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Abstract: The main goal of this paper is to study the weak gravitational lensing by Horndeski black
hole in weak field approximation. In order to do so, we exploit the Gibbons-Werner method to the
optical geometry of Horndeski black hole and implement the Gauss-Bonnet theorem to accomplish
the deflection angle of light in weak field region. Furthermore, we have endeavored to extend the
scale of our work by comprising the impact of plasma medium on the deflection angle as properly.
Later, the graphical influence of the deflection angle of photon on Horndeski black hole in plasma
and non-plasma medium is examined.

Keywords: Weak gravitational lensing; Horndeski black hole; Deflection angle; Gauss-Bonnet
theorem

Gravitational physics has been an area of interest for centuries among physicists from
diverse disciplines. The orbit of Mercury served as the foremost revelation of the require-
ment to refine Newtonian gravitational theory. Substantiating Lorentz Transformations and
General Theory of Relativity encouraged many researchers to reform Newtonian gravity in
an attempt to surpass it’s limitations on high speeds, extreme gravity and particle nature.
The most triumphant vindication to the Newtonian "missing mass" problem is Dark Matter
hypothesis [1]. While this theory has numerous merits, there were disputes on introducing
a new form of matter, suggesting the essential modification of Newtonian dynamics to
account for the same. Hitherto, the idea of Modified Gravity was proposed, emerging as
the widely accredited competitor of General Relativity. But, due to theoretical complexities
and observational inadequacies, this approach is transcended by the Scalar-tensor Theory;
it efficiently consolidates the scalar field (mass) with the metric (gravity) in the recent years
[2–9].

Conversely, cluster of mass bending light to create a lensing effect - thus, acting
as a magnifying glass and revealing inconspicuous details - validated the existence of
dark matter [10–13]. This phenomena, known as gravitational lensing, is categorised into
strong lensing, weak lensing and micro-lensing [14–59]. Whisker has used a strong field
limit approach to investigate the gravitational lensing properties of braneworld black holes
[34,35]. Moreover, Keeton and Petters have provided a comprehensive analytical formalism
for gravitational lensing due to a braneworld black hole described by the Garriga-Tanaka
metric [36]. Bin-Nun has studied the properties of gravitational lensing by black holes in
the Randall-Sundrum II braneworld [37]. Eiroa and Sendra have investigated weak and
strong gravitational lensing by massless braneworld black holes [38].

In this paper, we are interested in weak lensing in which the distortions of the light
source are high enough to be just detected, but too low to be able to promptly determine
it’s salient features. The typical mode of perpetuation is to calculate the angle of deflection
of light, and herein, Gauss-Bonnet theorem is employed, mathematically expressed for a
surface S as: [60] ∫ ∫

D
KdS +

∫
∂D

κdt + ∑
i

αi = 2πχ(D) (1)
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where, K is the Gaussian curvature, κ is the geodesic curvature, αi is the exterior angle with
ith vertex, and χ is the Euler characteristic of topology, altogether defined with g as the
Riemannian metric of the manifold of lens in a surface domain (D, χ, g) outside the light
trajectory. Some other works can be found in Refs. [61–104]. For an asymptotically flat
line-of-sight, the deflection angle, is given by: [60]

α̂ = −
∫ ∫

D
KdS. (2)

With this method as the basis, consider a black hole that obeys the most generalised
Scalar-tensor theory in four-dimensional spacetime which yields second-order equations of
motion: the Horndeski theory - it characterizes the scalar field as a new degree of freedom,
evolving into a Lagrangian that unravels second-order field equations of motion. The
action is written as: [105,106]

S =
∫

d4x
√
−g L (3)

with the generalised Galilean Lagrangean, L ≡ (L2 + L3 + L4 + L5) expanded such that:

L2 = G2 (4)

L3 = −G3�φ (5)

L4 = G4R + G4X [(�φ)2 − (∇µ∇νφ)2] (6)

L5 = G5Gµν∇µ∇νφ− G5X
6

[(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3] (7)

(8)

It is to be noted that Gi is an arbitrary function of scalar field, φ and kinetic energy,
X ≡ −∂µφ∂µφ/2 that depends on the curvature and the coupling of the scalar field,
whereas, the subscript X denotes the derivative with respect to X. Also, gµν is the metric
tensor with a determinant g, R is the Ricci scalar, Gµν is the Einstein tensor, along with:

�φ ≡ gµν∇µ∇νφ ; (∇µ∇νφ)2 ≡ ∇µ∇νφ∇µ∇νφ (9)

(∇µ∇νφ)3 ≡ ∇µ∇νφ∇ν∇σφ∇σ∇µφ

Recent works in multi-messenger astronomy of detecting gravitational waves from a
binary neutron star merger (GW170817) [107] have imposed a few constraints on the scalar-
tensor theories. Since the recorded times of arrival of the gravitational waves and the
electromagnetic waves vary under a minute, gravitational waves with an electromagnetic
counterpart measured from a cosmological event might culminate the idea of cosmic
acceleration as a consequence of modifying scalar-tensor gravity for the Horndeski theory.
Coupling the scalar field to curvature is observed to impact the speed of gravitational
waves. In order to be consistent with these observations, the cosmological solution and
the equivalence principle the quintic and quartic models are neglected restricting our
calculations to linear observables [108].

Building on this premise, this paper is organized as follows: In section 2, we review
some basic concepts about Horndeski black hole and we evaluate the Gaussian optical
curvature for deflection angle and compute the deflection angle by applying GBT, then we
discuss the plots in 3. In section 4, the deflection angle of light for Horndeski black hole
in a plasma medium is obtained and discuss the plots in 5. The last section comprises of
concluding remarks.
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1. Evaluation of photon lensing for Horndeski black holes

We consider the particular case of the action in which G2 = ηX, G4 = ζ + β
√
−X and

G3 = G5 = 0, where η and β are dimensionless parameters and ζ = M2
pl/(16π). Then, the

action takes the explicit form

S =
∫ √

−g d4r

{[
ζ + β

√
∂φ)2

2

]
R− η

2
(∂φ)2 − β√

2(∂φ)2
[(φ)2 − (∇µ∇νφ)2]

}
. (10)

The coefficient ζ gives the Einstein-Hilbert part of the action; one of the parameters η
and β can be absorbed into the scalar field by means of a redefinition, but we will not do
it in order to trace the origin of the different terms. The field equations resulting from
equation (9) admit a static, spherically symmetric, and asymptotically flat solution of the
form [105,106]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (11)

With

A(r) = 1− µ

r
− β2

2ζηr2 , B(r) =
1

A(r)
, C(r) = r2 (12)

Note that this solution looks like black hole in braneworld gravity [34]. The integration
constant µ can be interpreted as twice the black hole mass, i.e µ = 2M. The parameters β
and η should share the same sign and scalar field is given by

φ(r) = ±2

√
ζ

η

{
arctan

[
β2 + ζηµr

β
√

2ζηr(r− µ)− β2

]
− arctan

(
µ

β

√
ζη

2

)}
, if β > 0 and η > 0 (13)

φ(r) = ±2

√
ζ

−η

{
arctan

[
β2 + ζηµr

β2 − β
√

2ζηr(r− µ)

]
+ arctan

(
µ

β

√
−ζη

2

)}
, if β < 0 and η < 0 (14)

The geometry is singular as the origin of coordinates. It is useful to define the parameter
γ = β2/(2ζη) in order to simplify the notation. We can see that a negative value of γ
makes this metric identical to the Reissner-Nordstrom metric, with the squared charge
given by Q2 = −γ.

Now using the equation (12), we write the null geodesics (ds2 = 0), the black hole
optical spacetime can be simply written in equatorial plane θ = π

2 :

dt2 =
B(r)
A(r)

dr2 +
C(r)
A(r)

dφ2. (15)

The Gaussian curvature that is proportional to the Ricci scalar can be defined as:

K =
RicciScalar

2
(16)

using the non-zero christopher symbol the Gaussian optical curvature for Horndeski black
hole can be computed as

K = −3
γ̃

r4 +

(
−r−3 + 3

γ̃

r5

)
µ +O(µ2, γ̃2). (17)

Let us bear in mind the GBT for a two dimensional manifold. Regarding to this,
we take into account a regular domain MR arranged by 2-dimensional surface S with
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Riemannian metric ĝij, in conjunction with boundary ∂MR = γg ∪ CR, so GBT allows a
coupling between the geometry and topology in terms of the following relation∫ ∫

MR

KdS +
∮

∂MR

kdσ + ∑
j

θ̂j = 2πX (MR). (18)

Here K represented as the Gaussian optical curvature. It is a well-known fact that for
regular domain the Euler characteristic XMR = 1, while k is known as a geodesic curvature
and is defined as [109]

k = gop(∇γ̇γ̇, γ̈), (19)

having the unit speed condition gop(γ̇, γ̇) = 1, where γ̈ is the unit acceleration vector. In
the case of R→ ∞, the corresponding jump angles are taken as π/2 (in short θO + θS → π).
using the fact that, from geodesic there is a zero contribution i.e. k(γg̃) = 0, we shall pursue
a contribution by virtue of the curve CR and this contribution can be computed as

k(CR) =| ∇ĊR
ĊR | . (20)

Let us consider CR := r(φ) = R = const, while R endows the distance from the coordinate
origin. The radial component of the geodesic curvature states as

(∇ĊR
ĊR)

r = Ċφ
R(∂φĊφ

R) + Γr
φφ(Ċ

φ
R)

2. (21)

In the above equation, we note that the first term vanishes. Hence the second term can be
calculated using the unit speed condition. Then, κ is calculated as:

lim
R→∞

κ(CR) = lim
R→∞

∣∣∣∇ĊR
ĊR

∣∣∣→ 1
R

.

We take the large limits of the radial distance, and find:

lim
R→∞

dt→ R dφ.

Considering the above conditions with κ(CR)dt = dφ and using the straight line
approximation r = b/ sin φ, the form invariant deflection angle follows as:

Θ = −
∫ π

0

∫ ∞

b/ sin φ
KdS. (22)

This equation inscribe the global impact on the lensing of particles on account of the fact
that one has to integrate over the optical domain of integration outside the enclosed mass
where dS =

√
det g drdφ.

Using equation (17) into the above equation, we find the deflection angle for Horndeski
black hole in weak field limits to be:

Θ =
2µ

b
+

3πγ̃

4b2 +O(µ2, b3). (23)

Graphical Analysis of Weak deflection angle

This segment is devoted to scrutinize the graphical effect of deflection angle Θ on
Horndeski black holes. Furthermore, describe the physical eminence of these plots by
examining the stable and unstable state of black hole to analyze the impact of γ̃, µ and
impact parameter b on deflection angle. The following provides the analysis of deflection
angle Θ with impact parameter b for different values of γ̃ and µ.

• Figures 1 and 2 exhibit the effect of Θ versus b for different parameters. The deflection
angle is analyzed to have an indirect relation with the impact parameter; one can
choose b ∈ [1, 50] to sustain stable behavior.
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Figure 1. Θ versus b to see the influence of γ̃ parameter on
weak deflection angle.
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Figure 2. Θ versus b to see the influence of µ parameter on
weak deflection angle.
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1. Figure 1 shows the graphical influence of deflection angle against b with varying
γ̃ and fixed µ. For this, we observe that negative γ̃ makes this metric identi-
cal to RN solution. It is further investigated if the deflection angle increases
exponentially when γ̃ increases.

2. Figure 2 depicts that the deflection angle gradually increase by increasing the
mass term µ.

In figure 1, the parameter γ̃ is seen to affect the deflection angle more for lower values
of the impact parameter. This susceptibility could be utilized for various computations
involving the effects of b on Θ for a changing γ̃. Also, it can be noticed that figure 2
varies more abruptly with an increasing µ compared to figure 1 with an increasing γ̃. This
suggests that although the mass term dominates, the influence of the parameter γ̃, however
small, is not negligible.

2. Weak deflection angle in a plasma medium

With the objective to mainstream the impact of plasma, keep in mind the case whilst
light travels from vacuum to a hot, ionized gas medium. Consider v be the velocity of
photon within plasma. The refractive index, n(r) is defined by: [80]

n(r) ≡ c
v
=

1
dr/dt

(c = 1). (24)

The equation for refractive index by Horndeski black hole is computed as [80],

n(r) =

√
1− ω2

e
ω2

∞
A(r), (25)

here ωe referred to as electron plasma frequency and ω∞ introduced as photon frequency
found by an observer at infinity. Therefore, the equivalent optical metric designated as:

dσ2 = gopt
jk dxjdxk =

n2(r)
A(r)

[
B(r)dr2 + C(r)dφ2

]
. (26)

The optical Gaussian curvature for the above optical metric is calculated as follows

K =

(
−r−3 − 3/2

ωe
2

ω∞2r3

)
µ +

(
−3 r−4 − 5

ωe
2

ω∞2r4 +

(
3 r−5 + 13

ωe
2

ω∞2r5

)
µ

)
γ̃. (27)

Hence, we get also that:

lim
r→∞

kg
dσ̃

dφ

∣∣∣∣
CR

= 1. (28)

We use straight line approximation r = b/ sin φ, for the limit r → ∞, then GBT stated as
[80]

lim
x→∞

∫ π+Θ

0

[
kg

dσ̃

dφ

]∣∣∣∣∣
CR

dφ = π − lim
x→∞

∫ π

0

∫ x

b/ sin φ
KdS. (29)

After simplification, we obtain

Θ ' 2µ

b
+

3πγ̃

4b2 +
3µ

b
ω2

e
ω2

∞
+

5πγ̃

4b2
ω2

e
ω2

∞
(30)

The above results shows that the photon rays are moving in a medium of homogeneous
plasma. The plasma effect can be removed by neglecting ωe/ω∞.
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Graphical Analysis of Weak deflection angle in a plasma medium

This subsection is devoted to study the graphical effect of deflection angle Θ on
Horndeski black holes. In addition, we exemplify the physical impact of these graphs to
review the effect of plasma term ωe/ω∞, γ̃ and impact parameter b on deflection angle.
The deflection angle Θ is analyzed with respect to the impact parameter b in a plasma
medium. For this, we fixed µ = 2, π = 3.14 and for the sake of simplicity take ωe/ω∞ = P.

P=0.1

P=0.2

P=0.5

P=0.7

P=0.9

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

b

Θ

γ=1, μ=1

Figure 3. Figure reveals the impact of Θ over b for different
ranges of P with fixed γ̃ and and fixed µ.
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γ=10

γ=15

γ=20

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

b

Θ

μ=2, P=0.5

Figure 4. Figure reveals the impact of Θ over b for different
ranges of γ̃ with fixed P and fixed µ.

• Figures 3 and 4 demonstrate the effects of varying parameters on the deflection angle
with respect to the impact parameter graphically.

1. Figure 3 interprets the significance of varying P where the positive behavior of
Θ is analyzed only for the range 0.1 ≤ P ≤ 0.9. Increasing the value of P (for
plasma medium) increases the weak deflection angle.

2. Figure 4 illustrates an exponential increase in the deflection angle for an increas-
ing γ̃.

The nature of these graphs is similar to the plots corresponding to non-plasma medium.
Figure 3 indicates the nontrivial consequences of an increasing P: as P approaches 1, the
influence on Θ is seen to increase drastically. Figure 4 depicts the behaviour of the deflection
angle against the impact parameter in the presence of plasma, which is doubled when
compared to figure 1. It is apparent that the deflection angle is rather sensitive to plasma
especially for low b.
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3. Conclusion

In this paper, we have examined the deflection angle of photon by Horndeski black
hole in weak field limits. We found the corresponding optical geometry of a Horndeski
black hole followed by employing the straight line approximation as dictated by the Gauss-
Bonnet theorem and estimating the deflection angle in leading order terms. The acquired
deflection angle is measured by integrating a domain outside the impact parameter, which
shows the global influence of gravitational lensing. Moreover, we have computed the
deflection angle of photon by Horndeski black hole in plasma medium. It is analyzed
that the acquired deflection angle is greater by increasing the plasma medium parameter;
similarly, the term γ̃ increases the weak deflection angle as well. Note that the deflection
angle for Horndeski black hole reduces to the deflection angle for Schwarzschild black
hole when µ = 2M at the first-order term of impact parameter. Moreover, for the case
of γ = −Q2, the result becomes the deflection angle for Reissner-Nordstrom black hole
at the first-order term of impact parameter. The charge makes a small correction in the
second order term which causes the weak deflection angle to be smaller than that of the
Schwarzschild case, agreeing with [110,111].

In conclusion, we have inspected the influence on the deflection angle of a Horndeski
black hole graphically for non-plasma as well as plasma medium. It is evident that the
deflection angle increases when the photon rays flow through a medium of homogeneous
plasma.
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