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Abstract: Many physiotherapy treatments begin with a diagnosis process. The patient describes 
symptoms, upon which the physiotherapist decides which tests to perform until a final diagnosis is 
reached. The relationships between the anatomical components are too complex to keep in mind and 
the possible actions are abundant. A trainee physiotherapist with little experience naively applies 
multiple tests to reach the root cause of the symptoms, which is a highly inefficient process. This work 
proposes to assist students in this challenge by presenting three main contributions: (1) A compilation 
of the neuromuscular system as components of a system in a Model-Based Diagnosis problem; (2) 
The PhysIt is an AI-based tool that enables an interactive visualization and diagnosis to assist trainee 
physiotherapists; and (3) An empirical evaluation that comprehends performance analysis and a user 
study. The performance analysis is based on evaluation of simulated cases and common scenarios 
taken from anatomy exams. The user study evaluates the efficacy of the system to assist students in 
the beginning of the clinical studies. The results show that our system significantly decreases the 
number of candidate diagnoses, without discarding the correct diagnosis, and that students in their 
clinical studies find PhysIt helpful in the diagnosis process.
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1. Introduction16

When a patient contacts a physiotherapist (PT) regarding a problem in the peripheral nervous17

system or muscular system, the usual cues are either in terms of motion or sensory abilities. The patient18

can report some difficulty in performing a specific movement or a sensory problem such as numbness19

or tingling. A weakened motion is indicated by an observation on the muscles, while a defected20

sensation is indicated by an observation on the dermatomes. These reports are the symptoms of the21

patient. Based on the reported symptoms, the PT hypothesizes the possible reasons that could explain22

the patient’s complaints. Theses reasons are called diagnoses. To discriminate the root cause among23

the possible diagnoses, a troubleshooting process is executed in which the PT performs a series of tests24

that are meant to disambiguate between the correct diagnosis and the rest. This approach is usually25

time consuming and can be ineffective, especially in the case of trainee PTs with little experience. For26

example, some clinicians move back and forth between their original and revised hypotheses to come27

up with a final diagnosis [1].28

This paper presents a decision support system – PhysIt – which aims to assist the trainee PT in the29

diagnosis and the troubleshooting processes1. It computes the diagnoses based on the observations30

1 The system can be viewed using the following link: http://www.ise.bgu.ac.il/PHYSIOTHERAPY/Homepage.aspx
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and then it operates a troubleshooting algorithm to assist the PT to choose informative tests and finally31

identify the root cause of the patient’s complains.32

The first feature of PhysIt is an interactive graphical model of anatomical entities. To this aim, we33

used expert knowledge to define the important entities that are required to clinically diagnose patients.34

In particular the tool focuses on nerve roots, nerves, muscles and dermatomes. Using this domain35

representation, we implemented an interactive inference to visually present the relationships between36

the entities.37

The second feature of PhysIt is a framework to assist a trainee PT with the diagnosis process.38

Our approach is based on modeling the physiotherapy diagnosis process as a model-based diagnosis39

(MBD) problem [2–5]. MBD relies on a model of the diagnosed system, which is utilized to simulate40

the expected behaviour of the system given the operational context (typically, the system inputs). The41

resulting simulated behaviour (typically, the system outputs) are compared to the observed behaviour42

of the system to detect discrepancies that indicate failures. The model is then used to pinpoint possible43

failing components within the system. In the physiotherapy domain, the observed system behaviour is44

the patient’s weakened motion or defected sensation. The system model is a model of the human body,45

such as the nervous system, the muscles, the dermatomes etc., as well as the connections between them.46

A diagnosis is the human body component(s) that does not function well. Modeling this problem as47

an MBD enables solving it by applying off-the-shelf MBD algorithms.48

The third feature of PhysIt is a troubleshooting process in which the root cause of the symptom49

is recognized. This is done by adapting an iterative probing process from the MBD literature [6], in50

which tests are iteratively proposed to the PT in order to eliminate redundant diagnoses.51

There is a huge research on diagnosis in medicine. Most of the works propose frameworks and52

algorithms utilizing different diagnosis approaches, such as knowledge-based [7], data driven [8] and53

model-based [9]. Many of the works even run experiments on specific medical problems. As far as54

we know, no previous work presents a comprehensive tool for trainee PTs that includes visualisation,55

diagnosis and troubleshooting. Our work does not present new diagnosis or troubleshooting methods,56

but it utilizes previous model-based methods to present a tool that helps trainee PTs in the diagnosis57

process, by applying anatomical model visualization, diagnosis and troubleshooting.58

We evaluated PhysIt using a comprehensive performance analysis and a user study. The59

performance analysis was performed on both simulated cases and scenarios depicted by the domain60

experts, that are common cases in anatomy exams. We examined the diagnosis process in terms of61

accuracy, precision, waste costs and the AUC of the health state [10,11]. Our results show that the tool62

always finds the correct diagnosis and that the troubleshooting process can significantly decrease the63

number of candidate diagnoses, and thus facilitates trainee PTs. Our user study included simulations64

of a physiotherapy diagnosis process performed by physiotherapy students. The students were given65

different levels of access to our system, and were then requested to answer a questionnaire in order to66

evaluate the experience with the system. The study shows that our system was perceived as helpful in67

choosing the tests to perform and in improving the diagnosis process.68

The flow of the paper is as follows: in the next section we detail the related work, then in Section69

3 the architecture and interface of the tool will be presented. Section 4 describes technical details about70

the different parts of PhysIt: the model, the diagnosis algorithm and the troubleshooting process. In71

Section 5 the diagnosis and the troubleshooting processes will be evaluated and in Section 6 the user72

study will presented. Section 7 concludes this work.73

2. Related Work74

In subsection 2.1 we present the main approaches for diagnosis and specifically model-based75

diagnosis methods in medicine. Then in subsection 2.2 we depict troubleshooting approaches. Finally76

in subsection 2.3 the contributions of our work are presented in the light of previous work.77
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2.1. Diagnosis78

Diagnosis approaches are typically divided into three categories: data-driven, model-based,79

and knowledge-based. Data-driven approaches are model free. The online monitored data is80

used to differentiate a potential fault symptom from historically observed expected behaviour, e.g.,81

via Principle Component Analysis [12]. Model-based approaches [13–15] typically use reasoning82

algorithms to detect and diagnose faults. The correct/incorrect behaviour of each component in the83

system is modeled as well as the connections between them, and the expected output is compared84

to the observed output. A discrepancy between them is exploited to infer the faulty components.85

Knowledge-based [16] approaches typically use experts to associate recognized behaviours with86

predefined known faults and diagnoses. A similar partition is proposed by Wagholikar et al. [17],87

which survey paradigms in medical diagnostic decision support, dividing most works into probabilistic88

models (Bayesian models, fuzzy set theory, etc.), data driven (SVM and ANN) and expert-based89

(rule-based, heuristic, decision analysis, etc.).90

The decision on the best approach is obviously dependent on the domain knowledge. If we91

have enough data on past processes of the system then probably we would prefer to use data driven92

approaches, on the other hand if the system can be represented by rules, designed by experts, then93

a knowledge-based approach is preferred. Finally, if we can formally model the system, then a94

model-based approach will be appropriate. Next, we present relevant research and elaborate on MBD95

approaches within the context of medical systems.96

In this paper we focus on a model-based approach, since we used expert physiotherapists which97

helped us to model the upper part of the human body which is innervated by the nerve roots C-398

to T-1. For a survey of knowledge-based approaches in medicine we refer the reader to [7]. There99

are additional surveys that address knowledge-based approaches in specific medical fields as breast100

cancer diagnosis [18] and medical expert systems for diabetes diagnosis [19]. Data driven approaches101

are very common in medicine, Patel et al. [8] and Tomar et al. [20] survey many of these approaches,102

specifically Kourou et al. survey machine learning approaches for cancer prognosis [21]. Data Mining103

techniques are used to label specific conditions such as Parkinson Disease [22] or Diabetes [23].104

There are several approaches in MBD. All are relevant also to diagnosis in medicine [9,24].105

They differ in the way the domain knowledge is represented. Obviously, in many cases the model is106

determined by the type of knowledge we have. Consistency-Based Diagnosis (CBD) assumes a model107

of the normal behaviour of the system [2,3]. Causality models describe a cause-effect relationships.108

There are two diagnosis approaches to deal with causality models, set-covering theory of diagnosis109

[25] and abductive diagnosis [26,27]. A third way to model a system is by a bayesian network [28],110

where the relations between the components are represented by conditional probability tables. Given111

evidence, an inferring process is run and produces a diagnosis with some probability. We survey each112

one of these approaches next.113

General Diagnostic Engine (GDE) is an algorithm to solve the CBD problem [2]. This algorithm114

proceeds in two steps: (1) First, it finds conflicts in the system by ATMS [29]. A conflict is a set of115

components, which when assumed healthy the system theory is inconsistent with the observation. (2)116

Then the GDE computes the hitting sets of the conflicts, where each hitting set is actually a diagnosis.117

Downing [30] proposes IDUN which extends GDE to deal with the physiological domain. For this,118

Downing extends the GDE to cope with (1) dynamic models by dividing the time to slices and solve119

the diagnosis problem for each slice, and with (2) continuous variables by representing the variables120

qualitatively. He gives some examples from the physiological domain such as diagnosing the stages of121

acidosis regulation. Also Gamper and Nejdl [31] cope with the temporal and continuous behaviour of122

medical domain. They propose to represent the temporal relationships between qualitative events in123

first-order logic and then, given observations, they run CBD algorithm to diagnose the system. They124

run experiments on a set of real hepatitis B data samples.125

CASNET [32] is one of the pioneer causal models in medicine. It describes pathophysiological126

processes of disease in terms of cause and effect relationships. The relationships between the127
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pathophysiological states are associated also with likelihood to direct the diagnosis. CASENT even128

links a therapy recommendation to the diagnostic conclusion. INKBLOT [33] is an automated system129

which utilizes neuroanatomical knowledge for diagnosis purposes. The model includes hierarchy130

anatomical model of the central nervous system where the cause effect relationships describe the131

connections between and damages and manifestations. Also Wainer et al. [34] describe a cause-effect132

model where the causes are disorders and effects are the manifestations. They extend the diagnostic133

reasoning, using Parsimonious Covering Theory (PCT) [35], to deal with temporal information and134

necessary and possible causal relationships between disorders and manifestations. They demonstrate135

their new algorithm on diagnosis of food-borne diseases.136

The problem of diagnosis, often shown as a classic example of abductive reasoning, is highly137

relevant to the medical domain [36]. As shown in previous papers [37,38], abduction with a model138

of abnormal behaviour is much better way than consistency-based to deal with medical diagnosis.139

However, not always such knowledge is easy to obtain, since it requires experts to model not only the140

normal behaviour, but also how a component behaves in each one of its abnormal cases. Obviously,141

this knowledge helps to focus on more meaningful diagnoses, but it is difficult to obtain. Pukancová142

et al. [39] focus on a practical diagnostic problem from a medical domain, the diagnosis of diabetes143

mellitus. They formalize this problem, using information from clinical guidelines, in description logic144

in such a way that the expected diagnoses are abductively derived. The importance of taking into145

consideration temporal information in medicine has been previously recognized. Console and Torasso146

[40] discuss the types of temporal information which can be represented by causal networks, and they147

use a hybrid approach to combine abductive and temporal reasoning for the diagnosis process.148

Bayesian networks (BN) is a probabilistic model using for diagnosis in various domains such as149

vehicles [41], electrical power systems [42] and network systems [43,44]. BN describes conditional150

probabilities between the components; given evidence (observations), an inference algorithm is used151

to compute the probability of each healthy component to propagate the evidence. A classical work152

in the medical domain is the Pathfinder, which is designed to diagnose lymphatic diseases using153

Bayesian belief networks. It begins with a set of initial histological features and suggests the user154

additional features to examine in order to differentiate between diagnoses [45,46]. Velikova et al.155

[47] presents a decision support system that can detect breast cancer based on breast images, the156

patient’s history and clinical information. To address this goal, they integrate the three approaches to157

model the knowledge: consistence-based, causal relationships and Bayesian network. MUNIN is a158

causal probabilistic network for diagnosing muscle and nerve diseases through analysis of bioelectrical159

signals, with extensions to handle multiple diseases [48,49].160

2.2. Troubleshooting161

Mcilraith [50] presented the theoretical foundation for sequential diagnosis, where a probe is a162

special case of a truth test, which is a test checking if a given grounded fluent is true. This process163

is similar to clinical evaluation, where the PT performs tests to discriminate between diagnoses.164

Physiotherapy clinical evaluation is also similar to the active diagnosis problem [51,52], which is the165

problem of how to place sensors in a discrete event system to verify that it is diagnosable, given a set166

of observations. A very similar problem is the sensor minimization problem [53], where observers are167

placed on particular events to make sure the system is diagnosable and the number of observers is168

minimized [54]. None of these works reasons about scenarios in which the true state of a component169

can be masked by other components to return inconsistent values upon probing. Mirsky at el. [55]170

discuss a similar problem, where the presence of a component in the true hypothesis can be inferred171

by probes, but they do not reason about a scenario where a specific probe returns one value, while its172

true state is the opposite value, as discussed in our work.173

To reduce the number of hypotheses, McSherry et al. [56] propose a mechanism for independence174

Bayesian framework. The strategy they propose searches for lower and upper bounds for the175

probability of the leading hypothesis as the result of each test is obtained. Rather than a myopic176
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minimum entropy strategy they propose efficient techniques for increasing the efficiency of a search177

for the true upper or lower bound for the probability of a diagnostic hypothesis.178

Algorithms for minimizing troubleshooting costs have been proposed in the past. Heckerman179

et al. [57] proposed the decision theoretic troubleshooting (DTT) algorithm. Probing and testing are180

well-studied diagnostic actions that are often part of a troubleshooting process. Probes enable the181

output of internal components to be observed, and tests enable further interaction (e.g., providing182

additional inputs) with the diagnosed system, providing additional observations (e.g., observing183

the system outputs). Placing probes and performing tests can be costly, and thus the challenge is184

where to place probes and which tests to fix the system while minimizing these costs. The intelligent185

placement of probes and the choice of informative tests have been addressed by many researchers over186

the years [6,58–63] using a range of techniques including greedy heuristics and information gain. In187

this paper we use the information gain approach and adapting it to handle hidden fault states of the188

components in the system.189

2.3. Summary and our contribution190

In the light of previous work we can see that medical diagnosis is a highly researched area.191

Most of the previous works can be divided into three approaches: model-based, data-driven and192

knowledge-based. The main model-based approaches are consistency-based, causal reasoning and193

Bayesian networks. In many cases the diagnosis method depends on the information available to the194

researcher. Not always experts exist to help in designing a rule-based system or a model, nor there is195

enough historical data which can be exploited to generate a classifier or to learn probabilities.196

In this work we used expert PTs to generate a model of the the upper human body which is197

innervated by the nerve roots C-3 to T-1. Unfortunately, we did not have historical data to learn the198

probabilities of each component to damage nor the conditional probabilities between components.199

As far as we know, this knowledge is not modeled for neuro-muscular diagnosis in physiotherapy200

for this part of the body. Therefore, our diagnosis and troubleshooting algorithms assume uniform201

distribution. Obviously, this can be easily changed given probabilistic knowledge.202

The main contribution of this paper is a consistency-based diagnosis and troubleshooting tool,203

especially for trainee PTs, that includes: (1) An interactive visual model, which helps a PT to see the204

connections between the nerve roots, nerves, muscles and dermatomes. (2) A diagnosis process which205

assists the PT to generate hypotheses, given the patient’s symptoms. (3) A troubleshooting process206

that proposes the PT a sequence of tests to discriminate the hypotheses and focus on the correct one.207

To the best of our knowledge, this is the first tool that combines these components to assist trainee PTs.208

Figure 1. Framework description of the system.
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3. Architecture and Interface209

The system is constructed of several components in a client-server framework, which is designed210

to allow high usability and applicability for PTs in their clinical evaluations. These components are211

depicted in Figure 1. A relational database (DB) is implemented using MSSQL to store the connections212

between the different entities. The server side is ASP.NET and it connects directly to the DB. After a213

connection is established, an Entity Framework is used to map the tables into objects, to allow easier214

and faster manipulations on the data. Finally, the client side is implemented using HTML, Javascript215

and JSON. The system’s home page is web-based, which allows the user to navigate to one of the216

following modules:217

Figure 2. The maps module.

Maps The purpose of this module is to provide visualization of the anatomical entities in the human218

body, while allowing to focus on different structures. This module contains an inner navigation219

bar, to choose between one of several views: root nerves, nerves, muscles, dermatomes and220

relations. All maps but the latest focus on different component types and present the names of221

the relevant components on an illustration. The relations map is a hierarchical representation222

of the connections between the different entities. It is similar to the relationships graph in the223

relationships module, but its visualization focuses only on a specific component at a time. An224

example of this representation is shown in Figure 2. Clicking on one of the nodes constructs a225

graph of the dependencies of this node.226

Relationships The purpose of this module is to allow a thorough investigation of the relations between227

the different components of the body. The navigation through the different components can be228

performed either by using a drop-down list and choosing a specific item from it, or by clicking229

directly on a node in the graph. The complete relationship graph is presented in Figure 3. This230

module enables to dynamically navigate from one node to another, a feature which allows the231

PT to investigate causal connections.232

Diagnosis The purpose of this module is to diagnose the patient, given a list of symptoms. The233

initial screen of this module is shown in Figure 4. This screen contains two lists of possible234

symptoms – muscles and dermatomes – which can be added by the PT. When the PT finishes235

adding initial symptoms, a click on the “Diagnose” button will trigger a recommendation for the236

next component to check, and then the system requests the PT to update whether the test passed237

or failed (the component works as expected or not). At any point, the PT can choose to stop this238

process and receive a list of the remaining diagnoses.239
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Figure 3. The relationships module.

Figure 4. The diagnosis module.

4. Technical Description240

In this section we will describe technical details about the different parts of PhysIt. Specifically,241

we will describe the model we used (Subsection 4.1), the diagnosis algorithm (Subsection 4.2) and the242

troubleshooting process (Subsection 4.3).243

4.1. Model Description244

The first feature of PhysIt is a model of the entities involved in a physiotherapy diagnosis. We245

elicited a model of the upper human body which is innervated by the nerve roots C-3 to T-1, or from246

head to the upper part of the torso. We acquired the information through interviews with senior PTs247

and data gathering from physiotherapy graduate students. The entities we modeled are Nerve roots,248

nerves, muscles and dermatomes. The relations between the different entities are described in Figure 5:249

Nerves are the common pathway for messages to be transmitted to peripheral organs. A damaged250

nerve can cause paralysis, pain or numbness in the innervated organs.251
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Figure 5. Anatomical entities represented in the diagnosis models.

Nerve Roots are the initial segments of a nerve affected by the central nervous system. They are252

located between the vertebrae and process all signals from the nerves. A damaged nerve root253

can cause paralysis, weakened movement, pain or numbness in vast areas of the body.254

Muscles are soft tissues that produce force and movement in the body. A damaged muscle can cause255

weakness, reduced mobility and pain.256

Dermatomes are sensory areas along the skin, which are traditionally divided according the relevant257

nerve roots that stimulate them. A damaged dermatome is usually caused by a scar or burn and258

can cause pain, numbness or lack of sense.259

As can be observed from the list of entities, some of the symptoms overlap each other. Tingling260

sensation at the tip of the index finger can be related either to a problem in a nerve root labeled C-7,261

to a burn in the relevant dermatome DC-7, or to a problem in a median nerve. Since this work only262

focuses on damages to the peripheral nervous system or muscular system, we assume that a symptom263

that is expressed in a dermatome is a signal to a damage in either a nerve root or a nerve. Moreover, the264

tingling sensation is a cue related to a dermatome, but the dermatome itself is assumed to be healthy.265

We will elaborate more on this issue later.266

Figure 6. The relational underlying model of anatomical entities.

The anatomical data for creating this model was elicited by us using physiotherapy students and267

approved by faculty members with clinical experience. We mapped the relations between all pairs of268

entities in terms of functionality. A fragment of the elicited relational model is presented in Figure 6.269

The nodes represent the different components, the colors indicate their type and an edge indicates that270

one node influences or influenced by the other node associated to it.271

When modeling the human body in the context of the physiotherapy diagnosis process, the272

following comments and constraints should be considered:273
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• The observations are symptoms or cues, reported by the patient or by the PT.274

• Each observation is a signal that can be influenced by more than one component in the system.275

For example, a tingling sensation in the plantar side of the thumb is a signal from a specific276

dermatome called DC-6, which can be influenced by a problem in the respective root nerve C-6,277

or from a nerve called radial.278

• The health state of a component cannot be directly evaluated, but must be inferred from279

observations. Thus, to test the radial nerve described above, the PT will try to cause a tingling280

sensation in the thumb or to find weakened movement in the hand extensor.281

• The outcome of a test does not always directly implies the health state of a component, but can be282

masked by other components in the system. For example, inability to perform shoulder extension283

is a signal related to the deltoid muscle, but even when the deltoid is healthy, the extension might284

fail due to a problem in the radial nerve or the nerve root C-6.285

4.2. The Diagnosis Process286

We adapt a model-based diagnosis approach to handle the diagnosis process in PhysIt. Let us287

formalize the diagnosis process as a MBD problem[2,3]. Typically, MBD problems arise when the288

normal behaviour of a system is violated due to faulty components, indicated by certain observations.289

Definition 1 (MBD Problem). An MBD problem is specified by the tuple 〈SD, COMPS, OBS〉 where: SD is
a system description, COMPS is a set of components, and OBS is the observations. SD takes into account that
some components might be abnormal (faulty). This is specified by the unary predicate h(·). h(c) is true when
component c is healthy, while ¬h(c) is true when c is faulty. A diagnosis problem arises when the assumption
that all components are healthy is inconsistent with the system model and the observation. This is expressed
formally as follows

SD ∧
∧

c∈COMPS
h(c) ∧OBS ` ⊥

290

Diagnosis algorithms try to find diagnoses, which are possible ways to explain the above291

inconsistency by assuming that some components are faulty.292

Definition 2 (Diagnosis). A set of components ∆ is a diagnosis if

SD ∧
∧

c∈∆

¬h(c) ∧
∧

c/∈∆

h(c) ∧OBS 6` ⊥

293

There may be multiple diagnoses for a given problem. A common way to prioritize diagnoses294

is to prefer minimal diagnoses, where a diagnosis ∆ is said to be minimal if no proper subset ∆′ ⊂ ∆295

is a diagnosis. In this work we will focus on finding minimal diagnoses. Let us formalize the296

neuro-muscular diagnosis in physiotherapy in terms of a MBD problem.297

COMPS298

In our model, COMPS is a set of all nerve roots, nerves, muscles and dermatomes. Each c ∈299

COMPS has a health state described by h(c) ∈ {True, False}. However, since the physiotherapy300

clinical evaluation only discusses the neuro-muscular systems rather than other pathologies such as301

skin burns, the dermatomes are assumed to be healthy components that are only used for testing other302

components. This means that for each dermatome d ∈ COMPS, it holds that h(d) = True.303
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OBS304

The observations, OBS in our model, are the patient’s weakened motions or defected sensations.305

Typically, a patient is not connected to sensors that measure the weakened motion or defected sensation.306

Instead, the PT stimulates the component, for instance a muscle, and observes whether it is defected.307

To formalize the observation, let us define a test of a component. Given a component c, we define308

the predicate testOK(c) ∈ {True, False}, where testOK(c) = True indicates that the test successfully309

passed, meaning, the motion or the sensation are not defected. Consequently, OBS ⊆ {testOK(c) | c ∈310

COMPS}.311

SD312

SD represents the behaviour of the components as well as the influence of each component on the
others. Obviously, it is very hard to formalize the behaviour, even for experts. For example, a problem
in the radial nerve might cause pain in the shoulder area, but it can also cause numbness, weakened
movement or none of these symptoms. Nevertheless, it is possible to formalize that once the inputs of
a component are proper and the component is healthy, then we expect to get proper outputs. Let in(c)
and out(c) be the input and output of a component, respectively. We define the predicate ok(in(c)),
where ok(in(c)) = True indicates that the input of component c is proper. In the same way we define
the predicate ok(out(c)). If a component has more than a single input (output) we will add the index to
the input (output), ini(c) (outi(c)). Also, assume cn and cm represent the number of inputs and outputs
of component c, respectively. Then the next formula states the behaviour of a component:

∀c ∈ COMPS : (
∧

i∈{1,...,cn}
ok(ini(c)) ∧ h(j)) →

∧
i∈{1,...,cm}

ok(outi(c))

In addition, we formalize how a proper output influences a test. Intuitively, proper outputs entails
that a test passed successfully. Thus we add the following formula:

∀c ∈ COMPS : (
∧

i∈{1,...,cm}
ok(outi(c))) → testOK(c)

Finally, to formalize the connections between the components, we use the inputs and outputs of313

the components. If, for instance, the first output of component ci is the first input of cj we add a next314

equality: out1(ci) = in1(cj).315

We would like to draw the attention of the reader to two conclusions arising from this model:316

1. Transitivity: for a given component c, if (1) h(c) = True and (2) every component c′ that affects c317

(out(c′) = in(c)) is healthy (h(c′) = True) and (3) the inputs of c′ are proper (ok(in(c′)), then it318

must hold that testOK(c) = True.319

2. Weak Fault Model (WFM): in this model we describe only the healthy behaviour of a component320

rather than its faulty modes. Thus, we cannot conclude anything about the success of a test321

(testOK(c)) in case the component is faulty (h(c) = False). In addition, in case a test passed322

successfully, we cannot conclude that the component checked by this test is healthy. Only in case323

that a test failed, we can conclude that the tested component or one of its antecedents is faulty.324

Once we formalized the problem in terms of an MBD, we can use any off-the-shelf MBD algorithms.325

MBD algorithms can be roughly classified into two classes of algorithms: conflict-directed and326

diagnosis-directed [64]. A classical conflict-directed MBD algorithm finds diagnoses in a two-stage327

process. First, it identifies conflict sets, each of which includes at least one fault. Then, it applies a328

hitting set algorithm to compute sets of multiple faults that explain the observation [2,4,65]. These329

methods guarantee sound diagnoses (i.e., they return only valid diagnoses), and some of them are330

even complete (i.e., all diagnoses are returned). However, they tend to fail for large systems due to331

infeasible runtime or space requirements [5].332
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Algorithm 1: Probing Process

Input: 〈COMPS, OBS, SD〉
Output: D: a set of diagnoses.

1 D ← DIAGNOSER(〈COMPS, OBS, SD〉)
2 probesnew ←

⋃
D

3 probes← ∅
4 while probs 6= probesnew do
5 probes← probesnew
6 argmaxc∈probes IG(c, D)

7 if !testOK(c) then
8 D ← remove(D, c)
9 probesnew ←

⋃
D

10 return (D)

Diagnosis-directed MBD algorithms directly search for diagnoses. This can be done by compiling333

the system model into some representation that allows fast inference of diagnoses, such as Binary334

Decision Diagrams [66] or Decomposable Negation Normal Form [67]. The limitation of this approach335

is that there is no guarantee that the size of the compiled representation will not be exponential in the336

number of system components. Another approach is SATbD, a compilation-based MBD algorithm337

that compiles MBD into Boolean satisfiability problem (SAT) [5,68], and then uses state-of-the-art SAT338

solver to find the possible diagnoses.339

In this work we used a conflict-directed algorithm, since finding conflicts is polynomial in our340

domain by using a Logic-based Truth Maintaining System [69]. The number of conflicts and their size,341

in our domain, are not so big and enable a standard hitting set algorithm to compute the diagnoses in342

a reasonable time.343

4.3. The Troubleshooting Process344

While the diagnoses computation is feasible, the diagnosis process may still produce a large345

set of possible diagnoses. To assist the PT to disambiguate between the diagnoses and focus on the346

root cause of the pain, the third feature of PhysIt enables a troubleshooting process. The challenge347

in troubleshooting is which test(s) to choose. This process iteratively proposes tests that can discard348

incorrect diagnoses and focus on the root cause. We adopt the information gain approach to choose349

the tests to perform [6,58,61–63].350

Algorithm 1 presents this process. After running the diagnosis algorithm, it creates a list of351

possible tests (probes) which include all the components in the diagnosis sets (line 2). It then chooses352

the probe that gives us the highest information gain (line 6). In practice, we broke ties randomly.353

After querying about the best probe, the algorithm updates the diagnosis set: if the test successfully354

passed (probe’s output was true), there is nothing to update (since the model is a weak fault model).355

Otherwise, it means that either the probed component or one of its affecting components is faulty.356

Hence, the algorithm removes all the diagnoses that do not contain the tested component or one of its357

inputs. Lastly, it updates the list of the remaining probes accordingly . This process continues until the358

diagnosis set D is not shrunk by the probes anymore. At the end of the process, the algorithm returns359

a list of the remaining diagnoses.360

The information gain calculation is a standard metric for quantifying the amount of information
gained by testing a component [70]. This can be achieved by comparing between the entropy of the
diagnosis set before and after the test. The entropy of the diagnosis set D is defined as

Ent(D) = − ∑
∆∈D

P(∆) · log(P(∆)) (1)
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where P(∆) is the probability of the diagnosis ∆. If the components fail independently of each other,361

then P(∆) = ∏c∈∆ P(c), where P(c) is the probability of component c to fail. Without prior information,362

a common assumption is a uniform distribution of the components to fail [10,11]. The information363

gain from a probe is the difference between the entropy of the set D before the test of c and the entropy364

of the set D′ remains after the test: IG(D|c) = Ent(D)− Ent(D′).365

5. Performance Analysis366

We evaluated the diagnosis correctness and the troubleshooting performance in PhysIt using367

empirical analysis of the outputted diagnoses, based on metrics from information retrieval and368

diagnostics. These metrics were evaluated both on simulated scenarios, and on case studies369

representing common scenarios we received from PTs. We first present the methodology of the370

scenario generation (subsection 5.1) and the results on these scenarios (subsection 5.2). Then we371

present the results on scenarios based on real-world clinical experience (subsection 5.3).372

5.1. Scenario Simulator373

In order to evaluate the system, we built a simulator that checks the system’s accuracy and374

efficiency using different metrics. The simulator has several steps in the fault injection and observation375

process. At first, the simulator chooses 1 to 5 faulty components, randomly. These components are used,376

at the end of the diagnosis process, as a ground truth to check the correctness of the diagnoses outputted377

by our diagnosis algorithm. We name these injected faulty components as "the real diagnosis".378

Next, the simulator collects all components that can be relevant to the real diagnosis: This set379

includes all the components that were injected as faulty, and the set of components that can be affected380

by them. For example, nerve root C-6 is connected directly to Radial, Median and other nerves and381

connected indirectly to Brachialis, Extensor Carpi Ulnaris and other muscles. In this case, the root382

nerve C-6 is above all in the hierarchy, meaning that any of the components found below it can be383

affected by it.384

Then, the simulator labels these potentially affected components with a value of !testOK with a385

probability of 0.5. This labeling simulates the answer of a real TP, if the component will be tested in386

the troubleshooting process. All other components automatically get the value testOK for their test.387

The simulator makes sure that every component in the real diagnosis has at least one symptom that388

explains its presence and sets the value of this symptom to !testOK. This step is designed to make sure389

the completeness of the diagnosis process and that it will not miss the real diagnosis.390

At last, out of the set of the symptoms labeled with !testOK, the simulator chooses symptoms that391

will form the observation set of the real diagnosis. We set the number of observations to be blocked392

from above by the cardinality of the number of faulty components. For example, in case of four faulty393

components, the range of the observation set size is between 1 to 4.394

5.2. Results395

We modeled 75 components in the system. We ran the simulator on all possible faults with396

a single component, and randomly created additional 150 instances per fault cardinality for cases397

with 2-6 components. In total, we got 825 instances. Out of these instances, 270 diagnoses contained398

two of more faulty components with a shared affecting component. We discarded these cases, since399

they cannot be considered under the assumption of minimal cardinality. Thus, the simulator finally400

outputted 555 different cases. We analyzed the results with several metrics:401

Diagnosis Set Size402

This metric measures the outputted set of diagnoses before and after the troubleshooting process.403

As seen in Figure 7, the number of diagnoses grows exponentially with the number of reported faulty404

components. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,405

thus it can be seen that the troubleshooting process succeeds in decreasing the number of diagnoses406
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Figure 7. Number of diagnoses before and after the troubleshooting process.

even by a half. The more faulty components the more effective the troubleshooting algorithm is in407

reducing the number of diagnoses.408

Figure 8. False positive rate of the simulated scenarios.

False Positive Rate (FPR)409

This metric measures the FPR of the outputted set of diagnoses before and after the410

troubleshooting process. FPR is measured for each diagnosis separately. The formula of this metric is:411

FPR = FP/N = FP/(FP + TN), where FP is the number of components in the diagnosis that are not412

really faulty and TN is the number of components that are not in the diagnosis and are healthy. To413

compute the FPR of the whole set of diagnoses, we computed the weighted FPR, by multiplying the414

FPR of each diagnosis by its probability. Since the probabilities of the diagnoses are normalized the415

computation of the weighted FPR is correct.416

The x-axis in Figure 8 refers to the number of faulty components while the y-axis refers to the417

FPR value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,418

correspondingly. The lower FPR the better. There is a positive correlation between the number of419

faulty components and the FPR value, since the more faulty components the more diagnoses contain420

false positive components. Nevertheless, we can see two positive results: (1) the FPR is low even when421

the faulty components number increases, (2) the troubleshooting process reduces the FPR.422
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Figure 9. Area under the curve of the simulated scenarios.

Area Under the Curve (AUC)423

To explain this metric we should define first the term Health State, which has recently proposed
by Stern et al. [10,11]. The health state indicates the probability of each component to be faulty, given a
set of diagnoses D and a probability function over them p:

H(c) = ∑
∆∈D

p(∆) · 1c∈∆ (2)

where 1c∈∆ is the indicator function defined as:

1c∈∆ =

{
1 c ∈ ∆
0 otherwise

Based on the health state, Stern et al. propose the AUC metric. The AUC is usually used in424

classification analysis to determine if the model predicts the classes well. In order to calculate the AUC425

value, we calculate the FPR and TPR of 11 thresholds values, 0 to 1 in hops of 0.1. Each threshold value426

creates a pair of values (FPR and TPR) which eventually becomes a point on the Receiver Operating427

Characteristic curve (ROC). The AUC is the area under the ROC curve. The higher the AUC the more428

accurate health state. Each threshold determines the set of components for which the FPR and TPR are429

calculated. All components have a higher health state than the threshold are taken into consideration.430

As seen in Figure 9, the x-axis refers to the number of the faulty components while y-axis refers to431

AUC value. Blue and green bars refer to the diagnosis set before and after the troubleshooting process,432

correspondingly. There is a negative correlation between the number of faulty components and the433

AUC, since the number of diagnoses grows with the number of faulty components and thus the health434

state is less accurate. Furthermore, the AUC of the health state computed for the set of diagnoses435

before the troubleshooting process is higher than the AUC calculated after the troubleshooting process.436

This shows the benefit of the troubleshooting process.437

Top-K438

This metric is known in the information retrieval literature. It checks whether the real diagnosis439

exists in the top-K diagnoses returned by the algorithm, where K is a number between 1 to 5. The440

diagnoses are ranked in a decreasing order of their probability. As seen in Figure 10, the x-axis refers441

to the K value while the y-axis refers to the ratio of instances that had the faulty components in the442

top-K diagnoses. Blue bars refer to initial diagnosis, while final diagnosis are presented by green bars.443

As the value of K increases, the chance to be in the top K increases too. It is clear that the final set of444
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Figure 10. Top-K of the simulated scenarios.

diagnoses shows better results than the initial set which means that the troubleshooting algorithm is445

indeed a helpful tool to reduce the size of the diagnosis set while improving the localization of the real446

diagnosis.447

Table 1. Improvements in metrics per number of faulty components. * - initial value was 0. ** - initial
and final values were both 0.

Metric 1 2 3 4 5

FPR 0.11 0.08 0.06 0.03 0.04
AUC 0.01 0.05 0.05 0.01 0.03
Wasted Effort 0.15 0.25 0.42 0.44 0.54
Top-5 0.05 0.24 0.67 1.00∗ 0.00∗∗

All of the above experiments were conducted under the strict assumption that a faulty component448

may be assigned !testOK with a probability of 0.5. In practice, this probability is expected to be closer to449

1 than to 0.5. Therefore, all experiments were repeated such that the simulator always assigns !testOK450

to a faulty components and the components it affects. Table 1 summarizes the results of the evaluated451

metrics so far, using this relaxed assumption, in order to show the real potential improvement of452

using this system. The rows represent the metrics and the columns represent the number of faulty453

components. For each metric and cardinality, we compared the initial and final values and present454

the improvement in the metric in percentage. This table emphasizes that the bigger the cardinality,455

the more difficult the problem is to solve. However, the benefit of using the troubleshooting process456

is clear: the process manages to remove irrelevant diagnoses (according to the improvement in the457

wasted cost and top-5 metrics), without hindering the correctness of the results (since the FPR only458

improves). Moreover, the improvement of the troubleshooting becomes greater as the number of faulty459

components increases.460

Comparing to Random461

Finally, we show the benefit of the troubleshooting algorithm comparing to a random approach.462

The random approach chooses randomly the next component to test from a set which includes the463

union of all the diagnoses. Obviously, both the information gain algorithm as well as the random464

algorithm will finally invoke the same set of tests and the final set of diagnoses will be the same.465

However, the order of invoking the tests is different between the two algorithms, and might affect466

how fast the diagnosis set is reduced. Figure 11 shows the influence of the order of the tests (x-axis467

represents the number of tests) on the number of diagnoses. As shown, the troubleshooting algorithm468

which uses the information gain reduces the size of the diagnosis set faster than random. Even469
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Figure 11. Reduction of the diagnosis set.

after using a single probe, the random algorithm reduces the number of diagnoses by 38%, and the470

information gain algorithm manages to reduce it by 47%. This is a significant difference across the471

examined cases (p < 0.01). We repeated this experiment for different cardinalities (number of faulty472

components), and the reduction trends remain the same for all cardinalities (1 to 5).473

5.3. Real-World Scenarios474

With the help of experts from the Physiotherapy Department in Ben-Gurion University of the475

Negev, we modeled 17 representative scenarios of common cases, which are in use in physiotherapy476

anatomy exams. As these are written scenarios and not clinical evaluation performed on real patients,477

the value of some of the components is unknown, and the results of any test performed in order to478

reduce the possible diagnosis set will have to be simulated. Simulating test results for this lack of479

values will not benefit new insights beyond the ones already received from the simulated cases. Instead,480

we focus this evaluation on the correctness of the outputted diagnosis set before the troubleshooting481

process.482

In 16 out of the 17 cases investigated, the outputted diagnosis set contained the real diagnosis as483

reported by the PTs. In a single case, the real diagnosis was not a minimal one - but a combination of484

two nerve roots C-5 and C-6. According to the constructed model, all the symptoms could be explained485

exclusively by C-6, so the diagnosis {C-5, C-6} is redundant. Since our diagnosis algorithm searches486

for minimal subset diagnoses it missed this diagnosis.487

Due to the completeness property of our troubleshooting process, in 16 out of the 17 cases the488

system managed to decrease the size of the diagnosis set without removing the correct diagnosis.489

These results show that even in realistic scenarios conducted by experts PhysIt found sound diagnoses490

and succeeded to reduce the diagnosis set without missing the real diagnosis.491

6. User Study492

The promising results of the diagnosis system both on simulated and real scenarios, encouraged us493

to test the system in a human study, in order to show its ability to assist students in their physiotherapy494

studies. There is a variety of books and atlases that teach students anatomy [71–73]. However, to495

the best of our knowledge, no system is in use to assist physiotherapy students in the beginning of496

their clinical studies. For this reason, we devised a user study to evaluate the usefulness of PhysIt497

specifically for students in an advanced stage of their physiotherapy studies.498
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6.1. Experimental Setup499

The experiment consists of simulations of clinical diagnoses with and without the various modules500

of the PhysIt system (maps, relationships and diagnosis), following by a questionnaire to evaluate the501

students’ experience with the system. We constructed a wrapper to our system with a landing page502

that can direct the user to the three different modules of PhysIt and to a simulator that imitates the503

diagnosis process.504

The simulator begins with a list of symptoms that represent the patient’s complaints at the505

beginning of a diagnosis process. Then, the participant (the experimenter) could choose a test from a506

list of dermatomes, muscles, nerves and nerve roots. The simulator simulates the test of the selected507

component by the physiotherapist and returns whether the test passed successfully (the selected508

component is healthy) or unsuccessfully. This process is done as long as the experimenter wishes to509

perform tests. The cases that were chosen for the simulator are based on the 17 expert case studies. As510

these cases do not elaborate the results of all possible tests, the results of unknown tests were chosen as511

follows. For a component that is clearly unrelated to the patient’s symptoms, the relevant test returns512

that the component is healthy; for a component that is clearly related to the patient’s symptoms, the513

test returns that the component is not healthy; and for a component that might be connected to one514

of the symptoms, the test result will be chosen at random. The simulated scenario ends when the515

participant decides on a diagnosis. The participants were not informed with the correctness of their516

responses, so it will not affect their answers about their experience with the system. A screenshot of517

the simulator is presented in Figure 12.518

Figure 12. A snapshot of the user study simulator.

The three modules of PhysIt that were evaluated are: maps, relationships and diagnosis (see519

Section 3 for details). The participants were divided into three groups, such that each one of them had520

an access to a different subset of the system modules. The first group could only use the maps module;521
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the second could use the maps and the relationships modules; and the third could use all of the three522

modules.523

In addition to the simulations and recorded test sequences and diagnoses, the participants were524

requested to answer a questionnaire about their experience with the system. The questionnaire525

consists of the following questions:526

1. Improve: Did the system improve your choice of tests to perform?
(yes/no)

2. Clear: Was the system easy to understand?
(5-point scale)

3. Use: Was the system easy to use?
(5-point scale)

4. Preference: Which of the components did you use the most?
(choice between available components)

5. Open: In your opinion, was there something that was missing in the system?
(open question)

527

528

Thirty one participants in the third year of their physiotherapy studies were divided into three529

groups: The first group consisted of 10 student and received access to the maps module of the PhysIt530

system (the Maps group); the second consisted of 10 students and received access to both the maps531

and the relationships module (the Relationships group); and the third group consisted of 11 students532

and received access to all components of the PhysIt system (the Diagnosis group).533

Figure 13. Results for Improve and Preference questions from the user study.

Figure 13 shows the results of the first question (Improve) and the fourth question (Preference).534

As seen on the left side of the figure, the Relationships and the Diagnosis modules are considered by535

the subjects to improve their diagnosis process significantly more than the Maps module (p = .027 and536

p = .012 respectively). The Fleiss’ Kappa agreement between the subjects is 81% in the Relationships537

group and 66.3% in the Diagnosis group. As seen on the right side of the figure, out of the participants538

in the Diagnosis group, 55% preferred the diagnosis module over the other modules of the system. Out539

of the students in the Relationships group, all students preferred the Relationships module over the540

Maps module. The results of the other general questions (Clear and Use) seem to be a slight preference541

to the diagnosis module over the other modules but they this preference is statistically insignificant.542

We have also calculated precision and recall for the diagnoses returned by the students compared to543

the root problem, but these results were insignificant as well.544

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2020                   doi:10.20944/preprints202001.0032.v1

Peer-reviewed version available at Diagnostics 2020, 10, 72; doi:10.3390/diagnostics10020072

https://doi.org/10.20944/preprints202001.0032.v1
https://doi.org/10.3390/diagnostics10020072


19 of 22

For the Open question about what is missing in the system, the most common answer was that545

the system is missing a preliminary layer where patients can describe their symptoms (e.g., “The patient546

will complain on a tingling sensation, numbness, pain or weakness, not on a NOT-OK deltoid"). The patient’s547

complaints from this preliminary layer might later be connected to other components. Another548

reoccurring answer complements that the system lacks more detailed diagnoses (“e.g., the root cause of a549

problem is Tennis elbow rather than a NOT-OK Extensor Carpi Radialis Brevis" and “It would be nice to add to550

the diagnosis whether this is a chronic or acute condition"). Overall, it seems like the participants felt that551

the system over-simplified the diagnosis process, but was still considered useful as an educational tool.552

7. Conclusion and Future Work553

In this work, we presented PhysIt, a tool for diagnosis and troubleshooting for physiotherapists.554

We managed to apply an MBD approach in the real world, using a physiotherapy-related domain.555

We applied a classical MBD algorithm to compute diagnoses given some symptoms and showed that556

a troubleshooting process can significantly decrease the number of candidate diagnoses, without557

discarding the correct diagnosis. Experiments on synthetic scenarios show the benefit of the558

troubleshooting algorithm. Additional experiments on real scenarios show the potential benefit559

of PhysIt to reduce the set of diagnoses without hindering completeness. A user study conducted with560

students shows that the system could potentially be in use for physiotherapy studies in the beginnig561

of clinical training.562

From discussing this work with many PTs who are familiar with clinical evaluation and diagnosis,563

it seems that several desired properties are necessary in the future:564

1. A malfunction in the muscle is usually reported by the patient as a mobility issue. Identifying the565

relevant muscle based on motion disability or pain is part of the clinical evaluation, which is not566

presented in our model. We intend to extend the system to include “movement” entities and their567

relations to muscles and nerves.568

2. In practice, most tests do not output a binary result and a component can have more states rather569

than testOK and !testOK. We wish to augment probabilities in our model - both to represent a570

degree of “faultiness” and to be able to evaluate the impact of batches of tests.571

3. As shown in previous papers, abduction with a model of abnormal behaviour is a much better572

way to deal with medical diagnosis. To this aim we plan to achieve more information about the573

abnormal behaviour of components and integrate it in our model in order to discard redundant574

diagnoses.575
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