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Doubling the Accuracy of Indoor Location:
Frequency Diversity

Berthold K.P. Horna

Abstract—Determination of indoor location based on fine time
measurement (FTM) of the round trip time (RTT) of a signal
between an initiator (smartphone) and a responder (Wi-Fi access
point) enables a number of applications. However, the accuracy
currently attainable — standard deviations of 1–2 meter in
distance measurement under favorable circumstances — limits
the range of possible application. A first responder, for example,
may not be able to unequivocally determine on which floor
someone in need of help is in a multi-story building.

The error in location depends on several factors, including the
bandwidth of the RF signal, delay of the signal due to the high
relative permittivity of construction materials, and the geometry-
dependent “noise gain” of location determination. Errors in
distance measurements have unusal properties that are exposed
here for the first time. Improvements in accuracy depend on
understanding all of these error sources.

This paper introduces “frequency diversity,” a method for
doubling the accuracy of indoor location determination using
weighted averages of measurements with uncorrelated errors
obtained in different channels. The properties of this method
are verified experimentally with a range of responders. Finally,
different ways of using the distance measurements to determine
indoor location are discussed and the Bayesian grid update
method shown to be more useful than others, given the non-
Gaussian nature of the measurement errors.

Index Terms—indoor location, fine time measurement, round
trip time, FTM, RTT, IEEE 802.11mc, IEEE 802.11-2016, time
diversity, spatial diversity, bandwidth diversity, frequency diver-
sity, Bayesian grid, observation model, transition model

I. Overview

Determining location accurately indoors, where GPS is not
reliable, has many potential applications and has been of
interest for some time [1]–[5]. One of the latest entries in
this effort is fine time measurement (FTM) of round trip time
(RTT) as specified in the 2016 update of the IEEE 802.11
Wi-Fi standard (also referred to as IEEE 802.11mc) [6].

We start by briefly discussing alternative methods for indoor
location determination. This is followed by an exploration of
the error sources in indoor location determination, particularly
those for FTM RTT. Then, different attempts at getting more
accurate distance measurements using uncorrelated error con-
tributions are discussed and the frequency diversity method
introduced. Experimental results confirm the prediction that
frequency diversity can double the accuracy of indoor location,
given that there are six non-overlapping 80 MHz channels
available in the 5 GHz band [7]. Finally, various methods
for turning distance measurements into locations are explored
and the Bayesian grid update method shown to be well suited
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to the task given the unusual nature of the error in distance
measurement.

II. Introduction

The contributions of the research presented here are as
follows: This paper introduces: (1) “frequency diversity” —
a method for doubling the accuracy of FTM RTT distance
measurements; (2) the “position-dependent error” texture sur-
face — a new way of understanding the nature of the errors in
FTM RTT distance measurement; (3) analysis of the unusual
properties of the errors in distance measurement in terms
of properties of super-resolution algorithms; (4) recognition
of the serious impact of signal delay in common building
materials resulting from their high relative permittivity —
arguably more important than possible multi-path effects;

III. Background

A number of different methods for indoor location have been
explored, some of which make use of properties of existing
radio frequency signals emitted by Wi-Fi access points and
Bluetooth beacons (For a quick review see first few chapters
of [8]).

A. Signal Strength

Perhaps the simplest approach is to measure the signal
strength (RSSI) of a Wi-Fi access point (AP) at a hand-held
device such as a smartphone (STA).

Unfortunately, the inverse square law causes the accuracy
to drop off inversely with distance and so the measurements
are at best only useful close to the AP. Furthermore, signal
strength is affected by many factors other than distance. This
includes the current power level of the AP and standing waves
resulting from interference between signals reflected from
material outside the line of sight (LOS) between the transmitter
and the receiver. As a result, the relationship between distance
and signal strength is not monotonic and not invertible (Fig. 1).

B. Fingerprinting

In light of this, another way of using signal strengths has
been explored. So-called “finger printing” methods depend on
careful mapping signal strengths from several sources in the
volume of interest. Signal strengths do not vary much with
time as long as objects (and people) are not moved. When they
are moved, the finger-print data may have to be remeasured.
Measuring signal strengths of multiple sources at many points
in a volume is tedious and does not scale well.
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Fig. 1. Scattergram of Signal Strength (RSSI) versus distance in typical
three-level wooden building. Horizontal axis: distance between smartphone
and APs (in meters). Vertical axis: Signal Strength (in dBm). Red curve:
expected inverse square law dependence (−50 − 20 log(R) dBm). Green line:
linear fit (−53 − 3.7R dBm). Because of the large scatter, it should be clear
that RSSI is not very useful for estimating distance.

C. Channel State Information

A simple model of the transfer function of the channel from
transmitter to receiver is a weighted sum of impulses, each
representing a signal that travelled along a different path. If
there is a clear line of sight (LOS), the first impulse in that
sum is due to the LOS path. So, if the response function can
be determined, the first impulse can be isolated and used to
determine the time of flight. A network analyzer can be used to
measure the frequency response of a communication channel,
which is the Fourier transform of the impulse response. It is,
however, not practical to deploy network analyzers, in part
because they require physical access to both the transmitter
and the receiver.

D. Orthogonal Frequency-Division Multiplexing

In the case of orthogonal frequency-division multiplexing
(OFDM) signaling — used in all but the earliest IEEE 802.11
physical layer (PHY) standards [6] — the channel is divided
into many equi-spaced narrow subchannels. In operation, the
response of each subchannel needs to be known and conse-
quently is estimated continuously. This channel state informa-
tion (CSI) is potentially available (at least since IEEE 802.11n
using e.g. Intel 5300). It is a low-resolution approximation to
what a network analyzer would measure. Unfortunately, at this
point no widely used platform provides access to the CSI.

E. Angle of Arrival

With many antennas, a base station can estimate the direc-
tion of arrival of the signal from user equipment (smartphone).

High angular resolution is required since the position error
is the product of the distance and the angular resolution.
Thus unless distances are very small, base stations with
many antennas (and perhaps many radio chains) are needed,
since angular resolution varies inversely with the number of
antennas. There are also some privacy issues, since here a
critical part of the location determination is done by the base
stations, not the smartphone.

F. FTM RTT IEEE 802.11-2016

Finally, we come to fine time measurement (FTM) of
round trip time (RTT) as specified in IEEE 802.11-2016
(also referred to as 802.11mc) [6]. One might expect this
to overcome the limitations of other methods, since time of
arrival is based on the first signal component, and so should
be immune to multi-path problems, such as interference and
standing waves.

Access to FTM RTT measurements has been provided on
the Android platform since 2018 (Android 9 / Pie), although
initially few smartphones and Wi-Fi APs supported the proto-
col (see also Appendix B).

Experimentally one finds that the distance measurements
provided by FTM RTT may have standard deviations of 1–
2 meter under favorable circumstances. This is fine for some
applications but not others. It is important to understand the
underlying causes of the observed errors in distance.

IV. Nature of the Error

In FTM RTT, the error — difference between measurement
and the actual distance — can be thought of as having several
components, which behave very differently. It is important to
understand these contributions to the overall error e, since they
need to be dealt with in different ways.

e = m(c; . . .) + E(r, c; . . .) + o(c; . . .) (1)

Here m(c; . . .) is “measurement noise” (see below) which
depends on the channel c (i.e.frequency) and other factors,
while E(r; c . . .) is the “position-dependent error” (see below)
which depends on position r, the channel c and other factors,
while o(c; . . .) is the offset (see below) which depends on the
channel c, type of initiator, type of responder etc.

All of the above also depend on the bandwidth, but, except
where noted below, we’ll assume use of the highest bandwidth
at which FTM RTT is supported by both the initiator and the
responder (currently 80 MHz) because that normally leads to
the highest accuracy.

Further, where there is a dependence on position as indi-
cated above, there is also dependence on orientation, which
we will not continue to refer to explicitly from here on.

A. “Measurement Error”

Remarkably small spreads in results are observed when
measurements are repeated without changes in position (or
orientation) of initiator and responder, in a fixed environment.
In this case, the standard deviation (e.g. 0.1–0.2 meter under
favorable circumstances) is considerably smaller than the ac-
tual error in distance measurement (which is typically greater
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Fig. 2. Sample measurements using ten different responders in fixed positions.
(Top plot is for an access point operating in the 2.4 GHz band, the rest in
the 5 GHz band). Horizontal axis: time in hours. Vertical axis: distances in
meters (individual plots are offset vertically to avoid overlap).

than 1–2 meter). As a consequence, perhaps surprisingly,
results are not significantly improved by averaging repeated
measurements.

While this error component looks a lot like typical mea-
surement error resulting from additive random noise, it should
be noted that: (i) its distribution is not Gaussian; (ii) there are
distant outliers in many cases; and (iii) the distribution is not
always even unimodal. Importantly, small changes in position
(or orientation) can cause large changes in the distribution.
As a result repeated measurement in fixed positions can lead
one to grossly underestimate the error in distance. We’ll say
that repeated measurements obtained in fixed positions exploit
“time diversity,” and note that time diversity does not provide
a path to improved accuracy.

B. “Position-Dependent Error”

Perhaps somewhat surprisingly, small movements (milli-
meters) of the initiator (or the responder) induce large changes
(meters) in reported distance measurements. This error com-
ponent is a function of 3-D position (and orientation). It is
difficult to explore and visualize the error dependence fully in
3-D, but much can be learned by simply scanning along lines.

It is clear that the “position-dependent” error in Fig. 3 is
much larger than the “measurement noise” in Fig. 2. Careful
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Fig. 3. Sample measurements using ten responders in a range of positions
(Top plot is for an access point operating in the 2.4 GHz band, the rest in the
5 GHz band). Horizontal axis: actual position in meter. Vertical axis: reported
distances in meters (individual plots are offset vertically to avoid overlap).

measurements along lines surprisingly shows fluctuations in
the error surface that have “texture element” size comparable
to the wavelength of the radio frequency signal (which ranges
from 58 mm for 5210 MHz to 52 mm at 5775 MHz). This
is confirmed by inspection of the spatial power spectrum,
which has much of its energy at and below the frequency
corresponding to about two cycles per wavelength.

Measurements taken at positions separated by more than say
a wavelength are fairly uncorrelated. This suggests one way of
improving accuracy: average several measurements taken (far
enough apart) along points spaced out along a line (or on a
regular grid). This indeed leads to a result with considerably
higher accuracy than averaging repeated measurements taken
in a fixed location. We’ll say that repeated measurements
obtained on a line (or on a grid of locations) exploit “spatial
diversity” and note that spatial diversity can improve accuracy
significantly.

It is, however, not clear how this observation can be used
in practice since it requires either a set of regularly spaced
antennas in an array larger than the typical smartphone, or
perhaps some mechanism for moving a single antenna into a
set of positions in some regular pattern.

For experiments requiring high accuracy, however, such
as measurements of the relative permittivities of building
materials like concrete, brick and wood, the extra effort in
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making measurements in several positions is well justified,
since for these types of measurements the raw accuracy of
FTM RTT is not adequate.

C. Offset

Over a large range of distances, with a clear line of site, the
reported distance varies linearly with the actual distance. The
slope of the linear fit is 1 (see e.g. Fig. 4) but there typically
is a significant offset, which depends on the type of initiator,
the type of responder, the channel in use, bandwidth, and the
preamble.
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Fig. 4. Linear fit of reported distance to actual distance (outdoors, clear LOS,
no obstructions in the first Fresnel zone). The offset in the well calibrated setup
tested here happens to be small (less than half a meter), but can be five meters
or more in other situations. Horizontal axis: actual position in meter. Vertical
axis: FTM RTT reported distances in meters.

Ideally, all initiator/responder combinations would come
calibrated to yield zero offset. Presently this is not the case,
and different responders will yield different offsets with dif-
ferent initiators (sometimes differing by five or more meter).
Even a particular combination of initiator and responder has
different offsets when operating in different channels (which
can lead to hard-to-track errors when the AP decides to switch
channels for some reason!). Presently one must calibrate for
the particular combination of initiator and responders to be
used in order to eliminate these offsets.

D. Noise Gain

The accuracy of the final location estimate is not the same
as the accuracy of the raw measurement of distance between
the initiator and the responder. The error in location may be
considerably larger than the error in distance measurement,
depending on the geometry of the layout of responders and
initiator. The ratio of the error in location to the error in the

distance measurement is the “noise gain” — euphemistically
referred to as “dilution of precision” (DOP) in GPS termi-
nology. This suggests that there is some benefit to carefully
planning the distribution of responders so as to minimize
the error in the worst-case position of the initiator (see also
Appendix C).

E. Dependence on Bandwidth

The expected accuracy is inversely proportional to the band-
width of the Wi-Fi signal. Currently the highest bandwidth of
initiators and responders that support the IEEE 802.11 FTM
RTT protocol is 80 MHz (there are some access points and
some Wi-Fi adapters that support 160 MHz but, as of this
writing, do not support FTM RTT).

One may consider “bandwidth diversity” as another possible
measure to improve accuracy, but the results at 40 MHz and
20 MHz tend to be noticeably worse than those at 80 MHz.
As a result, there is only a small gain in accuracy using a best
fit weighted average of the three results (aside from that, the
offsets are different for different bandwidths and need to be
calibrated out).

V. Where does the large position-dependent error
come from?

The main component of the error is the position-dependent
error. Given the size of the “texture element” of this type of
error, it appears to be related to some sort of interference
pattern resulting from reflections off objects that are not in the
line of sight. This is quite unexpected since the first arriving
component of the signal should not be affected by any such
reflections.

In contrast to this, signal strength (RSSI), being a steady
state measurement, is subject to large fluctuations (“fast fad-
ing”) over relatively small distances due to just such interfer-
ence. (see upper plot in Fig. 5)
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Fig. 5. Upper plot: signal strength (RSSI) in dBm, Lower plot: reported
distance in meter. Horizontal axis: actual position in meter. Note undulations
with wavelength somewhere between about half the wavelength and the full
wavelength of the electromagnetic wave.
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Again, at least with a clear line of sight, the first arrival
should not be affected by later arriving signals reflected from
objects in the environment. Thus, it comes as a surprise that
FTM RTT distance measurements seem to be affected by some
sort of interference patterns or stationary waves (see lower plot
in Fig. 5) To understand how this can be, we must know more
about how these measurements are made.

A. Super Resolution

With OFDM modulation, demodulation is done by inverse
Fourier transform of samples of the signal. For 80 MHz
bandwidth, these samples are taken at 80 Msps (actually, both
Q (real part) and I (imaginary part) are sampled at that rate,
but that does not affect the argument here). That means that
samples are taken every 12.5 nsec, which corresponds to 3.75
meter round trip travel of the radio-frequency (RF) wave. So,
if first arrival was based merely on which sample exhibits the
first sign of a rising waveform, then the (one-way) resolution
would be 1.875 m. The measurement actually provided to the
user has much finer resolution (RTT, for example, may be
given in units of 0.1 nsec, very much smaller than the 12.5
nsec sampling interval). Super-resolution methods are used to
“interpolate” between known samples of the signal.

Several super-resolution methods are used, such as MU-
SIC, ESPRIT, and pencil matrix [9]–[16]. These are based
on specific assumptions about the transfer function of the
communication channel. In particular, it is assumed that the
impulse response of the channel is a weighted sum of shifted
impulses, corresponding to different components of a multi-
path signal.

While the aim is to provide the user with finer resolution,
such methods also have limitations. They are highly non-linear
and can exhibit discontinuities and non-monotonicity. Further,
information on what actual algorithms are used in the Wi-Fi
initiator and in the Wi-Fi access points is not available to the
user.

To illustrate the potential problem, consider first an over-
simplification. A simple algorithm has arrival time estimated
based on when a sample of the signal amplitude exceeds
some threshold. However, one cannot use a fixed threshold
for deciding when the signal arrives, since the signal can
vary over several orders of magnitude (e.g. −100 dBm to
−40 dBm — i.e. a ratio of a million to one in power) The
threshold to determine whether the “toe” of a signal has arrived
must be scaled based on the strength of the signal. But that
“signal strength” can only be ascertained later when it has
reached a peak. While the “toe” is not affected by multi-path
reflections, the amplitude used for normalization is subject to
the interference pattern. So even though the first arrival is not
contaminated by interference, the threshold against which it
is compared is. This sort of effect can give rise to the wildly
fluctuating position-dependent error surface described above
(see lower plot in Fig. 5).

VI. Frequency Diversity — six channels

Since the position-dependent error surface has “texture”
the order of the wavelength of the radio frequency signal, it

stands to reason that operating at different frequencies would
produce different position-dependent errors. There are six non-
overlapping 80 MHz channels in the 5 GHz band [7]. This
provides for up to six measurements with uncorrelated error
contributions, potentially leading to a multiplication of the
error by 1/

√
6 ≈ 0.408 . . .. (Note that there may be some

restrictions on some channels in some parts of the world. The
highest channel, for example, is not available in Japan, Israel,
Turkey and South Africa [7]).
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Fig. 6. Sample plots (colored) of reported distances in six 80 MHz wide
channels in the 5 GHz band. The top (black) plot is a simple average, which
has less than half the error of the individual measurements. Horizontal axis:
actual distance in meter. Vertical axis: reported distance in meters (offset to
prevent overlap)

Fig. 6 shows plots of distance measurements in six channels
as a function of actual position. The channels have center
frequencies 5210 MHz (magenta), 5290 MHz (red), 5530
MHz (brown), 5610 MHz (green), 5690 MHz (cyan), and
5775 MHz (blue). The correlation matrix (eq. 2) shows that
the position-dependent errors in the different channels are
essentially uncorrelated.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.05 −0.19 0.21 −0.03 0.12

−0.05 1 0.13 −0.04 −0.14 −0.09

−0.19 0.13 1 −0.19 −0.09 0.00

0.21 −0.04 −0.19 1 −0.07 −0.11

−0.03 −0.14 −0.09 −0.07 1 −0.04

0.12 −0.09 0.00 −0.11 −0.04 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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The st. dev. of position-dependent errors from the six channels
are 0.710 m, 0.578 m, 0.540 m, 1.163 m, 0.944 m, and 0.909
m respectively (average 0.808 m). A simple average of the six
distances has st. dev. 0.309 m, which is significantly better than
the best channel on its own, and more than twice as accurate
as the average.

A weighted sum — rather than a plain average — can do
even better. In this particular case, with weights 0.155, 0.234,
0.301, 0.080, 0.130, and 0.100, the st. dev. comes to 0.264 m
(which is only about a third of the average st. dev. of the six
channels). With six channels, the added refinement of least-
squares weighting may not always be worth the effort since the
relative quality of the channels depends on the environment
and will be different in different situations.

By the way, averaging FTM RTT measurements from six
80 MHz channels does not produce the same results as if one
were to perform a single FTM RTT measurement in a channel
of 480 MHz bandwidth. In the case of a single ultra-wide
channel, the error would be multiplied by 1/6, not 1/

√
6.

VII. Frequency Diversity — Three channels

It may not always be practical or convenient to use all six 80
MHz channels for FTM RTT distance measurements. In some
situations a smaller number may be more easily accessible.
Several “tri-band” mesh Wi-Fi APs (e.g. Eero Pro, Netgear
Orbi and Linksys Velop). have two radios which make it easy
to get measurements for at least two channels in the 5 GHz
band (e.g. 5210 MHz in U-NII-1 and 5775 MHz in U-NII-3).
Often also, one of the radio chains is shared between the 2.4
GHz and 5 GHz bands and if the device happens to respond
to FTM RTT requests in both bands (e.g. Linksys Velop) then
this opens up the possibility of taking three measurement with
uncorrelated error contributions.

Taking a simple average potentially multiplies the error by
1/

√
3 ≈ 0.577 . . . (assuming similar distributions for the three

channels and with uncorrelated noise). Not as good as with six
channels, but still a useful improvement. Actually, this may be
a bit optimistic, since the 2.4 GHz channels is not as good as
the other two, but suitable weighting of the three contributions
can get one close to the ideal.

In Fig. 7, the bottom three plots are for channels with center
frequency (i) 5210 MHz (red), (ii) 5775 MHz (green), and (iii)
2442 MHz (blue). The correlation matrix (eq. 3) shows that the
position-dependent errors in the different channels are, once
again, uncorrelated.⎡

⎢⎢⎣
1 −0.00 0.03

−0.00 1 −0.13

0.03 −0.13 1

⎤
⎥⎥⎦ (3)

The top plot (black) in Fig. 7 is for a weighted average
(weights 0.48, 0.35, and 0.17 respectively). The st. dev. of
the position-dependent error in the lower three plots are 0.382
m, 0.480 m, and 0.721 m, for an average st. dev. of 0.528 m.
The st. dev. of a simple average is 0.302 m (which is better
than any of the individual channel st. dev.). and the st. dev.
of the weighted average is 0.270 m (which is almost twice as
accurate as the average channel).
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Fig. 7. Sample plots (colored) of reported distances in three channels. The
top (black) plot is a weighted average, which has only a bit over half of the
average error in the individual plots. Horizontal axis: actual distance in meter.
Vertical axis: reported distance in meters (offset to prevent overlap)

Typically different chips are used for the two radio chains.
In the case of Eero Pro, for example, the first 5GHz radio
(and the 2.4 GHz radio) uses the Qualcomm IPQ4019 chip,
while the second 5Ghz radio uses the Qualcomm QCA9886
SoC. These have somewhat different measurement qualities
and thus weighting their contributions differently (as above)
helps improve the overall result.

Finally, if three channels are not available, using two
channels can already bring some improvement in accuracy
relative to relying on a single channel.

VIII. High relative permittivity of common building
materials

Inside buildings, signals often have to travel through walls
and floors of concrete, wood, brick, drywall or glass. These
materials have high relative permittivity which slows down
the signal significantly. Careful measurement of thick layers
of various materials show relative permittivities, in the 8–
10 range for wood, and 5–7 range for concrete, depending
on moisture content and composition (The signal also is
attenuated significantly, but this does not directly affect the
time-of-arrival) [17]–[20]. Time-of-flight times the speed of
light is the equivalent distance travelled in vacuum — which
may be considerably larger than the actual distance. A 0.5
meter thick concrete wall can, for example, add 3 or 4 meters
to the reported FTM RTT “distance.” This needs to be taken
into account somehow in the estimation of position from
distance measurements. The effect of thick walls and floors
should also be a concern when planning the placements of
responders.

Arguably, the effect of high relative permitivitties of build-
ing materials on distance measurements is more important than
that of multi-path. Particularly reminding ourselves again that
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Fig. 8. Scattergram of measured distances versus actual distance in wooden
three-story house. Vertical axis: measured distance (meter). Horizontal axis:
actual distance (meter). Red line (slope 1) is the ideal relationship; Green line
(slope 1.2) is the best linear fit; Blue line (slope 1.6) is an upper extreme.
The high permittivity of building materials biases the distances measured by
FTM RTT.

the time of first arrival should not be affected by reflections
that arrive later.

Fig. 8 shows how building materials affect measurements
in a three-story wooden house. Fig. 9 show how building
materials affect measurements in a large open plan office
building. The effect there is less extreme, although over long
enough distances just as significant.

IX. Recovering location from distance measurements

Once we have estimated distances from a number of AP
responders in known locations we can try and determine where
the initiator is.

A. Multi-lateration

If we are dealing with a single level building, we can
treat this problem in 2-D. In this case each measurement
confines the possible location of the initiator to points on a
circle with an AP at the center, — or a circular annulus if
we take into account uncertainty in the measurement. Two
measurements lead to the intersection of two circles, which
typically is two points (These two points lie on a line that is
perpendicular to the line connecting the centers of the circles).
A third measurement can disambiguate if needed. Three or
more measurements are typically inconsistent but can be used
in a least squares fashion to reduce the error in location
estimation.

This is quite analogous to finding a cellular base station
from multiple LTE Timing Advance (TA) measurements —
just with much finer resolution [21].
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Fig. 9. Scattergram of measured distances versus actual distance in a large
open plan office building. Vertical axis: measured distance (meter). Horizontal
axis: actual distance (meter). Red line (slope 1) is the ideal relationship. Green
line (slope 1.2) is the best linear fit. Blue line (slope 1.4) is an upper extreme.
The high permittivity of building materials biases the distances measured by
FTM RTT.

In the more general full 3-D case, each measurement
confines the location of the initiator to points on the surface
of a sphere with an AP at its center — or a spherical shell
if we take into account uncertainty in the measurements. Two
measurements restrict the solution to the intersection of two
spheres, which typically is a circle (This circle lies in a plane
that is perpendicular to the line connecting the centers of the
spheres). A third measurement reduces the possibilities to the
intersection of a circle and a sphere, which typically occurs in
two places. A fourth measurement can disambiguate if needed.
Four or more measurements are typically inconsistent but can
be used in a least squares fashion to reduce the error in location
estimation.

B. Linear multi-lateration?

The equations for the circles — or spheres — are second
order, but all with the same higher order terms. Thus it is
tempting to subtract them pairwise to obtain linear equations,
since sets of linear equations are easy to solve. This is
a mistake. While the resulting equations yield the correct
solution if the measurements are perfect, the “noise gain”
is very high. That is, small errors in distance measurements
translate into large errors in position. One way to understand
why this happens is that we are throwing away some of the
constraint provided by the measurements. For convenience,
here we consider the solution to be confined to the planes
containing the circles of intersection, not to the actual circles,
which is a much tighter constraint. (For mathematical details
of the argument see [22]).
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An aside: this is quite analogous to the infamous “8-point
method” in machine vision for solving the relative orientation
problem. While it is very appealing because of the linear form
of the equations, minimization of errors in those equations
does not minimize the sum of errors in image positions [23],
[24]. As a result, this method cannot be recommended (other
than perhaps in the hope of finding plausible starting values
for methods that do the right thing).

C. Least Squares minimization and brute force grid search

For a given hypothesized location for the initiator, the
distance from each AP can be computed and compared with
the measured distance. One can then find the location that
minimizes the sum of squares of the differences between
computed and measured distances. Gradient-descent may not
work reliably to find the global minimum of this error sum,
since the shape of the error surface can be complex. We can,
however, divide the space into pixels (2-D) or voxels (3-D) and
simply compute the error for each cell. This is, after all, not
computationally expensive, since, given the limited accuracy
of FTM RTT measurements, the cells need not be very small
(e.g. perhaps 0.5 m on a side). So even a typical building with
side lengths of tens of meters would be represented by just a
few thousand cells.

D. Kalman filtering

Kalman filtering [25], [26] provides a way to update an esti-
mate of the position along with an estimate of the covariance
matrix of uncertainty in the estimated position ever time a
measurement is made. It is based on assumptions of Gaussian
noise independent of the measurement, Gaussian transition
probabilities and linearity.

Unfortunately the measurement error is not Gaussian nor
is it independent of the measurement itself. Further, when
near one of the responders, the area of likely positions is
shaped more like a kidney (i.e. part of a circular arc) —
or even bimodal — rather than something that can be well
approximated by a linearly stretched out Gaussian distribution
(Fig. 13). As a consequence, Kalman filtering does not provide
the best way to use the available informatiom.

E. Particle filter

If a probability distribution is not easily modeled in some
parameterized way (such as a multi-dimensional Gaussian),
then other means may be used to represent it. One such
method is that of particle filters which uses weighted samples
to represent a distribution [27]. The distribution is in effect
approximated by the sum of weighted impulses. At each step,
the position of the particles is updated based on a transition
model. The weights of the particles are adjusted based on the
measurements. Particles with low weight are then discarded,
while new particles are sampled to keep the overall number
of particles at a desired value.

F. Bayesian grid update

Another way of dealing with a probability distribution that
can’t be easily parameterized is to represent it with values
on a regular grid. Sequential Bayesian updates can be applied
to such a grid of probabilities [28]. This method starts with
a prior distribution (perhaps uniform). A transition model is
invoked at each step which modifies the distribution based on
likely movement of the initiator (e.g. a random walk). If a
floor plan is available, impenetrable walls can be taken into
account in the transition model if desired. This is followed by
Bayesian update based on distance measurements, which uses
an observation model which estimates the probability of seeing
a measurement given the actual geometric distance between a
voxel and the responder.

If a single location is required as output, rather than a
distribution, one can, for example, use the mode (maximum
likelihood) or the centroid (expected value) of the distribution.

As with other forms of “filtering,” there can be a lag in
the response when the initiator moves more rapidly than
the transition model expects. Also, a bad solution may get
“trapped” behind walls, when a floor plan is used to prevent
“tunneling” through walls in the transition model.

G. Observation Model

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Fig. 10. A slice through an observation model. Horizontal axis: measured
distance (when actual distance is 10 m) Grey histogram: measurements from
typical three-level residence. Green curve: observation model — probabilty
of measuring the specified distance (piece-wise linear fit to grey histogram).

Fig. 10 shows a section of an observation model. It shows
the probability of various measured “distances” on the hori-
zontal axis in meter) given that the actual distance between
initiator and responder is 10 meter (i.e. the vertical red line).
The actual distance is a lower bound on the measurement. It
can be considerably larger since the signal may pass through
building materials with large relative permittivity. In the figure,
the observation model (green curve) is a piece-wise linear
fit to experimental data from a three-level residence (grey
histogram).

The observation model is used to update the probability at
each grid cell. For each cell on the grid, the distance from the
AP is known and so the appropriate slice of the observation
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model can be accessed. The observed FTM RTT distance is
then used to look up the probability that this observation would
occur, given the known actual distance for this grid point. This
value is then used to multiply the current value in that cell.
Optionally, the resulting grid of values can than be normalized
so it once again adds up to one.

H. Transition Model

We use a simple transition model of a random walk of a step
size based on comfortable walking speed of 1.4 m/sec [29]). In
a simple implementation this just “pushes” probabilities into
neighboring cells (exept for cells on the edge of the grid).
If more information is available from inertial measurement
(IMU) and magnetic compass, then this can be used to refine
the transition model. But the simple model appears to be
adequate for location determination. A floor plan can be used
to limit “forbidden transitions” such as walking through a wall.
This can further improve the tracking of a location solution as
the user progresses through the environment.

Fig. 11. Sample “heat maps” of Bayesian grids. Left: 2-D case (single level)
with 3 responders (green dots). Text shows current FTM RTT distance, st.
dev. and signal strength. Right: 3-D case (three levels) with 7 responders.
Voxels in each floor were collapsed into a single layer for display purposes.

Fig. 11 shows probability distributions on grids with cells
0.5 meter on a side. The green dots mark the positions of
the responders (In this case, the floor plan was not utilized
to limit the transition model). For an MP4 movie showing
the Bayesian grid evolve as someone moves on one level, see
[30]. For an MP4 movie showing the Bayesian grid evolve as
someone moves through a three-story building, see [31].

X. Noise Gain (a.k.a. Dilution of Precision — DOP)

The geometric arrangement of responders determines the
“dilution of precision” (DOP, or “noise gain”), that one can
expect in various parts of the volume of interest.

Fig. 12. Dilution of Precision. Left: constraint from single distance mea-
surement; Middle: favorable combination of constraints; Right: unfavorable
combination of constraints. The area of the overlap grows as 1/ sin(θ), where
θ is the angle between the directions to the APs.

Fig. 13. Dilution of Precision when close to responder. Left: Intersection
is more or less an oblong oval; Middle: Intersection is sort of kidney
shaped; Right: Intersection is bimodal Such distributions cannot reasonably
be approximated by multi-variate Gaussians.

On the left in Fig. 12, is shown the annulus within which the
initiator position is constrained when a single, noisy distance
measurement is available. In the middle is the situation when
two measurements are available from responders that are more
or less at right angles in directions as seen from the initiator.
Plausible solutions in this favorable case are confined to a
small area. On the right is the less fortunate situation where
the directions to the responders are similar, and not much
new information is provided by the second measurement.
Correspondngly, the likely position of the initiator is not as
well confined.

When close to one of the responders, the geometry becomes
more intricate, and, counter-intuitively, the solution may be
less well determined. This is illustrated in Fig. 13.

It is generally not a good idea to have the responders
close together, since then the distance measurements will be
correlated and redundant. The effect of errors typically not
isotropic, but is stronger in some directions than others (as,
for example, in the case of GPS, where the vertical DOP is
considerably larger than the horizontal DOP, as a result of
the fact that the “visible” satellites are not distributed evenly
over a sphere of possible directions). In some cases curves of
constant error may be quite elongated, meaning that while the
position may be well defined in some directions, it is not in
others. Finding the “best” layout of responders in a given 3-D
volume is an open research problem.

For additional detail see Appendix D.

XI. Conclusions

The accuracy of FTM RTT distance determination can
be doubled using frequency diversity. The error in FTM
RTT distance has peculiar properties (for a start, it is non-
Gaussian) that derive from the super-resolution algorithms
used. Common building materials can introduce large errors
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in FTM RTT distance estimates because of their high relative
permittivity. Bayesian grid estimation is well suited to the task
of recovering location from distance measurements given the
unusual nature of the errors. The “noise gain” in location
determination can be kept low by carefully planning the
geometric arrangement of access points.
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Appendix A
Current state of support for FTM RTT

The ability to perform FTM RTT measurements is an-
nounced by an access point in the beacon it emits at regular
intervals (typically every 100 msec). Presently only Com-
pulab’s “Wi-Fi Indoor Location Device” (WILD) (with a
modified Intel AC-8260 Wi-Fi adapter) and Google Wifi (with
Qualcomm IPQ4019) do this. Importantly, however, quite a
number access points do respond to FTM RTT requests even
though they do not announce this capability. This includes
several of the recent “mesh” APs (e.g. Eero Pro, Netgear Orbi,
Linksys Velop) — as well as some older APs such as ASUS
RT-ACRH13.

APs that support FTM RTT, but do not advertise this
capability, may, in some cases, not support it properly yet,
be subject to large offsets and measurement errors, frequent
outliers, or crashes when asked to respond “too often.”

Many Wi-Fi adapters cannot be used as access points
because of regulatory restrictions on their channels. Channels
may be marked “passive scan only” or “no IR” (i.e. cannot
“initiate radiation”). Generic Intel 8260, Intel 8265, Intel 9260
Wi-Fi cards do “support” FTM RTT, but are not allowed to act
as access points (due to “no IR” restriction on channels in the
5GHz band) and so are not useful as FTM RTT responders.

Wi-Fi access points tend to be replaced less often than
say smartphones and laptops. APs tend to be replaced only
when some major new feature is touted (such as higher data
rates and more channels in 802.11AC). Unfortunately FTM
RTT was introduced at a time when no such major advantage
was simultaneoulsy being proferred. As a result relatively
few installed APs support FTM RTT at this point. This will
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change as soon as powerful new features are introduced, as in
802.11AD for example.

Appendix B
Android API and Java Reflection

Access points that support the IEEE 802.11mc FTM RTT
protocol, but do not advertise this capability, are awkward
to use because Android API WiFiManager.getScanResults()
marks them as not supporting 802.11mc in the ScanResult,
and so the WifiRttManager.startRanging() call on the cor-
responding RangingRequest fails — without even trying.

One work-around is to use Java reflection [32], to set the
FLAG_80211mc_RESPONDER bit in the flag field in the
ScanResult (the “setter” methods setFlag() and clearFlag()
are blacklisted and so can’t be used by third-party applica-
tions).

A more flexible approach is to use the hidden addRespon-
der method in the Builder inner class of the RangingRe-
quest class. For this one needs to build an instance of
the ResponderConfig class “by hand.” A ResponderConfig
instance contains the MAC address (BSSID), responder type
(AP), 80211mc support flag, channel width, frequency, center
frequency, and preamble type. One advantage of this approach
is that one can build a RangingRequest without needing the
results of a Wi-Fi scan (which takes time, and is heavily
throttled in Android 9) — The information about the APs may
come “out of channel” — from a file say (which may also
contain information about the physical location of the APs —
see also Appendix C). Needless to say, this requires more Java
reflection magic.

In this regard, it may be helpful to know that the specified
center frequency field in the ResponderConfig is ignored and
replaced by a stored value from the most recent Wi-Fi scan.
There are a number of implications, aside from the obvious
one that one cannot control the center frequency of the AP
in this fashion. One is that an AP can’t be used for ranging
if it hasn’t been “seen” recently in a Wi-Fi scan. Another
is that an AP can’t be used right after it switches channels
— at least not until the next Wi-Fi scan picks up the new
channel information. By the way, it is important to know which
channels APs use, since the offset in the FTM RTT reported
distance is typically different in different channels.

As an aside, Windows 10 does not currently support 802.11
FTM RTT (while it does support Wi-Fi scans using Wlan-
Scan()).

Appendix C
How to get the locations of the responders

In recovering the location of the initiator (smartphone), one
needs to know the locations of the responders (APs). This
information can be provided “out of channel” in a file that lists
all of the APs in a building — along with their properties.

It may be more convenient (and the method scales bet-
ter) if the APs themselves broadcast this information. The
IEEE 802.11-2016 standard provides for that. Location Con-
figuration Information (LCI) can provide latitude, longitude,
altitude and their uncertainties. Location Civic Report (LCR

or CIVIC) can provide a “civic” address in a standardized
key-value format. Corresponding “getter” methods getLci()
and getLcr() of RangeResult are blacklisted in Android
and so not available to third-party applications. However,
the getUnverifiedResponderLocation() method is available
to obtain a ResponderLocation from a RangeResult and this
has the available location information.

Presently, only Compulab’s “Wi-Fi Indoor Location De-
vice” (WILD) provides for specification of LCR and CIVIC
information about the access point (using entries -lci=... and
-civic=... in the hostapd.config file). Sadly, at this point, no
other Wi-Fi access point allows specification of the location
of the access point.

Appendix D
Placement of responders

In the 2-D examples in Fig. 14 the green dots are the
locations of responders (APs), while the red dots are potential
positions for the initiator (smartphone, STA). The constant
error curves show how position may be poorly localized in
some direction yet well constrained in a direction at right
angles. In placing the responders, the aim is to make the
constant error curves small and round in most of the work
space. Symmetrical layouts for the responders seem to work
well, as shown on the left in Fig. 14, while somewhat suprising
results may be achieved with asymmetrical layouts, as shown
on the right in Fig. 14. Note also that location can be recovered
reasonably well even outside the convex hull of the responders
— up to a point.

Fig. 14. Quality of location determination near three responders (2-D case).
Left: Symmetric arrangement. Right: Asymmetric arrangement.

Fig. 15. Left: Placement of 4 responders (3-D case) Right: Placement of 6
responders (3-D case)
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For 3-D, cubic volume of interest (or a rectangular brick
shaped volume with not-too-different side lengths), placing
four responders at the vertices of a tetrahedron embedded in
the cube has appealing properties (these points are at the four
“even” vertices of the cube (left side of Fig. 15). With six
responders, the vertices of an octahedron have good properties
(these six points are at the face centers of the cube (see right
side of Fig. 15). Both of these configurations avoid placing
any subset of (more than three) responders in a plane.

Adding a responder somewhere in the middle of the volume
also improves overall location accuracy determination quality
(See e.g. right side of Fig. 11).

Placing responders at regular intervals along a line (a
corridor say), while providing simplicity of installation, may
not be a good idea if location accuracy is of importance.
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