category SET in Classical Logic

For more details concerning the topics from this section, we refer to [5], [24], [27].

Definition 5.1. A *class* is an arbitrary collection of objects.

Remark 5.2 (Russel). Fixing two primary relations, namely \in and $=$, which applies to classes, with the usual meaning (see 5.10), all the parentheses: $(, [, \{ ,] ,)$, and the logic connectors: $\lor, \land, \neg, \rightarrow, \leftrightarrow$ and quantifiers \forall, \exists with the usual meaning in a bivalent logic (see 5.9). Then the class

$$\mathcal{M} = \{ c | c \text{ class } \land c \notin c , c \notin c = \neg(c \in c) \}$$

is contradictory ($\mathcal{M} \in \mathcal{M} \leftrightarrow \mathcal{M} \notin \mathcal{M}$ is true).

Definition 5.3 (Language).

1. **L-terms:** Fix x_1, x_2, \ldots variables. Then the L-terms are:
 - the variables;
 - the classes;
 - pairs, t-uples of the previous ones (we recall that $(a, b) := \{ a, \{ a, b \} \}$ and $(a_1, \ldots, a_n) = ((a_1, \ldots, a_{n-1}), a_n)$ for any $n \geq 3$);
 - if τ, σ are L-terms, so is $(\tau)\sigma$.

2. **L-formulae:**
 - atomic: $\tau = \sigma$, $\sigma \in \tau$, with τ, σ, L-terms.
 - then inductive, using:
 - any atomic formula is a L-formula;
 - if φ, ψ are L-formulae, then so are $\varphi \land \psi, \varphi \lor \psi, \neg \varphi, \varphi \rightarrow \psi, \varphi \leftrightarrow \psi$;
 - if φ is a L-formula, then so are $(\forall \tau \in \tau) \varphi$ and $(\exists \tau \in \tau) \varphi$, where τ is any L-terms and x any variable not appearing in τ.

3. A *language* L is the family of all formulae from before.

If \mathcal{N} is a family of classes stable to " \in" (that is $\forall y \in \mathcal{N} \land x \in y \rightarrow x \in \mathcal{N}$), then we denote by $L_\mathcal{N}$ the restriction of L to \mathcal{N} (this means that we replace in 1. all the classes with those classes from \mathcal{N} only).

Definition 5.4. A *sentence* (or *proposition*) is a formula having all the variables bounded (quantified). A sentence is *true* or *false* (bivalent logic, see 5.9).

Definition 5.5. A set of *axioms* is a set \mathcal{A} of sentences, supposed true.

Definition 5.6. The *deduction rules* are the rules of inference from a set \mathcal{D}.

Examples 5.7.

1. modus ponens (MP): $\frac{p, p \rightarrow q}{q}$.
2. particularization (P): \[\frac{\forall x p(x)}{p(y)} ; \]
3. generalization (G): \[\frac{p(y)}{\forall x p(x)} , \text{etc.} \]

Definition 5.8. A theory is a triplet \(T = (\mathcal{L}, A, D) \), with \(\mathcal{L}, A, D \) as in 5.3, 5.5, 5.6 respectively; in the classical context (see 8.3 also) \(A \) contains strictly the axioms of CL and ZF\((C)\) (see the next 5.9 and 5.10), with the only exception given by 5.10 (when \(A \) coincides with CL and ZF\((C)\)). We assume here, by definition, that a theory has at least one model. We note that, for example, if in 5.3, 3 we take \(L = L \cup U(T) \) (for \(U(T) \) see 5.16) it is known that if this \(L \) is of order \(n \geq 2 \) (see 5.17) it is not true than any non-contradictory theory has a model, only for \(n = 1 \) (first order language) this condition being automatically satisfied in general, for non-contradictory theories (see 5.19), this characterising them, for \(n = 1 \). As an example, the so-called \(\omega \)-inconsistent theory is not a theory in the sense of this definition.

Definition 5.9. A classical logic (CL) is a theory having the following axioms:

Then \(-1\): \(A \rightarrow (B \rightarrow A) \).

Then \(-2\): \((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \).

And \(-1\): \(A \land B \rightarrow A \).

And \(-2\): \(A \land B \rightarrow B \).

And \(-3\): \(A \rightarrow (B \rightarrow (A \land B)) \).

Or \(-1\): \(A \rightarrow A \lor B \).

Or \(-2\): \(B \rightarrow A \lor B \).

Or \(-3\): \((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C)) \).

Not \(-1\): \((A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A) \).

Not \(-2\): \(A \rightarrow (\neg A \rightarrow B) \) (or \(\perp \rightarrow B \), \(\perp \) false).

Not \(-3\): \(A \lor \neg A \).

Definition 5.10. A set is a class which is an element of another class. Let’s denote by \(M \) the class of sets. The theory of sets is the triplet \((\mathcal{L}_M, CL + ZF(C), D = \{ MP \})\), where CL are the axioms from 5.9, MP is as in 5.7, and ZF\((C)\) (Zermelo-Fraenkel (+ choice)) are the following axioms (recall that “\(\in \)” and “\(= \)” are primary relations):

1. **Extensionality (E):**
 \[\forall x \forall y[\forall z(z \in x \leftrightarrow z \in y) \rightarrow x = y] \]

2. **Regularity (R):**
 \[\forall x[\exists a(a \in x) \rightarrow \exists y(y \in x \land \neg(\exists z(z \in y \land z \in x)))] \]

3. **Specification (S):**
 If \(\varphi \) is a formula in \(\mathcal{L}_M \), with the free variables among \(z, \omega_1, \ldots, \omega_n \) and having \(y \) as a bounded variable:
 \[\forall z \forall \omega_1 \forall \omega_2 \ldots \forall \omega_n \exists y \forall x[x \in y \leftrightarrow ((x \in z) \land \varphi)] \]
In particular there are sets of the form \(\{ x \mid \varphi(x) \} \); note that this axiom allow us to consider such kind of sets only if they are subsets of a bigger set, avoiding in such a way the Russel’ paradox from 5.2. Moreover, this axiom allow us to built the empty set, specifically

Remark 5.11. \(\emptyset = \{ x \mid \varphi(x) \} \) (the empty set). Moreover, the empty set is unique (does not depend on \(y \)) by the Axiom 1.(extensionality).

4. **Pairing (P):**

\[
\forall x \forall y \exists z \ (x \in z \land y \in z)
\]

5. **Union (U):**

\[
\forall \mathcal{F} \exists A \forall Y [(x \in Y \land Y \in \mathcal{F}) \rightarrow x \in A]
\]

6. **Replacement (Rp):**

For \(\varphi \) a formula having \(x, y, A, \ldots, \omega \) as free variables, then

\[
\forall A \forall \omega_1 \forall \omega_2 \ldots \forall \omega_n \forall x (x \in A \rightarrow \exists ! y \varphi) \rightarrow \exists B \forall x (x \in A \rightarrow \exists y (y \in B \land \varphi))
\]

(so, given the domain of a function, we can built its codomain); here \(\exists ! \) means “there is a unique”.

7. **Infinity (I) (Peano):**

Let’s denote \(S(\omega) := \omega \cup \{ \omega \} \) (the successor of \(\omega \), cf. (P) with \(x = y = \omega \), and (U)):

\[
\exists X [\emptyset \in X \land \forall y (y \in X \rightarrow S(y) \in X)]
\]

Definition-Remark 5.12. \(\mathbb{N} := \) the smallest \(X \) as before (= the set of natural numbers), cf. Definition 5.13, from the next 8.

8. **Power set (PS):**

Definition 5.13. \((z \subseteq x) \overset{def}{\Leftrightarrow} \forall q (q \in z \rightarrow q \in x) \).

Then:

\[
\forall x \exists y \forall z (z \subseteq x \rightarrow z \in y)
\]

Notation 5.14. \(\text{ZF} = \) the axioms 1. - 8. \(\text{ZFC} = \) the axioms 1. - 9., where

9. **Choice (C):**

\[
\forall X [\emptyset \notin X \rightarrow (\exists f : X \rightarrow \bigcup_{A \in X} A) \land (\forall A \in X (f(A) \in A))]
\]

Theorem 5.15. If \(\text{ZF} \) the following are equivalent:

(i) (C);

(ii) any non-empty set can be well ordered (that is, any non-empty part has a minimum);

(iii) if any totally ordered subset of an ordered set has a majorant, then there exists a maximal element (Zorn’ lemma).

Definition 5.16. Let \(T \) be a set (possibly \(T = \emptyset \)). Then \(\mathcal{U} = \mathcal{U}(T) := \bigcup_{n=0}^{\infty} U_n(T) \), where \(U_0(T) = T \) and \(U_{n+1}(T) = U_n(T) \cup \mathcal{P}(U_n(T)), \forall n \geq 0 \). This is the **Universe generated by** \(T \) (one can consider a bigger Universe, where the union is taken over all the ordinals, by transfinite recurrence - the von
Neumann Universe - but we don’t need it now). It is constructed from the set T, using ZF axioms. We remark here that, even when $T = \emptyset$, we have $0 = \emptyset \in U_0$, and, if $\omega \in U_n$, then $S(\omega) = \omega \cup \{\omega\} \in U_{n+1}$, so $\mathbb{N} \subset U(\emptyset)$. Then, take $T = \mathbb{N}$. We get that all the number fields (\mathbb{R}, \mathbb{C}) are contained in $U(N)$, by the definition of $U(N)$ and the ZF axioms, using the constructions remembered in 7.1 - 7.15. Going further we get that \mathbb{R}, \mathbb{C} (real and complex number fields) belongs to $U(\mathbb{R})$. Continuing, it is easy to see that, in fact, all the necessary mathematical structures can be progressively built starting with the empty set \emptyset (whose existence is postulated by ZF), using the $ZF(C)$ axioms.

Definition 5.17. A language L_{U}, associated with the previous Universe U can be defined as in 5.3, considering as L_{U} - terms the variables, the elements of U, n-uples, and $\tau(\sigma)$, where σ and τ are as before, and continuing as in 5.3. If the quantifiers applies to $U_0(T) = T$ only, we call the resulting language, denoted by L_{T}: a first order language, if the quantifiers applies to $U_1(T)$ only, we call the resulting language a second order language, denoted by $L_{U_1(T)}$,...,if the quantifiers applies to $U_{n-1}(T)$ only, we call the resulting language a n-th order language,..., in this terminology, L_{U} being called a higher order language.

Examples of Theories 5.18. $T = (L, A, D)$.

1. The theory of sets: $(Set) = (L, CL + ZF, MP)$;
2. The theory of groups: $G = (L, A = ZFC + CL + 1) - 4, MP)$, where:
 1) $* : G \times G \to G$, function;
 2) $\forall x \forall y \forall z [(x * y) * z = x * (y * z)];$
 3) $\exists e \forall x (x * e = e * x = x);$
 4) $\forall x \exists x' (x * x' = x' * x = e)$.
3. The theory of rings: $R = (L, A = ZFC + CL + 1') - 8', MP)$, where:
 1') $+ : R \times R \to R$ function;
 2') $\cdot : R \times R \to R$ function;
 3') $\forall x \forall y \forall z [(x + y) + z = x + (y + z)];$
 4') $\forall x \forall y \forall z [(x \cdot y) \cdot z = x \cdot (y \cdot z)];$
 5') $\exists 0 \forall x (x + 0 = 0 + x = x)$;
 6') $\exists 1 \forall x (1 \cdot x = x \cdot 1 = 1)$;
 7') $\forall x \exists x' (x + x' = x' + x = 0);$
 8') $\forall x \forall y \forall z [x \cdot (y + z) = x \cdot y + x \cdot z];$
 9') $\forall x \forall y (x + y = y + x)$.

If $1') - 9') + 10') \forall x \exists x' (-\!(x = 0) \land x \cdot x' = x' \cdot x = 1)$ one gets the theory of fields (in English the word **field** also presumes 11') $\forall x \forall y (x \cdot y = y \cdot x)$).

4. The theory of vector spaces over a field \mathbb{K}: $V = (L, ZFC + CL + 1'') - 10'', MP)$, where:
 1'') $+ : V \times V \to V$ functions;
 2'') $\cdot : \mathbb{K} \times V \to V$ functions;
 3'') $\forall x \forall y \forall z [(x + y) + z = x + (y + z)];$
 4'') $\exists 0 \forall x (x + 0 = 0 + x = x)$;
 5'') $\forall x \exists x' (x + x' = x' + x = 0);$

6") \forall x \forall y (x + y = y + x);
7") \forall x (1 \cdot x = x), 1 = 1_K \in K;
8") \forall \lambda, \mu \in K \forall x \in V[(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x];
9") \forall \lambda \in K \forall x, y \in V[(\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y];
10") \forall \lambda, \mu \in K \forall x \in V[(\lambda, \mu) \cdot x = \lambda \cdot (\mu \cdot x)].

5. The theory of ordered sets: \(O = (\mathcal{L}, ZFC + CL + 1^m) - 4^m), MP \), where:
1") \subseteq O \times O \ subset;
2") \forall x (x \leq x);
3") \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y);
4") \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z); etc.

\textbf{Theorem 5.19.} A first order theory (this means that its language is of first order, see 5.17) is non-contradictory iff it has at least one model (non-contradictory means that the false proposition is not deductible; a model is a concrete example of an object defined by the theory).

\textbf{Examples 5.20.}
1. \((\mathbb{Z}, +)\) is a model for the theory of groups;
2. \((\mathbb{Z}, +, \cdot)\) is a model for the theory of rings; \((\mathbb{Z} = \text{the set of integer numbers})\)
3. \((\mathcal{M}_n(\mathbb{R}), +, \cdot)\) is a model for the theory of rings (non-commutative) (here \(\mathcal{M}_n(\mathbb{R})\) represent the set of squared \(n \times n\) matrices, and \(+, \cdot\) are the usual addition and multiplication of matrices);
4. \((\mathcal{M}_{pq}(\mathbb{R}), +, \cdot)\) is a model for the theory of \(\mathbb{R}\)-vector spaces \((\mathcal{M}_{pq}(\mathbb{R}) = \text{matrices with }p \text{ lines and }q \text{ columns}, + \text{ being the usual addition, and } \cdot \text{ the scalar multiplication});
5. \((\mathbb{N}, \mid)\) is a model for the theory of ordered sets \((\mathbb{N} = \text{the set of natural numbers, }a \mid b = a \text{ divides }b)\).
6. More recently, it was observed that the set of all matrices is a model for the theory of (non-commutative) rings (see [16]). This ring can be interpreted as polynomials with matrices as variables, with \(0, 1 \in \mathbb{R}\), and the usual matrix product when it is possible to multiply matrices (otherwise the product is 0).

\textbf{Definition 5.21.} The family of all the models (or of a set of models) of a theory, together with the "dictionaries" between them (functions, or other objects, compatible with the structure of the theory) gives a category \(\mathcal{C}_T \) associated to the theory \(T \).

\textbf{Examples 5.22.}
1. \(\text{Gr} \) (category of groups): contains all (or a set of) groups, denoted by \(\text{Ob} (\text{Gr}) \), and the morphisms between them, that is \(\text{Hom}_G, (G, H) = \{ f : G \rightarrow H \mid f(x *_G y) = f(x) *_H f(y), \forall x, y \in G \} \).
2. \(\text{Ring} \) (category of rings): \(\text{Ob} (\text{Ring}) = \text{a class (or set)} \) of rings, \(\text{Hom}_{\text{Ring}}(R, S) = \{ f : R \rightarrow S \mid \forall x \forall y [f(x + y) = f(x) + f(y)] \land [f(x \cdot y) = f(x) \cdot f(y)] \}, f(1_R) = 1_S \). Similarly for fields (the category \(\text{Field} \)), vector spaces (the category \(\text{Vect} \)), ordered sets (the category \(\text{POSET} \)), comming from 3.,4.,5. of 5.18.
Definition 5.23 (Theory of Categories). A category C is a 4-uple $(\text{Ob}(C), (\text{Hom}_C(A, B))_{A,B \in \text{Ob}(C)}, \circ, (1_X)_{X \in \text{Ob}(C)})$ satisfying the axioms:

(i) $\circ : \text{Hom}_C(A, B) \times \text{Hom}_C(B, C) \rightarrow \text{Hom}_C(A, C)$

(i) $f \circ (g \circ f) = (f \circ g) \circ f$ for which all the compositions are defined;

(ii) $\forall X \forall Y, X, Y \in \text{Ob}(C), \forall f \in \text{Hom}_C(X, Y)$, the following diagrams are commutative:

$$
\begin{array}{c}
X \xrightarrow{f} Y \\
1_X \downarrow \quad \quad \downarrow 1_Y \\
X \xrightarrow{f} Y
\end{array}
$$

(i.e. $1_Y \circ f = f \circ 1_X$).

Remark 5.24. Any category (the models of a theory) is a model of the theory of categories, as are, for instance, the examples 5.22.

Remark 5.25. The category associated to the theory of categories is a category of categories, named CAT, that is:

$\text{Ob}(\text{CAT}) = \text{categories}$

$\text{Hom}_{\text{CAT}}(C_1, C_2) = \text{the functors (see 5.26)}$ from C_1 to C_2, with "\circ" and 1_C defined canonically.

Definition 5.26. Let C_1 and C_2 be two categories. A functor $F : C_1 \rightarrow C_2$ is acting on objects: $F(A) \in \text{Ob}(C_2), \forall A \in \text{Ob}(C_1)$ and on morphisms: $F(f) \in \text{Hom}_{C_2}(F(X), F(Y)), \forall f \in \text{Hom}_{C_1}(X, Y)$, being compatible with compositions and identities, that is:

(i) $F(g \circ f) = F(g) \circ F(f), \forall f, g$ such that the composition is defined, and

(ii) $F(1_X) = 1_{F(X)}, \forall X \in \text{Ob}(C_1)$.

Remark 5.27. The previous definition introduce both the notion of morphism in CAT, and the theory of functors also. So, one expects to get the Category of functors also. Indeed,

Definition 5.28. Let C_1 and C_2 be two categories. We define the category $C_2^{C_1}$ as follows:

- $\text{Ob}(C_2^{C_1}) = \{ F : C_1 \rightarrow C_2 | F \text{ functor} \}$

- $\text{Hom}_{C_2^{C_1}}(F_1, F_2) = \{ h : F_1 \rightarrow F_2 | h \text{ is a natural transformation} \}$.

The composition and the identities are defined canonically.

Here we need the following:

Definition 5.29. If $F_1, F_2 \in \text{Ob}(C_2^{C_1})$, a natural transformation $h : F_1 \rightarrow F_2$ is a collection $h = (h_X)_{X \in \text{Ob}(C_1)}$ of morphisms $h_X : F_1(X) \rightarrow F_2(X), h_X \in \text{Hom}_{C_2}(F_1(X), F_2(X))$, $F_1(X) \xrightarrow{h_X} F_2(X)$ for all $X \in \text{Ob}(C_1)$ such that $\forall f \in \text{Hom}_{C_1}(X, Y)$ the diagrams $F_1(f) \downarrow \quad \downarrow F_2(f)$ commutes

(i.e. $h_Y \circ F_1(f) = F_2(f) \circ h_X$).

Remark 5.30. We insisted till now to get categories from theories, but the converse also works, axiomatizing the things. So, the theories and the categories are the two faces of the same thing, but they
represent different notions.

Definition 5.31. Let C be a category. The *dual* category of C, denoted by C^{op} is the category having:
- $Ob(C^{op}) = Ob(C)$;
- $Hom_{C^{op}}(X,Y) = Hom_{C}(Y,X)$, $\forall X,Y \in Ob(C)$ (reversing the arrows).

Definition 5.32. A functor $F : C_1 \rightarrow C_2$ is called a *cofunctor* $F : C_1 \rightarrow C_2$. It satisfies $F(g \circ f) = F(f) \circ F(g)$, $\forall f,g$ (instead of $F(g \circ f) = F(g) \circ F(f)$, $\forall f,g$ as a functor does). This is the first example of a pair of *dual* notions (functor vs. cofunctor). We’ll see other examples in section 6.

Examples 5.33.
1. $SET = \text{the category of sets.}$
 $Ob\ (SET) = \text{sets.}$
 $Hom_{SET}(X,Y) = \{ f : X \rightarrow Y \mid f \ \text{functions}\}.$

2. $SET_1 = \text{the category of functions.}$
 $Ob\ (SET_1) = \text{functions}$
 $Hom_{SET_1}(f,g) = 2$ - functions, namely

 $\begin{array}{ccc}
 X & f & Y \\
 Z & g & Y \\
 \end{array}$

 $Hom_{SET_1}(f,g) = \{(\alpha,\beta) \mid \alpha \downarrow \beta , \alpha,\beta \ \text{functions, and} \beta \circ f = g \circ \alpha\}$

3. $SET_2 = \text{the category of 2-functions.}$
 $Ob\ (SET_2) = 2$ - functions.
 $Hom_{SET_2}((\alpha,\beta),(\gamma,\delta)) = 4$ - functions, that is
 $Hom_{SET_2}((\alpha,\beta),(\gamma,\delta)) = \{(u,v,w,z) \mid u,v,w,z \ \text{functions, such that all the squares of the following diagram \textbf{D} commutes }\}$.

Continuing, we get (after obtaining 1D, 2D, 3D cubes, respectively, as morphisms, and 0D, 1D, 2D cubes, respectively, as objects) 4D cubes as morphisms (the 4D cube projected on the plane can be represented by a smaller cube inside a bigger one, with edges canonically connected) and 3D cubes as objects in SET_3, 5D cubes (two cubes in cubes one near another, canonically connected) as morphisms and 4D cubes as objects in SET_4, and so on. Inductively, one can define SET_n for any $n \geq 1$.

Definition 5.34. We call the category SET_n the *n-hypercube category*. We’ll come back to such examples in section 6.

4. $SET^2: Ob\ (SET^2) = \{(A,B) = \{A,\{A,B\}\}\mid A,B \in Ob(SET)\}$
\[\text{Hom}_{\text{SET}}^2((A, B), (C, D)) = \{(f, g) | f : A \to C, \ g : B \to D \text{ functions}\}. \]

The composition and the identities are defined canonically.

5. \textbf{SET}^n: \textit{Ob} (\text{SET}^n) = \{(A_1, \ldots, A_n) | A_1, \ldots, A_n \text{ sets}\}

\[\text{Hom}_{\text{SET}}^n ((A_1, \ldots, A_n), (B_1, \ldots, B_n)) = \{(f_1, \ldots, f_n) | f_i : A_i \to B_i \text{ functions } i = 1, n\}. \]

\textbf{Definition 5.35.} The categories of type \(C^2 \) from the definition 5.28 are called \textit{exponential categories}, and the categories of type 2. - 5. from Examples 5.33 are called \textit{of SET - type} (see section 6 also).

6. \textbf{SET}/X: \textit{Ob} (\text{SET}/X) = \{f | f \in \text{Hom}_{\text{SET}}(A, X) \text{ for some } A \in \text{Ob (SET)} \},

\[\text{Hom}_{\text{SET}/X}(f \in \text{Hom}_{\text{SET}}(A, X), g \in \text{Hom}_{\text{SET}}(B, X)) = \{h \in \text{Hom}_{\text{SET}}(A, B) | f \downarrow \downarrow \ g \}

\text{g} \circ \text{f} = \text{f}. \]

We’ll come back to these examples in section 6.

7. \textbf{TOP}: \textit{Ob} (\text{TOP}) = \text{topological spaces}

\[\text{Hom}_{\text{TOP}}(X, Y) = \text{the continuous functions : } X \to Y. \]

Here we have:

\textbf{Definition 5.36.} A pair \((X, \tau)\), where \(\tau \subset \mathcal{P}(X)\) (the power-set of \(X\)) is a \textit{topological space}, if:

(i) \(\phi \in \tau, \ X \in \tau; \)

(ii) \(\forall (D_i)_{i \in I} \text{ such that } D_i \in \tau, \ \forall i \in I, \ \bigcup_{i \in I} D_i \in \tau; \)

(iii) \(\forall n \forall D_1 \ldots \forall D_n, D_1, \ldots, D_n \in \tau, \text{ then } D_1 \cap \ldots \cap D_n \in \tau. \)

\textbf{Example 5.37.} \(\mathbb{R}^n\) with the usual topology of metric space (given by the Euclidian norm).

\textbf{Definition 5.38.} \(f : (X, \tau_X) \to (Y, \tau_Y), \) with \((X, \tau_X)\) and \((Y, \tau_Y)\) topological spaces is \textit{continuous} if

\(\forall x \in X \forall D_Y \in \tau_Y \exists D_x \in \tau_X (x \in D_x \land f(x) \in D_Y \land (f(D_x) \subseteq D_Y)). \)

\textbf{Examples 5.39.} All the elementary functions \(f : \mathbb{R}^n \to \mathbb{R}^m\) (polynomial, exponential, trigonometric,...) are continuous.

8. \textbf{POSET} (partially ordered sets):

\textit{Ob} (\text{POSET}) = \text{partially ordered sets (= the models of the theory 5 from example 5.18)).}

\[\text{Hom}_{\text{POSET}}((X, \leq_X), (Y, \leq_Y)) = \{f : X \to Y | \forall x \forall y x \leq_X y \to f(x) \leq_Y f(y)\} \text{ (the increasing functions).} \]

\textbf{Remark 5.40.} In the classification of N. Bourbaki, the fundamental structures are the algebraic ones (as \textbf{Gr}, \textbf{Ring}, \textbf{Vect}, \textbf{Field,...}). \textbf{POSET} and \textbf{TOP}, all the others (including the differential ones) being combinations of these 3 classes of structures.

We end this section with a special kind of \textbf{POSET} = Algebraic structure, related to the theory of sets (ZF) and the bivalent logic (CL), namely the Boolean lattice (or the Boolean algebra).
Definition 5.41. A Boolean Algebra is a set A, together with 3 operations and 2 symbols, that is $(A, +, -, 0, 1)$, with $+: A \times A \rightarrow A$, $\cdot: A \times A \rightarrow A$, $\neg: A \rightarrow A$ satisfying

- **a)** $\forall x \forall y \ (x + y = y + x)$; $\forall x \forall y \ : \ (x \cdot y = y \cdot x)$;
- **b)** $\forall x \forall y \forall z \ [(x + y) + z = x + (y + z)]$; $\forall x \forall y \forall z \ [(x \cdot y) \cdot z = x \cdot (y \cdot z)]$;
- **c)** $\forall x \forall y \forall z \ [x \cdot (y + z) = x \cdot y + x \cdot z]$; $\forall x \forall y \forall z \ [(x + y) \cdot (x + z) = (x + y) \cdot (x + z)]$;
- **d)** $\forall n \ (x + 0 = 0 + x = x)$; $\forall n \ (x \cdot 0 = 0 \cdot x = 0)$;
- **e)** $\forall n \ (x + 1 = 1 + x = x)$; $\forall n \ (x \cdot 1 = 1 \cdot x = x)$;
- **f)** $\forall n \ (x + \bar{x} = \bar{x} + x = 1)$; $\forall n \ (x \cdot \bar{x} = \bar{x} \cdot x = 0)$;
- **g)** $\forall x \ (\bar{\bar{x}} = x)$;
- **h)** $\forall x \forall y \ (x + \bar{y} = \bar{x} \cdot y)$; $\forall x \forall y \ (\bar{x} \cdot y = \bar{x} + y)$.

Remark 5.42. Some of the previous axioms can be deducted from others, but we preferred to include them all. Other deductible sentences are:

- **i)** $\forall x \ (x + x = x)$; $\forall x \ (x \cdot x = x)$;
- **j)** $\forall x \forall y \ [x \cdot (x + y) = x] \forall x \forall y \ [x + (x \cdot y) = x]$.

Definition 5.43. A poset (X, \leq) for which there exists $x \land y = \inf \{x, y\}$, $x \lor y = \sup \{x, y\}$, it is bounded (i.e. $0 \leq x \forall x, \exists 1, n \leq 1, \forall n$), complemented (i.e. $\forall n \exists n'[x \land x' = 0 \land x' \lor x = 1 \land x'' = x]$) and, if we replace in the Definition 5.41 $x + y$ by $x \lor y$ and $x \cdot y$ by $x \land y$, all the properties of 5.41 are satisfied for the corresponding \land and \lor, we say that the poset $(A, \land, \lor, ', 0, 1)$ is a Boolean lattice.

Remark 5.44. The notions of Boolean algebra and Boolean lattice are interchangeable via the correspondences $(+, \lor), (\cdot, \land), (-, \lor), (0, 0), (1, 1)$ where, given a Boolean algebra we get on it a poset structure putting $x \leq y \iff x \cdot y = x$.

Example 5.45. 1. T set, then $(\mathcal{P}(T), \subseteq)$ is a Boolean lattice $(0 = \emptyset, 1 = T, \lor = \cup, \land = \cap, ' = \text{the complementary})$.

2. $\{f : \{1, \ldots, n\} \rightarrow \{0, 1\} | f \text{ function}\}$ can be considered as strings of the form 00101001100 of n letters, the order being given by the order of numbers considered as being written in the base 2.

3. 00000000000 is the smallest element, 11111111111 is the lowest element, the addition, the multiplication, and the negation are done on components, where: $0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1, 0 \cdot 0 = 1.0 = 0, 1.1 = 1, 0' = 1, 1' = 0$. We get a Boolean algebra (finite, with 2^n elements).

Definition 5.46. Let \mathcal{P} be the set of sentences, and let’s denote by \top the sentence always true $(p \lor \neg p)$ and by $\bot = \neg(\top)$ the sentence always false $(p \land \neg p)$. A function $V : \mathcal{P} \rightarrow B$ is a Boolean algebra called a B-valuation if:

- $V(\top) = 1, V(\bot) = 0, V(p \land q) = V(p) \cdot V(q)$,
- $V(p \lor q) = V(p) + V(q), V(\neg p) = \overline{V(p)}$, where \land, \lor, \neg are the logical operations, and $+, \cdot, -$ are the operations from B (one can add, if we like, $V(p \rightarrow q) = \overline{V(p)} + V(q)$, although it follows from the other requirements; we recall that $p \rightarrow q = \neg p \lor q$).
Definition 5.47. If F is a formula, we say that F is valid if $V(F) = 1$ for any $V : \mathcal{P} \to \{0, 1\}$. We say that F is B-valid if $V(F) = 1$ for any valuation $V : \mathcal{P} \to B = \text{Boolean algebra}$.

Theorem 5.48. If F is a formula then F is provable in CL (that means that it is deductible from the axioms by MP) if and only if F is B-valid for any Boolean algebra B.

Notations 5.49. If $T = (\mathcal{L}, A, D)$ is a theory, we write $T \vdash \varphi$ if φ is provable in the theory T (i.e. deductible from A using D). We write $T \models \varphi$ if φ is true on any model of T (so, in the category \mathcal{C}_T).

Theorem 5.50. (Gödel completeness) For any first-order theory (5.17, 5.19)

$$T \vdash \varphi \iff T \models \varphi$$

(semantic) (sintactic)

We’ll see in section 6 a generalization of the Boolean algebras (lattices), namely Heyting algebras (lattices), related to the intuitionistic (multi-valuated) logic. The axioms of (CL) from 5.9 are verified on a Boolean algebra.

In the classical logic one uses sentences (propositions) - with the previous logical connectors $\lor, \land, \neg, \to, \neg$ but also predicates $p = p(x), p(x_1, \ldots, x_n)$ and quantifiers as \forall and \exists (universal and existential).

Definition 5.51. A monadic Boolean algebra (abreviated MBA) is an algebraic structure $(B, +, \cdot, 0, 1, \exists, \forall)$, where $(B, +, \cdot, 0, 1)$ is a Boolean algebra (see 5.41), and \exists (resp. \forall) is closure (resp. interior) operator, that is:

(i) $\exists 0 = 0$;
(ii) $a \leq \exists a$, for any $a \in B$ (recall that $a \leq b$ iff $a \cdot b = a$, iff $a + b = b$, iff $a \to b = 1$; we recall that $a \to b = \overline{a} + b$);
(iii) $\exists a = \exists \exists a$, for any $a \in B$;
(iv) $\exists (a \lor b) = (\exists a) \lor (\exists b)$, for any $a, b \in B$.

(resp.
(i) $\forall 1 = 1$;
(ii) $\forall a \leq a$, for any $a \in B$;
(iii) $\forall a = \forall \forall a$, for any $a \in B$;
(iv) $\forall (a \land b) = (\forall a) \land (\forall b)$, for any $a, b \in B$.

Note. Here $a \land b = a \cdot b$, $a \lor b = a + b$ (we preferred to use the logic related symbols).

Remarks 5.52. 1). \forall can be seen as a (possible) infinite conjunction; \exists can be seen as a (possible) infinite disjunction.

2). Based on 1), and on De Morgan relations, one can see \forall as being: $\forall x = \overline{\exists \overline{x}}$ (i.e. $\neg \forall x p(x) = \exists x \neg p(x)$ and $\neg \exists x p(x) = \forall x \neg p(x)$, in logical symbols). So, in the Boolean case, the two operators \forall and \exists are deductible one from another. We’ll see later (section 6) that this is not the case in the Heyting-algebras case.
3). We built algebraic structures related to all the logical connectors necessary to formally define a language L, as in 5.3.

6. Summary on Topos Theory and its Intuitionistic Logic; Exponential and SET-type Topoi

For more details concerning the topics from this section, we refer to [10], [25].

We start this section with the notion already announced at the end of the previous section, namely the Heyting lattice (or algebra), which is related to the intuitionistic (or multi-valued) logic (IL) as the Boolean lattice (or algebra) is related to the bi-valent logic (CL) from section 5. So

Definition 6.1. The axioms of (IL) are (notations from 5.9):
- Then - 1, Then - 2;
- And - 1, And - 2, And - 3;
- Or - 1, Or - 2, Or - 3;
- Not 2.

Definition 6.2. A poset (H, \leq) is called a Heyting lattice if it is a bounded lattice (so, for any $a, b \in H$ there exists $a \land b = \inf \{a, b\}$, $a \lor b = \sup \{a, b\}$, there exists $0, 1 \in H$ such that $0 \leq x \leq 1$ for any $x \in H$) satisfying the conditions a) - e) from 5.41, when replacing $+$ and \cdot by \lor and \land ($0, 1$ remain the same), and having an operation \rightarrow satisfying:

$$\forall a, b, c, \ (a \land b \leq x \iff a \leq (b \rightarrow c))$$

(1)

So, a Heyting lattice is a 6-uple $(H, \lor, \land, \rightarrow, 0, 1)$ as before. A Heyting algebra is a 6-uple $(H, +, \cdot, \rightarrow, 0, 1)$ obtained by replacing \lor and \land with $+$ and \cdot. Given a Heyting algebra we get from it a poset which is a Heyting lattice, putting $a \leq b \iff a \rightarrow b = 1$ (see 5.51 (ii)).

Remark 6.3. The condition (1) from 6.2 is satisfied in the Boolean case for $b \rightarrow c = b' \lor c$.

Remark 6.4. Any Heyting algebra (lattice) satisfies the axioms of (IL) from 6.1.

Examples 6.5.
1). All the Boolean algebras (lattices) are Heyting algebras (lattices).
2). The followings are Heyting algebras (lattices), but not Boolean algebras (lattices)
(i) $\{0, \frac{1}{2}, 1\}, \land, \lor, \rightarrow, 0, 1$ (lattice) where:

<table>
<thead>
<tr>
<th>$a \land b$</th>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
</tbody>
</table>

and:

<table>
<thead>
<tr>
<th>$a \lor b$</th>
<th>0</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
We have $\frac{1}{2} \lor \neg \frac{1}{2} = \frac{1}{2} \lor (\frac{1}{2} \rightarrow 0) = \frac{1}{2} \lor 0 = \frac{1}{2}$, so the law of excluded middle is not satisfied (as it is in the Boolean case).

(ii) If (X, τ) is a topological space (5.33 example 7). If $A \subset X$, we define the interior of A as being the set $\{a \in A| \exists D_a \in \tau \text{ s.t. } a \in D_a \subset A\} := A^o$. Then $(X, \lor, \land, \rightarrow, 0, 1)$ is a Heyting algebra which is not Boolean in general, where: for $A, B \in \tau$, $A \lor B := A \cup B \in \tau$, $A \land B := A \cap B \in \tau$, $A \rightarrow B := B^o \setminus A \in \tau$, $0 = \phi \in \tau$, $1 = X \in \tau$.

We’ll see other examples in the context of topoi.

Definition 6.6. We can define a negation in Heyting algebra, putting $\neg a := a \rightarrow 0$ (this is compatible with the Boolean case), but it does not satisfy the principle of double negation and other principles (tertium not datum, reductio ad absurdum, De Morgan laws in general (see example 2 (i) from (6.5))).

We’ll meet the (IL) on the objects of some special categories, entitled topoi. We’ll spend some time now with some complements on the theory of categories which are necessary to define the notion of topos and to build its logic. So:

In Section 5, we already introduced the notion of category (5.23), functor (5.26), cofunctor (5.32), dual category (5.31), natural transformation (5.29). We asserted that the notions of functor and cofunctor are dual, one notion arising from the other by considering a dual category C^{op}, obtained by reversing the arrows of the initial category C.

Let C be a category, $C = (\text{Ob}(C), (\text{Hom}_C(A, B))_{A,B \in \text{Ob}(C)}, \circ, (1_X)_{X \in \text{Ob}(C)})$.

Definition 6.7. A morphism $f : A \rightarrow B$ is called monomorphism if $\forall u_i : X \rightarrow A$, $i \in \{1, 2\}$, such that $f \circ u_1 = f \circ u_2$ it follows $u_1 = u_2$.

Definition 6.7’. A morphism $f : A \rightarrow B$ is called epimorphism if $\forall u_i : B \rightarrow Y$, $i \in \{1, 2\}$, such that $u_1 \circ f = u_2 \circ f$ it follows that $u_1 = u_2$.

Remark 6.8. The two previous notions are dual to each other; they are obtained by reversing the arrows.

Remark 6.9. In the category SET (see 5.33, 1.) monomorphism is equivalent to injective and epimorphism with surjective.

Definition 6.10. A morphism $\varphi \in \text{Hom}_C(A, B)$ is called isomorphism iff $\exists \psi \in \text{Hom}_C(B, A)$ such that $\psi \circ \varphi = 1_A$ and $\varphi \circ \psi = 1_B$. In this case one says that the objects A and B are isomorphic (write $A \simeq B$).
Remark 6.11. If it exists, the morphism ψ is unique, and one writes $\psi = \varphi^{-1}$.

Examples 6.12. 1. In SET isomorphism \iff bijective homomorphism.
2. In Gr, Rings, Vect isomorphism \iff bijective homomorphism.
3. In Top a bijective continuous map is not necessarily isomorphism (the inverse might not be continuous), so one use exactly the definition 6.10 (the isomorphism is called homeomorphism) (see 5.22, 5.33, 7).

Definition 6.13. Let $X, Y \in \text{Ob}(\mathcal{C})$. A triplet $(X \times Y, p_X, p_Y)$ with $X \times Y \in \text{Ob}(\mathcal{C})$, $p_X \in \text{Hom}_\mathcal{C}(X \times Y, X)$, $p_Y \in \text{Hom}_\mathcal{C}(X \times Y, Y)$ is called a direct product if for any diagram in (Z, f, g) in \mathcal{C} like the next one

There is a unique $h = (f, g)$ (the dashed arrow) making the diagram commutative (i.e. $p_X \circ h = f$, $p_Y \circ h = g$) (this the of universality of the direct product).

Definition 6.13'. The dual notion is called direct sum, $X + Y$.

Remark 6.14. Given the morphisms f and g as in the next diagram, we get, using 6.13 (the property of universality of the direct product) a unique h (the dashed arrow) such that $p_Y \circ h = f \circ p_X$ and $p_T \circ h = g \circ p_Z$. The morphism $h = f \times g$ is called the direct product of the morphisms f and g.

Dualizing, one gets the direct sum of morphisms, that is $f + g$.

Definition 6.15. An object $I \in \text{Ob}(\mathcal{C})$ is called initial object in \mathcal{C} if $\forall X \in \text{Ob}(\mathcal{C})$, $\exists! I \rightarrow X$ (i.e. card $(\text{Hom}_\mathcal{C}(I, X)) = 1$, $\forall X \in \text{Ob}(\mathcal{C}))$. Dualizing, one gets the notion of final object (or terminal object) in \mathcal{C}.

Remark 6.16. Any two direct products (or direct sums, initial objects and final objects, respectively) are isomorphic (this results from the so-called properties of universality appearing in the definitions of
these objects; a similar isomorphism always exists when we have an universality).

Remark 6.17. In the category \(\text{SET} \), the direct product is the cartesian product, the direct sum is the disjoint union, the initial object is the \(\emptyset = \) , the empty set, the final objects are (any of) the singletons \(\{ x \} \).

Definition 6.18. Given \(f, g \in \text{Hom}_C(X,Y) \), we call the equalizer of \((f, g) \) the pair \((E, e) \), with \(e \) a monomorphism, having the following property of universality: for any pair \((Z, h) \) such that \(f \circ h = g \circ h \) there is a unique \(k \in \text{Hom}_C(Z, E) \) with \(e \circ k = h \), as in the following diagram:

\[
\begin{aligned}
E \xrightarrow{e} X & \xleftarrow{f} Y \\
\downarrow \exists! k & \quad \downarrow \hfill g \\
Z & \xrightarrow{h}
\end{aligned}
\]

Definition 6.18’. Dualizing, we get the notion of coequalizer of \((f, g) \).

Remark 6.19. In the category \(\text{SET} \), \(E = \{ x \in X | f(x) = g(x) \} \) with the inclusion \(E \hookrightarrow X \) is an equalizer. The coequalizer also exists in \(\text{SET} \), although it is more difficult to define it.

Definition 6.20.
1). One calls a **diagram** \(D \) in \(C \) a collection of objects and morphisms between them:
\[
D = \{(X_i)_{i \in I}, X_i \in \text{Ob}(C), (g = g_{i,j}^k \in \text{Hom}_C(X_i, X_j))_{i,j \in I} \}.
\]
For fixed \((i, j) \) it is possible to have more \(g \)’s, or none (so the index \(k = k(i, j) \) can be zero, one, or greater than one).

2). One calls a **cone over** \(D \) a pair \((Y, (f_i)_{i \in I}) \), \(Y \in \text{Ob}(C) \), \(f_i \in \text{Hom}_C(Y, X_i) \) for any \(i \) (we can have more \(f_i \), or none) such that all the following diagrams commute, for all \(i, j \in I \), and all \(g \)’s from the diagram \(D \):

\[
\begin{aligned}
X_i \xrightarrow{g} X_j & \xleftarrow{f_i} Y \\
\downarrow f_j & \quad \downarrow \hfill (g \circ f_i = f_j \quad \text{for all } i, j, \text{ and } g).
\end{aligned}
\]

Definition 6.21. Let \(D \) be a diagram in \(C \). We call an **inductive limit** (or **direct limit**) for \(D \) a cone \((C, (f_i)_{i \in I}) \) such that any other cone \((C’, (f’_i)_{i \in I}) \) uniquely factorises through it, this means that there is a unique \(f \) as in the following diagram, such that \(f_i \circ f = f’_i, \forall i \).

\[
\begin{aligned}
C’ \xrightarrow{\exists! f} C \\
\downarrow \hfill f_i & \quad \downarrow \hfill \quad f_i \\
X_i & \xleftarrow{f’_i}
\end{aligned}
\]

Definitions 6.20’. Dualizing, one gets the dual notions of **co-cone** and **projective** (or **inverse**) **limit**.

Notations 6.22. For \(D \) any diagram, we denote the inductive (resp. projective) limits as \(\lim \rightarrow D \) (resp. \(\lim \leftarrow D \)).

Examples 6.23. 1. \(D \) = the diagram with 2 objects, \(X_1 \text{and} X_2 \), no arrow. Then a cone over \(D \) is given by the diagram:
Then \(\lim \overrightarrow{D} = X_1 \times X_2 \) (the direct product). Dually, \(\lim \overleftarrow{D} = X_1 + X_2 \) (the direct sum), see 6.13.

2. \(D : f : X_1 \to X_2, g : X_1 \to X_2 \). Then \(\lim \overrightarrow{D} \) is the equalizer of \((f, g)\) and \(\lim \overleftarrow{D} \) is the co-equalizer of \((f, g)\), see 6.18.

3. \(D \) : the empty diagram. Then \(\lim \overrightarrow{D} \) is the final object, and \(\lim \overleftarrow{D} \) is the initial object, see 6.15.

Definition 6.24. We call a pullback of \((f, g)\) the \(\lim \overrightarrow{D} \), with \(D : X \overset{f}{\to} Z \overset{g}{\to} Y \). We call a pushout of \((f', g')\) the \(\lim \overleftarrow{D}' \), where \(D' : X' \leftarrow Z' \overset{g'}{\to} Y' \) (these are dual notions).

Definition 6.25. A category \(C \) is called complete if \(\exists \lim \overrightarrow{D} \) for any diagram \(D \) in \(C \), co-complete if \(\exists \lim \overleftarrow{D} \) for any diagram \(D \) in \(C \), finitely complete (resp. finitely co-complete) if the previous injective and projective limits exist for all finite diagrams \(D \) (including the empty ones).

Remark 6.26. From (6.22) and (6.23) it results that if a category \(C \) is finitely complete and finitely co-complete, then it has:

- initial and final objects;
- equalizer and co-equalizer of any \((f, g)\);
- direct products and direct sums;
- pullbacks and pushouts.

Example 6.27. One can check that the category \(\text{SET} \) is finitely complete and co-complete.

Definition 6.28. We say that a category \(C \) has exponentiation if it has direct products of any two objects and there is a pair \((Y^X, ev)\), with \(Y^X \in Ob(C) \), \(ev \in Hom_C(Y^X \times X, Y) \) satisfying the following property of universality: for any \(Z \in Ob(C) \), any \(g \in Hom_C(Z \times X, Y) \) there is a unique \(\hat{g} \in Hom_C(Z, Y^X) \) such that \(ev \circ (\hat{g} \times 1_X) = g \) (for \(\hat{g} \times 1_X \) see (6.14)), see the diagram below:

\[
\begin{array}{ccc}
Y^X \times X & \xrightarrow{ev} & Y \\
\hat{g} \times 1_X & \downarrow & \\
Z \times X & \xrightarrow{g} & \\
\end{array}
\]

Example 6.29. For the category \(\text{SET} \), if \(A, B \in Ob(\text{SET}) \), then the pair \((B^A, ev)\) satisfies the previous property of universality, where

\[B^A = \{ f | f : A \to B \} = Hom_{\text{SET}}(A, B)\]

\[ev : B^A \times A \to B\]
\[(f, x) \mapsto f(x).\]

So the category \(\text{SET}\) has exponentiation.

Definition 6.30. Let’s consider a fixed \(d \in \text{Ob}(C)\) and the pairs \((b, i)\) with \(b \hookrightarrow d\) a monomorphism. We identify two such pairs \((b, i)\) and \((b', i')\) iff there are \(\alpha \in \text{Hom}_C(b, b'), \beta \in \text{Hom}_C(b', b)\) such that \(\alpha \circ \beta = 1_{b'}\) and \(\beta \circ \alpha = i\) and \(i \circ \beta = i'\) (so \(b \simeq b'\) in \(C\), see 6.10).

Let’s denote by \([b]\) these classes of isomorphisms of the pairs \((b, i)\) as before. Such a class \([b]\) is called subobject of \(d\). So, \(\text{Sub}_C(d) = \{[b] | (b, i)\text{as before}\}\) represents the family of subobjects of \(d\).

Definition 6.31. We define a partial order on \(\text{Sub}_C(d)\), as it follows:

Take two subobjects \([a], [b] \in \text{Sub}_C(d)\) and let \(a \xrightarrow{f} d\) and \(b \xrightarrow{g} d\) be two representants. Write \(f \leq g\) if there is a monomorphism \(a \xrightarrow{\psi} b\) such that \(g \circ \psi = f\). Then: \([a] \subseteq [b] \iff f \leq g\).

One can check that the notion is well-defined and the relation is reflexive, anti-symmetric and transitive, so \((\text{Sub}_C(d), \subseteq)\) becomes a poset.

Definition 6.32. Let \(1 \in C\) be a final object (we suppose that it exists). A pair \((\Omega, \top)\), with \(\Omega \in \text{Ob}(C)\) and \(\top \in \text{Hom}_C(1, \Omega)\) is called subobjects classifier if it satisfies the \(\Omega\) – axiom: that is: for any \(a \xrightarrow{f} d\) (monomorphism), there is a unique \(\chi_f \in \text{Hom}_C(d, \Omega)\) such that the diagram

\[
\begin{array}{ccc}
a & \xrightarrow{f} & d \\
\downarrow & & \downarrow \\
1 & \xrightarrow{\top} & \Omega
\end{array}
\]

is commutative, i.e. \(\top \circ ! = \chi_f \circ f\) (here \(!\) is the unique morphism from \(a\) to \(1\), since \(1\) is a final object).

Example 6.33. In the category \(\text{SET}\), \(\Omega = \{0, 1\}\), \(\{1\} \xrightarrow{\top} \{0, 1\}\) the natural inclusion map, and \(\chi_f\) is the usual characteristic function.

Theorem 6.34. If \(a \xrightarrow{g} d\), \(b \xrightarrow{f} d\) are two monomorphisms, we have

\([f] = [g] \iff \chi_f = \chi_g\).

Proof. Standard, chasing on diagrams. Now, we can, finally, give the following

Definition 6.35. An elementary topos is a category \(\mathcal{E}\) such that:

(T1) \(\mathcal{E}\) is finitely complete (see 6.25)

(T2) \(\mathcal{E}\) is finitely co-complete (see 6.25)

(T3) \(\mathcal{E}\) has exponentiation (see 6.28)

(T4) \(\mathcal{E}\) has subobjects classifier (see 6.32).

Examples 6.36. 1). From 6.27, 6.29, 6.33 it results that \(\text{SET}\) is a topos. Moreover, \(\text{card} (\text{Hom}_\text{SET}(1, \Omega)) = 2\), \(\text{Hom}_\text{SET}(1, \Omega)\) (with \(1\) = singleton, final object), consisting (using the usual characteristic function) in \(\{0 < 1\}\), \(\Omega = \{0, 1\}\) being the subobjects classifier. The morphisms from \(\text{Hom}_\text{SET}(1, \Omega)\) are called the global sections of \(\Omega\).
2). If \mathcal{E} is a topos, $X \in \text{Ob}(\mathcal{E})$ then \mathcal{E}/X is a topos, where $\text{Ob}(\mathcal{E}/X) = \{\alpha|\alpha \in \text{Hom}_{\mathcal{E}}(A, X)\}_{A \in \text{Ob}(\mathcal{E})}$ and

$$A \overset{f}{\rightarrow} B \quad \text{Hom}_{\mathcal{E}/X}(\alpha \in \text{Hom}_{\mathcal{E}}(A, X), \beta \in \text{Hom}_{\mathcal{E}}(B, X)) = \{f \in \text{Hom}_{\mathcal{E}}(A, B)| \alpha \downarrow \beta \beta \circ f = \alpha\}. \quad X \underset{1x}{\rightarrow} X$$

In particular one gets that SET/X is a topos (compare with 5.33, 6.).

3). $\text{SET}^n : \text{Ob}(\text{SET}^n) = \{(A_1, \ldots, A_n) | A_i \in \text{Ob}(\text{SET}), \ i = \overline{1, n}, (n\text{-uples of sets), and}

$$\text{Hom}_{\text{SET}^n}((A_1, \ldots, A_n), (B_1, \ldots, B_n)) = \{(f_1, \ldots, f_n) | f_i \in \text{Hom}_{\text{SET}}(A_i, B_i), \ i = \overline{1, n}\}.$$ is also a topos. In this case the finite completeness and co-completeness can be checked on components. For the exponentiation, we define $(A_1, \ldots, A_n)(^{B_1, \ldots, B_n}) := (A_1^{B_1}, \ldots, A_n^{B_n})$, with the evaluation morphism defined on components. The subobjects classifier is $\Omega = (\{0, 1\}, \ldots, \{0, 1\})$, and the characteristic morphism is $\chi_A = (\chi_{A_1}, \ldots, \chi_{A_n})$ for $A = (A_1, \ldots, A_n)$, where χ_{A_i} is the usual characteristic function from SET. Let’s denote by 1 a (the) final object (see (6.15)) from this category, $1 = (\{x_1\}, \ldots, \{x_n\})$. Then any morphism $1 \rightarrow A$ is a monomorphism (see (6.7)) for any $A = (A_1, \ldots, A_n) \in \text{Ob}(\text{SET}^n)$. We remark that $\text{card} (\text{Hom}_{\text{SET}^n}(1, \Omega)) = 2^n$.

4). $\text{SET}^{n_1, \ldots, n_s}$, for $n_1 < n_2 < \ldots < n_s$, $s \in \mathbb{N}^*$, $n_i \in \mathbb{N}$, $i = \overline{1, n}$, and if $n_1 = 0$, then $A_1 = \emptyset$.

$$\text{Ob}(\text{SET}^{n_1, \ldots, n_s}) = \{(A_1, A_2, \ldots, A_s) | A_i \in \text{Ob}(\text{SET}^n), \ i = \overline{1, s}\}$$ (see 3.). $\text{Hom}_{\text{SET}^{n_1, \ldots, n_s}}((A_1, \ldots, A_s), (B_1, \ldots, B_s)) = \{(f_1, \ldots, f_s) | f_i \in \text{Hom}_{\text{SET}^n}(A_i, B_i), \ i = \overline{1, s}\})$ (we remark that for any A_i there is a unique B_i, by renumbering the B’s if necessary, having the same number of components as A_i, because $n_1 < n_2 < \ldots < n_s$). The compositions and identities are defined (both in 3. and 4.) in a canonical way. The exponentiation is defined as $(A_1, \ldots, A_s)(^{B_1, \ldots, B_s}) = (A_1^{B_1}, \ldots, A_s^{B_s})$ where, as before, A_i and B_i are chosen to belong to the same $\text{Ob} (\text{SET}^n)$ and $A_i^{B_i} = \text{Hom}_{\text{SET}^n}(A_i, B_i)$. The subobjects classifier object is $\Omega = (\{0, 1\}, \ldots, \{0, 1\})$, $(\{0, 1\}, \ldots, \{0, 1\})$, $(\{0, 1\}, \ldots, \{0, 1\})$ (if $n_1 = 0$, the first series of $\{0, 1\}$ reduces to the empty set \emptyset). Then $\text{card} (\text{Hom}_{\text{SET}^{n_1, \ldots, n_s}}(1, \Omega)) = 2^{n_1 + n_2 + \ldots + n_s}$, where $1 = (\{x_{11}\}, \{x_{12}\}, \ldots, \{x_{1n_1}\}), (\{x_{21}\}, \{x_{22}\}, \ldots, \{x_{2n_2}\}), (\ldots, (\{x_s1\}, \{x_s2\}, \ldots, \{x_sn_s\})\})$ is a (the) final object in the category $\text{SET}^{n_1, \ldots, n_s}$. We remark that the condition $n_1 < n_2 < \ldots < n_s$ makes this category similar with the categories from 3.), but we will interpret it differently in section 8.

5). Now we will come back to the categories of type 3., but we will consider some additional conditions, requesting some inclusions among the sets A_i. For example we consider the category SET^8_3 whose objects are $\text{Ob} (\text{SET}^8_3) = \{(A_1, \ldots, A_8) | A_i \in \text{Ob}(\text{SET}), \ i = \overline{1, 8}\},$ and $A_1 \subset A_2, A_3 \subset A_4, A_1 \subset A_3, A_2 \subset A_4, A_5 \subset A_6, A_7 \subset A_8, A_5 \subset A_7, A_6 \subset A_8, A_1 \subset A_5, A_2 \subset A_6, A_3 \subset A_7, A_4 \subset A_8\}$ and the morphisms given by 8-tuples of functions, as in 3.), but compatible with all the inclusions (for example,
with the notations from 3), the function from A_1 to B_1 should be the restriction and corestriction of the function from A_2 to B_2, and similarly for all the inclusions). Note that this category is a kind of 3D cube, similar to the category SET_3 from 5.33 (the points X',Y',Z',T',X,Y,Z,T are replaced by the sets A_1,\ldots, A_8, and the arrows are replaced by inclusions). This time the subobjects classifier is, as in 3), $\Omega = \{\{0,1\}, \ldots, \{0,1\}\}$, but $\text{card}(\text{Hom}_\text{\text{SET}_3}(1,\Omega)) = 20$ (the global sections being lexicographically ordered) \{t_1 = (0,0,0,0,0,0,0,0) < t_2 = (0,0,0,0,0,0,0,1) < t_3 = (0,0,0,0,0,0,1,1) < t_4 = (0,0,0,0,0,1,0,1) < t_5 = (0,0,0,0,0,1,1,1) < t_6 = (0,0,0,0,1,1,1,1) < t_7 = (0,0,1,0,0,0,1,1) < t_8 = (0,0,1,0,0,1,1,1) < t_9 = (0,0,1,0,1,0,1,1) < t_{10} = (0,0,1,0,1,1,0,1) < t_{11} = (0,0,1,0,1,1,1,1) < t_{12} = (0,0,1,1,0,0,1,1) < t_{13} = (0,0,1,1,0,1,1,1) < t_{14} = (0,0,1,1,1,0,1,1) < t_{15} = (0,0,1,1,1,1,1,1) < t_{16} = (0,1,0,0,0,1,1,1) < t_{17} = (0,1,0,0,1,1,1,1) < t_{18} = (0,1,1,0,1,1,1,1) < t_{19} = (0,1,1,1,0,1,1,1) < t_{20} = (1,1,1,1,1,1,1,1)\} (use the characteristic morphism from 3), and the fact that, for X and Y sets, $X \subset Y$ implies $\chi_X \leq \chi_Y$).

A simpler example is given by SET_4, whose objects are \{(A_1, A_2, A_3, A_4) | A_1 \subset A_2, A_3 \subset A_4, A_1 \subset A_3, A_2 \subset A_4\}$, with morphisms as in 3), compatible with the existing inclusions. In this case $\text{card}(\text{Hom}_\text{\text{SET}_4}(1,\Omega)) = 6$, the sections being \{(0,0,0,0) < (0,0,0,1) < (0,0,1,1) < (0,1,0,1) < (0,1,1,1) < (1,1,1,1)\}. Another example, connected with the Gosset’ polytope considered in 5), is of the type of topoi considered in 3), and we put \text{card}(\text{Hom}_\text{\text{SET}_3}(1,\Omega)) = 8 (the global sections being lexicographically ordered) \{t_1 = (0,0,0,0,0,0,0,0) < t_2 = (0,0,0,0,0,0,0,1) < t_3 = (0,0,0,0,0,0,1,1) < t_4 = (0,0,0,0,0,1,0,1) < t_5 = (0,0,0,0,0,1,1,1) < t_6 = (0,0,0,0,1,1,1,1) < t_7 = (0,0,1,0,0,0,1,1) < t_8 = (0,0,1,0,0,1,1,1) < t_9 = (0,0,1,0,1,0,1,1) < t_{10} = (0,0,1,0,1,1,0,1) < t_{11} = (0,0,1,0,1,1,1,1) < t_{12} = (0,0,1,1,0,0,1,1) < t_{13} = (0,0,1,1,0,1,1,1) < t_{14} = (0,0,1,1,1,0,1,1) < t_{15} = (0,0,1,1,1,1,1,1) < t_{16} = (0,1,0,0,0,1,1,1) < t_{17} = (0,1,0,0,1,1,1,1) < t_{18} = (0,1,1,0,1,1,1,1) < t_{19} = (0,1,1,1,0,1,1,1) < t_{20} = (1,1,1,1,1,1,1,1)\) (use the characteristic morphism from 3), and the fact that, for X and Y sets, $X \subset Y$ implies $\chi_X \leq \chi_Y$).

We note that the categories SET_n from 5.33, 2.,3. are also topoi and we can show this generalizing the previous arguments. For example for SET_1, fix an object $f : X \to Y$ from $\text{Ob}(\text{SET}_1)$. Then, any subobject of f is a function $g : A \to B$ such that $A \subset X, B \subset Y$ and g is the restriction and corestriction of f (we can take this subobject as a representant of the isomorphism class of monomorphisms to f, by 6.34). Then, for an $x \in X$ there are three possibilities : $i) : x \in A; ii) : x \notin A, f(x) \in B; iii) : x \notin A, f(x) \notin B$ (when classifying the subobjects of f we interpretate the monomorphisms as inclusions, and we get exactly the previous studied cases from the current example). So, there are 3 possibilities of appartenence, hence we can take the subobjects classifier as being $\Omega = \{\{0,1\} : \{0,1\} \to \{0,1\}\}$, and $\phi_{g,A-B}(x, g(x)) = (\phi_A(x), \phi_B(g(x)))$. So, SET_1 is a topos with 3 truth values. Similarly, identifying SET_2 with the previous SET_2^4 and SET_3 with SET_3^4, we get topoi with 6 and 20 truth values, respectively. And we can continue with further (all) SET_n.

6). We give the last exemple for now. It is of the type of topoi considered in 5), but we put it separately, because it proves that for any natural number $n \geq 2$ there is a topos \mathcal{E} such that $\text{card}(\text{Hom}_\mathcal{E}(1,\Omega)) = n$. So, let $m \in \mathbb{N}^*$ a positive natural number. We consider the category $\text{SET}(m)$ whose objects are m-uples of increasing sets: $\text{Ob}(\text{SET}(m)) = \{(A_1, A_2, \ldots, A_m) | A_1 \subset A_2 \subset \ldots \subset A_m\}$. The morphisms are as in 3), and compatible with the inclusions. Then the category $\text{SET}(m)$ is a topos, such that $\text{card}(\text{Hom}_\text{\text{SET}(m)}(1,\Omega)) = m + 1$ (with 1 and Ω as before), the global sections being $(0,0,\ldots,0,0,0) < (0,0,\ldots,0,0,1) < (0,0,\ldots,0,1,1) < (0,0,\ldots,1,1,1) < \ldots < (0,1,1,\ldots,1,1) < (1,1,1,\ldots,1,1)$.
6.37. The Heyting lattice on \(\text{Sub}_E(X), X \in \text{Ob}(E), E\) topos (see 6.29, 6.30).

• (I): Intersection \((\cap)\):

Let \(a \xhookleftarrow{} X, b \xhookleftarrow{} X\) be two subobjects of \(X\). Let \(Y \in \text{Ob}(E)\) the pullback of the diagram \(a \xhookleftarrow{} X \xhookrightarrow{} b\), that is

\[
\begin{array}{ccc}
Y & \xrightarrow{\alpha} & b \\
\beta \downarrow & & \downarrow j \\
\alpha & \xhookrightarrow{i} & X
\end{array}
\]

Since the pullback preserves the monomorphisms, it means that \(\alpha\) and \(\beta\) are monomorphisms also, so \(j \circ \alpha = i \circ \beta\) is again a monomorphism. This construction is independent of the representents \(a \in [a]\), \(b \in [b]\) (in the sense that for other representents we get an \(Y' \simeq Y\) canonically). Then

Definition 6.38. \([a] \cap [b] := [Y]\) (or \([i] \cap [j] = [j \circ \alpha = \beta \circ i]\)).

• (U): Union \((\cup)\):

We first construct the image of an arrow \(A \xrightarrow{f} B\), denoted by \(\text{Im } f\). For this, we consider the pushout

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow f & & \downarrow y \\
B & \xrightarrow{x} & P
\end{array}
\]

Let now \(m = \text{equalizer of } (x, y) : M \rightarrow B\), (cf. 6.35 (T1), 6.23, 2, 6.26). (It easy to see that \(m\) is a monomorphism).

Since \(x \circ f = y \circ f\), it follows that \(f\) factorize uniquely through \(M\), via \(e\):

\[
\begin{array}{ccc}
M & \xrightarrow{m} & B \\
\downarrow f & & \downarrow y \\
A & \xrightarrow{\exists e} & P
\end{array}
\]

(due to the property of universality of the equalizer). So, we get the diagram

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow f & & \downarrow y \\
M & \xrightarrow{m} & P \\
\downarrow f & & \downarrow x
\end{array}
\]

It can be checked that \(m\) is a monomorphism, \(e\) is epimorphism, and \(f = m \circ e\).

Definition 6.39. \(\text{Im } f \overset{\text{def}}{=} M\).

And now, let’s define the union.

Let \(a \xhookleftarrow{} X, b \xhookleftarrow{} X\) two subobjects of \(X\). Write

\[
\text{Put } E := \text{Im } (i + j) \text{ (cf. 6.13', 6.39, 6.35 (T2), and 6.26). Then } a \cup b := E \text{ (or } i \cup j = \text{Im } (i + j))\).
\]

The construction depends only a \([a] = [i]\) and \([b] = [j]\). So, we get the following

Definition 6.40. \([a] \cup [b] = [\text{Im } (i + j)]\) (or \([i] \cup [j] = [\text{Im } (i + j)]\)).

• (Im): Implication \((\rightarrow)\):

Let’s consider first a terminal object \(1 \in \text{Ob}(E)\), and look to \(\text{Sub}_E(1)\). This is a lattice (take \(X = 1\) in the previous two constructions), and let \(a \xhookleftarrow{} 1, b \xhookleftarrow{} 1\) be two subobjects. \(a, b \in \text{Ob}(E)\) and by 6.35 (T3) there exists the exponential \(a^b \in \text{Ob}(E)\). It can be seen that the unique morphism \(a^b \rightarrow 1\) is a monomorphism, so \([a^b] \in \text{Sub}_E(1)\). The construction depends only on the isomorphism classes of
\[a = [i] \text{ and } [b] = [j], \text{ and we give now the following} \]

Definition 6.41. \([a] \to [b] = [a^b] \in \text{Sub}_E(1).\) For \(X \in \text{Ob}(\mathcal{E})\) general we have a bijection \(\text{Sub}_E(X) \simeq \text{Sub}_{\mathcal{E}/X}(1_X),\) where \(1_X = \text{Hom}_\mathcal{E}(1, X)\) with 1 from before. The previous bijection is an isomorphism of lattices also, and \(\mathcal{E}/X\) is a topos also (see 6.36, 2.). Using this isomorphism, one can transfer the implication on \(\text{Sub}_E(X).\)

- If 1 is a final object then the top element of \(\text{Sub}_E(1)\) is the unique \(1_1 : 1 \to 1,\) and the bottom element is \(! : 0 \to 1,\) with 0 an initial object. One can check that \(\text{Sub}_E(1)\) becomes a Heyting lattice (6.2), as well as \(\text{Sub}_E(X),\) where \(! X : 0 \to X\) and \(1_X : X \to X\) in the identity of \(X.\)

Remark 6.42. If \(\mathcal{E}\) is a topos, then \(\text{Sub}_E(1)\) (1 a final object) and \(\text{Sub}_E(\Omega)\) (\(\Omega\) the subobjects classifier) are models of (IL) (see 6.1).

6.43. However, on \(\Omega\) we can define *logic connectors* also, namely \(\land, \lor, \to, \bot, \top(\top = \text{true}, \bot = \text{false}),\) as follows:

- \(\top : 1 \to \Omega\) is the arrow from the definition of the subobjects classifier (6.32).
 \[0 \xrightarrow{!} 1\]
- \(\downarrow \chi_1\) is the diagram of the \(\Omega\)-axiom for \(f = !,\) 0 initial object (6.32). Then \(\bot := \chi_1.\)

Apply now the \(\Omega\)-axiom to the diagram

\[
\begin{array}{c}
1 \\ ! \downarrow \\
1 \xrightarrow{\top} \Omega
\end{array}
\quad \begin{array}{c}
\Omega \times \Omega \\
\exists ! \chi_1(\top, \top)
\end{array}
\]

Then \(\land : \Omega \times \Omega \to \Omega, \land := \chi_{(\top, \top)}.\)

- Let \((\top, 1_\Omega) + (1_\Omega, \top) : \Omega + \Omega \to \Omega \times \Omega\) and \(M \xrightarrow{i} \Omega \times \Omega\) its image (see 6.39). Apply the \(\Omega\)-axiom to the diagram

\[
\begin{array}{c}
M \\ ! \downarrow \\
1 \xrightarrow{\top} \Omega
\end{array}
\quad \begin{array}{c}
\Omega \times \Omega \\
\exists ! \chi_i
\end{array}
\]

and put \(\lor := \chi_i.\)

- Finally, let \(e : \leq \to \Omega \times \Omega\) the equalizer (see 6.18) of \(\land : \Omega \times \Omega \to \Omega\) and \(pr_1 : \Omega \times \Omega \to \Omega,\) where \(\land\) is the conjunction constructed before, and \(pr_1\) is the first projection arrow of \(\Omega \times \Omega \to \Omega\) (see 6.13). Then write the \(\Omega\)-axiom for

\[
\begin{array}{c}
\leq \\ ! \downarrow \\
1 \xrightarrow{\top} \Omega
\end{array}
\quad \begin{array}{c}
\Omega \times \Omega \\
\exists ! \chi_e
\end{array}
\]

and put \(\to := \chi_e.\)

Remark 6.44. One can define a *negation* also by the formula \(\neg : \Omega \to \Omega, \neg \alpha := \alpha \to 0.\) This is compatible with the case of Boolean algebras, but it does not satisfy the principle of double negation.
(and others), in general.

6.45. As in the Boolean case (see 5.46), we can define \mathcal{E}-valuations $V : \mathcal{P} \to \text{Hom}_\mathcal{E}(1, \Omega)$ where \mathcal{E} is a topos, \mathcal{P} the set of sentences (see 5.4), 1 (the) final object, $\text{Hom}_\mathcal{E}(1, \Omega)$ all the monomorphisms of this kind, \top being one of them.

Definition 6.46. An \mathcal{E}-valuation is a function $V_0 : \mathcal{P}_0 \to \text{Hom}_\mathcal{E}(1, \Omega)$ assigning each L-term which is a sentence $i \in \mathcal{P}_0$ (see 5.3), a truth value $V(i) : 1 \to \Omega$. Then extend V_0 to $V : \mathcal{P} \to \text{Hom}_\mathcal{E}(1, \Omega)$ by the rules

\begin{align*}
\text{a)} & \quad V(\alpha \land \beta) = \land \circ (V(\alpha), V(\beta)) \\
\text{b)} & \quad V(\alpha \lor \beta) = \lor \circ (V(\alpha), V(\beta)) \\
\text{c)} & \quad V(\alpha \rightarrow \beta) = \rightarrow \circ (V(\alpha), V(\beta)).
\end{align*}

Here the logic symbols from the left members are those coming from the propositional calculus, while the others come from the constructions from 6.43.

It also results that $V(\neg \alpha) = \neg \circ V(\alpha)$.

Definition 6.47. For \mathcal{E} topos, we say that $\alpha \in \mathcal{P}$ is \mathcal{E}-valid, denoted by $\mathcal{E} \models \alpha$, iff $V(\alpha) = \top : 1 \to \Omega$, for any \mathcal{E}-valuation V.

Theorem 6.48. Let \mathcal{E} be a topos, and write $CL \vdash \alpha$ (resp. $IL \vdash \alpha$) for $\alpha \in \mathcal{P}$, if α is deductible from the axioms of the classical logic, see 5.9 (resp. α is deductible from the axioms of the intuitionistic logic, see 6.1). Then:

1. If $\mathcal{E} \models \alpha$ then $CL \vdash \alpha$.
2. If \mathcal{E} is Boolean (that is $\text{card} (\text{Hom}_\mathcal{E}(1, \Omega)) = 2$) then $\mathcal{E} \models \alpha$ iff $CL \vdash \alpha$.
3. (completeness) $\mathcal{E} \models \alpha$ for any topos \mathcal{E} iff $IL \vdash \alpha$.

Remark 6.49. The $\text{card} (\text{Hom}_\mathcal{E}(1, \Omega))$ represents the number of truth-values in the multi-valued logic. For the examples SET^n and $\text{SET}^{n_1, n_2, \ldots, n_s}$ from 6.35 we get intuitionistic logic with 2^n truth values, and intuitionistic logic with $2^{n_1+n_2+\ldots+n_s}$ truth values, respectively. From the example 5), we get intuitionistic logic with 20 and, respectively, 6 truth values. From 6.36, 6), it results that for any $n \in \mathbb{N}^*$, there is a topos \mathcal{E} whose associated IL has n truth values.

In order to model theories $\mathcal{T} = (\mathcal{L}, A, \mathcal{D})$ in topoi, we also need quantifiers, as remarked in section 5 at 5.52, 3. So, we now follow the ideas from 5.51, but in the Heyting algebra case.

Definition 6.50. A monadic Heyting algebra (abbreviated MHA) is an algebraic structure $(H, +, \cdot, \rightarrow, 0, 1, \exists, \forall)$ where $(H, +, \cdot, \rightarrow, 0, 1)$ is a Heyting algebra (see 6.2), \exists is a closure operator on H (this
means, it satisfies (i)-(iv) from 5.51), \(\forall \) is an \textit{interior operator} on \(H \) (this means, it satisfies (i)'-(iv)' from 5.51), and

(v) \(\forall \exists a = \exists a \), for any \(a \in H \);

(vi) \(\exists \forall a = \forall a \), for any \(a \in H \);

(vii) \(\exists (\exists a \land b) = \exists a \land \exists b \), for any \(a, b \in H \).

We end this section with

\textbf{Example 6.51.} Let \(R \subset A \times B, A, B \in Ob(\text{SET}) \) be any relation. Define then the quantifiers ”along \(R” \) \(\exists_R : \mathcal{P}(A) \to \mathcal{P}(B) \) and \(\forall_R : \mathcal{P}(A) \to \mathcal{P}(B) \) by

\[\exists_R(X) = \{ y | \exists x (x \in X \land xRy) \} \]

\[\forall_R(X) = \{ y | \forall x (xRy \rightarrow x \in X) \} \].

If \(A = B \), then \(\exists_R, \forall_R : 2^A = \mathcal{P}(A) \to 2^A = \mathcal{P}(A) \), and \((2^A, \cup, \cap, -, \emptyset, A, \exists_R, \forall_R) \) becomes a MBA. If \(A = B \) and \(R = “=” \), then \(\exists \forall \) are the usual quantifiers.

\textbf{Definition 6.52.} In a topos \(\mathcal{E} \), let’s consider a monomorphism \(r : R \to a \times b, a, b \in Ob(\mathcal{E}) \). Then, in [Street and Brock] (topoi, page 457) actual arrows were constructed

\[\forall_r : \Omega^a \to \Omega^b \]

\[\exists_r : \Omega^a \to \Omega^b \]

(where \(\Omega \) is the subobjects classifier in \(\mathcal{E} \), and \(\Omega^a, \Omega^b \) are exponentiations), for which the previous \(\forall_R \) and \(\exists_R \) from \(\text{SET} \) are particular cases. If \(a = b = 1 \), so \(r \to 1 \times 1 \), one gets

\[\forall_r : Hom_{\mathcal{E}}(1, \Omega) \to Hom_{\mathcal{E}}(1, \Omega) \]

\[\exists_r : Hom_{\mathcal{E}}(1, \Omega) \to Hom_{\mathcal{E}}(1, \Omega) \].

\textbf{Theorem 6.53.} For any topos \(\mathcal{E} \) the 8-uple \((Hom_{\mathcal{E}}(1, \Omega), \land, \lor, \to, 0, 1, \forall_r, \exists_r)\) is a MHA (the operations from the \(Hom_{\mathcal{E}}(1, \Omega) \) are those defined on the right-sides in 6.46). It is a MBA iff \(\mathcal{E} \) is a Boolean topos.

7. Summary on Non-standard Analysis in \(\text{SET} \); Elements of Non-standard Analysis in \(\text{SET} \)-type Topoi

Part of the material presented here follow [11], where most of the details can be found. We also mention the book [5]. However, none of the two books deal with Non-standard Analysis in toposi, our approach from 7.46 being original and giving openings to the case of the topos of type \(\text{SET}^n \) from Part II. In this paper we built non-standard analysis in topos of the form \(\text{SET}^n \), based on 5.34, 5.
and the following 7.46, *3 and 8.11, 3. Weincludhere 7.21, 7.29, 7.31 asin [11] because they hold in $\text{SET}^{\omega \cap}$ as given in the quoted numbers, with appropriate (and natural) definitions (see 7.46, *3).

In section 5 (at 5.10) we presented the ZF axiomatic of the theory of sets. As we remarked at 5.12, the axiom 7 (Infinity) allows us to speak about the set of natural numbers, \mathbb{N}, where we can define an addition, as it follows:

$$m, n \in \mathbb{N}, \; m + n := S(S \ldots (S(m)) \ldots)_{\text{n times}}$$

where

$$m = S(S \ldots (S(0)) \ldots)._{\text{m times}}$$

$(0 = \emptyset$, the empty set, and $S(\omega) = \omega \cup \{\omega\}$, see 5.10, 7.). It is easy to check that

- $\forall m \forall n \forall p ((m + n) + p = m + (n + p));$
- $\forall n (n + 0 = 0 + n = n);$
- $\forall m \forall n (m + n = n + m);$ hold on S. This gives to $(\mathbb{N}, +)$ the structure of commutative semigroup with neutral element.

Definition 7.1. We recall that a relative $R \subseteq X \times X$ is called relation of equivalence if it is reflexive ($(R) : x \sim x, \; \forall x \in X$), symmetric ($(S) : x \sim y \Rightarrow y \sim x, \; \forall x, y \in X$) and transitive ($(T) : x \sim y \land y \sim z \Rightarrow x \sim z, \; \forall x, y, z \in X$). The equality (of elements, of sets) and the congruence modulo $n \in \mathbb{N}^+ (n \geq 2, \equiv_n)$ are two examples.

Definition 7.2. Having $(\mathbb{N}, +)$ we can build the set \mathbb{Z} of integers, using the equivalence relation $R_\mathbb{Z}$ defined as it follows: $R_\mathbb{Z} \subset \mathbb{N}^2 \times \mathbb{N}^2, (m, n)R_\mathbb{Z}(k, l)$ iff $m + l = n + k$. The classes

$$(k, l) := \{(m, n) \in \mathbb{N}^2 | (m, n)R_\mathbb{Z}(k, l), \; k, l \in \mathbb{N}\}$$

are called the equivalence classes of $R_\mathbb{Z}$. Then $\mathbb{Z} := \mathbb{N}^2 / R_\mathbb{Z}$, is the set of the equivalence classes.

One can define on \mathbb{Z} the addition of classes, defined on components $(k, l) + (k', l') = (k + k', l + l')$, and we get a good definition (it does not depend on the representant $(k', l') \in (k, l)$). We get the structure $(\mathbb{Z}, +)$ of commutative group (see 5.20, 1. also). Here $\mathbb{N} \rightarrow \mathbb{Z}, \; n \mapsto (n, 0)$ is a monomorphism of semigroups, and $\mathbb{Z} \setminus \mathbb{N} = \{(k, l) | k < l\}$ are the negative integer numbers. We can also define on \mathbb{N} a multiplication, as a repeated addition: $m \cdot n = (n + n + \ldots + n), \; \text{m times}$, which can be easily extended to $(\mathbb{Z}, +, \cdot)$ such that it becomes an unitary commutative ring. In fact \mathbb{N} has been extended to \mathbb{Z} in order to be able to subtract any two elements. Now, in $(\mathbb{Z}, +, \cdot)$ we also need to divide any two elements.

Definition 7.3. We need now the set \mathbb{Q} of rational numbers. One proceeds as in 7.2, but using the multiplication instead. Define $R_\mathbb{Q} \subset (\mathbb{Z} \times \mathbb{Z}^*) \times (\mathbb{Z} \times \mathbb{Z}^*)$ by $(u, v)R_\mathbb{Q}(s, t)$ iff $u \cdot t = v \cdot s (\mathbb{Z}^* = \mathbb{Z} \setminus \{0\})$. $R_\mathbb{Q}$ is a relation of equivalence and put: $\mathbb{Q} := \mathbb{Z} \times \mathbb{Z}^*/R_\mathbb{Q}$. Then $\left\{ \frac{p}{q} : (p, q) \text{class} \right\}$. Then $(\mathbb{Q}, +, \cdot)$ becomes a field with the operations (well defined):

$$\frac{p}{q} + \frac{p'}{q'} := \frac{pq' + p'q}{qq'}; \quad \frac{p}{q} : \frac{p'}{q'} := \frac{pp'}{qq'}$$
Moreover $\mathbf{Z} \rightarrow \mathbf{Q}$, $k \mapsto \frac{k}{2}$ is a monomorphisms of commutative unitary rings.

7.4. One also needs other numbers. For example if one considers a right triangle with both catheti equal to $1 \in \mathbb{N} \subset \mathbf{Q}$, by Pythagorean Theorem one gets the value denoted by $\sqrt{2}$ for the hypotenuse, which cannot be rational (use the fundamental theorem of arithmetic). Similarly, with other arguments, for $\pi = (\text{length of a circle}) / (\text{its diameter})$. We need to complete \mathbf{Q} to a bigger field, the field of real numbers denoted by \mathbf{R}.

Definition 7.5. On \mathbf{Q}, one can define an order (a reflexive, antisymmetric, and transitive relation), compatible with the two algebraic operators, as it follows: $r = \frac{p}{q} > 0$ iff either $p, q > 0$, or $p, q < 0$; $r = \frac{p}{q} < 0$ iff either $p > 0$, $q < 0$ or $p < 0$, $q > 0$; $r = \frac{p}{q} = 0$ iff $p = 0$; $r_1 \leq r_2$ iff ($r_1 - r_2 < 0$ or $r_1 - r_2 = 0$); (see 7.3 and 7.2 for the definition of positive and negative integers).

Then $(\mathbf{Q}, +, \cdot, \leq)$ becomes an ordered field.

Definition 7.6. The structure of order on \mathbf{Q} allows us to define an absolute value $|\cdot|$ on \mathbf{Q}.

$$|r| = \begin{cases} r, & \text{if } r \geq 0 \\ -r, & \text{if } r < 0 \end{cases}$$

having the following fundamental properties:

(N_1): $|r| \geq 0$, $\forall r \in \mathbf{Q}$, and $|r| = 0 \iff r = 0$;

(N_2): $|\lambda \cdot r| = |\lambda| \cdot |r|$, $(\forall) \lambda \in \mathbf{Q}, r \in \mathbf{Q}$;

(N_3): $|r_1 + r_2| \leq |r_1| + |r_2|$, $(\forall) r_1, r_2 \in \mathbf{Q}$.

7.7. Using the absolute value, one can define on \mathbf{Q} two notions: the convergent sequences, and the Cauchy sequences.

Definition 7.8. If $M \in Ob(\text{SET})$, $M \neq \emptyset$, we call a sequence of elements from M, any map $f : \mathbb{N} \rightarrow M$. We can write $f = (m_n)_{n \in \mathbb{N}}$, where $m_n = f(n) \in M$, for any $n \in \mathbb{N}$.

Definition 7.9. 1) A sequence of rational numbers $(r_n)_{n \in \mathbb{N}}$, $r_n \in \mathbf{Q}$ is called convergent iff $\exists r \in \mathbf{Q}$ such that $\forall m \in \mathbb{N}^* \exists N = N_m$ such that $|r_n - r| < \frac{1}{m} \forall n \geq N$.

2) A sequence of rational numbers $(r_n)_{n \in \mathbb{N}}$, $r_n \in \mathbf{Q}$ is called Cauchy sequence iff $\forall m \in \mathbb{N}$ $\exists N = N_m$ such that $|r_p - r_q| < \frac{1}{m} \forall p, q \geq N$.

Remarks 7.10. 1) Any convergent sequence is Cauchy, but the converse implication is not necessary true.

2) Any sum and product (on components) of convergent (resp. Cauchy) sequences are convergent (resp. Cauchy).

Construction 7.11. Let $C = \{ f : \mathbb{N} \rightarrow \mathbf{Q} | f \text{ Cauchy} \}$, $+, \cdot$ (see 7.10.2). C becomes a commutative unitary ring. Let now $J = \{ f : \mathbb{N} \rightarrow \mathbf{Q} | f \text{ converges to 0 (zero)} \}$. Then: $f, g \in J \Rightarrow f + g \in J$ and
\(\lambda \in C, f \in J \Rightarrow \lambda \cdot f \in J \) (we say that \(J \) is an ideal in \(C \)). Then consider the relation \(\mathcal{R}_R \subset C \times C, \lambda \mathcal{R}_R \mu \iff \lambda - \mu \in J \), which is a relation of equivalence, compatible with the operations from \(C \). Then put \(\mathbb{R} := C/\mathcal{R}_R \). The + and \(\cdot \) from \(C \) factorise on \(\mathbb{R} \). If we put \(\lambda = (r_n)_n, \mu = (s_n)_n, \lambda, \mu \in C, \lambda < \mu \) iff \(r_n < s_n \) for \(n \gg 0 \), and \(\lambda \leq \mu \) iff \(\lambda - \mu \in J \) or \(\lambda < \mu \), we get on \(\mathbb{R} \) an order compatible with the induced operations:

\[
\begin{align*}
\lambda \leq \mu & \Rightarrow \lambda + \alpha \leq \mu + \alpha, \forall \lambda, \mu, \alpha \in \mathbb{R} \\
\lambda \leq \mu \land \beta \geq 0 & \Rightarrow \lambda \cdot \beta \leq \mu \cdot \beta, \forall \lambda, \mu, \beta \in \mathbb{R}.
\end{align*}
\]

Then \((\mathbb{R}, +, \cdot, 0, 1, \leq) \) becomes an (total) ordered field. Moreover, in \(\mathbb{R} \) any Cauchy sequence is convergent, so \(\mathbb{R} \) is a complete totally ordered field. Any two such objects are uniquely isomorphic, so \(\mathbb{R} \) is unique in this sense. We call it the field of real numbers (another construction of the field of real numbers uses the so-called Dedekind cuts). It can be easily proved that \(\mathbb{R} \) is an Archimedean field (this means that the subset of integers is not upperbounded).

Remark 7.12. The construction 7.11 shows us that two Cauchy sequences from \(\mathbb{Q} \) are identified in \(\mathbb{R} \) iff they have the same limit, so \(\mathbb{R} \) adds to \(\mathbb{Q} \) all the limits of rational Cauchy sequences which are not already in \(\mathbb{Q} \) (the inclusion \(\mathbb{Q} \subset \mathbb{R} \) is given by the constant sequences). The limit in \(\mathbb{R} \) is unique, so, a sequence of rational numbers converging in \(\mathbb{R} \) to \(\sqrt{2} \notin \mathbb{Q} \) is Cauchy (being convergent in \(\mathbb{R} \) it is Cauchy in \(\mathbb{R} \), so also in \(\mathbb{Q} \), being a sequence of rational numbers), but not convergent in \(\mathbb{Q} \) (since its unique limit does not belong to \(\mathbb{Q} \)). This shows us that \(\mathbb{Q} \) is not complete.

Remark 7.13. Heuristically, we can write \(\mathbb{R} = \{a_1a_2\ldots a_s, b_1b_2\ldots b_1\ldots | s \in \mathbb{N}, a_1,\ldots, a_s \) are digits, and the \((b_i)_{i \in \mathbb{N}} \)'s are sequences of digits (in any fixed numeration base) \}.

If \(x \in \mathbb{R} \), then \(x \in \mathbb{Q} \) iff it is a periodic (simple or mixed) decimal fraction.

Construction 7.14. The equation \(X^2 = 1 \) has two real roots \((\pm 1) \), but the equation \(X^2 = -1 \) has none. In order to fix this anomaly one has to further extend \(\mathbb{R} \) to \(\mathbb{C} \), the field of complex numbers. Let \(\mathbb{R}[X] \) the ring of polynomials with real coefficients, and \(I = \{f : (X^2 + 1)|f \in \mathbb{R}[X]\} \). Then \(I \) is an ideal in \(\mathbb{R}[X] \) (see 7.11.). Put then \(C := \mathbb{R}[X]/(X^2 + 1) \) (that is \(\mathbb{R}[X] \)/\(\mathcal{R}_C \)), where \(\mathcal{R}_C \) is the equivalence relation given by \(P \mathcal{R}_C Q \iff P - Q \in I \). This factorization is compatible with the usual addition and multiplication of polynomials, conferring \(\mathbb{C} \) a structure of algebraically closed field, see 7.17 (this means that any polynomial equation of degree \(n \) has at least one complex root (so, exactly \(n \), counted with multiplicities; in particular the previous equation \(X^2 = -1 \) acquires exactly 2 roots in \(\mathbb{C} \))). This fact is sometimes called The Fundamental Theorem of Algebra.

Remark 7.15. Starting from the empty set and the axiomatic of ZFC, we built \(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \). Certainly, there are many other more complicated objects which could be further built, using functions, relations, relations between functions, functions of relations, function of functions of ... relations of ... relations, ... In such a way one develops mathematics using only the ZF(C)-frame (axioms, which, in particular, postulate the existence of the empty set), see 5.10 and 5.16.
Definition 7.16. The Theory of really closed fields is the theory $T_{rc} = (L, A_{rc}, D)$, with L as usual, $D = \{MP, G, P, \ldots\}$ (see section 5), and A_{rc} is the set of axioms defining (canonically) the theory of totally ordered fields, plus two more axioms:

$$
A_1 : \forall x \exists y \ (x \geq 0 \land y^2 = x)
$$

$$
A_2 : \forall n \forall y_0 \forall y_1 \forall \ldots \forall y_{2n+1} \exists x [\neg(y_{2n+1} = 0) \land (y_{2n+1}x^{2n+1} + y_{2n}x^{2n} + \ldots + y_1 x_1 + y_0 = 0)]
$$

$(R, +, \cdot, 0, 1, \leq)$ (the field of real numbers) is a model of the previous theory.

Definition 7.17. The Theory of algebraically closed fields is the theory $T_{ac} = (L, A_{ac}, D)$, with L and D as before, and A_{ac} is the set of axioms defining the theory of fields, plus the axiom

$$
A_3 : \forall n \forall y_0 \forall y_1 \forall \ldots \forall y_n \exists x [\neg(y_n = 0) \land (y_n x^n + \ldots + y_{n-1} x^{n-1} + \ldots + y_1 x_1 + y_0 = 0)].
$$

$(C, +, \cdot, 0, 1)$ (the field of complex numbers) is a model of this theory (by the fundamental Theorem of algebra).

Definition 7.18. 1) If $\mathcal{U} = U(T)$, $T \neq \emptyset$ (see 5.16) one says that L_0 is a first order language on \mathcal{U} if one allows quantifications only after the atoms, which are the elements of T; an atom $A \in T$ is requested to satisfy the axiom: $\forall x (x \in P(A) \rightarrow x = \emptyset \lor x = A)$.

2) If \mathcal{U} is as before (but now possibly $T = \emptyset$) one says that L is a higher-order language if one allows to quantify over all the elements of \mathcal{U} (atoms, functions, relations, ...).

Theorem 7.19. 1) If T_{rc} has the (first order) language L_0, then it is model complete (that is, for any two models R_1 and R_2 of T_{rc}, and sentence φ, we have $R_1 \models \varphi$ iff $R_2 \models \varphi$).

2) If T_{ac} has the (first order) language L_0, then it is \aleph_0-categorical (that is, for any two models C_1 and C_2 of T_{ac} with cardinal $> \aleph_0$, and sentence φ, we have $C_1 \models \varphi$ iff $C_2 \models \varphi$; in particular, any two models with cardinality $> \aleph_0$ are isomorphic iff they have the same cardinal).

We pass now to an enlargement of the standard universe \mathcal{U} (with its mathematics), $\mathcal{U} \subset \ast \mathcal{U}$, called the Non-standard Enlargement, introduced by Abraham Robinson in [Ro]. But before this we need a few preliminaries.

7.20. Let’s denote by \mathcal{U} an Universe which is a family of sets satisfying some axioms. Of course, the governing ones (implicitly assumed) will be ZFC and CL from section 5. Recall that we presumed the existence of two predicates ”\in” and ”$=$”, used in ZFC. If A is a set, then $P(A)$ is the set of parts of A (by ZFC). The axioms for \mathcal{U} are:

(ST) Strong Transitivity

$\forall A \in \mathcal{U} \exists B \in \mathcal{U} B$ transitive with $A \subseteq B \subseteq U$ (B is called transitive if $b \in B \in \mathcal{U} \rightarrow b \in \mathcal{U}$)

(P) Pairing

$\forall a \forall b \ (a, b \in \mathcal{U} \rightarrow \{a, b\} \in \mathcal{U})$

(U) Union

$\forall A \forall B \ (A, B \in \mathcal{U} \rightarrow A \cup B \in \mathcal{U})$

(PS) Power set
∀A(A ∈ U → ℙ(A) ∈ U).

A universe is called **universe over** X (if X is a set, X ∈ U), and the elements of X are called individuals, satisfying: (∀x ∈ X)(x ≠ ∅ ∧ (∀y ∈ U)y ∉ x) (the set of **atoms** of U), compare with 7.18,1.

7.21 Properties of U. From the previous axioms it can be proved that:
- A ∈ U → {a} ∈ U;
- A₁, . . . , A_m ∈ U → A₁ ∪ . . . ∪ A_m ∈ U;
- U contains all its finite subsets: if A ⊂ U is finite, then A ∈ U;
- A ⊆ B ∈ U → A ∈ U;
- ∅ ∈ U;
- {A_i|i ∈ I} ⊆ A ∈ U → ∪_{i∈I} A_i ∈ U (this uses the strong transitivity);
- U is closed under unions of sets of sets;
- U is closed under arbitrary intersections;
- a, b ∈ U → (a, b) := {a, {a, b}} ∈ U
- A, B ∈ U ∧ R ⊆ A × B → R ∈ U;
- A₁, . . . , A_m ∈ U ∧ R ⊆ A₁ × A₂ × . . . × A_m → R ∈ U;
- If R ∈ U is a binary relation, then dom R, ran R, R-image R^i(C) of any C ⊆ dom R, R^−1 all ∈ U,

where

\[
\text{dom } R := \{a | ∃ b((a, b) ∈ R)\},
\]
\[
\text{ran } R := \{b | ∃ a((a, b) ∈ R)\},
\]
\[
R^i(C) := \{b | ∃ a ∈ C((a, b) ∈ R)\},
\]
\[
R^−1 := \{(b, a) | (a, b) ∈ R\};
\]

- R, S ∈ U binary relations, then R ∘ S ∈ U, where R ∘ S := \{(a, c)|∃ b((a, b) ∈ R ∧ (b, c) ∈ S)\};
- If f : A → B is a function with A, B ∈ U, then f ∈ U; moreover, for any C ⊆ A and D ⊆ B f^i(C) ∈ U, f^−1(D) ∈ U, where f^i(C) := \{f(a) | a ∈ C\}, f^−1(D) := \{a ∈ A | f(a) ∈ D\};
- A, B ∈ U → B^A ∈ U;
- \{A_i|i ∈ I\} ∈ U ∧ I ∈ U → (Π_{i∈I} A_i) ∈ U.

Example 7.22. If T is a set (possibly the empty set), then U = U(T) is an Universe (see 5.16) over T.

Example 7.23. The triplet (ℒ_U, A, D), with ℒ_U as in 5.17, A consists of axioms 7.20, and D = {M, P, G, P} (5.7), represents the Theory of Universes, having the U = U(T)’s as models (U(T) is the smallest universe containing T).

Example 7.24. The biggest U is Ob(SET), the class of all the sets. U is not a set, but when doing mathematics we are dealing with elements of U, which are sets.

7.25. The Non-standard extensions. Let U = U(T) → U’ a monomorphism (injective map) of universes. Let’s denote by *U := *(U) ⊆ U’ and by *a the image of a, *a := *(a), ∀a ∈ U. For a
sentence φ in L_U, let’s denote by $^*\varphi$ the sentence in $L_{U'}$ obtained by keeping unchanged the logical quantifiers \forall, \wedge, \neg, $\rightarrow, \forall, \exists$ and replacing all the constant symbols $a \in U$ by $^a \in U'$. One requests that * satisfies the axioms:

- $^*a = a, \forall a \in T$ (if $U = U(T)$, for $T = \emptyset$ this condition doesn’t exist);
- $^*\emptyset = \emptyset$;
- S, T : An L_U - sentence φ is true \iff $^*\varphi$ is true as $L_{U'}$ - sentence; the \Rightarrow is called transfer (T), and \Leftarrow is called standardization (S);
- I (idealisation): If $R \in U$ is any finitely satisfiable binary relation (i.e. $\forall n \forall x_1, \ldots, x_n \exists y(yRx_1 \land \ldots \land yRx_n)$), then *R is globally satisfiable (i.e. $\exists y' \forall x(y'^*Rx)$). We should remark that the x’s and y run inside U, while y' runs through U' ($^*x = x, \forall x \in \text{dom} R, y \in U, y' \in U'$). We note that the order of the variables is not important, because, if $R = R(x, y)$ is a binary relation, so is $R(y, x) = R^{-1}$.

Remark 7.26. 1. If U is a general Universe, then, in the conditions from 7.25, we restrict the monomorphism * at $U(T) \subset U$, for $T = \{a \in U|^a = a\}$. The triplet ($\mathcal{L} = (L_U, L_{U'}, ZFC + I + S + T, D = \{MP, G, P\})$) represents the Theory of non-standard extensions. We point out that this theory has a higher order logic, see 7.18, 2.

2. We call $ZFC + CL + I + S + T = IST$ (internal set theory). If U has ZFC then *U has IST as axiomatics. Moreover, a sentence φ in L_U conserves its truth value (0 or 1) when passing to $^*\varphi$ in *U. We say that the extension $U \hookrightarrow ^*U$ is conservative. Moreover, U is not contradictory iff *U is (because we can construct models for *U starting from U with ZFC, see 7.38).

So *U has a CL and $U \subset ^*U$ is conservative. We’ll get later examples in Topoi, for IL (for topoi of SET-type in this section; for topoi of the exponential type ENS^C see part II.Artificial Intelligence, section 3, see 5.35 also).

Theorem 7.27. For any infinite set T there exists an enlargement of $U(T)$ that is of the form $U(^*T)$.

So *U has a CL and $U \subset ^*U$ is conservative.

7.28 Examples/Definitions. 1. Apply the axiom idealization (I) to the binary relation $>$ (inequality), $> \subset \mathbb{R} \times \mathbb{R}$ (\mathbb{R} is the field of real numbers). This relation is finitely satisfiable in x, so we get an $y' \in ~^*\mathbb{R}$ such that $y' > x$, $\forall x \in \mathbb{R}$. Such (non-standard) y'’s are called unlimited real numbers.

2. Apply the same axiom (I) to the binary relation $< \subset (0, \infty) \times (0, \infty)$, which is the usual inequality of real numbers. The relation $<$ is finitely satisfiable in the second variable (for any $\epsilon_1, \ldots, \epsilon_n > 0$, there is $x > 0$, such that $x < \epsilon_1, \ldots, x < \epsilon_n$) so, we get an $x' \in ~^*(0, \infty)$ s.t. $x' < \epsilon$, for any $\epsilon > 0$. Passing from $(0, \infty)$ to \mathbb{R} (replacing the previous positive x with $|x|$ for any real x, we get the existence of elements $x \in ~^*\mathbb{R}$ with the property that $x \neq 0$ and $|x| < \epsilon$, for any $\epsilon > 0$. Such (non-standard) x’s are called infinitesimals. Moreover, we call the halo of zero, the set $\text{hal}(0) := \{x \in ~^*\mathbb{R}|x \text{ infinitesimal}\} \cup \{0\}$ and, for any $a \in \mathbb{R}$ we put $\text{hal}(a) := \{b \in ~^*\mathbb{R}|b - a \in \text{hal}(0), \text{both positive and negative}\}$.

3. Now apply the axiom (I) to the binary relation $| \subset \mathbb{N} \times \mathbb{N}$ defined by $a|b$ if a divides b. We get the existence of an $b' \in ~^*\mathbb{N}$ such that $a|b'$ for any $a \in \mathbb{N}$. Similarly, for an arbitrary prime number $p \in \mathbb{N}$ we get the existence of an $\omega \in ~^*\mathbb{N}$ such that $p^n|p^\omega$ for any $n \in \mathbb{N}$.

4. Let’s apply now the axiom of transfer (T) to the fundamental theorem of arithmetic, which says
that any natural number can be uniquely written as a finite product of powers of distinct prime numbers
(modulo the order of the factors). We get: \(\forall \omega \in *N \ \exists \eta \in *N \ \exists \nu_1, \ldots, \nu_\eta \in *N \ \exists P_1, \ldots, P_\eta \in *N \)
prime (hiperfinite) numbers with \(\omega = P_1^{\eta_1} P_2^{\eta_2} \cdots P_\eta^{\eta_\eta} \) (\(P \in *N \) is prime if \(\forall a \in *N \ a \mid P \Rightarrow a = 1 \lor a = P \)). So, the fundamental theorem of arithmetic in *N says that any non-standard natural number
can be uniquely written as a hiperfinite product of hiperfinite powers of hiperfinite prime numbers
(modulo the order of the factors). We note here that the hiperfinite sums \((k_1 + k_2 + \ldots + k_\omega, \omega \in *N) \)
and hiperfinite products \((k_1 k_2 \ldots k_\omega, \omega \in *N) \) are also obtained using the axiom (T), from the usual
finite sums and products.

7.29. Properties of *

- \(a = b \) iff \(*a = *b \) so \(a \mapsto *a \) is injective;
- \(a \in B \) iff \(*a \in *B \);
- \(A \subseteq B \) iff \(*A \subseteq *B \);
- If \(A \subset T \) then \(A \subseteq *A \subseteq *T \); in particular \(T \subset *T \);
- \(*(A \cap B) = *A \cap *B \);
- \(*(A \cup B) = *A \cup *B \);
- \(*(A \setminus B) = *A \setminus *B \);
- \(*A = A \) iff \(A \) is finite; otherwise \(*A \setminus A \neq \emptyset \);
- \(A \) transitive set in \(*U \Rightarrow *A \) transitive in \(*U \);
- \(*P(A) \subseteq P(*A) \);
- \(*(a_1, \ldots, a_m) = (*a_1, \ldots, *a_m), \forall m; \)
- \((a_1, \ldots, a_m) \in R \iff (*a_1, \ldots, *a_m) \in *R; \)
- \(*(A_1 \times \ldots \times A_m) = *A_1 \times \ldots \times *A_m (*A^m) = (*A)^m; \)
- If \(R \in *U \) is a binary relation, then:
 - \(*(dom R) = dom *R; \)
 - \(*(ran R) = ran *R; \)
 - \(*(R^{-1}) = (*R)^{-1}; \)
 - \(*(R'(C)) = (*R)'(*C), C \subseteq dom R; \)
 - \(*(R^{-1}(D)) = (*R)^{-1}(*D), D \subseteq ran R. \)

(see 7.21 for definitions).

- if \(R, S \) are binary relations \(\subset U \), then \(* (R \circ S) = (*R) \circ (*S) \);
- if \(f : A \to B \) is a function, \(f \in U \), then \(*f : *A \to *B \) with \(*(f(a)) = *f(*a), \forall a \in A \), and
 - \(*f \in *U \); moreover \(f \) injective, surjective, bijective iff \(*f \) is so

Definition 7.30. A set \(B \in *U \) is called standard if \(\exists A \in U \) with \(B = *A \), otherwise it is called
non-standard. A non-standard set \(B \in *U \) is called internal if \(\exists A \in U \) with \(B \in *A \) (we use both
primary relations “=” and “\(\exists \)”) and external otherwise.

7.31 Properties of internal sets

- \(A, B \) internal \(\Rightarrow A \cap B, A \cup B, A \setminus B, A \times B \) internal;
the union and intersection of any internal collection of sets are internal: if \(\{ A_i \mid i \in I \} \in *U \) and \(A_i \) internal for any \(i \), then \(\bigcup_{i \in I} A_i \) and \(\bigcap_{i \in I} A_i \) are internal;

- if \(a_1, \ldots, a_m \) are internal, then both \(\{ a_1, \ldots, a_m \} \) and \((a_1, \ldots, a_m) \) are internal;
- if \(R \) is an internal binary relation, then dom \(R \), ram \(R \), \(R^{-1} \), \(R^i(C) \), \((C \subseteq \text{dom } R \text{ internal}) \) are internal (\(R = *R \));
- \(R, S \) binary internal relations so is \(R \circ S \);
- if \(f : A \to B \) is internal, \(a \in \text{dom } f = A \) internal, then \(f(a) \) is internal; \(C \subseteq A \) internal, then \(f^i(C) \) is internal; \(D \subset B \) internal, then \(f^{-1}(D) \) is internal.

- \(*U \) is the set of internal sets, and \(*P(A) = \text{set of internal subsets of } A \), that is \(*P(A) = P(*A) \cap *U = \{ B \subseteq *A/B \text{ internal} \} \).

Example 7.32.

1. \(N \) is an external set in \(U' \).
2. \(*A := \{ a \mid a \in A \} \), \(A \) infinite is external (note that \(*A \neq *A\).)

Theorem 7.33. For \(U \prec U' \) as before, let \(\varphi(x) \) be an internal \(\mathcal{L}_{U'} \)-formula (i.e. all its constants are internal) having \(x \) as the only free variable. Then, for any internal set \(A \), the set \(\{ a \in A \mid \varphi(a) \text{ is true } \} \) is internal.

Corollary 7.34. Let \(f : A \to B \) function, with \(A \) and \(B \) internal sets. Let’s suppose that there is an internal \(\mathcal{L}_{U'} \)-term (see 5.3) \(\tau(x) \) with \(x \) the only variable such that \(f(a) = \tau(a), \forall a \in A \). Then \(f \) is an internal function.

Definition 7.35. Let’s denote by \(P_F(A) = \{ B \subseteq A \mid B \text{finite} \} \). Then \(P_F(A) \in U \). Let’s consider the \(\mathcal{L}_{U'} \)-sentence

\[
\varphi : (\forall n \in N)(\exists V \in P_F(N))((\forall x \in N)[x \in V \to x \leq n]).
\]

\(\varphi \) is true and asserts that \(\{ 1, 2, \ldots, n \} \in P_F(N) \) for any \(n \in N \). But \(\varphi \text{ true } \iff *\varphi \text{ true } (S + T), \) so for any \(n \in *N \), the initial segment

\[
\{ 1, \ldots, n \} = \{ x \in *N \mid x \leq n \}
\]

of \(*N \) belongs to \(*P_F(N) \). Then, the members of \(*P_F(N) \) are the transferred notions of the finite members of \(N \). We say that a set \(B \in U' \) is hyperfinite iff it belongs to \(*P_F(A) \) for some \(A \in U \). Any number \(\omega \in *N \setminus N \) is called hyperfinite.

Theorem 7.36. A set \(B \) is hyperfinite iff there is an internal bijection \(f : \{ 1, 2, \ldots, n \} \to B \) for some \(n \in *N \) (note that when \(n \in N \subset *N \), the set \(B \) is finite, in the usual sense).

The previous statements and definitions were presented in the frame of the theory of the Theory of non-standard sets, IST (note that we do not get here exactly the same theory from [Nelson], but a similar one). We continue now by indicating a concrete model of the nonstandard Univers (extension,
enlargement), starting with a standard one with the axioms from CL and ZFC.

Theorem 7.37; Some Permanence Principles. Let $\phi(x)$ be an internal \mathcal{L}_{ul}-formula (see 7.33) with x the only free variable. Then:

1. *(Overflow)* If there is $k \in \mathbb{N}$ such that $\phi(n)$ is true for all $n \in \mathbb{N}$ with $n \geq k$, then there exists $K \in {}^*\mathbb{N} \setminus \mathbb{N}$ such that $\phi(n)$ is true for all $n \in {}^*\mathbb{N}$ with $k \leq n \leq K$.

2. *(Underflow)* If there is $K \in {}^*\mathbb{N} \setminus \mathbb{N}$ such that $\phi(n)$ is true for all $n \in {}^*\mathbb{N}$ with $n \leq K$ then there exists $k \in \mathbb{N}$ such that $\phi(n)$ is true for all $n \in \mathbb{N}$ with $k \leq n \leq K$.

3. If $\phi(a)$ is true on a neighborhood of some $b \in \mathbb{R}$ contained in hal(b) - see 7.28, 2. (for instance on the whole hal(b)), then $\phi(a)$ is true for all a within some real positive distance from b.

4. If $\phi(a)$ is true for arbitrarily large (resp. small) $a \in \mathbb{R}$, then it is true for some positive (resp. negative) unlimited $b \in {}^*\mathbb{R}$ (see 7.28, 1.).

5. If there is $r \in \mathbb{R}$ such that $\phi(a)$ is true for all $a \in \mathbb{R}$ with $a \geq r$, then there is a positive unlimited $b \in {}^*\mathbb{R}$ such that $\phi(a)$ is true for all $a \in {}^*\mathbb{R}$ with $r \leq a \leq b$.

Definition 7.38. Let $I \neq \emptyset$ be a set. A subset $\mathcal{F}_0 \subset \mathcal{P}(I)$ is called a filter on I if it satisfies:

- (F_1) $\emptyset \notin \mathcal{F}_0$, $I \in \mathcal{F}_0$;
- (F_2) $A, B \in \mathcal{F}_0 \Rightarrow A \cup B \in \mathcal{F}_0$;
- (F_3) $A \in \mathcal{F}_0$ and $A \subset B(\subset I) \Rightarrow B \in \mathcal{F}_0$.

$\mathcal{F} \subset \mathcal{P}(I)$ is called an ultrafilter if it satisfies $(F_1), (F_2), (F_3)$ and

- (F_4) $\forall A \in \mathcal{P}(I)[(A \in \mathcal{F}) \lor (\exists C \in \mathcal{F})]$.

Let $a \in I$ an arbitrary element. Then the family $\mathcal{F}_a = \{ A \in \mathcal{P}(I) \mid a \in A \}$ is an ultrafilter. Such kind of ultrafilters are called principal ultrafilters (generated by one element). An ultrafilter is called nonprincipal if it is not of the previous form.

Remarks 7.39. 1. \mathcal{F}_0 can be taken as being $\{ J \in \mathcal{P}(I) \mid I \setminus J $ is finite $\}$.

2. Let $\mathcal{A} := (\{ \mathcal{F} \mid \mathcal{F}$ filter on $I \}, \subseteq)$. Then it is easy to see that \mathcal{A} is inductively ordered (this means that any totally ordered subfamily of \mathcal{A} has a majorant); so, by Zorn’s Lemma (see 5.15) \mathcal{A} has a maximal element \mathcal{F}. It can be shown that this \mathcal{F} is an ultrafilter. Doing the same thing with the filters greater than a fixed one (\mathcal{F}_0 say) we deduce that any filter on I can be extended to an ultrafilter on I.

Definition-Theorem 7.40. 1. Let I be an infinite set, $(X_i)_{i \in I}$ a family of sets, and \mathcal{F} a nonprincipal ultrafilter on I (see 7.38). We call the ultraproduct of the X_i’s after the ultrafilter \mathcal{F}, the quotient set $\mathcal{U}_{i \in I} X_i := (\Pi_{i \in I} X_i) / \mathcal{F}$

where the factorization by \mathcal{F} means that we factorized by the equivalence relation $\mathcal{R}_\mathcal{F}$ defined by

$(x_i)_{i \in I} \mathcal{R}_\mathcal{F} (y_i)_{i \in I}$ iff $\{ i \in I \mid x_i = y_i \} \in \mathcal{F}$.

2. With I and \mathcal{F} as before and if $X_i = X \ \forall i \in I$, we denote the ultraproduct $\mathcal{U}_{i \in I} X_i$ by *X and we call it the ultrapower of X after the ultrafilter \mathcal{F}.

3. If T is a set, the extension $\mathcal{U}(T) \hookrightarrow \mathcal{U}(^*T)$, given by $A \mapsto ^*A$ for any $A \in \mathcal{U}$ is a non-standard enlargement (that is, it satisfies the axioms I,S,T from 7.25 (for $\mathcal{U}(T)$ see 5.16) (note that, for \mathcal{F} a principal ultrafilter we get $^*X = X$ for any set X, so we do not get anything new in our non-standard
universe; on the contrary, for \(\mathcal{F} \) nonprincipal, it can be shown that \({}^*X = X \) iff \(X \) is finite.

Remark 7.41. The sets of numbers extend at \({}^*\mathbb{N} \subset {}^*\mathbb{Z} \subset {}^*\mathbb{Q} \subset {}^*\mathbb{R} \subset {}^*\mathbb{C} \) (certainly, \(\mathbb{N} \subset {}^*\mathbb{N}, \mathbb{Z} \subset {}^*\mathbb{Z}, \mathbb{Q} \subset {}^*\mathbb{Q}, \mathbb{R} \subset {}^*\mathbb{R}, \mathbb{C} \subset {}^*\mathbb{C} \), the inclusions being strict. However, we will see in 7.45 that, when \(I = \mathbb{N} \) the fields \(\mathbb{C} \) and \({}^*\mathbb{C} \) are isomorphic. We remark again that we produced the set of numbers, and of non-standard numbers starting with the empty set and the axiomatic \(ZF(C) \).

Remark 7.42. If all the \(X_i \) have the same given structure, then, in most of the cases, the same structure lies on their ultraproduct. In particular, when we deal with ultrapowers, one gets, as examples:
1. \(G \) group \(\Rightarrow {}^*G \) group.
2. \(A \) ring \(\Rightarrow {}^*A \) ring.
3. \(K \) (really closed, algebraically closed, see 7.16, 7.17) field \(\Rightarrow {}^*K \) (really closed, algebraically closed) field.
4. \(V \) \(K \)-vector space \(\Rightarrow {}^*V \) \({}^*K \)-vector space.
5. \((M, \leq) \) poset \(\Rightarrow ({}^*M, {}^*\leq) \) poset.
6. However, not any property from \(\mathcal{U} \) is transferred in \({}^*\mathcal{U} \) as it is. For example \(\mathbb{R} \) is Archimedean (i.e. \(\mathbb{Z} \) is NOT upperbounded in \(\mathbb{R} \)) but \({}^*\mathbb{R} \) is non-Archimedean (\(\mathbb{Z} \) is upperbounded in \({}^*\mathbb{R} \)). However, since the logic from the non-standard enlargement is a higher order logic, something should be transferred. One can say that \({}^*\mathbb{R} \) is \({}^* \)-Archimedean (this means that \({}^*\mathbb{Z} \) is NOT upperbounded in \({}^*\mathbb{R} \)).

Examples 7.43. If \(I = \mathbb{N} \), then an element from \(\mathcal{U}_{n \in \mathbb{N}}X_n \) can be written as \([x_1, x_2, \ldots, x_n, \ldots] \) (the class of a sequence). The inclusion \(X \subset {}^*X \) is given by the constant sequences \([x, x, \ldots, x, \ldots] \), in particular for the inclusion \(\mathbb{R} \subset {}^*\mathbb{R} \).

An element \(x \in {}^*\mathbb{R} \) such that \(x > n, \forall n \in \mathbb{N} \), is called an **infinitely big** number. An example is \([1, 2, 3, \ldots, n, \ldots] \) (here \([x_1, x_2, \ldots] \leq [y_1, y_2, \ldots] \) iff \([i| x_i \leq y_i] \in \mathcal{F} \)).

An element \(x \in {}^*\mathbb{R} \) such that \(|x| < \epsilon, \forall \epsilon > 0, \epsilon \in \mathbb{R} \) is called an **infinitely small** number (or **infinitesimal**). An example is \([1, 1/2, 1/3, \ldots, 1/n, \ldots] \).

Remark 7.44. In the enlargement \(\mathcal{U}(X) \xrightarrow{\sim} \mathcal{U}(\mathbb{R}) \) the **standard sets** are the ultrapowers, while the **internal sets** are the ultraproducts which are not ultrapowers, and the **external sets** are the sets which are not ultraproducts (see 7.30).

Remark 7.45. If \(I = \mathbb{N} \), then \(\mathbb{C} \) and \({}^*\mathbb{C} \) are both algebraically closed fields (by transfer, \(T \) from \(IST \)) of equal cardinality \(> \aleph_0 \). It results from 7.19, 2. that \(\mathbb{C} \) and \({}^*\mathbb{C} \) are isomorphic as fields.

7.46. Non-standard Analysis in SET-type topoi. We start now to achieve our main objective from the mathematical point of view, namely to build a Non-standard Analysis (NSA) in topoi, extending the previous theory from the classical setting (in the topos \(\text{SET} \)) to more general topoi. We will be only interested in building NSA in the exponential topos of the form \(\text{SET}^{\text{op}} \) (such kind of topos were also used in Quantum Physics). However, for the moment we will exemplify the ideas on the \(\text{SET} \)-type topoi 3.- 6. from 6.36. (we will see in the next section that these topoi are of exponential type \(\text{SET}^{\text{op}} \))
from 6.36. The general definitions will be given in the next section, but a more detailed study of the exponential-type topoi from before will be done in the Part II of this work. For now, let’s analyse the already announced examples.

3. We will define the category \(\text{SET}^n, n \in \mathbb{N}^ \). This category is, as is \(\text{SET}^n \), a topos. Precisely (the symbol \(* \) is exactly the symbol used before for defining the NSA in the topos \(\text{SET} \)):

\[
\text{Ob}(\text{SET}^n) = \{(\ast A_1, \ldots, \ast A_n) | A_i \in \text{Ob}(\text{SET}), i = 1, \ldots, n\}
\]

\[
\text{Hom}_{\text{SET}^n}(\ast A_1, \ldots, \ast A_n, \ast B_1, \ldots, \ast B_n) = \{\{f_1, \ldots, f_n\} | f_i \in \text{Hom}_{\text{SET}}(A_i, B_i), i = 1, \ldots, n\}
\]

\[
\ast \Omega_n = \{\{0, 1\}, \ldots, \{0, 1\}\} = \Omega_n, (6.36, 3.3)
\]

\[
(\ast A_1, \ldots, \ast A_n) \ast (\ast B_1, \ldots, \ast B_n) = (\ast A_1^{*B_1}, \ldots, \ast A_n^{*B_n}),
\]

where \(\ast A_i^{B_i} = \{f : \ast A_i \rightarrow B_i | f \text{ internal}\} \).

Then \(\text{SET}^n \hookrightarrow \ast \text{SET}^n \) and this is a conservative extension of topos.

More precisely, one can build a NSA on \(\text{SET}^n \) by imitating the case \(\text{SET} \). Namely, in \(\text{SET}^n \) we define a union, intersection, and power set on components, namely:

\[
(A_1, \ldots, A_n) \cup (B_1, \ldots, B_n) := (A_1 \cup B_1, \ldots, A_n \cup B_n)
\]

\[
(A_1, \ldots, A_n) \cap (B_1, \ldots, B_n) := (A_1 \cap B_1, \ldots, A_n \cap B_n)
\]

\[
\mathcal{P}(A_1, \ldots, A_n) := (\mathcal{P}(A_1), \ldots, \mathcal{P}(A_n)).
\]

Then we can build an Universe \(\mathcal{U}(X) \) using the same procedure as in 5.16 (here \(X = (X_1, \ldots, X_n) \)). In fact, we get that \(\mathcal{U}(X) = (\mathcal{U}(X_1), \ldots, \mathcal{U}(X_n)) \), where \(\mathcal{U}(X_i) \) are Universes as in 5.16. We can also build the non-standard extension \(\mathcal{U}(X) \hookrightarrow \ast \mathcal{U}(X) = \mathcal{U}(\ast X_1, \ldots, \ast X_n) = (\mathcal{U}(\ast X_1), \ldots, \mathcal{U}(\ast X_n)) \).

We extend the language to \(\mathcal{L}_{\mathcal{U}(X)} \) and we obtain that \(\mathcal{L}_{\mathcal{U}(X)} = (\mathcal{L}_{\mathcal{U}(X_1)}, \ldots, \mathcal{L}_{\mathcal{U}(X_n)}) \); this can be further extended to \(\mathcal{L}_{\ast \mathcal{U}(X)} = (\mathcal{L}_{\mathcal{U}(\ast X_1)}, \ldots, \mathcal{L}_{\mathcal{U}(\ast X_n)}) \). (One can define in \(\text{SET}^n \) the notions of standard and non-standard object on components (the standard objects are of the form \((\ast X_1, \ldots, \ast X_n) \), with \(X_1, \ldots, X_n \) sets; the non-standard objects have an hierarchy of non-standardness, depending on how many components are non-standard, and which ones - one can rank them using the lexicographical order on n-uples); one can define, for the non-standard objects, the internal and the external objects, namely an object \((X_1, \ldots, X_n) \) is internal iff all the sets \(X_i \) are internal; and, \((X_1, \ldots, X_n) \) is external iff at least one of the \(X_i \) is external (as in the case of the non-standard sets, one gets several degrees of externality, lexicographically ordered). In fact, the number of degrees of truth of a sentence are \(2^n \). A sentence in \(\mathcal{U}(X) \) consists of an n-uple of sentences from \(\mathcal{U}(X_1), \ldots, \mathcal{U}(X_n) \), in this order. The degree of truth of a sentence in \(\mathcal{U}(X) \) depends on the number of the true sentences from the components, and on their order, with the lexicographical order on n-uples. The degree of truth of a sentence \(\phi \) in \(\mathcal{U}(X) \) is kept in \(\mathcal{U}(\ast X) \) and vice-versa, due to \(T \) (transfer) and \(S \) (standardisation) from the NSA on \(\text{SET} \). We got in such a way a conservative extension of the intuitionistic \((2^n) \) valued logic of the topos \(\text{SET}^n \).

The idealisation property \((I)\) from NSA remains unchanged. We will better formalise the notions in the next section. We point out that the analogues statements as in 7.21, 7.29, and 7.31 continue to hold, with appropriate definitions of the operations (on components). When considering the maximal extension, at the level of whole topoi \(\text{SET}^n \hookrightarrow \ast \text{SET}^n \) it means that we work with the highest possible Universes,
see 7.24 also.

∗4), ∗5). We can apply the same procedure as in ∗3) for the examples 4) and 5) of 6.36, building NSA in these topoi also, and keeping the truth values. For the hypercube categories we pass from the functions \(f : A_i \rightarrow B_i \) appearing to the corresponding internal functions \(∗f : ∗A_i \rightarrow ∗B_i \) and we get the non-standard enlargement \(SET_n \hookrightarrow ∗SET_n \).

∗6). We can apply the same procedure as used in ∗3) to the example 6) from 6.36. We get a NSA enlargement of \(SET \)-type topoi \(E \hookrightarrow ∗E \) conserving the truth values. By 6.36, 6. for any \(n \in ∗N \) we can arrange in such a way that the subobjects classifier of \(E \) has exactly \(n \) global sections. Then \(∗E \) has \(n \) truth values also, and the non-standard extension is conservative (keep all the \(n \) truth values unchanged when transferring and when standardizing). We get examples of NSA extensions of an intuitionistic logic having any natural number truth values. We can now shift ourselves from \(N \) to \(∗N \). Using the Permanence Principle from classical NSA on \(SET \) (see 7.37, 1., Overflow Principle) we can build non-standard extensions as before on topoi with hiperfinite number of truth values, see 7.34. However, because there is a bijection (in \(SET \)) between the interval \([0,1] \subset R\), one can think that the set \(\{0/\omega = 0, 1/\omega, 2/\omega, \ldots, (\omega - 1)/\omega, \omega/\omega = 1\} \) “covers” the continuous set \([0,1] \) (in Quantum Physics the idea in using topoi was to replace the probabilities with truth values).

8. Infons/Receptons: Theory and Category; Preliminary Definitions

We already discussed in Section 4. about the fact that any elementary particle from Physics can be thought in String Theory like a coin having two faces, one of them being informational (having the infons as elementary half-particles) and another one being energetic (having the energons as elementary half particles). We also included in Section 4. known comments saying that the energy is also information (see the Landauer Principle [4]), at least at the potential (virtual) level and, in fact, the measurement (observation, reception) produces the collapse of the information waves in the observed reality (such that actual energy and its condensed form, the matter, organized after informational rules in elementary particles - rules which governs the energetic aspects, the atoms, molecules, crystals, human or no-human constructions, plants, animals,...). The information stays in logico-mathematical Theories which “collapse” in Categories (see Section 5.), seen as some kind of concrete - real, material - entities, which receive the information; in this case - of Emerging Quantum Mechanics (see [Entropy]) - the two faces become infons/receptons. In Neuroscience one considers that the consciousness is intuitionistic (so, modeled by a multi-valued logic in Heyting algebras), and the union between consciousness and subconsciousness represents a conservative extension of consciousness (it does not change our conscious (aware) feeling on any situation), see the Sections 2. and 3. also. We progressively become aware of our surrounding world, starting from nothingness and progressively receiving and incorporating information (through receptons). Nevertheless, this also happens with the Global Brain, generating progress through brains and technology (and, if we think about it, the same thing also hold for an Universal Brain, generating the Uni/Multiverse which also contains the life also). The human brain, the global brain (and the universal brain) are higher (and higher) structures, the smaller ones being
substructures of the bigger ones.

In 5.10 we remembered the Theory of Sets in the standard context of the classical logic (CL) - see 5.9 - and the axiomatic system $ZF(C)$. In 7.25 we extended the notion to its non-standard counterpart, namely using CL, ZFC axiomatics and three more axioms ($S + T$, I) obtaining the so-called Internal Set Theory (IST), further analysed in 7.26 - 7.45. In sections 5. and 7.1 - 7.15 we built numbers (and one can continue in the same way with all the mathematics) from nothingness (the empty set, whose existence is axiomatically postulated) and $ZF(C)$ axiomatics in CL (in a given language and using the Modus Ponens deduction rule). So, other categories (and their related theories) arise progressively, as the Universe from the Big Bang. So, a general theory of sets generates many other (non-contradictory, so having models, so generating categories, by 5.19, 5.21) subtheories (we will come back to this notion later) which, in a rank 4 Tegmark’s Multiverse (see section 4.) should have physical models (the additional axiom of a rank 4 Multiverse), which are described by the associated categories. In [GN] the propositional calculus of infons (as defined by them) is a conservative extension of the intuitionistic logic (CE of IL), see 6.1 and 7.25 (in the context of multi-valued logic, conservative means, as in the bivalent case, that the several truth values and their truth order are kept in the extension of the standard sentences, no matter how many they are). Although our forthcoming definition of infon is not the same as given by Gurevich - Neeman, we will keep many similarities, such as the previous description is (CE of IL). So, what we need now is to reformulate the Set Theory in an intuitionistic setting (obtaining the so-called intuitionistic set theory, based on the named IZF axiomatic system (see [Stanford]) with IL), and to extend it to its non-standard counterpart - as in the CL case - named Intuitionistic Internal Set Theory $IIST$. In IZF we get analogues of the theories of IGroups (Intuitionistic Groups), IRings, IVector spaces,..., the difference from the previous ones being that we are not allowed to make deductions using the principle of the excluded middle and analogue arguments (reductio ad absurdum, double negation); precisely, the axioms of IGroups are IL, IZF (see 8.1) and the axioms of groups (and similarly for the other structures). In $IIST$ we can enlarge, as in the classical case, the previous notions to *IGroups, *IRings, *Vector spaces,... satisfying the axioms of $IIST$ from 8.3 (which naturally extends the axioms of IST from section 7.), in an IL setting.

Definition 8.1. A set is a class which is an element of another class (see 5.10). Let’s denote by \mathcal{M} the class of sets. The intuitionistic theory of sets (IZF) is the triplet $(\mathcal{L}_\mathcal{M}, IL + IZF, D = \{MP\})$, where IL are the axioms from 6.1, MP is as in 5.7, and IZF (Intuitionistic Zermelo-Fraenkel) consists in the following axioms (recall that ”\in” and ”$=$” are primary relations)

$IZF :$ Axioms (from 5.10):

1.(E), 3.(S), 4.(P), 5.(U), 6.(Rp), 7.(I), 8.(PS), and (2)’($Induction$):

$$\forall x((\forall y \in x \land \phi(y)) \rightarrow \phi(x)) \rightarrow \forall x\phi(x),$$

for every formula ϕ.

Remarks 8.2. The axioms 2.(R) and 9.(C) from 5.10 implies the law of excluded middle (see [https://plato.stanford.edu/entries/set-theory-constructive/incompatible-set-axs.html]), which is forbidden in IL which is not CL (it is not hard to see this, but we do not insist here). This is the reason...
for which the axiom 2. of ZF is weakened to 2'. from before, and 9. is not included (however, weaker versions of C could be included, as is the Axiom of countable choice, for instance).

Definition 8.3. An *Intuitionistic Theory* is an usual theory $T = (\mathcal{L}, A, D)$ (see 5.8) in an intuitionistic context, so assuming that A contains the axioms IL and IZF from before (strictly, with equality only in the case 8.1 from before), and that $D = \{MP\}$ (see 5.7). As in 5.8, we *assume*, by definition, that a theory has at least one model.

Remark 8.4. Let E be a topos. In section 6. we defined all the logical operations in the space of sections $\text{Hom}_E(1, \Omega)$, see 6.43 and 6.52, such that this space become a MHA (see 6.50). Hence, we can consider the notion of theory (in the sense of the previous definition) in any topos.

Definition 8.5. Let C be a category, and $A \in \text{Ob} C$. We say that $B \in \text{Ob} C$ is a *subobject* of A (in C) if there is a monomorphism $B \hookrightarrow A \in \text{Hom}_C(B, A)$. We say that a category C' is a *subcategory* of C, if C' is a subobject of C in a category CAT as in 5.25, containing as objects both C and C'.

Definition 8.6. Let E be a topos, and $X \in \text{Ob}(E)$. Then we can associate to any two morphisms $\alpha \in \text{Hom}_E(1, X)$ and $\beta \in \text{Hom}_E(1, X)$ their direct product (α, β) in $\text{Hom}_E(1, X \times X)$ (1 is (the) final object, so $1 \times 1 = 1$), see 6.14. Then, a *binary relation* R on X is a set of pairs (α, β) as before. As usually, we write $\alpha R \beta$ instead of $(\alpha, \beta) \in R$. We say that a binary relation on X in *finitely satisfiable* iff for any positive integer n and $\alpha_1, \ldots, \alpha_n \in \text{Hom}_E(1, X)$ there is $\beta \in \text{Hom}_E(1, X)$ such that $\alpha_1 R \beta, \ldots, \alpha_n R \beta$.

Definition 8.7. Let E be a topos. An *enlargement* of E is a monomorphism $*: E \hookrightarrow E$ in a category CAT containing both categories E and $*: E$, satisfying:

1. $*: E$ is a topos;
2. If $V : P \rightarrow \text{Hom}_E(1, \Omega)$ is any valuation (see 6.46) (here P is the set of sentences in the language \mathcal{L}_E, 1 is the final object is E, and Ω is the subobjects classifier from E), then $V(p) = V(p)$ for any $p \in P$ (here $V : *P \rightarrow \text{Hom}_E(1, *\Omega)$ is the non-standard image of the original map V, 1 = $*: 1$ is the final object, and $*: \Omega$ is the subobjects classifier from $*: E$);
3. For any $X \in \text{Ob}(E)$ and any finitely satisfiable relation R on X there is $g \in \text{Hom}_{*: E}(1, *X)$ such that $*: R \subseteq g$ for any $\alpha \in \text{Hom}_E(1, X)$ (we say that any finitely satisfiable relation is *globally satisfiable*) (if $R \subseteq \text{Hom}_E(1, X \times X)$ then $*: R \subseteq \text{Hom}_{*: E}(1, *X \times *X)$).

Remark 8.8. The previous definition extends to topoi the axioms I, S, T from 7.25. The extension $*: E \hookrightarrow *E$ preserves the truth values (by 8.7, 2) so it is a conservative extension in an intuitionistic setting. If we produce an arrow $*: E$ as in 8.7, we get models for the already announced $IIST$. However, it is not known if such an arrow exists for a general topos (for some results see [nlab]). We will be interested only in the topoi of the form SET^{op} (of exponential type). However we will consider the exponential case in part II of this work, as already announced, in this section we will work only with
SET-type topoi (see 5.35).

As announced (and justified) in section 4., we are now prepared to define the infons and the receptons. Precisely:

Definition 8.9. We call a generalised infon a Theory $\mathcal{I} = (\mathcal{L}, \mathcal{A}, \mathcal{D})$ whose propositional calculus is a conservative extension of the intuitionistic logic. We call infon the collection of entities of the previous form, modeled by the theory of non-standard intuitionistic axiomatics (IIST) whose category of models form a non-standard enlargements of a topos of the form SET^{C^op}, where C is any category (see Section 5 also). We call preliminary defined infon the infon whose associated category is a non-standard enlargement of a topos of SET-type (this means topoi of the form *3. −* 6. from 7.46).

Definition 8.10. We call a generalized recepton the category of models of a generalized infon. We call recepton any non-standard enlargement of a topos of exponential type - SET^{C^op}, where C is any category (see Section 5 also). We call preliminary defined recepton any non-standard enlargement of a topos of SET-type (as before, these are the topoi of the form *3. −* 6. from 7.46; we note that, by the just given definition of the recepton we need to show that the previous topoi 3.- 6. from 6.36 are of the form ENS^{C^op}).

We recall in the context that the logic from topoi is intuitionistic, and its non-standard enlargement is a conservative extension (see Sections 6. and 7.).

Examples 8.11. (of preliminary defined receptors). We built in Section 7. concrete enlargements of the categories SET^n, $\text{SET}^{n_1\ldots n_s}$ and SET^n with several inclusions (6.36, 3.-6.), namely *3. −* 6. (see 7.46). The objects of these two categories are examples of receptors as long as we prove that the categories from 6.36 are of the type SET^{C^op} for some category C (see 8.10). We will analyse those categories successively.

3. Let’s organize the set $\mathfrak{n} = \{1, 2, 3, \ldots, n\}$ as a category, whose objects are the numbers k, and the only arrows are the identities of each $k, 1 \leq k \leq n$ (a discrete category). The category \mathfrak{n} coincides with dual (it is selfdual). Then $\text{SET}^n = \text{SET}^\mathfrak{n}$ (the first n is the number, and the second \mathfrak{n} is the category), because any object of SET^n, meaning a functor $F : \mathfrak{n} \to \text{SET}$ can be identified with $(F(1), F(2), \ldots, F(n)) \in \text{Ob}(\text{SET}^n)$ and any morphism in SET^n, meaning a natural transformation between two functors $F,G \in \text{SET}^n$ can be identified with n arrows $f_i : F(i) \to G(i), i = \overline{1,n}$ from SET i.e. an arrow in SET^n.

4. As for $\text{SET}^{n_1\ldots n_s}$, for $n_1 < n_2 < \ldots < n_s, s \in \mathbb{N}^*$, $n_i \in \mathbb{N}$, $i = \overline{1,n}$, let’s consider the direct sum category $\mathfrak{n}_1 + \mathfrak{n}_2 + \ldots + \mathfrak{n}_s$ whose objects are $(k,j), 1 \leq k \leq n_j, j = \overline{1,s}$ and the morphisms are only the identities (so the direct sum category is discrete again). Then $\text{Ob}(\text{SET}^{n_1\ldots n_s}) = \{(A_{11}, A_{21}, \ldots, A_{n_{11}}), (A_{12}, A_{22}, \ldots, A_{n_{22}}), \ldots, (A_{1s}, A_{2s}, \ldots, A_{ns})\} | A_{ij} \in \text{Ob}(\text{SET}), j = \overline{1,s}, i = \overline{1,n_j}\}$. Let’s denote by $f_j : \mathfrak{n}_j \to \mathfrak{n}_1 + \mathfrak{n}_2 + \ldots + \mathfrak{n}_s$, $j = \overline{1,s}$ the canonical monomorphisms (injections) coming from the universal propriety of the direct sum. We show that the category $\text{SET}^{n_1\ldots n_s}$ can be identified with the category $\text{SET}^{n_1 + \ldots + n_s}$, which is of the desired type. Indeed, as in 3., each n_j-uplu $(A_{1j}, A_{2j}, \ldots, A_{nj})$ uniquely define a functor $F_j \in \text{SET}^n$. Then
consider \(F \in \text{SET}^{n_1+\ldots+n_s}, F = F_1 + \ldots + F_s \) the direct sum functor (induced by the prpriety of universality of the direct sum), so \(F \circ f_j = f_j, j = 1, s \). In fact, \(F(k,j) = F_j(k), k = 1, n_j = (A_{kj}) \).

As for the fact that the natural transformations between the functors from \(\text{SET}^{n_1+\ldots+n_s} \) corresponds exactly to the morphisms from \(\text{SET}^{n_1\ldots n_s} \), use the same observation as we did at 3. See also the next diagram:

\[
\begin{array}{c}
n_1 \xrightarrow{f_1} n_1 + n_2 + \ldots + n_s \xleftarrow{f_s} n_s \\
n_2 \xrightarrow{F_1} \star \xrightarrow{F} \star \xrightarrow{F_s} n_{s-1} \\
\end{array}
\]

5.6. The categories of this type from 6.36 are similar to the category \(\text{SET}^n \) from the previous example 3., but having some inclusions among the \(A_i \)'s. In fact, from the point of view of the truth values, everything will work even if instead of an inclusion \(A_i \subset A_j \) we request to have a morphism \(f_{ij} : A_i \rightarrow A_j \). However, we will not be able to identify the category obtained replacing the inclusion with a morphism with a category of the type \(\text{SET}^{\text{op}} \), except for the case when we request that the morphism is a monomorphism, but this gives us the inclusion case, by 6.34. We proceed as in 3., but we will no more consider the discrete structure in the category whose objects are \(\{1, 2, \ldots, n\} \). Instead, we consider additional morphisms between these objects. Precisely, the morphisms in the new category having the same objects as the discrete category \(n \) will be, certainly, all the identities, but we add an epimorphism \(j \rightarrow i \) whenever in our examples we have \(A_i \subset A_j \) (note that the non-discrete category is no more self-dual, so we have to reverse the rows and to change monomorphisms in epimorphisms). For example, if one considers the category \(\text{SET}_2 \), take the category \(4_0 \) whose objects are the same as for the category \(4 \), namely \(\{1, 2, 3, 4\} \), but whose morphisms are: \(\{1_1, 1_2, 1_3, 1_4 \} = 1_2 \rightarrow 1, 4 \rightarrow 3, 3 \rightarrow 1, 4 \rightarrow 2, \) the last four being epimorphisms \} (note that the category \(4_0 \) is not self-dual). Then one can prove, using the methods from before, that \(\text{SET}_2^4 = \text{SET}^{4_0} \), so of the desired type.

8.12. As we already mentioned, the Nicolas Bourbaki group of prominent mathematicians from France considered that the fundamental structures in mathematics are (both in the language of theories and of categories) the algebraic structures, topological structures, and order structures, all the others (like the differential ones, for example) being combinations between them. So, in order to apply Mathematics in various arias, one needs to consider collections of such structures, communicating between them. This means that we need to consider various theories and categories together. In the case of categories, the structures are collected in categories, and the communication between them is done with the help of the functors. This means that, in fact, one needs to work with categories of type \(\text{CAT} \) (see 5.25), and, as a qonsequence, with appropriate infons and reeptons. This means that an important family of reeptons will have the form \(\text{SET}^{\text{CAT}^{\text{op}}} \) and similarly for the corresponding theories. For example, in Multiversal Quantum Physics several mathematical structures appearing in the usual Quantum Physics were put together in such kind of topoi several, such as Hilbert spaces with compact self adjoint operators, von Neumann algebras, and others. However, when studying the human and global brain, is necessary to
enlarge the things to the non-standard environment, due to the role played by the subconsciousness.

8.13. There are infons which have more information than others, as well as they can have each one different kinds of information. We say that a theory \(T_1 \) is a subtheory of the theory \(T_2 \) iff the constants of \(L_1 \), belonging to \(T_1 \) has the variables and the constants among those of \(L_2 \), belonging to \(T_2 \), the axioms of \(T_1 \) contains the axioms of \(T_2 \), and the set of deduction rules of \(T_1 \) contains the set of deduction rules of \(T_2 \). The biggest theory is the Theory of sets, \((\text{Set})\). All the other theories are subtheories of this one. We can, then, organize the theories (as subtheories of \((\text{Set})\)) in a POSET \((\text{Sub}(\text{Set}), \leq)\). In particular this structure is transmitted to the infons. We point out that the non-standard intuitionistic theories, as we built them here in examples, are also subtheories of \((\text{Set})\). As for receptons, being the categories associated (through models) to the infons, they also gave to the highest category, namely \(\text{SET} \) a structure of POSET, via subcategories. So we get the partial ordered set \((\text{SET}, \leq)\). These structures will be studied in more detail in part II., when we will also have the construction of the infons and receptons in general.

8.14. Oriented graphs as topoi of \(\text{SET} \)-type. An oriented graph \(\vec{G} \) consists in a finite number of points \(A = \{A_1, A_2, \ldots, A_n\} \) (in the plane, space, or even in a higher-dimensional space - although we can always to project them on the plane, obtaining a planar graph), some (or all) of them being joined with some others (or all) of them by oriented segments (arrows). We will suppose here, additionally, that for each \(i \neq j, i, j \in \{1, \ldots, n\} \) there is at most on arrow between them, either from \(A_i \) to \(A_j \) or from \(A_j \) to \(A_i \), and we implicitly assume the existence of an unique arrow from \(A_i \) to itself, for any \(i \) as before, namely the identity arrow (which has no orientation). As we saw before, we can organize this graph as a category of type \(n \) with some aditional morphisms (see 8.11, 3. - 6.): we add to \(n \) a morphism from \(j \) to \(i, i, j \in n \) iff there is an arrow from \(A_i \) to \(A_j \) in \(\vec{G} \), as in 5. and 6. from 8.11. Let’s denote this new category by \(n \vec{G} \). Then the \(\text{SET} \)-type topos \(\text{SET}^n\vec{G} \) can replace the given graph. In fact one can work with a category of \(n \)-uples of sets, \((X_1, \ldots, X_n)\) requesting additionally that \(X_i \subset X_j \) whenever there is an arrow from \(A_i \) to \(A_j \) in \(\vec{G} \). This approach can be used to study various kind of graphs, in particular graph neural (quantum) networks of various kinds (optical, convolutional,...) with the quantum aspects modeled in topoi. Such a development is related to deep learning, artificial intelligence, quantum computers (starting with the quantum Turing mashine). Moreover, Mathematical Game Theory is also related to Graph Theory, and some economical applications can be obtained, for instance related to the new aria of Neuroeconomics. There are also connections between graphs and the evolutionary games (with applications in the study of climate change, evolutionary biology,...).

8.15. Geometric topoi. One can use the previous tops-interpretation of the oriented graphs to build Geometric Topoi. One example is the topos from 5.33 (see 6.36, 5.also), the hypercube category \(\text{SET}_n \). We can also define a hypertetrahedron category \(\text{TET}_n \). The general rule consists in considering oriented tetrahedra \(A_1A_2A_3A_4 \) (if one speaks about the 3D tetrahedron), as in the next figure:
We denote now by \overrightarrow{T} the oriented graph given by the previous tetrahedron, and by $n_{\overrightarrow{T}}$ the discrete category n at which we added the additional morphisms $2 \to 1, 3 \to 1, 4 \to 1, 3 \to 2, 4 \to 2, 4 \to 3$. Then the previous tetrahedron can be recognized in the topos $\text{SET}^n_{\overrightarrow{T}}$ or, alternatively, in the topos whose objects are the quadruplets $\{(A_1, A_2, A_3, A_4) | A_1, A_2, A_3, A_4 \text{ sets, with } A_1 \subset A_2, A_1 \subset A_3, A_1 \subset A_4, A_2 \subset A_3, A_2 \subset A_4, A_3 \subset A_4\}$ and having as morphisms quadruplets of functions, as in 6.36, 5. In such a way, one can represents in topoi any polyhedron from \mathbb{R}^3 and, in fact, any polytope from $\mathbb{R}^n, n \geq 3$.

8.16. Gosset polytope. An important polytope in Emergent Quantum Mechanics (where the consciousness become part of Physics) is the Gosset polytope (see the final part of section 4.). It is a polytope $P \subset \mathbb{R}^8$ having 240 vertices, with coordinates $(\pm 2, \pm 2, 0, 0, 0, 0, 0, 0)$, with any combination of signs and the 2’s on any two positions (112 vertices) and $(\pm 1, \pm 1, \pm 1, \pm 1, \pm 1, \pm 1, \pm 1)$, by taking an even number of minus signs (128 more vertices). The vertices of the analogue of the Gosset polytope in \mathbb{R}^3 has the coordinates $(\pm 2, \pm 2, 0)$, $(\pm 2, 0, \pm 2)$, $(0, \pm 2, \pm 2)$ (12 vertices), and $(-1, 1, 1), (1, -1, 1), (1, 1, -1), (-1, -1, -1)$ so, this polyhedron has 16 vertices. They form 3 squares of radious 4, with the centers in the center of the axes of coordinates and sitting in the planes xOy, yOz, zOx respectively (O is the center of the axes), and having the edges parallel with the axes of coordinates, and a regular tetrahedron. The 12 vertices of the three squares are the middle of the edges of a cube having edges of length 4, the center in O, and the faces parallel with the planes of coordinates. So, this polyhedron is determined by a cube and a (regular) tetrahedrun. It can be represented as a topos using the remarks from 8.15 and 6.36, 5., first example. But even the Gosset polytope from \mathbb{R}^8 can be represented in such a way once we give orientations to its edges. However, the group of symmetries of the Gosset polytope is a group which can be found in the structure of the (-2) curves from a degenerate del Pezzo surface of degree d. However, we will deal with this subject in forthcoming paper, based on [P1], [P2].

9. The Yang-Baxter equations

In Part II of this paper (Artificial Intelligence) we will present in more detail the connections between DNA, Quantum Computers and the sequence knots, braid goups and Yang-Baxter equations (YBE). Here we begin with an introduction to the Yang-Baxter equation. After that we will present related results and applications of this equation.

Let V be a vector space over k. Let $I = I_V : V \to V$ be the identity map of the space V.
We denote by $\tau : V \otimes V \rightarrow V \otimes V$ the twist map defined by $\tau(v \otimes w) = w \otimes v$.

Now, we will give the main notations for introducing the Yang-Baxter equation.

For $R : V \otimes V \rightarrow V \otimes V$ a k-linear map, let $R^{12} = R \otimes I, \ R^{23} = I \otimes R : V \otimes V \otimes V \rightarrow V \otimes V \otimes V$.

In a similar manner, we denote by R^{13} a linear map acting on the first and third component of $V \otimes V \otimes V$.

It turns out that $R^{13} = (I \otimes \tau)(R \otimes I)(I \otimes \tau)$.

Definition 9.1 A Yang-Baxter operator is k-linear map $R : V \otimes V \rightarrow V \otimes V$, which satisfies the braid condition (the Yang-Baxter equation):

$$R^{12} \circ R^{23} \circ R^{12} = R^{23} \circ R^{12} \circ R^{23}. \quad (1)$$

We also require that the map R is invertible.

Remark 9.2 Some examples of Yang-Baxter operators are the following: $R = \tau$ (i.e., $R(a \otimes b) = b \otimes a$), and $R = I \otimes I$ (i.e., $R(a \otimes b) = a \otimes b$).

Remark 9.3 An important observation is that if R satisfies (1) then both $R \circ \tau$ and $\tau \circ R$ satisfy the QYBE (the quantum Yang-Baxter equation):

$$R^{12} \circ R^{13} \circ R^{23} = R^{23} \circ R^{13} \circ R^{12}. \quad (2)$$

Remark 9.4 The equations (1) and (2) are equivalent.

The Yang-Baxter equation is an important tool for the theory of quantum groups, knot theory, the theory of universal quantum gates and the theory of quantum computers (see [1,14,15,17–19]).

Remark 9.5 There is a similar terminology for the set-theoretical Yang-Baxter equation. In this case V is replaced by a set X and the tensor product by the Cartesian product. We will explain this definition in the next examples below.

Remark 9.6 Let X be a set containing three logical sentences p, q, r (i.e., p, q, $r \in X$). We can choose X as rich as we wish for the moment. Later, we will try to find the smallest X which fits for our theory.

Let $R : X \times X \rightarrow X \times X$, be defined by $R(p, q) = (p \lor q, p \land q)$.

It follows that

$$(R \times I) \circ (I \times R) \circ (R \times I) = (I \times R) \circ (R \times I) \circ (I \times R). \quad (3)$$

One way to check that (3) holds is to make a table with values for p, q, r.

Remark 9.7 Another interesting solution to the set-theoretical Yang-Baxter equation is the following.

Let $R : X \times X \rightarrow X \times X$, be defined by $R(p, q) = (p \rightarrow q, p)$.

Again, one way to check the above statement is to make a table with values for p, q, r.
Let us denote \(R(p, q) = (p_1, q_2) \). The set-theoretical Yang-Baxter equation can be expressed as \((p_{101}, q_{212}, r_{020}) = (p_{010}, q_{121}, r_{212})\).

It is now the moment to discuss about \(X \).

What can be said about \(X \) in general (what is the smallest \(X \) for which \(R \) is well-defined)? One could consider a set \(X \) containing more than three logical sentences. What is the interpretation of the set-theoretical Yang-Baxter solutions in this case?

For example, if \(B \) is a Boolean topos, the pairs from 9.7 gives solutions for the YBE (1) from the global sections of subobjects classifier \(\Omega \) (i.e. \(\text{Hom}_B(1, \Omega) \)) of \(B \), while the pairs from 9.6 gives solutions from the global sections of subobjects classifier \(\Omega \) (i.e. \(\text{Hom}_E(1, \Omega) \)) for both equations YBE and QYBE ((1) and (2)) and for any topos \(E \).

We can go a step further and consider an algebra of type (2,2), \((A; *, \circ)\), and call the operations \(*\) and \(\circ\) YB conjugated if \(R(a, b) = (a * b, a \circ b) \) satisfies the set-theoretical Yang-Baxter equation.

We propose the study of algebras with two operations of type (2,2) which are YB conjugated. (Distributive lattices, groups and self-distributive structures fall into this category.)

Remark 9.8 We now consider other equations for a \(k \)-linear map \(R : V \otimes V \to V \otimes V \):

\[
R^{12} \circ R^{23} = R^{13} \circ R^{12} = R^{23} \circ R^{13} \quad (4)
\]

\[
R^{23} \circ R^{12} = R^{12} \circ R^{13} \quad (5)
\]

\[
R^{12} \circ R^{13} \circ R^{12} \circ R^{23} = R^{13} \circ R^{23} \circ R^{13} \circ R^{12} \quad (6)
\]

\[
(R^{12} \circ R^{23} \circ R^{12} - R^{23} \circ R^{12} \circ R^{23}) \circ (R^{12} \circ R^{13} \circ R^{23} - R^{23} \circ R^{13} \circ R^{12}) = 0 \quad (7)
\]

Theorem 9.9 If a \(k \)-linear map \(R : V \otimes V \to V \otimes V \) verifies (4) and (5) then \(R \) is a common solution for (1) and (2).

If a \(k \)-linear map \(R : V \otimes V \to V \otimes V \) verifies (1) and (2) then \(R \) is a solution for (6).

If a \(k \)-linear map \(R : V \otimes V \to V \otimes V \) verifies (1) or (2) then \(R \) is a solution for (7).

Proof. We only prove the first claim: \(R^{23} \circ R^{12} \circ R^{23} = R^{23} \circ R^{13} \circ R^{12} = R^{12} \circ R^{23} \circ R^{12} \)

\(R^{23} \circ R^{13} \circ R^{12} = R^{23} \circ R^{12} \circ R^{23} = R^{12} \circ R^{13} \circ R^{23} \)

The other claims follow in a similar manner. \(\circ \)

We will write the above results in the following manner:

(4) \(\land \) (5) \(\to \) (1) \(\land \) (2);

(1) \(\land \) (2) \(\to \) (6);

(1) \(\lor \) (2) \(\to \) (7).

As a direct application of this theorem, one can check which of the functions presented in this section are common solutions for the braid condition and the quantum Yang-Baxter equation.

We are now preparing the framework for the next theorem.
For an equation \(p \) (for example, \(R^{12} \circ R^{23} \cdots = 0 \)), we can associate \(\neg p \) (for example, \(R^{12} \circ R^{23} \cdots \neq 0 \)).

Now we can consider the equation \(\top \) the equation always true \((p \lor \neg p)\) and by \(\bot = \neg(\top) \) the equation with no solutions.

We now can state a theorem with applications in the understanding the theory of the Yang-Baxter equation.

Theorem 9.10 The set of equations of operators of type \(R : V \otimes V \to V \otimes V \) and \(R^{ij} : V \otimes V \otimes V \to V \otimes V \otimes V \), with \(i, j \in \{1, 2, 3\} \), has a natural distributive latice structure. In this lattice, one can define a partial order, a minimum \(\bot \), a maximum \(\top \), and operations \(\neg \) and \(\to \).

10. Conclusions and Further Considerations

Concluding, in this paper we get three kinds of contributions. One is related to pure mathematics by constructing non-standard analysis in the SET-type topoi, that is the topoi of the form \(\text{SET}^n \sigma \) (this follows from 5.34, 5. and 8.11, 3 and 7.46, *3 and 8.14). Another one is the interpretation of these mathematical theories in terms of *infons* and *receptons*, see section 8. And another one consists in contributions to the theory of Yang-Baxter equations and their connections with topoi. Moreover, the exemple 5.20, 6. is proved for the first time (although it was mentioned, without proof in [16]).

As we pointed out several times, we continue our work in part II. Artificial Intelligence. We will give the general construction for receptons, and we will start to study the Global Brain, consisting of all the human brains and the technologies (artificial intelligence for instance). We will try to develop a topoi-theoretic approach to the study of the neural networks and to the study of the Turing machines. As for the brain, both individual and global, there exists some partial mathematical/physical models, the Ising model (based on statistical Physics), and the Quantum model, based on Quantum Physics (Penrose - Hameroff). In both models the methods of topoi theory could play an important role, both models being related to the notion of probability, which could be replaced by truth values in topoi (in an intuitionistic context).

On the other hand, it is necessary to deal with infinite graphs also. For example R. Aumann introduced the notion of continuous economies ([Au]), meaning that the number of players is in bijection with the set of real numbers. So, thinking as in 8.14, we arrive to graphs with a continuum of nodes. In order to model such graphs, which allows us to use other kind of mathematical methods which are defined over the set of real numbers - such as differential, integral and variational calculus, differential and partial order differential equations, etc. - avoiding in such a way problems from discrete mathematics related to the complexity of the computations, we need to study general topos of the form \(\text{ENS}^{\text{op}} \), seen as receptons, for arbitrary categories, not for finite categories only, as we did in section 8. Another reason for which Aumann introduced the continuous economies was generated by the fact that the brain of the employee from Washington (this is Aumann’s example) perceive the very many small economic entities as a continuum; they produce 1/3 of the economy of USA, so they cannot be neglected. On the other hand, Aumann itself gave a counter-example to this approach in the same paper ([3]), producing an example of a theorem true for continuous economies, but false for any finite economy, doesn’t matter how big or how small they are (in the finite case an additional hypothesis is necessary). So, the theory of continous economics (and, by similarity, of continous mechanics) does not always give
theorems applicable in decisions. We need to test somehow the applicability, and this can be done using classic non-standard analysis. Precisely, let’s consider a theorem, true over an R of players. If we transfer it to *R it remains true (T=transfer, see 7.25). If its restriction to *N (hypermatic natural numbers) remains true for all hiperfinite number of players, smaller than some fixed hyperfinite natural number, then the theorem holds for sufficiently large (finite) economies, by 7.37, 2) (Underflow), otherwise don’t (Overflow). Hence, in the first case only, the theorem can be used for economical decisions. We call this the hyperfinite test. If we interpret as before the continuous economies in topoi of the form SET^{cop}, we need a kind of hyperfinite test in these topoi, so we need non-standard enlargements in SET^{cop}.

On the other hand, although it seems that we do not need a non-standard enlargement for Artificial Intelligence, it is part of the Global Brain, which has, as the human brain has, consciousness and subconsciousness, so, as in the case of the human brain, we need again non-standard extensions in exponential-type topoi. We will consider such kind of topics in Part II.

Acknowledgement. The authors of this paper had fruitful scientific discussions with Prof. Leon Zăgrean (Faculty of General Medicine, Bucharest) for neuroscience and Drd. Ileana Ruxandra Badea (Faculty of Economic Cybernetics, Statistics, and Informatics) for artificial intelligence, although the two domains cannot be separated in this work; they played an important role in both parts of this work.

References