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Abstract: The World Health Organization(WHO) in 2016 considered mHealth as: “the use of 

mobile wireless technologies including smart devices such as smartphones and smartwatches for 

public health” as an important resource for health services delivery and public health given their 

ease of use, broad reach and acceptance. WHO emphasizes the potential of this technology to 

increase access to health information, services and skills as well as promoting positive changes in 

health behaviors and management of diseases. In this regard, the capability of smartphones and 

smartwatches for m-health monitoring as well as verification of the patient the signal has become 

an important component of mHealth system. Most of the smartwatches could extract more than 

one bioelectrical signal therefore, therefore they provide suitable platform for extracting health 

data for e-monitoring. The existing approaches have not considered the integrity of data obtained 

from these smart devices. Therefore, it is important that the integrity of the collected data be 

verified continuously through user authentication. This could be done using any of the 

bioelectrical signals extracted and transmitted for e-monitoring. In this article, a smartwatch is 

used for extracting bioelectrical signal before decomposing the signal into sub-bands of Detail and 

Approximation Coefficient for user authentication. To select suitable features using biorthogonal 

wavelet decomposition of signal from a non-intrusive extraction, a detailed experiment is 

conducted extracting suitable statistical features from the bioelectrical signal from 30 subjects 

using different biorthogonal wavelet family. Ten features are extracted using Biorthogonal 

wavelet to decompose the signal into three levels of sub-band Detail and Approximation 

Coefficient and features extracted from each level the decomposed Detail and Approximation 

Coefficients. Comparison analysis is done after the classification of the extracted features based on 

the Equal Error Rate (EER). Using Neural Network (NN) classifier, Biorthogonal Wavelet Detail 

Coefficient Sub-band level 3 of bior1.1 achieved the best result of EER 13.80% with the fusion of 

the best sub-band three levels of bior1.1 achieving a better result of 12.42% EER. 

Keywords: bioelectrical signals; biorthogonal wavelet; approximation coefficients; detail 

coefficient; wavelet transform; smartwatch; m-health Monitoring 

 

1. Introduction 

The use of smartphones has increased over the years with many services adapting to mobile 

applications. The growth has seen competition in the use of mobile applications to market and 

advertise goods and services. This has increased investment in the provision of services using apps 

on mobile devices. This is because it will be more convenient to access the services on mobile 

devices compared to traditional computing sets. It is estimated that the worldwide usage of the 

most popular mobile device, mobile phones, is expected to reach an estimated 5 billion by 2019 [1]. 
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The statistic states that a total of 2.1 billion of the 4.77 billion phones are smartphones. Smart 

devices are valuable devices not only because of its sophistication but also because they are used to 

store sensitive information like health, business and financial information etc. [2]. Also, most social 

network applications such as Facebook, WhatsApp etc. can be accessed once the device is accessed. 

Therefore, it is expedient to secure these mobile devices to prevent access by an unauthorized user. 

Knowledge based authentication mechanism have been a traditional way for authenticating a user’s 

access to a device. The use of knowledge-based user authentication to secure mobile devices has 

been effective but limited. The use of secret information known to the user can be forgotten or can 

be obtained by another person if written down [3]. To improve on the limitation of knowledge base 

user authentication on a mobile device, biometrics for user authentication is becoming prevalent. 

Recent researches are focusing more on the use continuous and transparent biometric user 

authentication for securing smart mobile devices [4]. Smartwatches are among the smart devices 

that are becoming popular because of the incorporation of more sensors. The increase in their 

technological advancement has enhanced their functionality and capabilities. For example, some 

have the capability of accepting and declining calls, reading Short Message Service (SMS), listening 

to music, navigation etc. Smartwatches of recent has the capability for user authentication 

enhancement for mobile devices. They can create activity logs, extract bioelectrical signals, context 

awareness data and transmit same to a mobile device [5, 6]. To implement a biometric user 

authentication mechanism on a mobile smart device, suitable features are essential for the 

implementation. As stated earlier, WHO emphasizes the potential m-health technology by delivery 

of Cluster of Health Systems and Innovation [7]. Mobile device and application have integrated into 

the health system with telemedicine and telehealth via the Internet of Things (IoT) [8]. Mobile and 

wearable devices are useful for health and wellbeing monitoring to improve and authenticate the 

patient for data trust. Therefore, the evaluation of features extracted from the smartwatch is also 

imperative. In this paper, a smartwatch is used to extract bioelectrical signal while decomposition 

of the signal is done using Biorthogonal Wavelet. The signal is extracted for mobile health 

monitoring and verifying the patient from which the health information is extracted from.  

 

Several techniques have been used for feature extraction including wavelet transform. Wavelet 

transform is widely used for the extraction of non-stationary bioelectrical signal features [9]. 

Wavelet transform is classified into two types, Continuous Wavelet Transform (CWT) and discrete 

Wavelet Transform (DWT). Discrete wavelet transform is popular for measurement and analysis of 

time-frequency and spectral component variation [10, 11]. The method has been used extensively 

[12], Subasi [13] and Jahankhani [14]. The use of DWT enables the extraction of features that vary in 

time and is useful for analyzing transient signals [15, 16]. There are several types of DWT which 

include Biorthogonal, Morlet, Symlets, Mexican Hat, Haar, Daubechies, Coiflets, Meyer [15, 18] as 

shown in Figure 1. The Biorthogonal wavelet family includes Bior1.1, 1.3, 1.5, Bior2.2, 2.4, 2.6, 2.8, 

Bior3.1, 3.3, 3.5, 3.7, 3.9, Bior4.4, Bior5.5 and Bior6.8. Biorthogonal wavelet transforms decompose a 

signal into Approximation and Detail Coefficients. The Approximation and Detail Coefficients 

contains relevant information of the signal from which features can be extracted. Each n-level of the 

sub-band further decomposes the bioelectrical signal into a high and low frequency signal 

component [15, 19]. 

 

Several literatures have shown that bioelectrical signals contain noise therefore require 

pre-processing. The application of biorthogonal wavelet filters some of the noise in bioelectrical 

signals because biorthogonal wavelet uses a filter bank when decomposing the signal into 

sub-bands. The overall aim of this work is focused on the performance of biorthogonal wavelets 

features by applying the most suitable sub-band of either Approximation Coefficients or Detail 

Coefficients features for classification. Majority of the prior work using Biorthogonal wavelet [20-26] 

used either Approximation Coefficients or Detail Coefficients mostly from signal extracted using 

intrusive method. The used of smartwatch reduces the intrusiveness in the extraction of the signal 

therefore; a comparison analysis is carried to determine the most efficient of the Biorthogonal 
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wavelet family for extracting features. The most efficient coefficient could be used to implement 

user authentication mechanism for m-health monitoring. It is important to note that mobile health 

is on the rise and useful for daily life related health monitoring of patient however, most are for 

emphases on the usability [7, 27] and availability of the health data. The authenticity of the data 

should be verity because the wearable device could be worn by a different person other than the 

patient. The work proposed a framework design for implementing a m-health monitoring as well as 

verity the patient the health information is coming from. The monitoring framework should be able 

alert the staff when a different person’s information instead of the patient. The framework includes 

a transparent data extraction, pre-processing, feature extraction and classification for the patent’s 

verification. The feature extraction and processing are important due to mobile device power 

processing capability. The most viable section of the signal should be identified for feature 

extraction for patient authentication.  

 

 

Figure 1.Wavelets families with the first row showing discrete wavelets and the second row showing several 

continuous wavelets 

2. Methodology 

2.1. Data Collection 

To apply a robust dataset, 30 subjects are used for the evaluation of the statistical feature and 

the comparison experiment using different biorthogonal wavelet family. Using a smartwatch, 

bioelectrical signals of the heart rate is extracted for one hour without a specific task. The data is 

transmitted to a smart phone for storage via a Bluetooth connection. A sampling rate of 8 samples 

per second is used to extract enough data points per second. The signal is then segmented into a time 

frame of 10 seconds. A total of 360 data segments containing 80 data points per segment are used per 

subject for feature extraction. Before the evaluation of the biorthogonal wavelet sub-bands, 12 

subjects are used to select the most suitable features before applying same to 30 subjects. Figure 2 

show the applications used for the extraction the data from the smartwatch to the smart phone. The 

different android applications in the phone perform different function the continuously extract the 

dataset if the two devices and within a communication distance. Within the smart phone as shown in 

Figure 3, the AutoStart and staY application search for the pair blue tooth device and reconnects it 

whenever it’s found. This enables the smartwatch and the smartphone to reconnect, pair up and 

enable data transfer when the smart or phone is switched on. The Microsoft health is a proprietary 

application customized to communicate with the inbuilt application on the smartwatch. The third 

application, Companion for Band bind with the Microsoft health to log its data in a better and more 

presentable. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2020                   



 4 of 18 

 

 

Figure 2. A high-level view of the system used, comprising a Smartwatch and Smartwatch. 

 

 

Figure 3. Illustration of the Mobile Application process within the Smartphone 

2.2. Biorthogonal Wavelet Decomposition 

The signal processing involves the reduction of the noise using filters. Biorthogonal wavelet 

processes a signal using of low pass (L) and high pass (H) filters. The output is either a 

decomposition or reconstruction of the signal of the low pass or high pass filters into four different 

outputs: 

 

• Decomposition low-pass filter = Lo_D 

• Decomposition high-pass filter = Hi_D 
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• Reconstruction low-pass filter = Lo_R 

• Reconstruction high-pass filter = Hi_R 

 

This work applies the decomposition of the signal using the high and low pass filters to the n 

numbers of feature samples generated. The wavelet decomposition low-pass filter [ ], the lowest 

level of the transform and decomposition high-pass filter [ ] the highest level of the transform. The 

output is the approximation  and detailed   coefficients. The coefficient of each signal 

sample frequency of the wavelet is calculated.  To determine the ith level, the following formula is 

used (28): 

 

                                          (1) 

 

                                            (2)   

 

The low and high pass filter rely on , the scaling function and , the wavelet 

function while the signal length is . 

 

 

Figure 4. Wavelet decomposition of the detail and approximation coefficients 

2.3. Feature Extraction 

The first step in the process is identifying the features to use. Based upon prior works on 

bioelectrical feature extraction, statistical feature has been employed [13, 26, 29]. An initial 12 

subjects are used to test run the 12 statistical features applied to 4 sub-bands. The 12 statistical 

features are later extracted from the biorthogonal wavelet 3 sub-bands of 30 subjects. The feature 

used in this experiment are listed as: 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2020                   



 6 of 18 

 

Table 1. Showing the Features extracted 

 Feature Set Feature description Feature Formula 

1 Variance This is the sum of square distance of 

the bioelectrical signal. 

 

2 Mean of the energy  

 

The signal mean of the energy is the 

energy average value of the 

bioelectrical signal. 

 

3 Minimum Energy 

 

This is the lowest energy value of the 

bioelectrical signal 
 

4 Maximum Energy This is the highest energy value of the 

bioelectrical signal. 
 

5 Mean  

 

These are the values diversity of the 

data around the median. 

 

6 Minimum Amplitude This is the lowest point from the 

equilibrium point of the bioelectrical 

signal. 

 

7 Standard Deviation 

(STD) 

This is the square root of the variance 

of a random variation. 

 

8 Maximum Amplitude This is the highest point from the 

equilibrium point of the bioelectrical 

signal. 

 

9 Range This is the difference between the 

highest signal value and the lowest 

signal value. 

Range = max. signal-min. 

signal 

10 Peak2peak This is the difference between the 

maximum and minimum values of the 

bioelectrical signal 

P2P= Signal 

Maximum-to-minimum 

difference 

12 Root Mean Square 

(RMS) 

The RMS is the measurement of the 

magnitude of a set values within the 

signal.  

 

The features are extracted from the detailed  and approximation  coefficients as shown 

in Figure 5. The 12 features are extracted from each level of the decomposed signal of detail (D1-D4) 

and approximation (A1-A2). 12 features extracted from each of the 3 sub-band levels and classified 

using Neural Network Feedforward. 
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Figure 5. Schematic illustration of the feature extraction process 

2.4. Classification 

Neural network is one of the most widely used classifier in bioelectrical signal classification. 

Prior works have used Neural Network for classification of bioelectrical signals [13, 26, 29, 30]. 

Neural Network can easily map a set of input signals to the output signals [31]. The classification 

evaluation metric calculates the equal error rate (EER) using false acceptance rate (FAR) and false 

rejection rate (FRR). The EER is the point at which the FAR and FRR meet. The features extracted 

from the level 1 to 3 sub-bands of the decomposed signals are classified from each of the 

biorthogonal wavelet family. The 12 (N) features are sent as input with 75 (M) hidden layers used for 

the classification. The output is either True Negative (0) or True Positive (1) as shown in Figure 6, 

while the True Positive indicates as the right patient information while True Negative indicates as 

non-patient information.  

 

 

Figure 6. The structure of the Feedforward model used in the study 

3. Results 

3.1. Result on Selecting the Statistical Features 

To study the discrepancy between subjects using the features, the fourteen features are 

extracted from a segment of the bioelectrical signal. The output is tabulated to show the variations 

of the features across subjects. The feature variations are important in choosing the most effective 

features to apply on the biorthogonal wavelet sub-bands decomposition before classifying the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2020                   



 8 of 18 

 

output. The graphical representations of the extracted features in Figure 1 to 4 are represented in 

different feature score ranges. The feature variations are important in choosing the most effective 

features for classification of subjects.  Fourteen statistical features are extracted from the 12 

subjects. The features are extracted with MATLAB using the first level detail coefficient of 

biorthogonal wavelet transform sub-band. The output is tabulated to show the variations as 

illustrated in Figure 7-10. The feature selection plotting is divided based on the various feature 

scoring values. The x axis shows the different features scores while the Y axis shows the scores. The 

disparity of score between the subjects shows good discriminatory information in the features. For 

example, Figure 7 shows subject 11 and 12 having different score of variances mean of energy and 

mean and for each subject their feature scores are also different too. This is important as it is used to 

differentiate the subjects because of the different information provided by the features associated 

with each subject. 

 

 

Figure 7. Variation of Variance, mean of the energy, Minimum Energy and mean on twelve subjects 

 

Figure 8 values ranges from 0.0 to 0.03 with the mean having the highest value. The graphical 

representation shows that the variation of Variance and Mean of the energy provides good value to 

discriminate subjects with Minimum Energy not having any value. The mean has value for some but 

not all the subjects. Therefore, the Minimum Energy and the mean will not be ideal for use to 

classification of subjects. The variation of subjects by the Minimum Amplitude, Maximum energy, 

and Deviation as illustrated in Figure 2 with values ranging from -0.29 to 0.23 provides for used 

discrimination, therefore the three will be selected for further feature extraction. 

 

 

Figure 8. Variation of Minimum Amplitude, Maximum energy, and Standard Deviation on twelve subjects 
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Figure 9 showing the plot for variation of Maximum Amplitude, Range, Peak2peak and Peak 

Magnitude shows the Range and Peak2peak scoring the same value across all the subjects while the 

rest of the features shows good discrimination between subjects. All the features are selected except 

the Range and Peak2peak. The range is chosen as the use of the two features of Range and 

Peak2peak will not add value the process since they represent the same value. The variations of all 

features in Figure 10 except the Average frequency have good values for discrimination. The Mid 

frequency and Root Mean Square will be selected while the Average frequency will be rejected for 

the feature extraction process for the 12 subjects. From the fourteen features, ten features of the 

variance, minimum amplitude, maximum energy, standard deviation, maximum amplitude, 

peak2peak, peak magnitude to RMS ratio, average frequency, root mean square (RMS) and peak 

magnitude were chosen. 

 

 

Figure 9. Variation of Maximum Amplitude, Range, Peak2peak and Peak Magnitude on twelve subjects 

 

 

Figure 10. Variation of Mid frequency, Root Mean Square and Average frequency on twelve subjects 
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3.2. Result on single Sub-band Feature 

To extract features from the signal, fifteen different wavelets from Biorthogonal Wavelet family 

are used to decompose the signal into three sub-bands. To evaluate the performance of the three 

sub-bands of Approximation Coefficients and Detail Coefficients, the ten features selected are 

applied to three sub-bands of approximation of coefficients and detail coefficients from 30 subjects. 

The used of 3 sub-band (decomposition level) is because of the bioelectrical signal frequency of the 

heart rate. This is necessary because it should correlate with the frequencies necessary for 

classification [28]. Neural network classifier is used with the same network size across all the 

sub-bands. The network size is not the best that can be applied but for equal evaluation across the 

sub-bands, network size 20 is used. Table 1 shows the output result for the sub-bands. To analyse 

Table 2, two sets of results are presented in a diagram as illustrated in Figure 5 and 6. In these two 

sets of diagram, radar chart is used to show the fifteen biorthogonal wavet family. 

 

Table 2.The three sub-band levels of approximation of coefficients and detail coefficients (A1: Approximation of 

coefficient sub-band1, A2: Approximation of coefficient sub-band 2, A3: Detail coefficient sub-band 3, D1: Detail 

coefficients sub-band1, D2: Detail 

No Wavelet Family 
Approx. of Coefficients and Detail Coefficients (%) 

D1 A1 D2 A2 D3 A3 

1 Bior1.1 32.27 31.54 32.21 32.31 16.41 16.66 

2 Bior1.3 31.02 31.77 33.51 29.80 16.79 16.56 

3 Bior1.5 32.33 31.42 33.32 33.21 17.56 17.20 

4 Bior2.2 31.79 31.12 34.50 32.99 20.69 21.69 

5 Bior2.4 32.59 31.55 32.06 31.87 20.02  20.95 

6 Bior2.6 30.87 31.44 32.32 34.55 21.47 19.94 

7 Bior2.8 30.83 30.39 32.66 29.81 20.79 20.44 

8 Bior3.1 32.16 31.40 33.67 31.58 29.82 29.70 

9 Bior3.3 31.10 33.64 33.74 32.18 32.82 31.90 

10 Bior3.5 32.65 31.40 34.44 31.63 31.11 34.32 

11 Bior3.7 32.73 32.90 30.08 33.67 28.52 28.95 

12 Bior3.9 33.41 29.99 33.10 31.81 28.50 30.67 

13 Bior4.4 31.85 29.03 37.57 34.86 36.54 37.16 

14 Bior5.5 31.61 31.87 33.67 34.05 35.93 39.01 

15 Bior6.8 35.22 33.07 33.59 30.94 37.40 37.90 

 

Figure 11 shows detail comparison of the classification results using the fifteen biorthogonal 

wavelet decomposition of approximation between sub-band 1, 2 and 3. The results from the two 

classifications (Figure 11 and 12) produced identical results for the approximation of coefficients and 

detail coefficients. However, a closer look at the radar chat show the Approximation of coefficient 

and detail coefficient sub-band results of sub-band 2 and 3 fluttered with in the EER of 30% to 35%. 

The 3 sub-band showed better performance in the first 7 biorthogonal wavelet for both the 

approximation of coefficients and detail coefficients. 
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Figure 11. Classification accuracy comparison in EER across various biorthogonal decomposition of 

approximation of coefficient features (A1: Approximation of coefficient sub-band1, A2: Approximation of 

coefficient sub-band 2, A3: Approximation of coefficient sub-b) 

 

     

Figure 12. Classification accuracy comparison across various biorthogonal decomposition Detail coefficient 

features (D1: Detail coefficients sub-band1, D2: Detail coefficients sub-band 2, D3: Detail coefficients sub-band 

3) 

 

To further analyze the three sub-band levels of Approximation Coefficients as illustrated in 

Figure 11, it is of interest to note that the sub-band 1 of the Approximation Coefficients seem to be 

consistent and within the region of EER of 30% to 35% except in bior4.4 where it is below EER of 30%. 

This implies that using the bior4.4 will produce almost the same result irrespective of the 
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Biorthogonal Wavelet family used if it is suitable for the feature extraction of the dataset. The Detail 

Coefficient features of sub-band 1(D1) in Figure 12 shows the same pattern at the approximation of 

coefficient. The Approximation Coefficient and Detail Coefficient result of sub-band 2 followed the 

same pattern of sub-band 1 Approximation with result within the EER region of 30% to 35%. The 

sub-band 3 of the Approximation Coefficient and Detail Coefficient has an interesting trend. The 

best results are from bior1.1 with EER of 16.66 to bior2.8 have an EER of 20.44% with a sharp 

gradient to a higher EER of 29.70% at bior3.1. The interesting phenomenon is the performance of 

Approximation of Coefficient from bior4.4 to bior6.8 where the EER is highest (among all the 

biorthogonal wavelet classification) compared to its performance from bior1.1 to bior2.8.  This trend 

is notice in both diagrams. 

3.3. Result on Fusion of Sub-band Feature 

The application of fusion in biometric authentication enhances the performance therefore the 

fusion of the sub-band is initiated to study its performance. The fusion is carried out by first 

extracting the features before fusing the three sub-band features for classification. The classification 

result in EER is shown in Figure 13. The Approximation Coefficient has shown better performance in 

all the classified results except on the bior3.3 with an EER of 26.7%. Table 3 shows the best four 

performing biorthogonal wavelets. The best result among them is the Detail Coefficient fusion of the 

bior1.1 three sub-band features scoring an EER of 13.80%. This is followed by the Approximation 

Coefficient fusion of the bior1.1 scoring EER of 14%. A further experiment is conducted using the 

best two results as discussed earlier. The features are fused together and classified separately using 

thirty subjects. 

 

Table 3. Showing the Approx. of Coefficients and Detail Coefficients 

Approx. of Coefficients and Detail Coefficients (%) 

Feature Data Bior1.1 (%) Bior1.3 (%) 

Approx. of Coefficient Sub-band 3  16.66 16.56 

Detail Coefficient Sub-band 3   16.41 16.56 

Approx. of Coefficient Fusion 14.00 14.83 

Detail Coefficient Fusion  13.80 14.89 

 

 

Figure 13. Comparison of the performance of detail and approximation coefficients with different biorthogonal 

wavelet. 
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In the experiment, ten features are extracted from the detail coefficient and approximation of 

coefficient sub-bands of 1, 2 and 3 of the bior1.1 using the best network size. The results of the 

classification are shown in Table 4. 

Table 4. showing the performance of the fusion result 

Sub. Approx. (%) Detail (%) Sub. Approx. (%) Detail (%) 

1 0.00 0.00 16 22.84 20.76 

2 19.04 17.46 17 13.22 15.73 

3 12.07 9.70 18 14.66 10.13 

4 19.83 20.04 19 7.11 4.74 

5 18.89 13.00 20 16.38 9.55 

6 4.60 4.17 21 13.58 11.35 

7 13.36 14.08 22 10.20 12.72 

8 24.21 19.11 23 2.08 2.08 

9 14.80 14.08 24 19.97 9.27 

10 18.10 17.03 25 10.13 9.48 

11 10.06 4.45 26 0.00 0.00 

12 15.52 22.49 27 8.91 8.76 

13 12.72 13.99 28 27.23 28.81 

14 22.56 24.71 29 15.54 14.83 

15 20.55 17.10 30 3.46 3.05 

Fusion Result 13.17 12.42 

 

The combination of the sub-bands is based on the result of preliminary the results on the 

fusion of sub-bands. Finding from the fusion to discriminate between subjects manifested a positive 

result. It is interesting to note that the preliminary the results on the fusion of sub-bands using 

twelve subjects and the final experiment using 30 subjects indicated the same trend in term of the 

difference between the two best results. The initial experimental result had Detail Coefficient 

surpassing Approximation Coefficient with 0.2% EER while the final experiment has the Detail 

Coefficient scoring the best too but with a wider margin of 0.75%. More interesting is the fact that 

most subject’s performance is directly related to the two results for example subject 1 and 26 have the 

same results (0%) on both results. The same is for subject 23 scoring 2.08% EER. They difference 

between the two classification results on individual assessment shows subject 4, 6, 7, 9, 25, 27, 29 and 

30 are close in term of their EER as illustrated in Figure 14. The evaluation has shown the most useful 

biorthogonal wavelet to apply on a bioelectrical signal with same frequency range as the heart rate. 
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Figure 14. The result from the best network size of fusion of approximation of coefficient and detail coefficient 

sub-bands in EER 

3.4. Result Discussion 
As earlier stated, the bioelectrical signal frequency determines the sub-band level to use. It is 

also necessary to note that different signals will ideally use different biorthogonal (bior) family for 

feature extraction if using biorthogonal wavelet. To effectively discuss the results, the biorthogonal 

wavelet is divided into two regions based on the results performance. The first region is from bior1.1 

to 2.8 and the second from bior3.2 to bior6.8. The first region (bior1.1 to bior2.8) approximation of 

coefficient and detail coefficient shows that the sub-band 3 performed better than the sub-band 1 

and 2 as illustrated in Figure 5 and 6. The approximation of coefficient sub-band 1(A1) has a stable 

result in the region. This implies that irrespective of the biorthogonal wavelet family used within the 

two regions, the result is expected to be slightly different from each other except on bior4.4 where 

the result had a better result scoring below EER of 30%. Therefore, it will be most suitable to use 

bior4.4 as shown in the result. In general, sub-band (decomposition level) 1 of approximation of 

coefficient and detail coefficient of biorthogonal wavelet is suitable for bioelectrical feature 

extraction with the same frequency range of heart rate. To limit it to a region it will be most suitable 

to use sub-band 1 of bior1.1 to bior2.8 (first region) of approximation of coefficient and detail 

coefficient for feature extraction. The fusion of the sub-band improves the result of classification. 

Therefore, where it is necessary to apply fusion of the sub-bands considering the processing capacity 

of smart phone, the fusion of either bior1.1 or bior1.3 will be most desirable. The result in Table 3 

shows sub-band 3 of detail coefficient using bior1.3 have the best result of EER of 16.41% and for the 

fusion of features, the best result is the fusion of detail coefficient scoring EER of 13.80%. The result 

from the thirty subjects have shown consistency with the earlier experiment showing the fusion of 

the detail coefficient of bior1.1 is effective in the classification of bioelectrical signals. 

4. Use Case 

Privacy and digital health data are concerned to the health sector therefore, presenting a 

framework to increase the security of the health data for m-health monitoring is useful. There are 

wearable devices used for monitoring patients, these devices include smartwatches which should 
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meet some requirements. These requirements include availability of the require data any time, data 

privacy and security, usability of the data, accuracy of the data. The process describe in this work 

provides a process for using the most suitable portion of a signal for authenticating a subject taking 

into consideration the memory requirement to process the data in a mobile device. The used case 

architecture as shown in Figure 15, will extract data from the patient using the smartwatch then 

transmit to either the Smart mobile device or computer.  

 

 

Figure 15. Proposed m-health monitoring and patient authentication framework 
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Figure 16. Use Case Architecture 

 
Figure 16 shows a framework of the propose used case system. The framework comprises 

different components which includes the following: 

 

• The Smartwatch 

The smart watch provides the technology to keep track of physical activity using sensors for 

tracking health information like heart rate, blood pressure other activities useful for m-health 

monitoring [29]. The smartwatch is the primary data extractor for processing on the either the phone 

or computer in the framework. 

 

• The Smartphone 

Smartphone capability is in the increase, this include its application for variety of activities 

include data collection and processing [30]. The mobile device in the architecture include the data 

collection, data management for transmission to the cloud and patient authentication. It also 

includes a manager for transferring data to the computer. 

 

• The Computing System 

The computing system provide a plate form for processing the data as a compliment to the 

mobile device. The mobile device communicates with the computer for processing and transition of 

the data to the cloud. 

 

• The Cloud 

The cloud provides a channel for transferring the data from the computer or smartphone to the 

medical data record Centre. 

• The Medical records 

The medical record Centre provides a plate form for the implementation of the final verification 

of the data and the patient authentication using the bioelectrical signal transmitted. 

 

5. Conclusion and Future Works 
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The evaluation has shown the most useful biorthogonal wavelet to apply on a bioelectrical 

signal with same frequency range as the heart rate. The fusion of decomposed biorthogonal signal 

of the 3 sub-band levels for classifying bioelectrical signals increases the available information for 

discrimination. The properties of the signals should be considered when choosing the most 

appropriate feature extraction technique. The evaluation can be useful for future work applying 

biorthogonal wavelet for feature extraction of signals, but the drawback is the method is that it is 

time consuming and takes lot of resources to complete the process. Future work should apply other 

sub-band fusion of the biorthogonal wavelet family following the procedure. Also, the signals 

properties can also depend on the activities engaged by the subject therefore, the signal should be 

segmented and grouped with signal with similar properties. Therefore, future work using this 

process should segment the signals grouping similar signal segment with the same property based 

on the activity engaged by the subject while the signal is extracted to improve the result output.  

 

In future works, the proposed framework will be enhanced for implementing m-health 

monitoring system. The framework and the components will also be evaluated applying different 

bioelectrical signal extracted from smartwatch. 
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