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Abstract

It is well known that the Continuous Galerkin Finite Element (CGFE) 
method is globally consistent with respect to the first law of thermody-
namics. This means that, for any mesh, all obtained discrete solutions will 
conserve total energy. One might expect, that the method is, also, globally 
consistent with respect to the second law of thermodynamics. In this paper, 
we formally study if such conjecture is true. The heat conduction equation 
is used as the physical model for this analysis. In the present study it is 
proved that the conjecture is false: at least, for standard piecewise linear 
(1D and 2D) elements, the CGFE method is not always globally consistent 
with respect to the second law of thermodynamics. In other words, some 
obtained discrete solutions can violate the global postulate of the second 
law, which asserts that total entropy can never decrease.

Keywords: finite element method; second law of thermodynamics; heat 
equation; entropy

1. Introduction

Some physical principles, originally present in a continuous model, can
get lost due to the particularities of the discretization procedure leading
to a numerical scheme. Many problems, such as, instabilities, convergence
failures or even undetected non-physical solutions can arise because of such
loss [1], [2]. Consequently, it might be critical to assess if commonly used
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discretization methods preserve fundamental physical principles. The Con-
tinuous Galerkin Finite Element (CGFE) method is of the most renowned
discretization methods, particularly, in physical applications. In this sense,
it is of interest to question if such method preserves the two fundamental
laws of thermodynamics. On this regard, it is already known that such
method is globally consistent with respect to the first law [3]. This means
that, for any mesh, all obtained CGFE solutions conserve total energy. How-
ever, nothing has been said about the global consistency of the method with
respect to the second law. By analogy, with the first law, one might expect
that the CGFE method is, also, globally consistent with the second law of
thermodynamics. In other words, one would expect that all CGFE solutions
satisfy the global statement of the second law, at all times, independently
of the mesh. However, a recently appeared paper [4] has brought attention
to the fact that some finite element discretizations can generate discrete re-
versed non-physical nodal heat-fluxes where heat, non-physically, goes from
colder to warmer nodal points. These experiments prove that some finite
element solutions violate, nodally, Clausius’s Postulate of the second law of
thermodynamics. The observations presented in [4] might be argued to be
merely qualitative since the nodes per se have not a direct meaning in a
weak/integral framework, as the one of finite elements. It is then necessary
to formally prove if the hypothesis of global consistency of CGFE discretiza-
tions with respect to the second law, is true or false. This is the purpose of
the present article. The unsteady heat equation will be used for the analysis.

The paper is organized as follows, in Section 2, the necessary thermo-
dynamic theoretical background is introduced. There, the global forms of
the first and the second law of thermodynamics are given. In Section 3, the
unsteady heat equation is introduced, with their respective initial conditions
and boundary conditions. After presenting the partial differential equation,
a thermodynamic analysis of the exact solutions is perfomed in subsection
3.2. There, it is proved that all exact solutions of the heat equation satisfy
the global statements of the first and the second law of thermodynamics.
This result is known but serves for comparison with the forthcoming analysis
of thermodynamic consistency of the discrete CGFE solutions. The CGFE
discretization method is introduced at the beginning of Section 4, and ap-
plied to the model heat equation, leading to a discretized heat equation
problem. Subsection 4.2 contains the thermodynamic analysis of the result-
ing CGFE discrete solutions with respect to the first law and the second law
of thermodynamics. In subsection 4.2.1, the global consistency of CGFE
solutions with respect to the first law is proved. This result is known but it
serves as a preliminary setup for the thermodynamic analysis with respect
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to the second law. In subsection 4.2.2, the global consistency of CGFE solu-
tions with respect to the second law is studied. After some general results,
presented as lemmmas, it is proved, by means of examples that, for standard
piecewise linear elements in 1D and 2D, the CGFE method is not globally
consistent with respect to the second law of thermodynamics. The examples
prove that the CGFE method can generate discrete solutions that violate
the condition that total entropy can never decrease in an isolated system.

Notation: Given an arbitrary field f(x, t) function of position x and time
t, the partial derivative with respect to time will be denoted as ḟ(x, t), so

ḟ(x, t) $ ∂f(x,t)
∂t . Similarly, given an arbitrary function g = g(t) of time t,

the derivative with respect to time will be denoted as ġ(t), so ġ(t) $ dg(t)
dt .

Whenever there is no risk of confusion, the explicit dependence on x and t
will be dropped, so, for example, ḟ(x, t) and ġ(t), will be simply written as
ḟ and ġ, respectively.

2. The First and the Second Laws of Thermodynamics

2.1. General Forms

The laws of thermodynamics can be seen as a set of two requirements
that physical models should fullfill in order to correctly model time evolution
of physical phenomena. Let us recall the main concepts using the modern
theory of thermodynamics of continua. In such framework, consider an fixed
material body B of uniform density ρ, ocuppying an arbitrary spatial domain
Ω. For future use, we will denote the boundary of Ω by ∂Ω and by n the
outward point unit normal to ∂Ω. Now, given an initial state at t = 0, the
physical variables evolve as function of time t in the whole body’s domain Ω.
Assume that an arbitrary mathemathical model provides to us the values of
the scalar and vector fields T (x, t), e(x, t), s(x, t) and q(x, t), which model
the main thermodynamic physical variables: temperature, especific energy,
specific entropy and the heat flux vector, respectively, ∀x ∈ Ω, ∀t ≥ 0. Let us
denote by Π, the tuple that contains the four fundamental thermodynamic
fields, ordered as indicated below:

Π = [T , e, s,q] (1)

With the above definitions, the two laws of thermodynamics can be stated
as a set of restrictions on the tuple Π. The first law imposes a restriction of
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conservation of energy, and its differential and integral forms are given by:
First Law

diff. form ρė = −∇ · q (a)
integral form

∫
V ρė dv = −

∫
∂V q · n dσ, V ⊆ Ω (b)

global form
∫

Ω ρė dv = −
∫
∂Ω q · n dσ (c)

(2)

On the other hand, the second law imposes an inequality restriction on
entropy growth (known as Clausius-Duhem inequality), and its differential
and integral forms are given by:

Second Law
diff. form ρṡ > −∇ ·

(
q
T
)

(a)
integral form

∫
V ρṡ dv > −

∫
∂V

1
T q · n dσ, V ⊆ Ω (b)

global form
∫

Ω ρṡ dv > −
∫
∂Ω

1
T q · n dσ (c)

(3)

The above formulas can be found in standard textbooks, such as, [5], [6].
Note that in equations above, we have also introduced the global forms of
the laws of thermodynamics. The global forms are particular cases of the
integral forms when volume V is chosen to be the whole volume Ω.

2.2. Global forms for Isolated Domains

In this paper, we are going to center the analysis on whether or not the
global forms are satisfied by given thermodynamic tuples Π. In particular,
we are going to explore the cases where our system (i.e. the material domain
Ω) is fully isolated from external heat. Under this situation, also known as
adiabatic condition, the following boundary condition holds:

full isolation b.c.⇒ q · n = 0, on ∂Ω (4)

Using this boundary condition, the global forms of the laws of thermody-
namics given in Eqs. (2)(d) and (3)(d) become:

Isolated Domains
First Law

global form
∫

Ω ρė dv = 0 (a)
Second Law

global form
∫

Ω ρṡ dv > 0 (b)

(5)

Then, given an arbitrary tuple Π, we will say that Π is globally consistent
with respect to the first law if it satisfies Eq. (5)(a). Similarly, Π will be
globally consistent with respect to the second law if it satisfies Eq. (5)(b).
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Note that, for isolated systems, satisfaction of the global statements of the
first and second law of thermodynamics express that total energy E(t) =∫

Ω ρe(x, t) dv must remain constant (Ė(t) = 0) and that total entropy S(t) =∫
Ω ρs(x, t) dv must not decrease (Ṡ(t) > 0), respectively. This concepts will

be used throughout the rest of the article.

2.3. Linear Heat Conducting Material

The laws of thermodynamics presented in the previous subsections are
general, nothing has been said about the particular constitutive properties of
the material occupying the domain Ω. For future use, let us consider here,
the particular case, where the body is made of a linear heat conducting
material. A linear heat conducting material is a material with the following
constitutive properties: (i) specific energy e is proporcional to temperature
and (ii) heat flux q is proportional to minus the temperature gradient. In
other words, given an arbitrary temperature field T , specific energy and
heat flux are given by the following equations:

linear heat conducting
material


e(T ) = cvT (i)
q(T ) = −κ∇T (ii)
s(T ) = cv ln(T ) . (iii)

(6)

where cv and κ are given positive constants. Note that in the constitutive
properties given in Eq. (6), we have added the expression of the entropy
function s which provides the value of specific entropy s given the value of
temperature T . Entropy is crucial to test consistency with respect to the
second law of thermodynamics. The entropy function s is determined under
the hypotheses of heat conduction in a rigid material domain. In such case,
e and s are functions of temperature only, and they must satisfy Gibb’s
relationship:

ds(T )

dT
=

1

T
de(T )

dT
(7)

Since, e(T ) = cvT , Eq. (7), leads to s(T ) = cv ln(T ), which is the function
presented in Eq. (6)(iii). In this case, the following equations are valid for
time rates: {

∂e(T )
∂t = cvṪ (a)

∂s(T )
∂t = cv

Ṫ
T (b)

(8)

Eqs. (6) provide the values of specific energy energy e, heat flux q and
specific entropy s given the temperature field T . Then, it follows that the
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thermodynamic tuple Π = [T , e, s,q] associated to any linear heat conduc-
tion material must have the following form:

Π(T ) = [T , e(T ), s(T ),q(T )] (9)

With the above formulas, we have ready the framework to analyze the ther-
modynamic consistency of exact and numerical solutions of the heat equa-
tion. This will be done in the next two following sections.

3. Thermodynamic Consistency Analysis of the Heat Equation

3.1. The Unsteady Heat Equation

Let us consider, the temperature solutions T (x, t) of the unsteady heat
equation in a domain Ω with Neuman boundary conditions, posed as the
following problem:

(P)


Find T (x, t), such that

ρcvṪ = ∇ · (κ∇T ), x ∈ Ω, t > 0; (a)
∇T · n = 0, on ∂Ω; (b)
T (x, 0) = T0(x), x ∈ Ω. (c)

(10)

From the basic existence and uniqueness theorems for PDE’s, and, under
some mild regularity conditions on the boundary of Ω and on the initial
conditions, T0(x), (P) has a unique solution T (x, t), x ∈ Ω, t > 0. So, T
exists and it is well defined. The Neuman boundary conditions correspond
to the condition that the domain is fully isolated from external heat.

3.2. Thermodynamic Consistency Analysis

Of course, it is expected that all the temperature solutions, T (x, t), of
the heat equation are globally consistent with the first and the second laws of
thermodynamics, at all times, independently, of the initial conditions T0(x)
and of the particular shape of the domain Ω. Although, this result may be
well known, for the sake of comparison with the analysis to be presented in
Section 4, we state, and explicitly prove the global consistency, below.

We make use of the thermodynamical framework presented in Section 2.
First, let us determine the thermodynamic tuple ΠP = [T , e, s,q] associated
to heat equation problem (P). In this case the temperature field T is the
temperature solution T , so we only need to determine the remaining fields:
e, q and s. The identification of these fields is straightforward by noticing
that the heat equation (10) models the temperature for the linear conduction
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material, described in Section 2.3. As a consequence, the tuple ΠP is of the
form given in Eq. (9):

ΠP = Π(T ) = [T, e(T ), s(T ),q(T )] (11)

where e, s, q are given in Eq. (6). Now, we are ready to prove the global
consistency of the exact solutions T (x, t).

3.3. Consistency Analysis with respect to the First Law

First, let us prove global consistency with respect to the first law of
thermodynamics. This is done in the following theorem

Theorem 3.1. All solutions T (x, t) of the heat equation (P) are globally
consistent with respect to the first law of thermodynamics.

Proof. Since we are dealing with a fully isolated system (due to the boundary
conditions), we need to prove that the thermodynamical tuple ΠP = Π(T )
associated to the solutions of the heat equation (P) always satisfies the
thermodynamic statement given in Eq. (5)(a):∫

Ω
ρė dv = 0 (12)

The proof goes as follow. From the expression of e given in Eq. (11), we
have: ∫

Ω
ρė dv =

∫
Ω
ρ
∂e(T )

∂t
dv =

∫
Ω
ρcvṪ dv (13)

where in the last equality we have used Eq. (8(a). Now, using that T
satisfies Eq. (10)(a), we have that:∫

Ω
ρė dv =

∫
Ω
∇ · (κ∇T ) dv (14)

Finally, using divergence theorem on the RHS of the equation above, we
have that: ∫

Ω
ρė dv =

∫
∂Ω
κ∇T · n dσ (15)

Finally, we prove the desired statement (12) by noticing that the RHS term
of Eq. (15) is zero, because of the boundary condition (10)(b).
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3.4. Consistency Analysis with respect to the Second

Let us prove that the exact solutions T are also globally consistent with
respect to the second law of thermodynamics 1. This is done in the following
theorem.

Theorem 3.2. All solutions T (x, t) of the heat equation (P) are globally
consistent with the second law of thermodynamics.

Proof. We need to prove that the thermodynamical tuple ΠP associated to
the solutions of (P) always satisfies the global statement of the second law
of thermodynamics defined in Eq. (5)(b), that is to say, we need to prove
that: ∫

Ω
ρṡ dv > 0 (16)

Proof goes as follows. From the expression of specific entropy of ΠP given
in Eq. (11), we have that∫

Ω
ρṡ dv =

∫
Ω
ρ
∂s(T )

∂t
dv =

∫
Ω
ρcv

Ṫ

T
dv (17)

where in the last equality we have used Eq. (8-(b). Now, using that T
satisfies Eq. (10)(a) in the last integral of the equation above, we get that∫

Ω
ρṡ dv =

∫
Ω

1

T
∇ · (κ∇T ) dv (18)

Using the chain rule in the integrand on the RHS of the equation above, we
obtain that:∫

Ω
ρṡ dv =

∫
Ω
∇ · ( 1

T
κ∇T ) dv +

∫
Ω

1

T 2
κ∇T · ∇T dv (19)

Noticing that the second term in the RHS of the equation is always greater-
equal than zero and using divergence theorem on the first term of the RHS,
we get that: ∫

Ω
ρṡ dv >

∫
∂Ω

1

T
κ∇T · n dσ (20)

Finally, we prove the desired statement by noticing that the RHS term of
the equation above is zero, because of the boundary condition (10)(b).

1It must be pointed out that, the diffusion problem (P) has been derived from the first
law of thermodynamics (2)(a), ρė = −∇ · q and the expressions (6) of specific energy (i)
and heat flux (ii). The second law has not been used at all. This means that satisfaction
of the second law is not self-evident and it should be checked a posteriori.
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4. Thermodynamic Consistency Analysis of CGFE Discretizations
of the Heat Equation

In the previous section, we proved that all exact solutions T (x, t) of the
heat equation (P), are globally consistent with, both, the first and the second
law of thermodynamics. In this section, we will obtain discrete solutions
T h(x, t) of problem (P), generated with the CGFE method, and we will
check if they satisfy the same desired properties.

4.1. The CGFE Discrete Solutions of the Heat Equation (P)

Obtaining the exact solutions of continuum problems is usually a com-
plex if not impossible task. Discretization methods come in our help and
allows us to obtain accurate approximations to the original problem. This
is what occurs, for example, in the case of heat equation problem (P), de-
fined in Section 3.1. Obtaining all exact solutions T (x, t) is impossible, and
the CGFE method allows us to obtaing explicit approximated discrete so-
lutions T h(x, t), which in the limit tend to T (x, t). We describe next the
set of equations that allow us to obtain T h(x, t). The CGFE will be used
as spatial discretization method, while time t will remain unchanged 2. The
finite element technique, is based in defining a interpolated approximation,
T h(x, t), to the exact solution T (x, t). The discrete approximation is given
by the following expression:

T h(x, t) =
n∑
j=1

ϕj(x)Tj(t) (21)

where ϕj(x) denotes the nodal basis function associated to node j located
at position xj in space, n denotes the number of nodes of the mesh Mh,
and where, Tj(t) = T h(xj , t) denotes the corresponding nodal temperature
at node j. As usual, assume the mesh if made of a spatial partition of the
material domain Ω formed by m arbitrary non-overlapping elemental sub-
domains Ωe whose union cover the total domain: Ω =

⋃
e Ωe. Whenever

possible the explicit dependence on t will be dropped, so Tj(t) and Ṫj(t)
will be simply denoted by Tj and Ṫj , respectively. Also, let T denote the
column vector of nodal temperatures Tj , and let Ṫ denote the column vec-
tor of nodal temperature-rates Ṫj , at any given time t. With the above
definitions, application of the CGFE spatial discretization on the original

2The approach is usually known as semi-discretization
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diffusion problem (P) leads to the following discretized problem (Ph):

(Ph)



Find T h(x, t), where
T h(x, t) =

∑n
j=1 ϕj(x)Tj(t), (a)

Ṫ h(x, t) =
∑n

j=1 ϕj(x)Ṫj(t), (b)

with Tj(t) and Ṫj(t) found from:

MṪ = −KT , (c)
T (0), given, (initial condition) (d)

(22)

Note that time-differentiation of Eq. (22)(a) leads to the temperature rates
Ṫ h(x, t) given in Eq. (22)(b). In Eq. (22)(c), M = [Mij ] is the mass
matrix and K = [Kij ] is the diffusion matrix, respectively. Let us recall
that semidiscrete Eq. (22)(c), MṪ = −KT , is obtained using standard
finite element procedure (see [7], for example) which consists in using Eqs.
(22)(a)-(b) into the weighted weak form of the original diffusion equation
Eq. (10)(a): ∫

Ω
ϕiρcvṪ dv =

∫
Ω
ϕi∇ · (κ∇T ) dv (23)

In arriving toMṪ = −KT , it has also been used that the boundary integral,
appearing during integration by parts of the diffusive term in the weak form,
vanishes according to Eq. (10)(b). 3. This procedure leads to the following
standard expressions for the mass and difussion matrices

Mij = ρcv

∫
Ω
ϕiϕj dv (24)

Kij = κ

∫
Ω
∇ϕi · ∇ϕj dv (25)

Like problem (P), problem (Ph) is well defined and there exist a unique
temperature solution field T h(x, t) for t > 0.

For future use, the following two finite element identities are mentioned:

n∑
i

ϕi(x) = 1 (26)

n∑
i

Kij = 0 (27)

3Note that for this boundary condition, no temperature fixations are needed along the
nodes forming the body’s boundary ∂Ω.
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Eq. (26) is the partition of unity property of basis functions. The second
identity can be derived from the definition of the stiffness matrix K (Eq.
(25)) and the use of Eq. (26). Also, note that Eq. (22)(c), MṪ = −KT ,
can alternatively be written as:

Ṫ = −HT where H =M−1
K (28)

H is called the effective diffusion matrix of the system. It is worth men-
tioning that matrices M and K can be computed by assembly of elemental
matrices:

Mij =

m∑
e

M
(e)
ij , Kij =

m∑
e

K
(e)
ij , (29)

where

M
(e)
ij = ρcv

∫
Ωe

ϕiϕj dv, K
(e)
ij = κ

∫
Ωe

∇ϕi · ∇ϕj dv (30)

Then, M(e) = [M
(e)
ij ] and K(e) = [K

(e)
ij ] conform the elemental mass and the

elemental diffusion matrices, respectively.
For future use, we provide the expressions of the elemental matricesM(e)

and K(e) for piecewise linear elements in 1D and 2D cases. In the 1D case,
the ‘elements’ are segments, as the one shown in Fig. 1a, the elemental
matrices are given by

M
(e) =

ρcvhe
6

[
2 1
1 2

]
, K

(e) =
κ

he

[
1 −1
−1 1

]
(31)

where he is the length of the element. In the 2D case, the elements are
triangles (see Fig. 1b). The general expressions for M(e) ([8], pp. 473) and
K

(e) ([9], [10]) in this case are

M
(e) = ρcv

σe

12

 2 1 1
1 2 1
1 1 2

 (32)

K
(e) =

κ

2

 cot(α2) + cot(α3) − cot(α3) − cot(α2)
− cot(α3) cot(α1) + cot(α3) − cot(α1)
− cot(α2) − cot(α1) cot(α1) + cot(α2)


(33)

where σe is the triangle’s area and where αi denote the triangle’s inner angle
associate to node i.
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(a) 1D element (b) 2D triangular element

Figure 1: Linear elements in 1D and 2D

4.2. Thermodynamic Consistency Analysis

The question posed here is if the temperature solutions T h(x, t) gen-
erated by the CGFE method, and defined in problem (Ph), are globally
thermodynamically consistent. In order to answer this question, we need to
reconstruct the thermodynamic tuple ΠPh = [T , e, s,q] associated to (Ph).
The reconstruction is straightforward. The thermodynamical tuple ΠPh is
equal to ΠP except that the temperature field, is not longer the exact solu-
tion T (x, t) but its CGFE approximation T h(x, t), so:

ΠPh = Π(T h) =
[
T h, e(T h), s(T h),q(T h)

]
(34)

Now, having the corresponding tuple ΠPh = Π(T h) well defined, we can test
for global thermodynamic consistency of the CGFE solutions.

4.2.1. Consistency Analysis with respect to the First Law

Let us prove that the discrete solutions T h(x, t) are globally consistent
with respect to the first law of thermodynamics. This is done in the following
theorem.

Theorem 4.1. All discrete CGFE solutions T h(x, t) of the heat equation
(P) are globally consistent with respect to the first law of thermodynamics.

Proof. We need to prove that the termodynamical tuple ΠPh = Π(T h) pro-
duced by the solutions T h always satisfies the global statement of the first
law of thermodynamics, Eq. (5)(a). In other words, we need to prove that:∫

Ω
ρė dv = 0 (35)

12

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2020                   doi:10.20944/preprints202001.0075.v1

https://doi.org/10.20944/preprints202001.0075.v1


for ΠPh = Π(T h).
The proof goes as follows. From the expression of specific energy e of ΠPh

given in Eq. (34), we have:∫
Ω
ρė dv =

∫
Ω
ρ
∂e(T h)

∂t
dv =

∫
Ω
ρcvṪ

h dv (36)

where, for the last equality, we have used Eq. (8-(a). Now, using the
expression for Ṫ h given in Eq. (22)(b), we get that∫

Ω
ρė dv =

∑
j

(∫
Ω
ρcvϕj dv

)
Ṫj (37)

Using the partition of unity property
∑

i ϕi = 1 , we get:∫
Ω
ρė dv =

∑
i

∑
j

(∫
Ω
ρcvϕiϕjdv

)
Ṫj =

∑
i

∑
j

Mij Ṫj (38)

where in the last equality we have used the definition of mass matrix M.
Now, using Eq. (22)(c), we get that:∫

Ω
ρė dv =

∑
i

∑
j

KijTj =
∑
j

(∑
i

Kij

)
Tj (39)

Finally, we prove the desired statement, Eq. (35), by noticing that the last
term of the equations above is zero, because of the stiffness matrix property
condition (27).

Note that the above theorem is valid for all solutions T h independently of
the initial conditions and the mesh. The theorem proves that all solutions
T h conserve total energy.

4.2.2. Consistency Analysis with respect to the Second Law

Now, we address the problem of determining if the CGFE solutions are
globally consistent with respect to the second law of thermodynamics. Con-
trary of what might be conjectured we will prove that not all obtained CGFE
solutions are globally consistent with the second law of thermodynamics. In
order to prove this we shall build particular cases where the second law
statement,

∫
Ω ρṡ dv > 0, is violated. In order, to perform this demonstra-

tion, which is the main aim of this paper, we shall first present some derived
formulas that will allow us to compute the necessary expression

∫
Ω ρṡ dv

from the CGFE solutions T h(x, t). These formulas are presented in the
following lemma.
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Lemma 4.1. At any time t, the rate of change of total entropy Ṡh =
∫

Ω ρṡ dv
associated to the CGFE solutions, T h(x, t), can be computed as sum of ele-
mental contributions using the following general formula:

Ṡh(t) =

∫
Ω
ρṡ(x, t) dv =

∑
e

Ṡe(t) (40)

where:

Ṡe(t) = ρcv

∫
Ωe

∑ne

je ϕje(x)Ṫje(t)∑ne

ke ϕke(x)Tke(t)
dv (41)

where ke and je denote local indices of the basis functions ϕje that are active
in element e and where ne denote the total number of these functions, and
where, Tje and Ṫje denote the nodal temperature and nodal temperature rates
associated to those local indices, respectively.

Proof. Recall that the thermodynamic tuple ΠPh = Π(T h) associated to the
solutions T h of (Ph) is given in Eq. (34). From the expression of specific
entropy s of such equation, we have:

Ṡh =

∫
Ω
ρṡ dv =

∫
Ω
ρ
∂s(T h)

∂t
dv =

∫
Ω
ρcv

Ṫ h

T h
dv (42)

where in the last equality we have used Eq. (8-(b). Now, using the expres-
sions for T h and Ṫ h given in Eqs. (22)(a-b) in the last term of the equations
above we get that:

Ṡh(t) = ρcv

∫
Ω

Ṫ h(x, t)

T h(x, t)
dv = ρcv

∫
Ω

∑
j ϕj(x)Ṫj(t)∑
k ϕk(x)Tk(t)

dv (43)

In the equations above, we have introduced the function arguments for help-
ing the reader to understand what is being computed. We have also made
use that ρ and cv are assumed constants for simplicity. Note from Eq. (43)
that computing total entropy rate Ṡh requires the computation of a rational
function having basis functions in the numerator and denominator. It is
not possible to find an analytical expression for this integral. However, we
can procced further and make use of finite element properties to decompose
such integral as the sum of elemental entropy-rate contributions, Ṡe, along
the mesh elements Ωe. Then, performing this decomposition, Eq. (43) can
be re-written as:

Ṡh(t) =
∑
e

Ṡe(t) (44)
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where

Ṡe(t) = ρcv

∫
Ωe

Ṫ h(x, t)

T h(x, t)
dv = ρcv

∫
Ωe

∑
j ϕj(x)Ṫj(t)∑
k ϕk(x)Tk(t)

dv (45)

Then, keeping only the nodal basis functions ϕ that are active in each el-
ement ‘e’, it follows that Eq. (45) can be rewritten as Eq. (41), which
completes the proof.

Next, analytical expressions for the entropic elemental contributions Ṡe
will be obtained for the popular cases of piecewise linear basis functions in
1D and 2D, i.e., for segments and triangular elements. This formulae will
be presented in the following two lemmas.

Lemma 4.2. At any time t, the rate of change of elemental entropy Ṡe, for
piecewise linear 1D elements can be computed from the following formula:

Ṡe = ρcvhe
N
D (a)

where
if T1 6= T2 (b)

N = (T1 − T2)(Ṫ1 − Ṫ2) + (T2Ṫ1 − T1Ṫ2) log[T2/T1]
D = (T1 − T2)2

if T1 = T2 (b)

N = Ṫ1 + Ṫ2

D = 2T1

(46)

where he is the lenght of element e, and where, T1, T2 and Ṫ1, Ṫ2 are the
nodal temperatures and the nodal rates of the 1D element, at such time t, as
shown in Fig. 1a.

Proof. In the 1D case, the general formula for Ṡe, given in Eq. (41), be-
comes:

Ṡe = ρcv

∫
he

ϕ1(x)Ṫ1 + ϕ2(x)Ṫ2

ϕ1(x)T1 + ϕ2(x)T2
dx = ρcv

∫ x2

x1

ϕ1(x)Ṫ1 + ϕ2(x)Ṫ2

ϕ1(x)T1 + ϕ2(x)T2
dx (47)

where local indices associated to element e are used (see Fig. 1a). Now, the
integral along the segment [x1, x2] can be mapped into a master segment,
[0,1], of unit lenght having local coordinates u with vertices at u1 = 0 and
u2 = 1, so Eq. (47) can be re-written as:

Ṡe = ρcvhe

∫ 1

0

(1− u)Ṫ1 + uṪ2

(1− u)T1 + uT2
du (48)
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Note that the nodal functions ϕ1 and ϕ2, in local coordinates u, become
ϕ1 = 1 − u and ϕ2 = u, respectively. After analytical integration of the
RHS of Eq. (48), one obtains that Ṡe can be computed from Eq. (46). This
completes the proof.

Lemma 4.3. At any time t, the rate of change of elemental entropy Ṡe,
for piecewise linear triangular elements can be computed from the following
formula:

Ṡe = ρcv2σ
eN1Ṫ1 +N2Ṫ2 +N3Ṫ3

D
(49)

where

if T1 6= T2 6= T3 6= T1

D = 2(T1 − T2)2(T1 − T3)2(T2 − T3)2

N1 = −T1(T2 − T3)2(−2T2T3 + T1T2 + T1T3) Log[T1]+
+T 2

2 (T1 − T3)2(T2 − T3) Log[T2]− T 2
3 (T1 − T2)2(T2 − T3) Log[T3]+

+T1(T1 − T2)(T1 − T3)(T2 − T3)2

N2 = −T2(T1 − T3)2(−2T3T1 + T1T2 + T2T3) Log[T2]+
+T 2

1 (T2 − T3)2(T1 − T3) Log[T1]− T 2
2 (T1 − T2)2(T1 − T3) Log[T3]

−T2(T1 − T2)(T1 − T3)2(T2 − T3)
N3 = +T3(T1 − T2)2(2T1T2 − T1T3 − T2T3) Log[T3]+

+T 2
1 (T2 − T3)2(T1 − T2) Log[T1]− T 2

2 (T1 − T3)2(T1 − T2) Log[T2]+
+T3(T1 − T2)2(T1 − T3)(T2 − T3)

if T1 = T2 = T3

D = 6T1, N1 = 1, N2 = 1, N3 = 1
(50)

if T1 = T2 6= T3

D = 2(T1 − T3)2(T1 − T3)2

N1 = (1/2)(T1 − T3)
(
T 2

1 − 4T1T3 + 3T 2
3 + 2T 2

3 Log[T1/T3]
)

N2 = (1/2)(T1 − T3)
(
T 2

1 − 4T1T3 + 3T 2
3 + 2T 2

3 Log[T1/T3]
)

N3 = (T1 − T3)(T 2
1 − T 2

3 − 2T1T3 Log[T1/T3])
if T1 = T3 6= T2

D = 2(T1 − T2)2(T1 − T2)2

N1 = (1/2)(T1 − T2)
(
T 2

1 − 4T1T3 + 3T 2
2 − 2T 2

2 Log[T2/T1]
)

N2 = (T1 − T2)
(
T 2

1 − T 2
2 + 2T1T2 Log[T2/T1]

)
N3 = (1/2)(T1 − T2)

(
T 2

1 − 4T1T3 + 3T 2
2 − 2T 2

2 Log[T2/T1]
)

if T1 6= T2 = T3

D = 2(T1 − T2)2(T1 − T2)2

N1 = (T1 − T2)
(
T 2

1 − T 2
2 − 2T1T2 Log[T1/T2]

)
N2 = (1/2)(T1 − T2)

(
(T1 − T2)(−3T1 + T2) + 2T 2

1 Log[T1/T2]
)

N3 = (1/2)(T1 − T2)
(
(T1 − T2)(−3T1 + T2) + 2T 2

1 Log[T1/T2]
)

(51)
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where he is the lenght of element e, and where, T1, T2 and Ṫ1, Ṫ2 are the
nodal temperatures and the nodal rates of the 1D element, at such time t, as
shown in Fig. 1a.

Proof. In the 2D case, with triangular elements , Eq. (41) becomes:

Ṡe = ρcv

∫
σe

ϕ1Ṫ1 + ϕ2Ṫ2 + ϕ3Ṫ3

ϕ1T1 + ϕ2T2 + ϕ3T3
da (52)

where, again, local elemental indices are used and where ϕi is the shape
function of node i, located at vertex xi of the triangular element, as shown
in Fig. 1b), and where, {Ti, Ṫi, i = 1, 2, 3} denote the corresponding nodal
temperatures and the nodal temperature-rates, at time t, at such nodal
points. For the sake of simplicity assume that the local elemental index
numbering is chosen so “node 1” has the minimun nodal temperature, that
is to say: T1 = min(T1, T2, T3). Note also that T is absolute temperature, so
one must have that T1, T2, T3 > 0. Mapping the above integral into a master
triangular element having local coordinates (u, v) and vertices (0,0), (0,1)
and (1,0), and using the expressions of the shape functions in terms of these
local coordinates, one has that the elemental entropy can be computed as:

˙̄Se = ρcv2σ
e

∫ 1

0

∫ 1−u

0

(1− u− v)Ṫ1 + uṪ2 + vṪ3

(1− u− v)T1 + uT2 + vT3
dudv (53)

where σe is the area of the triangular element Ωe. Then the above integral
can be written as:

˙̄Se =
ρcv2σ

e

T1

∫ 1

0

∫ 1−u

0

(1− u− v)Ṫ1 + uṪ2 + vṪ3

(1− u− v) + u(T2/T1) + v(T3/T1)
dudv (54)

From Eq. (54), it follows that except by a scaling factor, the elemental
entropy rate depends on the relative values of nodal temperatures. After
analytical integration of the RHS of Eq. (54), one obtains that Ṡe can be
computed from Eq. (47). This completes the proof.

From the above Lemmas, it follows that, at any time t, the total entropy
rate Ṡh =

∫
Ω ρṡ dv of any discrete finite element solution T h(x, t) can be

computed by summation of the elemental contributions Ṡe(t) calculated
using Eq. (46) for 1D linear elements and Eq. (49) for linear triangular
elements. 4.

4A similar procedure can be used to compute total entropy rates for other types of
elements.
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Now, the above lemmas will be used to build simple examples which will
prove that the CGFE method is not entropically consistent. The examples
will prove that the CGFE method can generate discrete solutions T h(x, t)
that violate the global statement of the second law of thermodynamics given
in Eq. (5(b), which asserts that total entropy must always satisfy that∫

Ω ρṡ dv > 0.

4.2.2.1 Failure Examples 1D Case
Consider the case of heat conduction in a one-dimensional material bar

of unit lenght L = 1 whose end points are located at x = 0 and x = 1,
as the one shown in red in Fig. 2. Assume for simplicity that the bar is
made of a material with unit properties ρ, cv, κ = 1. Assume the bar is fully
isolated from the exterior. Suppose the bar is discretized by a mesh of 5 equal
elements and 6 nodes, and, assume the initial temperature distribution in the
bar is given by T = [T1, T2 . . . , T6]> = [90, 10, 1, 1, 10, 90]>, as shown in Fig.
2. The instantaneous vector of nodal temperature rates Ṫ is determined
by the CGFE method through Eq. (22)(c). The rate of change of total
entropy Ṡh associated to such evolutionary state can be computed using
Eqs. (40) and (46). The resulting value is Ṡh = −24.67. This negative
value indicates a violation of the second law of thermodynamics (??). This
proves that the CGFE is not entropically consistent for linear elements in
1D. It must be pointed out that not all discrete solutions produced by the
CGFE method violate the second law, only some of them do. For example,
if one runs an experiment where different vectors of nodal temperatures T
= [T1, T2 . . . , T6]> are generated by choosing the nodal temperatures from
the set of four possible values Ti = {1, 10, 40, 90}, i = 1 : 6, only 5
values of T (out of the 4096 cases) will generate a temperature evolution
that violate the condition Ṡh ≥ 0. Also, it is important to note that the
violation of entropy not necessarily will occur at all times. For example,
if the time-evolution of nodal temperatures (see Fig. 3a) is computed for
subsequent times for the case of the initial condition T shown in Fig. 2, it
can be observed from Fig. 3b that the entropy rate will violate the second
law of thermodynamics only at the first times of the simulation. Of course,
such violation will have an impact in the future temperature behavior. At
least one anomalous behavior can be detected in the predicted evolution of
nodal temperatures shown in Fig. 3a: at initial times, the nodes that have
the minimum temperature (Ti = Tmin = 1, i = 3, 4), instead of showing
an increase in their temperatures (heat should flow from warmer to colder
regions), they show a non-physical reduction of their temperatures below
Tmin (indicated by the dotted red line in Fig. 3a). As a consequence, one
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Figure 2: Heat conduction in an isolated 1D bar shown in red color. The bar is discretized
by 5 elements with an initial temperature distribution shown in blue color

(a) Evolution of nodal temperatures T (t) (b) Evolution of total entropy rate Ṡh(t)

Figure 3: Temperature and total entropy rate time-evolution predicted by the CGFE
method in an isolated 1D bar for the initial temperature distribution shown in Fig. 2

.

may speculate that the negative values of Ṡh may indicate the presence of
non-physical, reversed, heat flows occurring inside the domain due to the
discretization process. This is in agreement with a recent result [4].

4.2.2.1 Failure Examples 2D Case
Consider the following heat conduction problem in a body with quad-

rangular shape, as the one shown in Fig. ??. Assume the body is fully
isolated: it does not received nor give up heat from the exterior. For
simplicity, assume that the body is made of a material with unit proper-
ties ρ, cv, κ = 1. Assume the body is discretized by a mesh of 12 equal
triangular elements and 12 nodes, as shown in Fig. ??. The triangular
elements conforming the mesh have inner angles given by: α1 = 20 deg,
α2 = 150 deg and α3 = 10 deg. The nodal coordinates xi = (xi, yi) are given
by x = [(0, 0); (1.4251, 0); (2.8502, 0); (2.4308, 1.4034); (3.8559, 1.4034);
(5.2810,1.4034); (4.8616, 2.8069); (6.2867,2.8069); (7.7118, 2.8069); (7.2924,
4.2103); (8.7175,4.2103); (10.1426, 4.2103)]. Note that the vector of nodal

19

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 January 2020                   doi:10.20944/preprints202001.0075.v1

https://doi.org/10.20944/preprints202001.0075.v1


temperatures is defined by T = [T1, T2 . . . , T12]>. Given a vector T , the vec-
tor of nodal temperature rates Ṫ can be found from Eq. (22)(c). With the
values of {T , Ṫ }, the total entropy rate Ṡh of the discrete solution can be
computed from Eqs. (40) and (49). Now, let us run a numerical experiment
where values of Ṡh will be computed for different initial temperature states
T . For this purpose, let us assign each nodal temperature Ti, i = 1, .., 12
a temperature value of the following set {1, 10, 50}, considering all possi-
ble permutations of resulting vectors T . With 12 nodes there are a total
number of 312 = 531441 possible permutations. For each permutation, a
value of T is set, Ṫ can be determined, and Ṡh can be computed to verify
that the second law of thermodynamics is satisfied (Ṡh ≥ 0). If CGFE dis-
cretizations were fully thermodynamically consistent, such condition should
be satisfied for all permutations. The results of the experiment show that,
like in the 1D case, some discrete solutions violate the second law (Ṡh < 0).
For the present experiment, 15 entropically inconsistent solutions were de-
tected. They are given in Table 1. The corresponding values of negative
entropy rates are shown in the last column. In Fig. ??, the distribution of
temperatures in the quadrangular body are shown for the entropically in-
consistent case defined in the 12th-row of Table 1. The experiments proves
that the CGFE method is not consistent with respect to the second law of
thermodynamics for linear triangular elements.

5. Conclusions

A thermodynamic consistency analysis of the Continuous Galerkin Fi-
nite Element (CGFE) method has been conducted. It is well known that the
CGFE method is globally consistent with respect to the the first law of ther-
modynamics. However, contrary to what one would have expected, in this
paper, it is proved that the method is not always globally consistent with
respect to the second law of thermodynamics. The global statement of this
law imposes that, in an isolated system, total entropy can never decrease.
Here, it is shown that the CGFE method can produce discrete solutions
that violate such important physical law, when standard piecewise linear
elements in 1D and 2D are used. Further investigation need to be done to
answer the question if non-standard versions of the CGFE method can be
used, under which, global consistency with respect to the second law can be
guarantee. A possible road would be to explore if the use of lumped mass
matrices may help in the recovery of second law compatibility. Numerical
experiments performed with linear elements in 1D would indicate that sec-
ond law’s violation might be successfully removed by using such matrices.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Ṡ
1 1 1 1 1 1 1 1 10 1 10 50 -16.4754
1 1 1 1 1 1 1 1 10 10 10 50 -17.4644
1 1 1 1 1 10 1 10 50 10 50 50 -13.6147
1 1 1 1 1 10 10 10 50 10 50 50 -0.3109
1 1 1 1 1 10 10 10 50 50 50 50 -2.7110
1 1 10 1 10 50 10 50 50 50 50 10 -1.2388
1 1 10 1 10 50 10 50 50 50 50 50 -0.2620
10 50 50 50 50 10 50 10 1 10 1 1 -1.2388
50 10 1 10 1 1 1 1 1 1 1 1 -16.4754
50 10 10 10 1 1 1 1 1 1 1 1 -17.4644
50 10 10 10 1 1 1 1 10 10 10 50 -1.9806
50 50 10 50 10 1 10 1 1 1 1 1 -13.6147
50 50 10 50 10 10 10 1 1 1 1 1 -0.3109
50 50 50 50 10 10 10 1 1 1 1 1 -2.7110
50 50 50 50 50 10 50 10 1 10 1 1 -0.2620

Table 1: Nodal temperature configurations T producing violation of the second law of
thermodynamics (Ṡh < 0)

For linear triangular elements in 2D, this does not seem to be enough. In this
case, meshes with special types of triangular shapes might be necessary. The
authors think that the issue discussed in this paper might be connected with
the observation that CGFE discretizations violate, nodally, the Clausius’s
Postulate of the second law which has been reported in a recent work [4].
In this sense, the global inconsistency may be a measure of the existence of
non-physical reversed heat flows produced by the discretization procedure.
Finally, it must be pointed out that the mathematical background presented
here is general and could be used to explore the thermodynamic consistency
of other types of elements, such as quadrangular or tetrahedral elements, as
well, as other variants of finite element formulations.
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