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1 Abstract: Many physiotherapy treatments begin with a diagnosis process. The patient describes
> symptoms, upon which the physiotherapist decides which tests to perform until a final diagnosis is
s reached. The relationships between the anatomical components are too complex to keep in mind and
«  the possible actions are abundant. A trainee physiotherapist with little experience naively applies
s multiple tests to reach the root cause of the symptoms, which is a highly inefficient process. This work
s  Pproposes to assist students in this challenge by presenting three main contributions: (1) A compilation
»  of the neuromuscular system as components of a system in a Model-Based Diagnosis problem; (2)
s The Physlt is an Al-based tool that enables an interactive visualization and diagnosis to assist trainee
o  physiotherapists; and (3) An empirical evaluation that comprehends performance analysis and a user
10 study. The performance analysis is based on evaluation of simulated cases and common scenarios
1 taken from anatomy exams. The user study evaluates the efficacy of the system to assist students in
12 the beginning of the clinical studies. The results show that our system significantly decreases the
1 number of candidate diagnoses, without discarding the correct diagnosis, and that students in their
1 clinical studies find Physlt helpful in the diagnosis process.

s Keywords: model based diagnosis; applications; diagnosis; physiotherapy; education

s« 1. Introduction

"

17 When a patient contacts a physiotherapist (PT) regarding a problem in the peripheral nervous
1z system or muscular system, the usual cues are either in terms of motion or sensory abilities. The patient
1 can report some difficulty in performing a specific movement or a sensory problem such as numbness
20 or tingling. A weakened motion is indicated by an observation on the muscles, while a defected
=z sensation is indicated by an observation on the dermatomes. These reports are the symptoms of the
22 patient. Based on the reported symptoms, the PT hypothesizes the possible reasons that could explain
= the patient’s complaints. Theses reasons are called diagnoses. To discriminate the root cause among
22 the possible diagnoses, a troubleshooting process is executed in which the PT performs a series of tests
= that are meant to disambiguate between the correct diagnosis and the rest. This approach is usually
26 time consuming and can be ineffective, especially in the case of trainee PTs with little experience. For
2z example, some clinicians move back and forth between their original and revised hypotheses to come
2s up with a final diagnosis [1].

20 This paper presents a decision support system — Physlt — which aims to assist the trainee PT in the
so diagnosis and the troubleshooting processes!. It computes the diagnoses based on the observations

1 The system can be viewed using the following link: http:/ /www.ise.bgu.ac.il/PHYSIOTHERAPY /Homepage.aspx

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


http://www.mdpi.com
http://www.ise.bgu.ac.il/PHYSIOTHERAPY/Homepage.aspx
https://doi.org/10.20944/preprints202001.0032.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics10020072

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2020 doi:10.20944/preprints202001.0032.v1

20f22

a1 and then it operates a troubleshooting algorithm to assist the PT to choose informative tests and finally
sz identify the root cause of the patient’s complains.

33 The first feature of Physlt is an interactive graphical model of anatomical entities. To this aim, we
s« used expert knowledge to define the important entities that are required to clinically diagnose patients.
35 In particular the tool focuses on nerve roots, nerves, muscles and dermatomes. Using this domain
s representation, we implemented an interactive inference to visually present the relationships between
sz the entities.

38 The second feature of Physlt is a framework to assist a trainee PT with the diagnosis process.
s Our approach is based on modeling the physiotherapy diagnosis process as a model-based diagnosis
20 (MBD) problem [2-5]. MBD relies on a model of the diagnosed system, which is utilized to simulate
a1 the expected behaviour of the system given the operational context (typically, the system inputs). The
a2 resulting simulated behaviour (typically, the system outputs) are compared to the observed behaviour
a3 of the system to detect discrepancies that indicate failures. The model is then used to pinpoint possible
« failing components within the system. In the physiotherapy domain, the observed system behaviour is
s the patient’s weakened motion or defected sensation. The system model is a model of the human body,
s such as the nervous system, the muscles, the dermatomes etc., as well as the connections between them.
«z A diagnosis is the human body component(s) that does not function well. Modeling this problem as
« an MBD enables solving it by applying off-the-shelf MBD algorithms.

a9 The third feature of Physlt is a troubleshooting process in which the root cause of the symptom
so is recognized. This is done by adapting an iterative probing process from the MBD literature [6], in
s»  which tests are iteratively proposed to the PT in order to eliminate redundant diagnoses.

52 There is a huge research on diagnosis in medicine. Most of the works propose frameworks and
ss algorithms utilizing different diagnosis approaches, such as knowledge-based [7], data driven [8] and
s« model-based [9]. Many of the works even run experiments on specific medical problems. As far as
ss we know, no previous work presents a comprehensive tool for trainee PTs that includes visualisation,
s diagnosis and troubleshooting. Our work does not present new diagnosis or troubleshooting methods,
sz but it utilizes previous model-based methods to present a tool that helps trainee PTs in the diagnosis
ss process, by applying anatomical model visualization, diagnosis and troubleshooting.

50 We evaluated Physlt using a comprehensive performance analysis and a user study. The
e performance analysis was performed on both simulated cases and scenarios depicted by the domain
e experts, that are common cases in anatomy exams. We examined the diagnosis process in terms of
ez accuracy, precision, waste costs and the AUC of the health state [10,11]. Our results show that the tool
es always finds the correct diagnosis and that the troubleshooting process can significantly decrease the
e« number of candidate diagnoses, and thus facilitates trainee PTs. Our user study included simulations
es of a physiotherapy diagnosis process performed by physiotherapy students. The students were given
es different levels of access to our system, and were then requested to answer a questionnaire in order to
ez evaluate the experience with the system. The study shows that our system was perceived as helpful in
es choosing the tests to perform and in improving the diagnosis process.

69 The flow of the paper is as follows: in the next section we detail the related work, then in Section
70 3 the architecture and interface of the tool will be presented. Section 4 describes technical details about
= the different parts of Physlt: the model, the diagnosis algorithm and the troubleshooting process. In
72 Section 5 the diagnosis and the troubleshooting processes will be evaluated and in Section 6 the user
7 study will presented. Section 7 concludes this work.

7a 2. Related Work

75 In subsection 2.1 we present the main approaches for diagnosis and specifically model-based
76 diagnosis methods in medicine. Then in subsection 2.2 we depict troubleshooting approaches. Finally
7z in subsection 2.3 the contributions of our work are presented in the light of previous work.
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e 2.1. Diagnosis

79 Diagnosis approaches are typically divided into three categories: data-driven, model-based,
s and knowledge-based. Data-driven approaches are model free. The online monitored data is
e used to differentiate a potential fault symptom from historically observed expected behaviour, e.g.,
s2 via Principle Component Analysis [12]. Model-based approaches [13-15] typically use reasoning
es algorithms to detect and diagnose faults. The correct/incorrect behaviour of each component in the
s system is modeled as well as the connections between them, and the expected output is compared
e  to the observed output. A discrepancy between them is exploited to infer the faulty components.
s Knowledge-based [16] approaches typically use experts to associate recognized behaviours with
ez predefined known faults and diagnoses. A similar partition is proposed by Wagholikar et al. [17],
ss which survey paradigms in medical diagnostic decision support, dividing most works into probabilistic
s models (Bayesian models, fuzzy set theory, etc.), data driven (SVM and ANN) and expert-based
%0 (rule-based, heuristic, decision analysis, etc.).

01 The decision on the best approach is obviously dependent on the domain knowledge. If we
o2 have enough data on past processes of the system then probably we would prefer to use data driven
s approaches, on the other hand if the system can be represented by rules, designed by experts, then
oa a knowledge-based approach is preferred. Finally, if we can formally model the system, then a
os model-based approach will be appropriate. Next, we present relevant research and elaborate on MBD
o6 approaches within the context of medical systems.

o7 In this paper we focus on a model-based approach, since we used expert physiotherapists which
os helped us to model the upper part of the human body which is innervated by the nerve roots C-3
oo to T-1. For a survey of knowledge-based approaches in medicine we refer the reader to [7]. There
10 are additional surveys that address knowledge-based approaches in specific medical fields as breast
11 cancer diagnosis [18] and medical expert systems for diabetes diagnosis [19]. Data driven approaches
102 are very common in medicine, Patel et al. [8] and Tomar et al. [20] survey many of these approaches,
103 specifically Kourou et al. survey machine learning approaches for cancer prognosis [21]. Data Mining
10s  techniques are used to label specific conditions such as Parkinson Disease [22] or Diabetes [23].

105 There are several approaches in MBD. All are relevant also to diagnosis in medicine [9,24].
106 They differ in the way the domain knowledge is represented. Obviously, in many cases the model is
1z determined by the type of knowledge we have. Consistency-Based Diagnosis (CBD) assumes a model
1s  Of the normal behaviour of the system [2,3]. Causality models describe a cause-effect relationships.
10 There are two diagnosis approaches to deal with causality models, set-covering theory of diagnosis
1o [25] and abductive diagnosis [26,27]. A third way to model a system is by a bayesian network [28],
11 where the relations between the components are represented by conditional probability tables. Given
12 evidence, an inferring process is run and produces a diagnosis with some probability. We survey each
us  one of these approaches next.

114 General Diagnostic Engine (GDE) is an algorithm to solve the CBD problem [2]. This algorithm
us proceeds in two steps: (1) First, it finds conflicts in the system by ATMS [29]. A conflict is a set of
ue components, which when assumed healthy the system theory is inconsistent with the observation. (2)
uz  Then the GDE computes the hitting sets of the conflicts, where each hitting set is actually a diagnosis.
us  Downing [30] proposes IDUN which extends GDE to deal with the physiological domain. For this,
s Downing extends the GDE to cope with (1) dynamic models by dividing the time to slices and solve
120 the diagnosis problem for each slice, and with (2) continuous variables by representing the variables
121 qualitatively. He gives some examples from the physiological domain such as diagnosing the stages of
122 acidosis regulation. Also Gamper and Nejdl [31] cope with the temporal and continuous behaviour of
123 medical domain. They propose to represent the temporal relationships between qualitative events in
124 first-order logic and then, given observations, they run CBD algorithm to diagnose the system. They
125 run experiments on a set of real hepatitis B data samples.

126 CASNET [32] is one of the pioneer causal models in medicine. It describes pathophysiological
127 processes of disease in terms of cause and effect relationships. The relationships between the
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12 pathophysiological states are associated also with likelihood to direct the diagnosis. CASENT even
120 links a therapy recommendation to the diagnostic conclusion. INKBLOT [33] is an automated system
130 which utilizes neuroanatomical knowledge for diagnosis purposes. The model includes hierarchy
1:1  anatomical model of the central nervous system where the cause effect relationships describe the
132 connections between and damages and manifestations. Also Wainer et al. [34] describe a cause-effect
133 model where the causes are disorders and effects are the manifestations. They extend the diagnostic
13¢  reasoning, using Parsimonious Covering Theory (PCT) [35], to deal with temporal information and
135 necessary and possible causal relationships between disorders and manifestations. They demonstrate
136 their new algorithm on diagnosis of food-borne diseases.

137 The problem of diagnosis, often shown as a classic example of abductive reasoning, is highly
13¢ relevant to the medical domain [36]. As shown in previous papers [37,38], abduction with a model
13s  of abnormal behaviour is much better way than consistency-based to deal with medical diagnosis.
120 However, not always such knowledge is easy to obtain, since it requires experts to model not only the
12 normal behaviour, but also how a component behaves in each one of its abnormal cases. Obviously,
12 this knowledge helps to focus on more meaningful diagnoses, but it is difficult to obtain. Pukancova
13 etal. [39] focus on a practical diagnostic problem from a medical domain, the diagnosis of diabetes
1as  mellitus. They formalize this problem, using information from clinical guidelines, in description logic
s in such a way that the expected diagnoses are abductively derived. The importance of taking into
16 consideration temporal information in medicine has been previously recognized. Console and Torasso
17 [40] discuss the types of temporal information which can be represented by causal networks, and they
e use a hybrid approach to combine abductive and temporal reasoning for the diagnosis process.

149 Bayesian networks (BN) is a probabilistic model using for diagnosis in various domains such as
1o vehicles [41], electrical power systems [42] and network systems [43,44]. BN describes conditional
11 probabilities between the components; given evidence (observations), an inference algorithm is used
12 to compute the probability of each healthy component to propagate the evidence. A classical work
153 in the medical domain is the Pathfinder, which is designed to diagnose lymphatic diseases using
1ss Bayesian belief networks. It begins with a set of initial histological features and suggests the user
15 additional features to examine in order to differentiate between diagnoses [45,46]. Velikova et al.
16 [47] presents a decision support system that can detect breast cancer based on breast images, the
157 patient’s history and clinical information. To address this goal, they integrate the three approaches to
1se  model the knowledge: consistence-based, causal relationships and Bayesian network. MUNIN is a
10 causal probabilistic network for diagnosing muscle and nerve diseases through analysis of bioelectrical
10 signals, with extensions to handle multiple diseases [48,49].

161 2.2. Troubleshooting

162 Mcilraith [50] presented the theoretical foundation for sequential diagnosis, where a probe is a
163 special case of a truth test, which is a test checking if a given grounded fluent is true. This process
1es is similar to clinical evaluation, where the PT performs tests to discriminate between diagnoses.
1es  Physiotherapy clinical evaluation is also similar to the active diagnosis problem [51,52], which is the
16s problem of how to place sensors in a discrete event system to verify that it is diagnosable, given a set
16z Of observations. A very similar problem is the sensor minimization problem [53], where observers are
16 placed on particular events to make sure the system is diagnosable and the number of observers is
16 minimized [54]. None of these works reasons about scenarios in which the true state of a component
170 can be masked by other components to return inconsistent values upon probing. Mirsky at el. [55]
i1 discuss a similar problem, where the presence of a component in the true hypothesis can be inferred
172 by probes, but they do not reason about a scenario where a specific probe returns one value, while its
173 true state is the opposite value, as discussed in our work.

174 To reduce the number of hypotheses, McSherry et al. [56] propose a mechanism for independence
175 Bayesian framework. The strategy they propose searches for lower and upper bounds for the
e probability of the leading hypothesis as the result of each test is obtained. Rather than a myopic
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17z minimum entropy strategy they propose efficient techniques for increasing the efficiency of a search
s for the true upper or lower bound for the probability of a diagnostic hypothesis.

179 Algorithms for minimizing troubleshooting costs have been proposed in the past. Heckerman
10 et al. [57] proposed the decision theoretic troubleshooting (DTT) algorithm. Probing and testing are
;1 well-studied diagnostic actions that are often part of a troubleshooting process. Probes enable the
12 output of internal components to be observed, and tests enable further interaction (e.g., providing
13 additional inputs) with the diagnosed system, providing additional observations (e.g., observing
1es the system outputs). Placing probes and performing tests can be costly, and thus the challenge is
s Wwhere to place probes and which tests to fix the system while minimizing these costs. The intelligent
1.6 placement of probes and the choice of informative tests have been addressed by many researchers over
17 the years [6,58-63] using a range of techniques including greedy heuristics and information gain. In
s this paper we use the information gain approach and adapting it to handle hidden fault states of the
10 components in the system.

w0 2.3. Summary and our contribution

101 In the light of previous work we can see that medical diagnosis is a highly researched area.
102 Most of the previous works can be divided into three approaches: model-based, data-driven and
103 knowledge-based. The main model-based approaches are consistency-based, causal reasoning and
1a  Bayesian networks. In many cases the diagnosis method depends on the information available to the
105 researcher. Not always experts exist to help in designing a rule-based system or a model, nor there is
16 enough historical data which can be exploited to generate a classifier or to learn probabilities.

197 In this work we used expert PTs to generate a model of the the upper human body which is
s innervated by the nerve roots C-3 to T-1. Unfortunately, we did not have historical data to learn the
100 probabilities of each component to damage nor the conditional probabilities between components.
200 As far as we know, this knowledge is not modeled for neuro-muscular diagnosis in physiotherapy
201 for this part of the body. Therefore, our diagnosis and troubleshooting algorithms assume uniform
202 distribution. Obviously, this can be easily changed given probabilistic knowledge.

203 The main contribution of this paper is a consistency-based diagnosis and troubleshooting tool,
206 especially for trainee PTs, that includes: (1) An interactive visual model, which helps a PT to see the
20s connections between the nerve roots, nerves, muscles and dermatomes. (2) A diagnosis process which
206 assists the PT to generate hypotheses, given the patient’s symptoms. (3) A troubleshooting process
207 that proposes the PT a sequence of tests to discriminate the hypotheses and focus on the correct one.
208 To the best of our knowledge, this is the first tool that combines these components to assist trainee PTs.
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Figure 1. Framework description of the system.
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3. Architecture and Interface

The system is constructed of several components in a client-server framework, which is designed
to allow high usability and applicability for PTs in their clinical evaluations. These components are
depicted in Figure 1. A relational database (DB) is implemented using MSSQL to store the connections
between the different entities. The server side is ASPNET and it connects directly to the DB. After a
connection is established, an Entity Framework is used to map the tables into objects, to allow easier
and faster manipulations on the data. Finally, the client side is implemented using HTML, Javascript
and JSON. The system’s home page is web-based, which allows the user to navigate to one of the
following modules:

Homepage Maps Relationships Diagnosis

Zoom - Hold Left CTRL Button While Moving Cursar

Copyright © By Moshe Hadad & Shay Hibah. All Rights Reserved.

Figure 2. The maps module.

Maps The purpose of this module is to provide visualization of the anatomical entities in the human
body, while allowing to focus on different structures. This module contains an inner navigation
bar, to choose between one of several views: root nerves, nerves, muscles, dermatomes and
relations. All maps but the latest focus on different component types and present the names of
the relevant components on an illustration. The relations map is a hierarchical representation
of the connections between the different entities. It is similar to the relationships graph in the
relationships module, but its visualization focuses only on a specific component at a time. An
example of this representation is shown in Figure 2. Clicking on one of the nodes constructs a
graph of the dependencies of this node.

Relationships The purpose of this module is to allow a thorough investigation of the relations between
the different components of the body. The navigation through the different components can be
performed either by using a drop-down list and choosing a specific item from it, or by clicking
directly on a node in the graph. The complete relationship graph is presented in Figure 3. This
module enables to dynamically navigate from one node to another, a feature which allows the
PT to investigate causal connections.

Diagnosis The purpose of this module is to diagnose the patient, given a list of symptoms. The
initial screen of this module is shown in Figure 4. This screen contains two lists of possible
symptoms — muscles and dermatomes — which can be added by the PT. When the PT finishes
adding initial symptoms, a click on the “Diagnose” button will trigger a recommendation for the
next component to check, and then the system requests the PT to update whether the test passed
or failed (the component works as expected or not). At any point, the PT can choose to stop this
process and receive a list of the remaining diagnoses.
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Figure 3. The relationships module.
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Figure 4. The diagnosis module.

2e0 4. Technical Description

241 In this section we will describe technical details about the different parts of Physlt. Specifically,
22 'we will describe the model we used (Subsection 4.1), the diagnosis algorithm (Subsection 4.2) and the
a3 troubleshooting process (Subsection 4.3).

2as  4.1. Model Description

245 The first feature of Physlt is a model of the entities involved in a physiotherapy diagnosis. We
26 elicited a model of the upper human body which is innervated by the nerve roots C-3 to T-1, or from
2a7  head to the upper part of the torso. We acquired the information through interviews with senior PTs
2ee  and data gathering from physiotherapy graduate students. The entities we modeled are Nerve roots,
200 nerves, muscles and dermatomes. The relations between the different entities are described in Figure 5:

20 Nerves are the common pathway for messages to be transmitted to peripheral organs. A damaged
251 nerve can cause paralysis, pain or numbness in the innervated organs.
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Nerve Root

The initial segment of a nerve
leaving the central nervous system

Nerve Dermatome

Medium to provide both . . An area of the skin supplied by
sensory and motor signals nerves from a single nerve root

Muscle

Produces force and motion

Figure 5. Anatomical entities represented in the diagnosis models.

22 Nerve Roots are the initial segments of a nerve affected by the central nervous system. They are

253 located between the vertebrae and process all signals from the nerves. A damaged nerve root
254 can cause paralysis, weakened movement, pain or numbness in vast areas of the body.

25 Muscles are soft tissues that produce force and movement in the body. A damaged muscle can cause
256 weakness, reduced mobility and pain.

=7 Dermatomes are sensory areas along the skin, which are traditionally divided according the relevant
288 nerve roots that stimulate them. A damaged dermatome is usually caused by a scar or burn and
250 can cause pain, numbness or lack of sense.

260 As can be observed from the list of entities, some of the symptoms overlap each other. Tingling

2e1  sensation at the tip of the index finger can be related either to a problem in a nerve root labeled C-7,
262 to a burn in the relevant dermatome DC-7, or to a problem in a median nerve. Since this work only
263 focuses on damages to the peripheral nervous system or muscular system, we assume that a symptom
2ea that is expressed in a dermatome is a signal to a damage in either a nerve root or a nerve. Moreover, the
205 tingling sensation is a cue related to a dermatome, but the dermatome itself is assumed to be healthy.
266 We will elaborate more on this issue later.

. Nerve Root
. Nerve
D-CE

5

Dermatome

. Muscle \:

O

Figure 6. The relational underlying model of anatomical entities.

D-Cs

267 The anatomical data for creating this model was elicited by us using physiotherapy students and
2es  approved by faculty members with clinical experience. We mapped the relations between all pairs of
260 entities in terms of functionality. A fragment of the elicited relational model is presented in Figure 6.
20 The nodes represent the different components, the colors indicate their type and an edge indicates that
2 one node influences or influenced by the other node associated to it.

272 When modeling the human body in the context of the physiotherapy diagnosis process, the
23 following comments and constraints should be considered:
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zza o  The observations are symptoms or cues, reported by the patient or by the PT.
2rs o  Bach observation is a signal that can be influenced by more than one component in the system.

276 For example, a tingling sensation in the plantar side of the thumb is a signal from a specific
277 dermatome called DC-6, which can be influenced by a problem in the respective root nerve C-6,
278 or from a nerve called radial.

2rs o  The health state of a component cannot be directly evaluated, but must be inferred from
260 observations. Thus, to test the radial nerve described above, the PT will try to cause a tingling
201 sensation in the thumb or to find weakened movement in the hand extensor.

22 o  The outcome of a test does not always directly implies the health state of a component, but can be
283 masked by other components in the system. For example, inability to perform shoulder extension
204 is a signal related to the deltoid muscle, but even when the deltoid is healthy, the extension might
265 fail due to a problem in the radial nerve or the nerve root C-6.

206 4.2, The Diagnosis Process

267 We adapt a model-based diagnosis approach to handle the diagnosis process in Physlt. Let us
2es  formalize the diagnosis process as a MBD problem|[2,3]. Typically, MBD problems arise when the
2ss normal behaviour of a system is violated due to faulty components, indicated by certain observations.

Definition 1 (MBD Problem). An MBD problem is specified by the tuple (SD, COMPS, OBS) where: SD is
a system description, COMPS is a set of components, and OBS is the observations. SD takes into account that
some components might be abnormal (faulty). This is specified by the unary predicate h(-). h(c) is true when
component c is healthy, while —h(c) is true when c is faulty. A diagnosis problem arises when the assumption
that all components are healthy is inconsistent with the system model and the observation. This is expressed
formally as follows

SDA AN\ h(c) NOBSH L
ceCOMPS

290

201 Diagnosis algorithms try to find diagnoses, which are possible ways to explain the above
202 inconsistency by assuming that some components are faulty.

Definition 2 (Diagnosis). A set of components A is a diagnosis if

SDA A —h(c) A )\ h(c) NOBS ¥ L
ceEA cZA

208 There may be multiple diagnoses for a given problem. A common way to prioritize diagnoses
205 1S to prefer minimal diagnoses, where a diagnosis A is said to be minimal if no proper subset A’ C A
206 is a diagnosis. In this work we will focus on finding minimal diagnoses. Let us formalize the
207 neuro-muscular diagnosis in physiotherapy in terms of a MBD problem.

206 COMPS

200 In our model, COMPS is a set of all nerve roots, nerves, muscles and dermatomes. Each ¢ €
so  COMPS has a health state described by h(c) € {True, False}. However, since the physiotherapy
so1  clinical evaluation only discusses the neuro-muscular systems rather than other pathologies such as
sz skin burns, the dermatomes are assumed to be healthy components that are only used for testing other
s0s  components. This means that for each dermatome d € COMPS, it holds that h(d) = True.
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s0a  OBS

305 The observations, OBS in our model, are the patient’s weakened motions or defected sensations.
sos Typically, a patient is not connected to sensors that measure the weakened motion or defected sensation.
s Instead, the PT stimulates the component, for instance a muscle, and observes whether it is defected.
s0s To formalize the observation, let us define a test of a component. Given a component ¢, we define
00 the predicate testOK(c) € {True, False}, where testOK(c) = True indicates that the test successfully
;10 passed, meaning, the motion or the sensation are not defected. Consequently, OBS C {testOK(c) | c €
su COMPS}.

312 SiD

SD represents the behaviour of the components as well as the influence of each component on the
others. Obviously, it is very hard to formalize the behaviour, even for experts. For example, a problem
in the radial nerve might cause pain in the shoulder area, but it can also cause numbness, weakened
movement or none of these symptoms. Nevertheless, it is possible to formalize that once the inputs of
a component are proper and the component is healthy, then we expect to get proper outputs. Let in(c)
and out(c) be the input and output of a component, respectively. We define the predicate ok(in(c)),
where ok(in(c)) = True indicates that the input of component ¢ is proper. In the same way we define
the predicate ok(out(c)). If a component has more than a single input (output) we will add the index to
the input (output), in;(c) (out;(c)). Also, assume ¢, and c,, represent the number of inputs and outputs
of component ¢, respectively. Then the next formula states the behaviour of a component:

Ve € COMPS : (AN ok(ini(c)) A h(j)) — /\  ok(outi(c))
i€{l,..cn} i€{l,..cm}

In addition, we formalize how a proper output influences a test. Intuitively, proper outputs entails
that a test passed successfully. Thus we add the following formula:

Ve € COMPS : (A ok(outi(c))) — testOK (c)
ie{l,..cm}
313 Finally, to formalize the connections between the components, we use the inputs and outputs of

s1e  the components. If, for instance, the first output of component ¢; is the first input of ¢; we add a next
sis equality: outy(c;) = ini(cj).
316 We would like to draw the attention of the reader to two conclusions arising from this model:

sz 1. Transitivity: for a given component ¢, if (1) h(c) = True and (2) every component ¢’ that affects ¢

s18 (out(c") = in(c)) is healthy (h(c’) = True) and (3) the inputs of ¢’ are proper (ok(in(c’)), then it
310 must hold that testOK(c) = True.

20 2. Weak Fault Model (WFM): in this model we describe only the healthy behaviour of a component
321 rather than its faulty modes. Thus, we cannot conclude anything about the success of a test
322 (testOK(c)) in case the component is faulty (i(c) = False). In addition, in case a test passed
323 successfully, we cannot conclude that the component checked by this test is healthy. Only in case
324 that a test failed, we can conclude that the tested component or one of its antecedents is faulty.
325 Once we formalized the problem in terms of an MBD, we can use any off-the-shelf MBD algorithms.

s2s  MBD algorithms can be roughly classified into two classes of algorithms: conflict-directed and
sz diagnosis-directed [64]. A classical conflict-directed MBD algorithm finds diagnoses in a two-stage
a2s  process. First, it identifies conflict sets, each of which includes at least one fault. Then, it applies a
s20  hitting set algorithm to compute sets of multiple faults that explain the observation [2,4,65]. These
s0  methods guarantee sound diagnoses (i.e., they return only valid diagnoses), and some of them are
a1 even complete (i.e., all diagnoses are returned). However, they tend to fail for large systems due to
sz infeasible runtime or space requirements [5].
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Algorithm 1: Probing Process

Input: (COMPS,OBS, SD)
Output: D: a set of diagnoses.
D <+ DIAGNOSER({(COMPS,OBS, SD))
probespey — U D
probes < @
while probs # probes;e, do
probes <— probesyew
argmaXx,c propes IG(c,D)
if !testOK(c) then
D <« remove(D, c)
L probespey — U D

N U1 B W N =

o o 3

10 return (D)

333 Diagnosis-directed MBD algorithms directly search for diagnoses. This can be done by compiling
s3a  the system model into some representation that allows fast inference of diagnoses, such as Binary
s3s  Decision Diagrams [66] or Decomposable Negation Normal Form [67]. The limitation of this approach
36 is that there is no guarantee that the size of the compiled representation will not be exponential in the
;37 number of system components. Another approach is SATbD, a compilation-based MBD algorithm
:3e  that compiles MBD into Boolean satisfiability problem (SAT) [5,68], and then uses state-of-the-art SAT
330 solver to find the possible diagnoses.

340 In this work we used a conflict-directed algorithm, since finding conflicts is polynomial in our
s domain by using a Logic-based Truth Maintaining System [69]. The number of conflicts and their size,
;2 in our domain, are not so big and enable a standard hitting set algorithm to compute the diagnoses in
a3 areasonable time.

sas 4.3. The Troubleshooting Process

345 While the diagnoses computation is feasible, the diagnosis process may still produce a large
as  set of possible diagnoses. To assist the PT to disambiguate between the diagnoses and focus on the
sz root cause of the pain, the third feature of Physlt enables a troubleshooting process. The challenge
:s  in troubleshooting is which test(s) to choose. This process iteratively proposes tests that can discard
a0 incorrect diagnoses and focus on the root cause. We adopt the information gain approach to choose
30 the tests to perform [6,58,61-63].
351 Algorithm 1 presents this process. After running the diagnosis algorithm, it creates a list of
352 possible tests (probes) which include all the components in the diagnosis sets (line 2). It then chooses
553 the probe that gives us the highest information gain (line 6). In practice, we broke ties randomly.
354 After querying about the best probe, the algorithm updates the diagnosis set: if the test successfully
s passed (probe’s output was true), there is nothing to update (since the model is a weak fault model).
s Otherwise, it means that either the probed component or one of its affecting components is faulty.
57 Hence, the algorithm removes all the diagnoses that do not contain the tested component or one of its
e inputs. Lastly, it updates the list of the remaining probes accordingly . This process continues until the
sss  diagnosis set D is not shrunk by the probes anymore. At the end of the process, the algorithm returns
se0  a list of the remaining diagnoses.
The information gain calculation is a standard metric for quantifying the amount of information
gained by testing a component [70]. This can be achieved by comparing between the entropy of the
diagnosis set before and after the test. The entropy of the diagnosis set D is defined as

Ent(D) = — AX}) P(A) -log(P(A)) (1)


https://doi.org/10.20944/preprints202001.0032.v1
https://doi.org/10.3390/diagnostics10020072

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2020 doi:10.20944/preprints202001.0032.v1

12 of 22

32 where P(A) is the probability of the diagnosis A. If the components fail independently of each other,
sz then P(A) = [].ca P(c), where P(c) is the probability of component c to fail. Without prior information,
63 a common assumption is a uniform distribution of the components to fail [10,11]. The information
see  gain from a probe is the difference between the entropy of the set D before the test of ¢ and the entropy
ses  Of the set D’ remains after the test: IG(D|c) = Ent(D) — Ent(D’).

s 5. Performance Analysis

367 We evaluated the diagnosis correctness and the troubleshooting performance in Physlt using
ses empirical analysis of the outputted diagnoses, based on metrics from information retrieval and
se0 diagnostics. These metrics were evaluated both on simulated scenarios, and on case studies
370 representing common scenarios we received from PTs. We first present the methodology of the
sn  scenario generation (subsection 5.1) and the results on these scenarios (subsection 5.2). Then we
a2 present the results on scenarios based on real-world clinical experience (subsection 5.3).

sza b.1. Scenario Simulator

374 In order to evaluate the system, we built a simulator that checks the system’s accuracy and
a5 efficiency using different metrics. The simulator has several steps in the fault injection and observation
a6 process. At first, the simulator chooses 1 to 5 faulty components, randomly. These components are used,
a7 at the end of the diagnosis process, as a ground truth to check the correctness of the diagnoses outputted
s7e by our diagnosis algorithm. We name these injected faulty components as "the real diagnosis".

379 Next, the simulator collects all components that can be relevant to the real diagnosis: This set
se0  includes all the components that were injected as faulty, and the set of components that can be affected
se1 by them. For example, nerve root C-6 is connected directly to Radial, Median and other nerves and
;2 connected indirectly to Brachialis, Extensor Carpi Ulnaris and other muscles. In this case, the root
ez nerve C-6 is above all in the hierarchy, meaning that any of the components found below it can be
ses  affected by it.

385 Then, the simulator labels these potentially affected components with a value of !testOK with a
sss  probability of 0.5. This labeling simulates the answer of a real TP, if the component will be tested in
sez  the troubleshooting process. All other components automatically get the value testOK for their test.
;s The simulator makes sure that every component in the real diagnosis has at least one symptom that
se0  explains its presence and sets the value of this symptom to !testOK. This step is designed to make sure
300 the completeness of the diagnosis process and that it will not miss the real diagnosis.

301 At last, out of the set of the symptoms labeled with !testOK, the simulator chooses symptoms that
302 Will form the observation set of the real diagnosis. We set the number of observations to be blocked
303 from above by the cardinality of the number of faulty components. For example, in case of four faulty
s components, the range of the observation set size is between 1 to 4.

ses  5.2. Results

396 We modeled 75 components in the system. We ran the simulator on all possible faults with
307 a single component, and randomly created additional 150 instances per fault cardinality for cases
30 With 2-6 components. In total, we got 825 instances. Out of these instances, 270 diagnoses contained
30 two of more faulty components with a shared affecting component. We discarded these cases, since
200 they cannot be considered under the assumption of minimal cardinality. Thus, the simulator finally
a1 outputted 555 different cases. We analyzed the results with several metrics:

20z Diagnosis Set Size

a03 This metric measures the outputted set of diagnoses before and after the troubleshooting process.
a4 As seen in Figure 7, the number of diagnoses grows exponentially with the number of reported faulty
as components. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
s0s thus it can be seen that the troubleshooting process succeeds in decreasing the number of diagnoses
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Figure 7. Number of diagnoses before and after the troubleshooting process.

207 even by a half. The more faulty components the more effective the troubleshooting algorithm is in
as reducing the number of diagnoses.
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Figure 8. False positive rate of the simulated scenarios.

w00 False Positive Rate (FPR)

410 This metric measures the FPR of the outputted set of diagnoses before and after the
a1 troubleshooting process. FPR is measured for each diagnosis separately. The formula of this metric is:
sz FPR = FP/N = FP/(FP + TN), where FP is the number of components in the diagnosis that are not
a3 really faulty and TN is the number of components that are not in the diagnosis and are healthy. To
a1a compute the FPR of the whole set of diagnoses, we computed the weighted FPR, by multiplying the
a5 FPR of each diagnosis by its probability. Since the probabilities of the diagnoses are normalized the
as  computation of the weighted FPR is correct.

a17 The x-axis in Figure 8 refers to the number of faulty components while the y-axis refers to the
ais FPR value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
a1e  correspondingly. The lower FPR the better. There is a positive correlation between the number of
a20 faulty components and the FPR value, since the more faulty components the more diagnoses contain
«z  false positive components. Nevertheless, we can see two positive results: (1) the FPR is low even when
a2 the faulty components number increases, (2) the troubleshooting process reduces the FPR.
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Figure 9. Area under the curve of the simulated scenarios.

a2z Area Under the Curve (AUC)

To explain this metric we should define first the term Health State, which has recently proposed
by Stern et al. [10,11]. The health state indicates the probability of each component to be faulty, given a
set of diagnoses D and a probability function over them p:

H(c) =}, p(d) Leea ©)

AeD

where 1.¢x is the indicator function defined as:

1 B 1 ceEA
A7) 0 otherwise

a2a Based on the health state, Stern et al. propose the AUC metric. The AUC is usually used in
a2s  classification analysis to determine if the model predicts the classes well. In order to calculate the AUC
a2s  value, we calculate the FPR and TPR of 11 thresholds values, 0 to 1 in hops of 0.1. Each threshold value
a2z creates a pair of values (FPR and TPR) which eventually becomes a point on the Receiver Operating
a2s  Characteristic curve (ROC). The AUC is the area under the ROC curve. The higher the AUC the more
a2 accurate health state. Each threshold determines the set of components for which the FPR and TPR are
a0 calculated. All components have a higher health state than the threshold are taken into consideration.
431 As seen in Figure 9, the x-axis refers to the number of the faulty components while y-axis refers to
a2 AUC value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,
a3 correspondingly. There is a negative correlation between the number of faulty components and the
aa AUC, since the number of diagnoses grows with the number of faulty components and thus the health
a5 state is less accurate. Furthermore, the AUC of the health state computed for the set of diagnoses
ass  before the troubleshooting process is higher than the AUC calculated after the troubleshooting process.
a3z This shows the benefit of the troubleshooting process.

438 TOP-K

439 This metric is known in the information retrieval literature. It checks whether the real diagnosis
a0 exists in the top-K diagnoses returned by the algorithm, where K is a number between 1 to 5. The
a1 diagnoses are ranked in a decreasing order of their probability. As seen in Figure 10, the x-axis refers
a2 to the K value while the y-axis refers to the ratio of instances that had the faulty components in the
a3 top-K diagnoses. Blue bars refer to initial diagnosis, while final diagnosis are presented by green bars.
aaa  As the value of K increases, the chance to be in the top K increases too. It is clear that the final set of
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Figure 10. Top-K of the simulated scenarios.

sss diagnoses shows better results than the initial set which means that the troubleshooting algorithm is
ass  indeed a helpful tool to reduce the size of the diagnosis set while improving the localization of the real
sz diagnosis.

Table 1. Improvements in metrics per number of faulty components. * - initial value was 0. ** - initial
and final values were both 0.

| Metric [1 J2 [3 J4 [ 5 ‘
FPR 0.11 | 0.08 | 0.06 | 0.03 | 0.04
AUC 0.01 | 0.05 | 0.05 | 0.01 | 0.03
Wasted Effort || 0.15 | 0.25 | 0.42 | 044 | 0.54
Top-5 0.05 | 0.24 | 0.67 | 1.00* | 0.00**
ass All of the above experiments were conducted under the strict assumption that a faulty component

40 may be assigned !testOK with a probability of 0.5. In practice, this probability is expected to be closer to
aso 1 than to 0.5. Therefore, all experiments were repeated such that the simulator always assigns !testOK
a1 to a faulty components and the components it affects. Table 1 summarizes the results of the evaluated
42 Mmetrics so far, using this relaxed assumption, in order to show the real potential improvement of
53 using this system. The rows represent the metrics and the columns represent the number of faulty
sss  components. For each metric and cardinality, we compared the initial and final values and present
«ss  the improvement in the metric in percentage. This table emphasizes that the bigger the cardinality,
a6 the more difficult the problem is to solve. However, the benefit of using the troubleshooting process
as7  is clear: the process manages to remove irrelevant diagnoses (according to the improvement in the
sss  wasted cost and top-5 metrics), without hindering the correctness of the results (since the FPR only
a0 improves). Moreover, the improvement of the troubleshooting becomes greater as the number of faulty
a0 cOmponents increases.

s.2  Comparing to Random

a62 Finally, we show the benefit of the troubleshooting algorithm comparing to a random approach.
a3 The random approach chooses randomly the next component to test from a set which includes the
sss union of all the diagnoses. Obviously, both the information gain algorithm as well as the random
es algorithm will finally invoke the same set of tests and the final set of diagnoses will be the same.
ass However, the order of invoking the tests is different between the two algorithms, and might affect
sz how fast the diagnosis set is reduced. Figure 11 shows the influence of the order of the tests (x-axis
ss  represents the number of tests) on the number of diagnoses. As shown, the troubleshooting algorithm
a0 Which uses the information gain reduces the size of the diagnosis set faster than random. Even
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Figure 11. Reduction of the diagnosis set.

a0 after using a single probe, the random algorithm reduces the number of diagnoses by 38%, and the
an  information gain algorithm manages to reduce it by 47%. This is a significant difference across the
a2 examined cases (p < 0.01). We repeated this experiment for different cardinalities (number of faulty
a7z components), and the reduction trends remain the same for all cardinalities (1 to 5).

a7a  5.3. Real-World Scenarios

a78 With the help of experts from the Physiotherapy Department in Ben-Gurion University of the
aze  Negev, we modeled 17 representative scenarios of common cases, which are in use in physiotherapy
a7z anatomy exams. As these are written scenarios and not clinical evaluation performed on real patients,
ars  the value of some of the components is unknown, and the results of any test performed in order to
aze  reduce the possible diagnosis set will have to be simulated. Simulating test results for this lack of
as0  values will not benefit new insights beyond the ones already received from the simulated cases. Instead,
sex we focus this evaluation on the correctness of the outputted diagnosis set before the troubleshooting
a2 Process.

a83 In 16 out of the 17 cases investigated, the outputted diagnosis set contained the real diagnosis as
asa reported by the PTs. In a single case, the real diagnosis was not a minimal one - but a combination of
aes  two nerve roots C-5 and C-6. According to the constructed model, all the symptoms could be explained
ass  exclusively by C-6, so the diagnosis {C-5,C-6} is redundant. Since our diagnosis algorithm searches
ez for minimal subset diagnoses it missed this diagnosis.

288 Due to the completeness property of our troubleshooting process, in 16 out of the 17 cases the
s system managed to decrease the size of the diagnosis set without removing the correct diagnosis.
a0 These results show that even in realistic scenarios conducted by experts Physlt found sound diagnoses
201 and succeeded to reduce the diagnosis set without missing the real diagnosis.

w2 6. User Study

a93 The promising results of the diagnosis system both on simulated and real scenarios, encouraged us
402 to test the system in a human study, in order to show its ability to assist students in their physiotherapy
a5 studies. There is a variety of books and atlases that teach students anatomy [71-73]. However, to
ass the best of our knowledge, no system is in use to assist physiotherapy students in the beginning of
07 their clinical studies. For this reason, we devised a user study to evaluate the usefulness of Physlt
a8 specifically for students in an advanced stage of their physiotherapy studies.
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a0 6.1. Experimental Setup

500 The experiment consists of simulations of clinical diagnoses with and without the various modules
s of the Physlt system (maps, relationships and diagnosis), following by a questionnaire to evaluate the
so2 students’” experience with the system. We constructed a wrapper to our system with a landing page
sos that can direct the user to the three different modules of Physlt and to a simulator that imitates the
soa diagnosis process.

505 The simulator begins with a list of symptoms that represent the patient’s complaints at the
sos beginning of a diagnosis process. Then, the participant (the experimenter) could choose a test from a
so7 list of dermatomes, muscles, nerves and nerve roots. The simulator simulates the test of the selected
sos component by the physiotherapist and returns whether the test passed successfully (the selected
soo component is healthy) or unsuccessfully. This process is done as long as the experimenter wishes to
s10  perform tests. The cases that were chosen for the simulator are based on the 17 expert case studies. As
su these cases do not elaborate the results of all possible tests, the results of unknown tests were chosen as
si2 follows. For a component that is clearly unrelated to the patient’s symptoms, the relevant test returns
sis  that the component is healthy; for a component that is clearly related to the patient’s symptoms, the
s test returns that the component is not healthy; and for a component that might be connected to one
sis  Of the symptoms, the test result will be chosen at random. The simulated scenario ends when the
sie  participant decides on a diagnosis. The participants were not informed with the correctness of their
siz - responses, so it will not affect their answers about their experience with the system. A screenshot of
sie  the simulator is presented in Figure 12.

Simulation - Round 2/3

Patient’'s Complaints: Last Test: Test history:

Biceps Brachii (muscle) Deep Branch Of Radial: OK

D-C6 (dermatome) .. CN XI: OK
AdeCtor PO” ICIS Abductor Pollicis Longus (APL): OK

Longus (APL): OK

4 4
Nerve Roots: Nerves: Muscles: Dermatomes:

Cc3 Anterior Interosseous Anconeus D-C3

C4 Axillary Lumbricals 1st to 2nd D-C4

c5 Deep Branch Of Radial Lumbricals 3rd to 4th D-C5

Cé Deep Branch Of Ulnar Abductor Digiti Minimi D-C6

c7 Dorsal Scapular Abductor Pollicis Brevis D-C7

cs Dorsal Cervical Abductor Pollicis Longus (APL) D-C8

CNXI Lateral Pectoral Biceps Brachii D-CN Xl

T1 Medial Pectoral Brachialis D-T1

Long Thoracic Brachioradialis

Lower Subscapular Coracaobrachialis

Figure 12. A snapshot of the user study simulator.

510 The three modules of Physit that were evaluated are: maps, relationships and diagnosis (see
s20 Section 3 for details). The participants were divided into three groups, such that each one of them had
s an access to a different subset of the system modules. The first group could only use the maps module;
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s22 the second could use the maps and the relationships modules; and the third could use all of the three
s modules.

524 In addition to the simulations and recorded test sequences and diagnoses, the participants were
sz requested to answer a questionnaire about their experience with the system. The questionnaire
s2¢ consists of the following questions:

1. Improve: Did the system improve your choice of tests to perform?
(yes/no)

2. Clear: Was the system easy to understand?
(5-point scale)

3. Use: Was the system easy to use?

(5-point scale)

4. Preference: Which of the components did you use the most?
(choice between available components)

5. Open: In your opinion, was there something that was missing in the system?
(open question)

520 Thirty one participants in the third year of their physiotherapy studies were divided into three
s:0  groups: The first group consisted of 10 student and received access to the maps module of the PhysIt
sa1 system (the Maps group); the second consisted of 10 students and received access to both the maps
ss2 and the relationships module (the Relationships group); and the third group consisted of 11 students
s13  and received access to all components of the Physlt system (the Diagnosis group).

Improve Preference
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
Maps Relationships Diagnosis Relationships Diagnosis

m Maps m Relationships m Diagnosis

Figure 13. Results for Improve and Preference questions from the user study.

534 Figure 13 shows the results of the first question (Improve) and the fourth question (Preference).
s3s  As seen on the left side of the figure, the Relationships and the Diagnosis modules are considered by
s3s the subjects to improve their diagnosis process significantly more than the Maps module (p = .027 and
sz p = .012 respectively). The Fleiss” Kappa agreement between the subjects is 81% in the Relationships
ss.s  group and 66.3% in the Diagnosis group. As seen on the right side of the figure, out of the participants
s  in the Diagnosis group, 55% preferred the diagnosis module over the other modules of the system. Out
seo  Of the students in the Relationships group, all students preferred the Relationships module over the
saa  Maps module. The results of the other general questions (Clear and Use) seem to be a slight preference
se2  to the diagnosis module over the other modules but they this preference is statistically insignificant.
sas We have also calculated precision and recall for the diagnoses returned by the students compared to
saa  the root problem, but these results were insignificant as well.
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545 For the Open question about what is missing in the system, the most common answer was that
sas the system is missing a preliminary layer where patients can describe their symptoms (e.g., “The patient
sa7  will complain on a tingling sensation, numbness, pain or weakness, not on a NOT-OK deltoid”). The patient’s
see complaints from this preliminary layer might later be connected to other components. Another
sas Teoccurring answer complements that the system lacks more detailed diagnoses (“e.g., the root cause of a
sso  problem is Tennis elbow rather than a NOT-OK Extensor Carpi Radialis Brevis” and “It would be nice to add to
ss1 the diagnosis whether this is a chronic or acute condition”). Overall, it seems like the participants felt that
ss2  the system over-simplified the diagnosis process, but was still considered useful as an educational tool.

ss3s 7. Conclusion and Future Work

554 In this work, we presented Physlt, a tool for diagnosis and troubleshooting for physiotherapists.
sss  We managed to apply an MBD approach in the real world, using a physiotherapy-related domain.
sss  We applied a classical MBD algorithm to compute diagnoses given some symptoms and showed that
ss7  a troubleshooting process can significantly decrease the number of candidate diagnoses, without
sss  discarding the correct diagnosis. Experiments on synthetic scenarios show the benefit of the
sse troubleshooting algorithm. Additional experiments on real scenarios show the potential benefit
seo  Of Physlt to reduce the set of diagnoses without hindering completeness. A user study conducted with
se1  students shows that the system could potentially be in use for physiotherapy studies in the beginnig
se2  Of clinical training.

563 From discussing this work with many PTs who are familiar with clinical evaluation and diagnosis,
ses it seems that several desired properties are necessary in the future:

ses 1. A malfunction in the muscle is usually reported by the patient as a mobility issue. Identifying the

s66 relevant muscle based on motion disability or pain is part of the clinical evaluation, which is not
567 presented in our model. We intend to extend the system to include “movement” entities and their
s68 relations to muscles and nerves.

seo 2. In practice, most tests do not output a binary result and a component can have more states rather
570 than testOK and !testOK. We wish to augment probabilities in our model - both to represent a
s71 degree of “faultiness” and to be able to evaluate the impact of batches of tests.

sz 3. Asshown in previous papers, abduction with a model of abnormal behaviour is a much better
573 way to deal with medical diagnosis. To this aim we plan to achieve more information about the
574 abnormal behaviour of components and integrate it in our model in order to discard redundant
575 diagnoses.
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