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Instituto de Matemáticas, Facultade de Matemáticas, 
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Abstract

This paper deals with the study of the existence and non existence of
solutions of a three parameter’s family of nonlinear fractional differential
equation with mixed-integral boundary value conditions. We consider the
α-Riemann-Liouville fractional derivative, with α ∈ (1, 2]. In order to
deduce the existence and non existence results, we first study the linear
equation, by deducing the main properties of the related Green’s functions.
We obtain the optimal set of parameters where the Green’s function has
constant sign.
After that, by means of the index theory, the nonlinear boundary value
problem is studied. Some examples, at the end of the paper, are showed
to illustrate the applicability of the obtained results.
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1 Introduction
During the last decade, Fractional Calculus has been applied to almost ev-
ery field of science, engineering, and mathematics. Some of the areas where
Fractional Calculus has made a profound impact include viscoelasticity and
rheology, electrical, engineering, electrochemistry, biology, physics, and control
theory. For more details on this theory and its applications, [4, 13, 20, 23, 25].

Integral boundary conditions have various applications in applied fields such
as chemical engineering, thermoelasticity, population dynamics. For a detailed
description of the integral boundary conditions, we refer the reader to [3].
The existence of solutions of nonlinear boundary value problem coupled with
integral boundary conditions in ordinary and fractional cases has been widely
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studied by many authors, see for example [6, 12, 16, 24, 27, 28] and the references
therein.

In 2009, Ahmad and Nieto [2] obtained some existence results for the fol-
lowing nonlinear fractional integrodifferential equations with integral boundary
conditions:

CDqx(t) = f(t, x(t), (χx)(t)), 0 < t < 1, 1 < q ≤ 2,
αx(0)− βx′(0) =

∫ 1
0 q1(x(s))ds,

αx(1)− βx′(1) =
∫ 1

0 q2(x(s))ds,

where f : [0, 1]×X ×X −→ X, for γ : [0, 1]× [0, 1] −→ [0,∞),

(χx)(t) =
∫ t

0
γ(t, s)x(s)ds,

q1, q2 : X −→ X α ≥ 0, β ≥ 0 are real numbers and X is a Banach space, by
employing to Guo-Krasnoselskii fixed point theorem and contraction mapping
principle.

In [5], it is studied the following nonlinear problem involving nonlinear inte-
gral conditions:

CDαy(t) = f(t, y(t)), t ∈ [0, T ], 1 < α ≤ 2,
y(0)− y′(0) =

∫ T
0 g(s, y(s)ds,

y(T )− y′(T ) =
∫ T

0 h(s, y(s))ds.

Here, f, g and h : [0, T ] × E −→ E are given functions satisfying adequate
assumptions and E is a Banach space. By means of the technique associated
with measures of non compactness and the fixed point theorem of Monch type,
it is proved the existence of solutions of the problem.

In [10], it is considered the following nonlinear fractional differential equa-
tions with boundary value conditions{

Dαu(t) + g(t)f(t, u(t)) = 0, 0 < t < 1,
u(0) = 0, u(1) =

∫ 1
0 h(t)u(t)dt,

where 1 < α ≤ 2, g ∈ C((0, 1), [0,∞)) and g may be singular at t = 0 or/and
at t = 1, h ∈ L1[0, 1] and f ∈ C[0, 1] × [0, 1], [0,∞)). The authors derive the
Green’s function associated to the above problem and sharp estimates on it
are established. Thus, by using fixed point theorem in cones, they proved some
results on the existence of positive solutions.

In this paper, we will consider the following nonlinear fractional differential
equation with non homogeneous integral boundary conditions:{

Dαu(t)− λu(t) + f(t, t2−αu(t)) = 0, t ∈ I := [0, 1],
lim
t→0+

t2−αu(t) = µ
∫ 1

0 u(s)ds, u′(1) = η
∫ 1

0 u(s)ds. (1)

Here λ ∈ R, µ, η ≥ 0, Dα, 1 < α ≤ 2, is the Riemann-Liouville fractional
derivative and f : [0, 1]× [0,∞)→ [0,∞) is a continuous function.

We look for solutions u : I → R such that function t2−α u(t) ∈ C1(I). Notice
that, as a direct consequence, we deduce that, in particular, u ∈ C1((0, 1]).
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Moreover, it may be discontinuous at t = 0.
We are interested in to prove the existence and non existence of solutions of the
treated problem. To this end, we will use the classical index theory [1, 11, 29],
in the line of the papers [9, 14, 15, 26], where it is used for Ordinary Differential
Equations.
The main tool used consists on the construction of the Green’s function related
to the linear problem{

Dαu(t)− λu(t) + y(t) = 0, t ∈ I,
lim
t→0+

t2−αu(t) = µ
∫ 1

0 u(s)ds, u′(1) = η
∫ 1

0 u(s)ds. (2)

Such construction continues the author’s work [7], where the homogeneous
Mixed boundary conditions µ = η = 0 are considered. So, we use the qual-
itative properties obtained on those reference and study the parameter relation-
ship between α, λ, µ and η that ensure the constant sign of the Green’s function
related to the linear problem 2. We follow similar arguments to the ones used
on [8, 16, 18, 19, 21].

The paper is scheduled as follows: after some introductory results, we study,
in Section 3, the related linear equation and deduce suitable properties on the
qualitative behavior and constant sign of the related Green’s function. Next
section is devoted to ensure the existence and nonexistence of solutions of the
considered nonlinear boundary value problem. The results follow from index
theory. Finally, in last section, some examples are given to point out the appli-
cability of the obtained results.

2 Preliminary Results
In this section, we introduce some notations and definitions that which we need
in later.
Definition 1 ([17]) The Riemann-Liouville fractional integral of order α >
0 for a measurable function f : (0,+∞)→ R is defined as

Iαf(t) = 1
Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is point-
wise defined on (0,+∞).
Definition 2 ([17]) The Riemann-Liouville fractional derivative of order α >
0 for a measurable function f : (0,+∞)→ R is defined as

Dαf(t) = 1
Γ(n− α) ( d

dt
)n
∫ t

0
(t− s)n−α−1f(s)ds = ( d

dt
)nIn−αf(t),

provided that the right-hand side is pointwise defined on (0,+∞). Here n =
[α] + 1, where [α] denotes the integer part of the real number α.
Let C(I) be the Banach space of all continuous functions defined on I endowed
with the norm ‖f‖ =: max{|f(t)| : t ∈ I}.
Define for t ∈ I, fγ(t) = tγf(t). Let Cγ(I), γ ≥ 0 be the space of all functions
f such that fγ ∈ C(I). It is well known that Cγ(I) is a Banach space endowed
with the norm

‖f‖γ =: max{tγ |f(t)| : t ∈ I}.
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3 Linear Problem
This section is devoted to the study of the linear problem (2). It is not difficult
to verify that, provided Eα,α−1(λ) 6= 0,

v1(t) = Γ(α− 1)
(
tα−2Eα,α−1(λtα)− Eα,α−2(λ)

Eα,α−1(λ) t
α−1Eα,α(λtα)

)
(3)

is the unique solution of the problem{
Dαv1(t)− λv1(t) = 0, t ∈ I,
lim
t→0+

t2−αv1(t) = 1, v′1(1) = 0, (4)

and
v2(t) = tα−1Eα,α(λtα)

Eα,α−1(λ) . (5)

the unique one of {
Dαv2(t)− λv2(t) = 0, t ∈ I,
lim
t→0+

t2−αv2(t) = 0, v′2(1) = 1. (6)

Moreover, as it is showed in [7, Theorem 6], if Eα,α−1(λ) 6= 0, the unique solution
of problem {

Dαv(t)− λv(t) + y(t) = 0, t ∈ I,
lim
t→0+

t2−αv(t) = v′(1) = 0,

follows the expression

v(t) =
∫ 1

0
G1(t, s)y(s)ds,

with

G1(t, s) =


tα−1Eα,α(λtα)Eα,α−1(λ(1−s)α)

(1−s)2−αEα,α−1(λ) − (t− s)α−1Eα,α(λ(t− s)α), 0 ≤ s ≤ t ≤ 1,
tα−1Eα,α(λtα)Eα,α−1(λ(1−s)α)

(1−s)2−αEα,α−1(λ) , 0 ≤ t < s < 1.
(7)

In order to characterize the uniqueness of solutions of Problem (2), we denote

θ =
∫ 1

0
v1(t)dt and σ =

∫ 1

0
v2(t)dt.

Theorem 3 Let y ∈ C(0, 1] ∩ L∞(0, 1), 1 < α ≤ 2, µ, η ≥ 0 and λ ∈ R be
such that Eα,α−1(λ) 6= 0 and 1− µθ − ησ 6= 0. Then problem (2) has a unique
solution u ∈ C1

2−α(I), given by

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where
G(t, s) = G1(t, s) + (µv1(t) + ηv2(t))

(1− µθ − ησ)

(∫ 1

0
G1(r, s)dr

)
, (8)

with G1, v1, v2 given in (3), (5) and (8) respectively.
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Table 1: Some values of θ and σ for 1 < α ≤ 2.
α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
λ -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
θ 12.647 5.62054 2.83501 1.47577 0.657725 -0.0336574 -1.21724 54.6033 2.13745 1.20846
σ -4.52049 -1.94567 -0.99204 -0.688973 -0.638201 -0.777128 -1.40827 38.7227 1.22996 0.630732

- 2 - 1 1 2 3 4 5

- 10

- 5

5

10

15

20

Figure 1: Graph of θ for α = 1.1 (blue) and α = 1.5 (orange)

Proof. Arguing in a similar way as in [7, Theorem 6], we deduce that

u(t) =
∫ 1

0
G1(t, s)y(s)ds+ µ

(∫ 1

0
u(s)ds

)
v1(t) + η

(∫ 1

0
u(s)ds

)
v2(t). (9)

Let us denote
∫ 1

0 u(s)ds = A. Then, from the previous equality, we deduce that

A =
∫ 1

0
u(t)dt =

∫ 1

0

(∫ 1

0
G1(t, s)y(s)ds

)
dt+A(µθ + ησ),

that is, since 1− µθ − ησ 6= 0,

A =

∫ 1
0

(∫ 1
0 G1(t, s)y(s)ds

)
dt

(1− µθ − ησ) .

Replacing A in (9), we obtain the following expression of the function u

u(t) =
∫ 1

0
G1(t, s)y(s)ds+

∫ 1
0

(∫ 1
0 G1(t, s)y(s)ds

)
dt

(1− µθ − ησ) (µv1(t) + ηv2(t)). (10)
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Figure 2: Graph of σ for α = 1.1 (blue)and α = 1.5 (orange)

According to Fubini’s Theorem, we have

u(t) =
∫ 1

0

(
G1(t, s) + µv1(t) + ηv2(t)

(1− µθ − ησ)

∫ 1

0
G1(t, s)dt

)
y(s)ds

=
∫ 1

0
G(t, s)y(s)ds,

and the result is concluded.

In our approach, we need the following properties of G1(t, s) proved in [7, Lem-
mas 8, 9].

Lemma 4 Let G1 be the Green’s function given in (7) and λ∗1 be the first neg-
ative zero of Eα,α−1(λ) = 0. Then for 1 < α ≤ 2, it is satisfied that

G1(t, s) > 0 for all t, s ∈ (0, 1) if and only if λ > λ∗1.

Lemma 5 Let G1 be the Green’s function given in (7), 1 < α ≤ 2 and λ > λ∗1.
Then there exists a positive constant M and a continuous function m such that
m(t) > 0 on (0, 1] and m(0) = 0, for which the following inequalities are fulfilled:

m(t) ≤ t2−αG1(t, s)
s(1− s)α−2 ≤M, for all t, s ∈ (0, 1). (11)

Next, we prove the following properties for the Green’s function G(t, s). To
this end, in the table 1, by means of numerical approach, we give some values
of θ and σ for 1 < α ≤ 2 for which we ensure that the Green’s function G(t, s)
has a constant sign.
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Lemma 6 Let G be the Green’s function related to problem (2) and λ∗1 be the
first negative zero of Eα,α−1(λ) = 0. Then for (1−µθ−ησ) > 0 and 1 < α ≤ 2,
the following properties hold:

1. G is a continuous function on (0, 1]× [0, 1).

2. If λ > λ∗1 then G(t, s) > 0 for all t, s ∈ (0, 1)

3. Consider the function m(t) and the positive contant M , introduced in
Lemma 5. Then the following inequality holds:

m(t) ≤ t2−αG(t, s)
s(1− s)α−2 ≤M

′, for all t, s ∈ (0, 1), (12)

with
M ′ = M

(
1 + L

(1− µθ − ησ)(α− 1)

)
and

L = µ ‖v1‖2−α + η ‖v2‖2−α.

Proof.

1. It is obvious from the continuity of G1, v1 and v2.

2. From Lemma 4, G1(t, s) > 0 for all t, s ∈ (0, 1). Moreover, from [7, Lemma
18], we have that v1 and v2 are positive on (0, 1]. And so, Property 2 holds
immediately from expression (8).

3. From Lemma 5 and for t ∈ (0, 1] and s ∈ (0, 1), since (1 − µθ − ησ) > 0,
we have

t2−αG(t, s) = t2−αG1(t, s) + t2−α
(µv1(t) + ηv2(t))

(1− µθ − ησ)

(∫ 1

0
G1(t, s)dt

)
≥ t2−αG1(t, s)
≥ s(1− s)α−2m(t).

Now, using again Lemma 5, from equation (8) we obtain

t2−αG(t, s) ≤ s(1− s)α−2M + L

(1− µθ − ησ)s(1− s)
α−2M

∫ 1

0
rα−2dr

= s(1− s)α−2M

(
1 + L

(1− µθ − ησ)(α− 1)

)
.

4 Nonlinear Problem
4.1 Existence of Solutions
This section is concerned with the existence of solutions of the nonlinear frac-
tional differential equation with non homogeneous integral boundary conditions
(1). To this end, we will aply the classical index theory.

7
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Let K be a cone in a Banach space X. If Ω is a bounded open subset of
K, we denote by Ω and ∂Ω the closure and the boundary relative to K. When
D is an open bounded subset of X we write DK = D∩K, an open subset of K.
The following result is well-known in fixed index theory for completely contin-
uous operators T (i.e. continuous and T (S) compact for each bounded subset
S ⊂ K). See for example [1, 11, ?] for further information.

Lemma 7 Let D be an open bounded set with DK 6= ∅ and DK 6= K. Assume
that T : DK → K is a completely continuous operator such that x 6= Tx for
x ∈ ∂DK . Then the fixed point index iK(T,DK) has the following properties.

(1) If there exists e ∈ K \ {0} such that x 6= Tx+ µe for all x ∈ ∂DK and all
µ > 0, then iK(T,DK) = 0.

(2) If γx 6= Tx for all x ∈ ∂DK and all γ ≥ 1, then iK(T,DK) = 1.

(3) Let D1 be open in X such that D1 ⊂ DK . Then

iK(T,DK) = iK(T,D1) + iK(T,DK\D1).

(4) If iK(T,DK) 6= 0 then there exists u ∈ DK such that u = Tu.

We assume the following regularity for the nonlinear part of the equation:

(H1) f : [0, 1]× [0,∞) −→ [0,∞) is a continuous function.

Next, we define the operator T : C2−α[0, 1]→ C2−α[0, 1] by

Tu(t) =
∫ 1

0
G(t, s)f(s, s2−αu(s))ds, 0 < t ≤ 1, (13)

where G is given by expression (8).

Now, fix c1 ∈ (0, 1), denote m0 = min
t∈[c1,1]

m(t) > 0 and c = m0/M
′, and de-

fine the following cone

K = {u ∈ C2−α(I) : u ≥ 0 on (0, 1], min
t∈[c1,1]

{t2−αu(t)} ≥ c‖u‖2−α}. (14)

In order to use the properties showed in Theorem 7, it is not difficult to verify
that T is a completely continuous operator on K such that T (K) ⊂ K (see [7,
Lemma 12] for details).

To prove the existence of solutions of problem (1), we need to prove that
iK(T,DK) = 0 for an open set DK ⊂ K. Therefore, we construct a rela-
tively open set DK = Ωρ for which Ωρ 6= Ks for each s > 0 and show that
iK(T,Ωρ) = 0. This allows f to satisfy weaker conditions than those used in
[7].

Definition 8 Let us define the following sets for every ρ > 0:

Kρ = {u ∈ K : ‖u‖2−α < ρ},

and
Ωρ = {u ∈ K : t2−αu(t) < ρ for all t ∈ [c1, 1]}.

8
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It is clear that
Kρ ⊂ Ωρ ⊂ K ρ

c
,

and, in particular, both Kρ and Ωρ are open and bounded sets of C2−α(I) for
all ρ > 0.

In the two following lemmas we give some sufficient conditions to ensure that,
for a suitable ρ > 0, the index is either 1 or 0.

Lemma 9 Let

0 < H =
(

max
0≤t≤1

{
∫ 1

0 t
2−αG(t, s)ds}

)−1
∈ R

and
fρ := max{f(t, u)

ρ
; 0 ≤ t ≤ 1, 0 ≤ u ≤ ρ}.

If there exists ρ > 0 such that fρ < H, then iK(T,Kρ) = 1.

Proof. To apply Lemma 7 (2), we will show that Tu 6= γu for all u ∈ ∂Kρ and
every γ ≥ 1.

Suppose, on the contrary, that there exists u ∈ ∂Kρ and γ ≥ 1 such that

γt2−αu(t) = t2−α
∫ 1

0
G(t, s)f(s, s2−αu(s))ds.

Taking the maximum for t ∈ I, we obtain

γρ = γ‖u‖2−α = max
t∈I
{t2−α

∫ 1

0
G(t, s)f(s, s2−αu(s))ds}

≤ ρfρ max
t∈I
{t2−α

∫ 1

0
G(t, s)ds}

= ρ
fρ

H
< ρ,

which contradicts the fact that γ ≥ 1. Therefore, the result is proved.

Lemma 10 Let

m1 =
(

min
c1≤t≤1

{
∫ 1
c1
t2−αG(t, s)ds}

)−1

and
f1
ρ := min{f(t, u)

ρ
; c1 ≤ t ≤ 1, 0 ≤ u ≤ ρ

c
}.

If there exists ρ > 0 such that f1
ρ > m1, then iK(T,Ωρ) = 0.

Proof. We will prove that there exists e ∈ K \ {0} such that u 6= Tu + γe for
all x ∈ ∂Ωρ and all γ > 0.

Let us take e(t) = tα−2+r in I, with r ∈ (0, 1) such that cr1 > m0/M
′. It

is clear that e ∈ K\{0}.

9
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Suppose, on the contrary, that there exist u ∈ ∂Ωρ and γ > 0 such that
u = Tu+ γe. Then, for all t ∈ [c1, 1], the following inequalities hold:

t2−αu(t) = t2−α
(∫ 1

0
G(t, s)f(s, s2−αu(s))ds+ γtα−2+r

)
≥

∫ 1

0
t2−αG(t, s)f(s, s2−αu(s))ds

≥
∫ 1

c1

t2−αG(t, s)f(s, s2−αu(s))ds

Now, since

ρ ≥ s2−α u(s) ≥ m0

M ′
‖u‖2−α = c ‖u‖2−α, for all s ∈ [c1, 1],

we have that previous expression is bigger than or equals to

ρf1
ρ

∫ 1

c1

t2−αG(t, s)ds > ρ
f1
ρ

m1
> ρ

and we arrive at a contradiction.
Thus, from Lemma 7 (1), we deduce that iK(T,Ωρ) = 0.

The above results allows us to give the following new result on existence of
solutions for problem (1).

Theorem 11 Let H and m1 be as in Lemmas 9 and 10 and 0 < ρ1 < cρ2.
Suppose that fρ2 < H and f1

ρ1
> m1. Then Problem (1) has at least one solution

u such that ‖u‖2−α ≤ ρ2 and there is t0 ∈ [c1, 1] for which t2−α0 u(t0) ≥ ρ1.

Proof. As we have proved along this section, the solutions of Problem (1) co-
incide with the fixed points of operator T .

Of course, if T has a fixed point u ∈ K, such that ‖u‖2−α = ρ2, we have
that Problem (1) has a solution satisfying such property. Moreover, we have,
for any t ∈ I,

t2−αu(t) ≥
∫ 1

c1

t2−αG(t, s)f(s, s2−αu(s))ds.

So, if t2−αu(t) < ρ1 for all t ∈ [c1, 1], we arrive at a contradiction as in the proof
of Lemma 10.

So, suppose that u 6= Tu for all u ∈ ∂Kρ2 . By Lemmas 9 and 10, it is
fulfilled that iK(T,Kρ2) = 1 and iK(T,Ωρ1) = 0. In addition, since ρ1 < cρ2,
we have that Ωρ1 ⊂ K ρ1

c
⊂ Kρ2 . Therefore, from Lemma 7 (3), we have that

iK(T,Kρ2 \ Ωρ1) = iK(T,Kρ2)− iK(T,Ωρ1) = 1,

and, from Lemma 7, (4), we have that T has a fixed point u in Kρ2 \ Ωρ1 . As
a consequence we know that Problem (1) has at least one solution u such that
‖u‖2−α < ρ2 and there is t0 ∈ [c1, 1] for which t2−α0 u(t0) ≥ ρ1. Analogously,
we may prove the following existence result.
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Theorem 12 Let H and m1 be as in Lemmas 9 and 10 and 0 < ρ2 < cρ1.
Suppose that fρ1 < H and f1

ρ2
> m1. Then Problem (1) has at least one solution

u such that ‖u‖2−α ≤ ρ1 and there is t0 ∈ [c1, 1] for which t2−α0 u(t0) ≥ ρ2.

Proof. In this case, it is enough to take into account that Ω̄ρ2 ⊂ Kρ2/c ⊂ Kρ1

Since, in this case, if u 6= Tu in ∂Kρ1 , we have that iK(T,Kρ1) = 1 and
iK(T,Ωρ2) = 0. The proof follows from Lemma 7 (3) and (4).

4.2 Non-existence results
In this section, we give some sufficient conditions of the nonlinear part of the
equation of Problem (1) that ensure that such problem has no nontrivial and
nonnegative solution in C2−α(I).

Theorem 13 Suppose that f : I × [0,∞) → [0,∞) is a continuous function
and one of the following conditions holds

(i) f(t, u) ≤ m̃u for u ≥ 0 and t ∈ I, where 0 < m̃ < α(α−1)
M ′ .

(ii) f(t, u) ≥ M̃u for u ≥ 0 and t ∈ [c1, 1], with M̃ > m1 (m1 given in Lemma
10).

Then Problem (1) has no nontrivial and nonnegative solution in C2−α(I).

Proof.

(i) Suppose, on the contrary, that there exists u ∈ C2−α(I), u ≥ 0 on I, u
not identically zero on I, that solves (1). As we have seen, this property is
equivalent to the fact that u = Tu. As a consequence, since ‖u‖2−α > 0,
for t ∈ I, we have

0 ≤ t2−αu(t) = t2−α
∫ 1

0
G(t, s)f(s, s2−αu(s))ds

≤ M ′
∫ 1

0
s(1− s)α−2f(s, s2−αu(s))ds

≤ M ′m̃

∫ 1

0
s(1− s)α−2s2−αu(s)ds

≤ M ′m̃

α(α− 1)‖u‖2−α

< ‖u‖2−α.

Therefore, we get ‖u‖2−α < ‖u‖2−α, which is a contradiction.

(ii) In this case, it the result is false, we have that there exists u ∈ C2−α(I),
u ≥ 0 on I, with ‖u‖2−α > 0, such that u = Tu.

Then, for t ∈ [c1, 1], we have

t2−αu(t) ≥ t2−α
∫ 1

c1

G(t, s)f(s, s2−αu(s))ds

≥ M̃t2−α
∫ 1

c1

G(t, s)s2−αu(s)ds.
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Using that t2−αG(t, s) > 0 for all t, s ∈ [c1, 1] and, since s2−αu(s) is a
continuous, non negative and non trivial function on [c1, 1], we have that

min
t∈[c1,1]

{
t2−α

∫ 1

c1

G(t, s)s2−αu(s)ds
}
> 0.

In particular, previous inequalities show us that

u = min
t∈[c1,1]

{t2−αu(t)} > 0.

Moreover

u ≥ M̃ min
t∈[c1,1]

{t2−α
∫ 1

c1

G(t, s)s2−αu(s)ds} ≥ M̃u min
t∈[c1,1]

{
∫ 1

c1

t2−αG(t, s)ds} > u,

which is a contradiction.

5 Examples
In this section, we present an example where the applicability of the existence
results given in Section 4 is pointed out.

Example 14 Let us consider Problem (1) with λ∗1 < λ ≤ 0, α = 3
2 , µ = 1

12 ,
η = 1

16 , λ = − 1
2 , c1 = 1

3 .
A simple calculation yields to (1−µθ−ησ) ≈ 0.0998338 > 0 and c ≈ 0.0160729.
Let

f(t, u) = δ
√

1 + t(1 + u
3
2 ), for δ > 0.

Let ρ1, ρ2 > . Then

f1
ρ1

= min
{
f(t, u)
ρ1

: t ∈ [ 13 , 1], u ∈ [0, ρ1

c
]
}

= 2√
3ρ1

δ,

and

fρ2 = max
{
f(t, u)
ρ2

: t ∈ [0, 1], u ∈ [0, ρ2]
}

=
√

2(ρ
3
2
2 + 1)
ρ2

δ.

Moreover, it is not difficult to verify that H ≥ 0.0213044 and m1 ≤ 0.0504397.

Hence, from Theorem 11, for any ρ1, ρ2 such that ρ1 < cρ2 and
√

3ρ1

2 m1 < δ <
ρ2

√
2(1 + ρ

3
2
2 )
H

Problem (1) has at least one solution u ∈ C1/2(I), such that ‖u‖2−α ≤ ρ2 and
there is t0 ∈ [c1, 1] for which t2−α0 u(t0) ≥ ρ1.

In particular, since the minimum on the left hand side of previous inequality
is 0 and, by defining

f(x) = x

1 + x3/2
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we have that
max
x≥0
{f(x)} = f( 3

√
4) ≈ 0.529134,

we have that Problem (1) has a non negative and nontrivial solution for all

0 < δ < 0.00797113,

such that ‖u‖1/2 ≤ 3
√

4.
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