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Abstract: The semi-enclosed estuary is very susceptible to changes in the physical and 

environmental characteristics of the inflow from the land. Therefore, continuous and 

comprehensive monitoring of such changes is necessary for managing the estuary. Nevertheless, 

the procedure or framework has not been proposed appropriately to determine how many 

instruments are necessary and where they need to be monitored and standardized to detect critical 

changes. The present work proposes a systematical strategy for the deployments of the monitoring 

array by using the combination of the graphical optimization with the objective mapping technique. 

In order to reflect the spatiotemporal characteristics of the bay, the representative variables and 

eigenvectors are determined by the Empirical Orthogonal Function (EOF), and the cosine angle 

among them are calculated and used as a design index of optimization. At the recommended 

locations, the sampled representative variables are interpolated to reconstruct their spatiotemporal 

distribution and compared with the true distribution. Analysis confirms that the selected locations, 

even with a minimal number of points, can be used for on-site monitoring. Also, the present 

framework suggests how to determine installable regions for real-time monitoring stations, which 

reflect the global and local characteristics of the semi-enclosed estuary. 

Keywords: Optimal design procedure; monitoring network; water quality; graphical optimization; 

objective mapping 

 

 

1. Introduction 

Due to the fast urban-sprawl or urbanization near the coastal areas, the amounts of released 

pollutants are increasing vigorously and flowing a lot into the coastal seas through the river from the 

urbanized watershed. The coastal areas influenced by the freshwater are often semi-enclosed so that 

once contaminants originated from the watershed flow into the bay, they are possible to be 

accumulated continuously deteriorating water quality ([1-3]). Along with the deterioration of the 

water environment, the demands of water supply have soared up, and it ultimately requested the 

construction of many sea-dikes for the coastal reservoir to secure the water resources. However, such 

sea-dikes efficiently inhibit the tidal momentum of the offshore sea from advecting to the river and 

near coastal waters and so significantly affect the physical characteristics of the water column such 

as stratification, mixing, and circulation of flow ([4-6]). Also, the gates of the sea-dikes are discharging 

freshwater irregularly to maintain the water level of the upstream to be constant, and so the physical 

characteristics and water quality of the coastal sea change complicatedly and unexpectedly ([7-9]). 

The estuaries of the West Sea of Korea are shallow with wide tidal-flat, considerable tidal 

variations of the macro level, and complex geomorphology. Moreover, they are exposed to the 

physical and environmental alterations caused by the irregular discharges of freshwater from the 

gates of the coastal reservoir ([7, 10, 11]). Inflows from the watershed lead to unexpected unbalance 

of the nutrients and often occur the red tides by eutrophication in summer (i.e., flood season) ([12, 
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13]). Sometimes, water quality worsened due to the leakage of the green algae from the upstream of 

the reservoir ([14]). Also, a decrease in numbers of freshwater discharge in the winter due to low 

rainfall (i.e., dry season) can affect severely salt-sensitive aquacultures ([15, 16]). Therefore, earlier 

detection of changes in the nutrients, temperature, and salinity are essential to mitigate the impact in 

advance, understand the natural process, and manage the environment soundly. 

Generally, two approaches have been mainly used to monitor the coastal sea: on-site monitoring 

and continuous real-time monitoring ([17]). The on-site monitoring is a way of visiting the site of 

interest, carrying with instruments regularly to monitor the characteristics of the bay. The continuous 

real-time monitoring is a way of collecting data remotely by installing the unmanned observatory. In 

any case, an important question can be raised as to how many and where the sensors or stations 

should be installed to sufficiently represent the spatial and temporal characteristics of the region of 

interest. Therefore, strategies need to be established and standardized to deploy and operate the 

monitoring array for managing sound environment. Even though several strategies could be 

proposed previously such as the guideline of US EPA ([18]), the monitoring locations have been 

judged arbitrarily by the discussion of stakeholders, engineers, and decision-makers rather than 

based on the robust and reliable systematic protocol or design guideline ([17, 19, 20]). Therefore, the 

strategies for deploying and operating a monitoring network need to be provided for the sound 

management of the coastal and ocean environment since the scientifically solid and robust data are 

essential in preparing countermeasures for decision making ([17]). 

In a design of the monitoring locations, some requirements should be specified. Since the 

variables of interest are better to be measured simultaneously over the whole domain within a 

predetermined time, the limited numbers of measuring points should be optimally selected, which 

still must be sufficient to represent the spatiotemporal characteristics of the target region. Several 

prior studies have been done to meet these requirements. [21] conducted a trial-and-error method to 

find the points to best reconstruct the so-called objective mapping for visualizing the data. After the 

introduction of the objective mapping technique, some researches have followed focusing mainly on 

mapping-based optimization, which can compensate for the limitation of the trial-end-error method 

(e.g., [22-24]). Such prior studies designed arrays that can best reconstruct the spatial distribution by 

applying optimization technique such as the simulated annealing ([22]) and genetic algorithm ([23]) 

to minimize the covariance function or spatial averaged quadratic error ([24]). Besides, many types 

of research have performed to find the best objective mapping for the applications to the diverse 

fields such as the mooring locations to measure the sea level altitudes ([25]), the sensor arrays to 

monitor the oceanic meridional overturning circulation ([26]), and the collection data for the 

modeling with the data assimilation ([27, 28]). 

Such developments recently lead to redesign the existing monitoring network, that had been 

intuitively and arbitrarily designed in the past. For example, [29] constructed the objective function 

based on the principal component analysis and solved it with spatial sampling optimization to 

eliminate redundant points in the Yangtze River Estuary, China. [30] and [31] performed a similar 

study using the Kriging and spatially simulated annealing method in the Changjiang Estuary and 

Hangzhou Bay, China, respectively. Most recently, [19], which is a precedent work of the present 

study, also proposed a primitive version of the framework designing the monitoring system using a 

similar method to the previously researched. 

Most of the prior studies performed analysis mainly on the ideal case (e.g., [21-23]) or for the 

large-scale ocean (>5000 km) (e.g., [24, 26]) rather than small-scale waters (< 50 km) such as the coastal 

bays or estuaries except [19]. In general, the spatial and temporal variabilities of hydrodynamic and 

water quality variables in the global or large scales seem to follow more natural variation. However, 

the coastal water must depend not only on the global or large-scale variability but also significantly 

on the process of the land through the river. Therefore, the spatial variability of the characteristics in 

the coastal domain cannot be adequately represented by the same technique for the large-scale area. 

In addition, most of the prior studies did not design an integrated monitoring network which can 

detect the diverse variables simultaneously, but focus on a single variable such as current ([22, 23, 26], 

salinity ([32]), or water quality variable ([29-31]) to find the design variable for optimization. 
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As a recent study, [33] used the objective function as the quantitative function (i.e., scalar 

function), such as Root-Mean-Square-Error (RMSE) or covariance, etc. They found that such 

quantitative objective function not only requires a long computation time to find the solutions, but 

also it is hard to prevent the results from falling into the local solutions. Also, the optimization 

techniques based on the quantitative objective function are only suitable for the solutions of “how 

many” points are to be arranged and hard to find the solutions of “where” they are to be located. 

Moreover, there is little research to determine the locations of the real-time monitoring station ([34-

36]). 

Therefore, the present study is to propose a well-organized framework for designing the water 

quality monitoring network in the small-scale estuarine area. In order to reconstruct the 

spatiotemporal distribution to represent the variabilities of the target variables in the small-scale area, 

a graphical optimization technique is applied to find the best locations for the representative 

monitoring array with constructing the objective function of the optimal mapping approach. Since 

the graphical optimization technique can directly select the arrays of monitoring points in the 

continuous field, the computation time is short, and there is no possibility of falling into the local 

problems. Moreover, this technique is excellent in application to the problems of the steep gradient 

of signals with significant spatial variations due to the freshwater discharges. We present the 

methodologies for setting up the experiment in Chapter 2, results and discussion of the design for 

water quality monitoring network based on the scenarios in Chapter 3, and conclusions in Chapter 4. 

2. Materials and Methods 

2.1. Characteristics of the study area 

The Geumgang Estuary (hereafter GE) is located at the mouth of a river on the west coast of 

Korea (Figure 1). GE has substantial variabilities of salinity since the freshwater is released irregularly 

and artificially from the coastal reservoir ([37]). The amount of the artificially discharged freshwater 

depends on the water level of the reservoir, which is closely related to the rainfall on the upstream 

watershed (Table 1). The amount of the discharged freshwater also determines the physical and 

environmental characteristics of the coastal seawater such as water temperature and salinity along 

with the concentrations of dissolved materials (e.g., nitrogen, phosphorus, chlorophyll, dissolved 

oxygen, etc) and so the significant changes of the freshwater discharge cause the large variations of 

the water quality. Such changes in the water quality need to be aware in advance to sustain the sound 

environmental conditions, and so well-organized monitoring and sampling methods are necessary. 

However, the monitoring points of the GE are sporadically arranged now without any specific 

standard (Figure 1b). Therefore, GE may be monitored irrationally at this moment, and so it is 

somewhat difficult to analyze and find intrinsic characteristics of the GE, in particular, where is 

strongly affected by the freshwater discharged from the upstream. 

2.2. Numerical model 

Seamless spatiotemporal information should be used as input data to design a monitoring 

network appropriately, but it is hard and expensive to perform field measurements in enough 

durations and area. Because of this, the scattered data of field measurements have limitations to be 

directly used for the design since they are available only at several specific points and during certain 

periods. An alternative way could be using the data from the satellite images instead, but they 

depend too much on the daily weather. Therefore, it is tough to obtain continuous spatiotemporal 

information, so using the satellite data can potentially miss some critical points and certain periods. 

For these reasons, the present work hired sets of the spatiotemporally highly resolved and well-

validated numerical simulation data. The advantage of using the results from the numerical 

simulations is that diverse physical and environmental variables can be extracted from the numerical 

model simultaneously, which can be considered together as input data for designing the monitoring 

network. 
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This study used results from the numerical simulation performed by [15], assuming as a set of 

real data to design the monitoring network. The simulation results were calibrated and validated by 

comparing to the hydrodynamic and water quality variables measured in the field (see more detail 

in [15, 19]). Figure 1 shows a conceptual diagram, domain, and grid of the numerical model. A three-

dimensional hydrodynamic model of Delft-3D ([38]) simulated the hydrodynamics and water quality 

near the coast. The initial and boundary conditions were carefully downscaled from the large-scale 

model of the Yellow Sea regional model (Figure 1a). The model results corresponding to about 55 km 

in the x-direction and about 35 km in the y-direction were extracted to apply and analyze (Figure 1b). 

In the numerical simulation, the initial and boundary conditions of freshwater discharge from the 

upstream were generated by a watershed model, STREAM ([15]). This model is a squared uniform 

grid and quasi-distributed watershed model that can simulate flow, sediment, and water quality of 

the watershed (Figure 1c). 

The accuracy of the model results has been improved with calibration and validation step for 

each variable using the Index of Agreement (IOA) ([39]) and Relative Error (RE) ([40]), respectively. 

Overall, even though the water quality variables have slightly lower skill scores than the 

hydrodynamic, still both variables have strong correlations with the observation data (Table 2). 

 

 

 
(b) 

 
(a) (c) 

Figure 1. Monitoring status and computation grid of the (a) downscaled model, (b) Geumgang Estuary, and (c) 

concept of the integrated modeling. 

 

Table 1. Monthly freshwater discharge in Geumgang Estuary (Sep. 1994 – Aug. 2017). 

Month  1 2 3 4 5 6 7 8 9 10 11 12 
Annual 

Season  Winter Spring Summer Autumn Winter 

Discharge 

(106ton) 

 
159 160 179 228 263 468 1202 1111 795 284 200 201 5250 

Frequency  9 9 11 13 16 19 33 33 25 15 12 11 206 

Total Time  22 23 28 35 42 59 131 127 93 38 28 28 654 

Time/count  2.4 2.6 2.5 2.7 2.6 3.1 4.0 3.8 3.7 2.5 2.3 2.5 3.2 
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Table 2. Calibration and validation of the numerical model ([19]). 

Variable Parameter 
Skill score 

Skill index 
Calibration Validation 

Wave Hs 0.95 0.96 IOA 

Tide 
Semi-range 0.98 0.98 

RE 
Phase-lag 1.00 0.99 

Tidal current 
Amp. 0.82 0.87 

RE 
Phase-lag 0.89 0.97 

SSC - 0.65 0.64 RE 

Water quality 

Temperature 0.99 0.99 

IOA 

Salinity 0.57 0.85 

Chl-a 0.67 0.67 

TN 0.95 0.95 

TP 0.71 0.71 

DO 0.85 0.65 

2.3. Design variables 

Six variables were selected for analysis, water temperature (T), salinity (S), dissolved oxygen (DO), 

chlorophyll-a (Chl-a), total nitrogen (TN), total phosphorus (TP) which can commonly be obtained from 

the real field monitoring. The reason for considering multiple variables is to select representative 

variables among them to design the monitoring network. If the optimal location is determined by the 

representative variables and detect other variables with high reliability at that location, then we do not 

need to design the monitoring network complicatedly considering all the other variables. Therefore, it 

is imperative to select variables that can reflect the characteristics of other variables as a design variable. 

To reduce the number of variables and find a variable representing others, we used the Empirical 

Orthogonal Function (hereafter EOF) to compress extensive data set into a smaller number of 

independent pieces of information ([41, 42]), since it is hard and expensive to determine the convergence 

threshold of the objective function for each variable. 

As the first step to use EOF, the eigenvalues corresponding to the series of a linear system need to 

be found, which can be expressed as follow: 

 − =C I  0;   (1) 

where the covariance matrix, C , consists of M elements of the data with the length of N (M×N). I  is 

the unity matrix, and   is the EOF. The EOF corresponding to the eigenvalue 
M

 is the uncorrelated 

(i.e., orthogonal) mode of variability. If equation (1) is to have a nontrivial solution, the determinant of 

the coefficients must vanish and yield an Mth order polynomial,   −+ +1M M  , whose M 

eigenvalues satisfy     
1 2 M

 ([42]). Thus, the variances associated with each statistical mode 

are ordered according to their corresponding eigenvectors. The first mode, 
1
 contains the highest 

percentage of the total variance, and among the remaining variances, the greatest percentage is in the 

second mode, 
2
, and so on ([42]). This method can reduce the information of each variable to represent 

the variance concerning the eigenvectors. 

The present work also chose a cosine angle between two eigenvectors of the representative 

variables in the three-dimensional Euclidean principal component (hereafter PC) space as a design 

variable for constructing the monitoring network. PC is constructed by the normalized six variables in 

this work, and two eigenvectors refer two most independent variables among six variables of T, S, DO, 

Chl-a, TN, and TP. The reason why we selected such a slightly complicate index as a design index is 

that if one variable is chosen for a design variable, other variables are hard to be monitored 

appropriately since each variable could have different spatiotemporal variabilities due to their different 
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sources. For example, water temperature is mainly determined by the local solar radiation and also 

water temperature from the open sea. However, salinity is mainly determined locally by the amount of 

the freshwater discharge from the river, so if the monitoring array is designed solely by salinity, this 

designed array is not likely adequate to detect the variations of water temperature (Figure 2a and c). 

Conversely, when the monitoring array is designed only by water temperature, the reconstructed 

distribution of salinity is totally different from the true distribution (Figure 2b and d). 

Therefore, since the cosine angle that can represent the characteristics of variables having different 

origins, the use of that considers several variables simultaneously by the monitoring networks. The 

cosine angle between two vectors can be expressed as follow: 

 ( ) =

= =


= =

      
    

     



 

1

1/2

1 1

cos , ;

n

i i
i

n n

i i i i
i i

a b
a b

a b
a b

a a b b

  (2) 

where ( )=
1 2
, ,...,

n
a a a a  and ( )=

1 2
, ,...,

n
b b b b  are two eigenvectors of the representative variables. In 

the three-dimensional Euclidean PC spance, n must be three. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. The true field of (a) water temperature and (b) salinity, and the example of the monitoring array (c) 

designed by considering only salinity and reconstruct the spatial distribution of the water temperature, and (d) 

designed by considering only water temperature and reconstruct the spatial distribution of the salinity. 

2.4. Finding the optimal solutions 

Once the design variable is determined, the optimization is performed to find solutions of the most 

appropriate numbers and locations for the monitoring in the domain of target. The general optimization 

problem is posed as follow: 

True field

(Temperature)

True field

(Salinity)

Estimated field

(Temperature)

Estimated field

(Salinity)
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( )

( ) ( )

( ) ( )

 =

= =

 

Minimize

subject to 0 1,2,..., ;

0 1,2,..., ;

;

i

j

upperlower

f

g i m

h j p

X

X

X

X X X

  (3) 

where ( )f X  is the objective function; ( )i
g X  is the ith inequality constraint; m is the total number of 

inequality constraint functions; ( )j
h X  is the jth equality constraint; p is the total number of equality 

constraints; X  is the vector of design variables; and lowerX  and upperX  are the lower and upper 

bounds of the design variables, respectively. To find the optimal solutions in a constrained optimization 

problem, it is necessary to construct feasible regions reflecting various constraint violations. Thus, the 

constrained optimization problem need to transformed into the unconstrained optimization problem 

by adding penalty terms for each constraint violation ([19, 43-46]). Finally, the objective function (i.e., 

augmented function) after transforming is solved by heuristic optimization such as genetic algorithm. 

This procedure is called an Augmented Lagrangian Genetic Algorithm (ALGA), which finds a set of 

stable solutions satisfying the Kuhn-Tucker conditions by mathematically handling a large number of 

constraint functions with less computational cost ([46, 47]). 

To find the optimal solutions, we employed two optimization problems for comparison; one is a 

quantitative way, and another is a graphical one. The quantitative optimization finds an optimal 

arrangement, which can reconstruct the spatiotemporal distribution by constructing a quantitative 

objective function of the root-mean-square error (RMSE), which is expressed as follow: 

 ( )
=

= −
1

1 N

i i
i

f E T
N

X   (4) 

where ( )=
1 2
, ,...,

i N
E E E E  and ( )=

1 2
, ,...,

N
T T X T  are the estimated and true values, respectively. The 

quantitative objective function such as RMSE requires a long computation time to find a solution, and 

their result could easily fall into the location solution, and so there is no means to prove that whether a 

solution is the best or not. Therefore, even though this method has been applied to the selections of 

numbers of the observation points ([32]), the different arrays are possible to be found for each iteration 

due to arbitrary array selection of the locations. 

The graphical optimization constructs the primary function of the optimal interpolation as an 

objective function and can find the optimal arrangement that represents the continuous spatiotemporal 

distribution ([19]). Currently, the most widely used optimal interpolation schemes in meteorological 

and oceanographic applications may be the statistical interpolation, also known as the Optimal 

Interpolation scheme (OI) ([48]), or the Barnes Objective Analysis (BOA) ([49]). Even though the OI is 

most prevalent to estimate the ocean data field (e.g., [21, 50-53]), it is not ideal to use in this study since 

the assumptions of spatial homogeneity and isotropy are not relevant to a small (≤ 50 km) and highly 

dynamic area such as the small coastal seas. 

The objective analysis is often referred to as a process of transforming data from observations at 

irregularly spaced points into data at the points on a regular space grid ([54]) for meteorological 

purposes. [49] modified this scheme to interpolate the whole complex region of interest by repeatedly 

applying a distance-dependent weighting ([55-57]). The objective function of the graphical optimization 

for designing the array of the monitoring points can be constructed by the loop function of BOA and 

can express as follow: 

 ( )
( ) ( ) ( ) ( )( )

= =

= =

 
− − 

 =  +
 
 
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1 1
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f
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where ( )m
R X  is the reference value (i.e., design variable) at the location m and ( )1,2

m
E X  are the 

estimates at each loop extracted at the same location to the reference value. The mth weights are given 

by: 

 
  
  = − +
    

22

2 2
exp ;

mymx
m

x y

dd
w

c c
  (6) 

 
 

  
  = − +
    

22
'

2 2
exp ;

mymx
m

x y

dd
w

c c
  (7) 

where m
d  is the distance between the grid point and the mth reference point and the length scales 

x
c  

and 
y

c  control the fall-off rate of the weighting function in the different rates to x and y directions ([55, 

56, 58]). The length scale could be solved by a nonlinear curve-fitting method of the Levenberg-

Marquardt least square method ([59]).   is a numerical convergence parameter that controls the 

difference between the weights on each step for the range of 0 to 1 ([60]). 

In the graphical optimization, the objective function of equation (5) constructs the spatial 

distribution (i.e., domain) of the design variables to describe the target bay. The elliptic radius weighting 

function of equation (6) is the distance from the center to the border of an area described by the 

constrained function, which keeps the solution to be out of the radius of influence while finding the 

optimal solution. In addition, land and structures can be composed of several exterior nonlinear and 

graphical functions ([19]). Therefore, the solutions of maximum and minimum are located inside of the 

ellipse constraints (i.e., feasible region) refraining geomorphology from constraining them. To construct 

the objective function, BOA is selected due to its simplicity and applicability to the wide ranges of scales. 

It is also suitable for use in conjunction with the graphical optimization technique. 

2.5. Methods of performance evaluation 

Once the optimal solutions (i.e., monitoring array) are found, the spatiotemporal distribution of 

variables is reconstructed with the solutions and validated by comparing to the original data. The skills 

of the reconstruction can be evaluated by the statistical metrics ([61]), which tell the difference between 

true and estimated values. The present work used two types of skill metrics, one is the Taylor diagram 

([62]), and another is the target diagram ([63]). These diagrams compile the statistical measures of the 

reconstruction skill into a single graph for allowing to compare and analyze the carious cases. Taylor 

diagram graphically summarizes and compares two sets of results regarding three statistics: correlation 

coefficient (COR), standard deviation (SD) of the true (subscription T) and estimated (subscription E) 

fields and centered (i.e., unbiased) root mean square difference (CRMSD), which have the following 

relationship: 

 = + −   2 2 2CRMSD SD SD 2 SD SD COR.
T E T E

  (8) 

Another tool to evaluate the skills is a target diagram, which is derived from the relationship 

between the metrics of Bias, which means the difference of the mean values, CRMSD, and RMSD. This 

diagram used a Cartesian coordinate system where the x-axis represents the CRMSD, the y-axis 

represents the Bias, and the diagonal distance (radius) indicates the RMSD. CRMSD is an unbiased 

RMSD and removes any potentially biased information ([63]). The following relationship relates these 

three statistics: 

 = +2 2 2RMSD Bias CRMSD   (9) 
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3. Results and discussion 

3.1. Decomposition of the spatiotemporally dependent variable 

At the first step to find the design variable, the monitoring points were distributed over the 

entire domain (Figure 3a), and the time-series of each variable were extracted at those points. In order 

to avoid dimensional heterogeneity, each variable was subtracted from the mean values of each 

variable, and we divided those differences by the standard deviations to have normalized values 

representing each viable (Figure 3b). 

The most representative ones among the given variables were selected by the EOF analysis of 

the spatial distributions of the normalized six variables. Figure 4 shows the eigenvectors of the six 

variables, and Table 3 summarizes the results of the EOF analysis in detail. When the eigenvalues 

from the EOF are smaller than 1, those values are not significant, and so we used the first three ones 

among the six PCs of which eigenvalues are larger than 1 ([64]). The vectors in Figure 4 are 

constructed with the PCs representing the distribution of each variable. For example, the eigenvector 

representing salinity is composed of -0.5 of the first component, -0,36 of the second one, and 0.15 of 

the third one (Figure 4 and Table 1). In Figure 4, x-axis presents the contribution of the variable to the 

first PC, y-axis does to the second PC, and z-axis does to the third PC. When the magnitudes of the 

eigenvector are smaller than 0.5, the variables represented by that eigenvector are not significant 

([64]), and so we do not consider to analysis. 

Once the eigenvectors for each variable are calculated, six variables are categorized in the three 

groups depending on which PCs they contribute to. Among six variables, TN, TP, and S contribute 

to the first PC, which is 43% of the total variances, and T and DO contribute to the second PC of 32% 

(Figure 4a). Chl-a mainly contributes to the third PC, but only by 18% of the total variances so was 

excluded from consideration (Figure 4b). Therefore, the two groups contributing to the first and 

second PC are independent of each other since all PCs are orthogonal to each other. Of all the 

variables in two groups, S and T each contribute to the first and second PCs with a relatively larger 

magnitude than the other variables. Furthermore, they are also measured usually by one instrument 

simultaneously. Therefore, T and S were selected as representative variables to construct an index. 

 

  
(a) (b) 

Figure 3. (a) The initial placement of the monitoring points, and (b) boxplot of each variable. 
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(a) (b) 

Figure 4. The results of the EOF corresponding to the PCs for the spatial distribution. 

 

Table 3. The results of the EOF corresponding to the PCs for the spatial distribution. 

Category 
Principal  

Component 
Eigenvalue 

Eigenvector 

T S DO Chla TN TP 

Spatial 

(Entire 

domain) 

1st PC (43%) 2.56 0.26 -0.50 -0.21 0.11 0.57 0.55 

2nd PC (32%) 1.91 -0.64 -0.36 0.64 -0.10 0.23 0.01 

3rd PC (18%) 1.06 0.02 0.15 0.27 0.94 -0.07 0.12 

 

Once selecting the two most representative variables from the spatial PC analysis, the variables 

were analyzed again by the temporal EOF. Figure 5 shows an example of the time-series of the first, 

second, and third PCs at pt.1 and pt. 38. The first PC at pt.1 where is close to the gate of the sea-dike 

shows a sinusoidal tendency with irregular fluctuations, while the second and third PCs have very 

large irregular fluctuations compared to the first PC (Figure 5a). The irregular fluctuations appearing 

on the PCs have strong correlations of above 0.9 with those appearing on the real signals of salinity, 

which much be directly related to the releases of freshwater. Therefore, irregular fluctuations are 

probably due to the high frequency of artificial freshwater discharge. On the ocean side (pt.38), 

irregular fluctuations were not significantly observed on all PCs since this area is far from the gate, 

and the clearer sinusoidal time-series appears on the first PC (Figure 5b). The second and third PCs 

may have some tendencies, but we do not explain it here since the present work is aiming only to 

find an index rather than explain whole processes appearing in the area. Overall, sinusoidal 

characteristics are commonly decomposed in the first PC regardless of location, which is presumably 

due to seasonal variability. 

In order to see how T and S contribute to each PC and relate them to the other four variables, the 

eigenvectors of six variables were calculated with the values measured at all 38 points. Among 38 

sets of time series of PCs from the EOF, the results of pt.1 and pt.38 are presented in Table 4. On the 

closest location to the gate, pt.1, the first PC contributes 43% to the total variances, the second 32%, 

and the third 18%. The eigenvectors of T, DO, and TP appear to be greater than 0.5 on the first PC 

and S, Chl-a, and TN on the second PC. Chl-a and TN are mainly projected on the third PC, but the 

third PC does not contribute much to the total variances. On the ocean side, pt.38, the first PC 

contributes 47% to the total variances, the second 35%, and the third 11%. Here, T, S, and DO are 

projected onto the first PC with eigenvectors greater than 0.5, while TN and TP are on the second PC, 

and only Chl-a on the third PC. 

The first PC is mainly affected by T and DO regardless of location and their sinusoidal trends 

are associated with seasonal variability. Also, the first PC near the gate shows irregular and highly 

frequent fluctuations, which is due to the gate operation. Those fluctuations seem to reflect the 

contribution of TP, which is originated from the upstream of the gate. While S contributes a lot to the 

second PC along with Chl-a and TN. On the ocean side, T, S, and DO show a large contribution to 
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the first PC reflecting the seasonality. After all, T and S show seasonal variability together in the ocean 

side, while near the gate, T still shows seasonal variability, but S appears close to the strong irregular 

variabilities. In other words, T mainly exhibits the seasonal variability along with DO, but S varies 

along with different variables depending on the locations (i.e., Chl-a and TN near the gate and T and 

DO on the ocean side). Therefore, T and S are selected as representative variables to be considered in 

the design of the monitoring network since they can reflect the effects of the seasonality and 

freshwater discharge, respectively and also help to deduce the changes of other variables. 

As a next step, we calculated the cosine angle between T and S in a three-dimensional PC space, 

which can be a single design index representing the whole domain of the system. A low cosine angle 

(i.e., near zero) means that two variables representing the eigenvectors to construct that angle 

originate from different sources. On the other hand, a high cosine angle (i.e., near one) means that 

two variables are somewhat related and originated from similar sources. 

Figure 6 shows the contour map of the cosine angles between the eigenvectors of T and S. The 

values of the cosine angle are increasing towards the open sea since T and S are simultaneously 

controlled by global open sea conditions such as current, solar radiation, and wind. Meanwhile, near 

the sea-dike, the values of cosine angles are low since while T still responds to global open sea 

conditions, S reflects not only to global conditions but also to a local condition such as artificially 

released freshwater. The cosine angle values near pt.6 are almost 0, which means that T and S have 

an orthogonal (independent) tendency. That is because this area has a shallow tidal flat, so the bottom 

surfaces are frequently exposed to the atmosphere during low tides (tidal amplitude is around 7.5 m, 

[4]). Such shallow tidal flats seem to be heated up and cooled down much faster than the deep 

southern navigation channel (near pt.4 and 7). In addition, this area is far from the gate and, therefore, 

may be less affected by the freshwater discharge. 

 

  
(a) (b) 

Figure 5. First, second, and third PC time-series of six decomposed variables extracted from (a) pt. 1(near the 

sea-dike) and (b) pt. 38 (ocean side). 

 

Table 4. The results of the EOF corresponding to the PCs for the temporal distribution. 

Category 
Principal 

Component 
Eigenvalue 

Eigenvector 

T S DO Chl-a TN TP 

Temporal 

(Pt.1 –  

near the sea-

dike) 

1st PC (43%) 2.59 0.58 0.10 -0.53 0.18 0.22 0.54 

2nd PC (32%) 2.20 -0.03 0.62 -0.20 0.51 -0.50 -0.25 

3rd PC (18%) 0.67 -0.14 0.10 0.39 0.66 0.62 0.05 

Temporal 

(Pt.38 –  

ocean side) 

1st PC (47%) 2.85 0.58 0.50 -0.52 0.31 0.04 0.23 

2nd PC (35%) 2.11 -0.10 -0.20 0.23 0.41 0.65 0.55 

3rd PC (11%) 0.67 -0.18 0.38 0.37 0.69 -0.09 -0.46 

 

 

 

Winter Spring AutumnSummer Spring AutumnSummerWinter Winter Spring AutumnSummerWinter Spring AutumnSummerWinter Winter
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Figure 6. The spatial distribution of the true field of cosine angle composed of 38 points arranges at first. 

 

3.2. Solutions for the monitoring array 

As described earlier, the objective function of quantitative optimization was composed of RMSE, 

and we solved it using a genetic algorithm until converging to an optimal solution. On the other hand, 

the graphical optimization was configured the objective function by BOA method, and the optimal 

array was graphically selected by using a genetic algorithm. Those quantitative and graphical 

methods were used for searching 4 to 10 monitoring points to compare those two methods and 

recommend a better one. Figure 7 compares the reconstructed spatial distribution using the design 

index of 4, 7, and 10 monitoring points selected by quantitative and graphical optimization with the 

true spatial distribution. The dotted lines are the contours of the true values, and the solid lines are 

those of the reconstructed estimates. The spatial distribution of the graphical optimization (the panels 

on the left columns of the figure) reconstructs the contours more similar to the true distribution than 

the quantitative optimization (the panels on the right columns of the figure). Also, no matter how 

many searching points we want to, the graphical optimization can find a consistent location of points 

(Figure 7b, d, and f). However, the quantitative optimization finds different locations for each desired 

number of points (Figure 7a, c, and e). For example, the location of 7 points searched by the graphical 

optimization is the same as the location of 7 points out of 10 points (Figure 7d and f). Nevertheless, 7 

points found by quantitative optimization are arranged in different locations from the 10 points 

(Figure 7c and e). 

The optimal array was evaluated by the skill metrics, which plot the statistical parameters 

between true and estimated spatial distribution (Figure 8). First, the statistical parameters are plotted 

on a Taylor diagram to figure out how similar the estimated spatial distribution is to the true 

distribution (Figure 8a). The spatial distribution reconstructed using 7 to 10 points selected by 

graphical optimization agrees to the true spatial distribution with a high correlation of about 0.95 or 

more and a very low CRMSD. On the other hand, if the points are selected to be 6 or less, the statistical 

points are getting farther from the origin, which means poor reconstruction performance. In order to 

confirm how well the reconstructed distribution reproduces the variabilities of the true ones, we have 

identified the bias and RMSD on the target diagram (Figure 8b). The variabilities of the spatial 

distribution of the graphically selected points are within 0.1 of CRMSD, RMSD, and bias, for the cases 

with the 7 to 10 points. In the case with less 6 points, the results do not reconstruct well the true values. 

On the other hand, even though 9 or 10 points are selected by quantitative optimization, the results 

are slightly worse than 7 points of graphical optimization. Therefore, quantitative optimization has a 
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relatively poor reconstruction performance compared to the graphical optimization except for the 

cases of less than 4 points. 

In order to determine how many points should be selected to construct a monitoring network, 

RMSDs and CORs obtained by the quantitative and graphical solutions are presented in Figure 9. 

The box plots are the quantiles of the populations obtained by many iterations in the quantitative 

optimization, and the red circles are the single values found by the graphical optimization. Overall, 

the solutions found by the graphical optimization show better reconstruction performance even with 

fewer numbers than the quantitative optimization. Besides, the graphical solution reaches a certain 

threshold with 7 or 8 points and, after reaching the threshold, converges regardless of the number of 

points. The solutions of quantitative optimization are different from each other depending on the 

number of iterations without converging on a certain value. Therefore, quantitative optimization has 

some statistical distributions, but graphical optimization provides a single solution without statistical 

distribution since this method does not require iteration to find a solution. As a result, the graphical 

optimization finds the solution (i.e., representative monitoring array) with more stable converging to 

an optimal solution for less computation time. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Comparison of the spatial distribution between true and estimated field reconstructed by using (a) and 

(b) 4, (c) and (d) 7, (e) and (f) 10 points of the monitoring array based on the quantitative optimization (left) and 

graphical optimization (right). 

 

4 pts. 4 pts.

7 pts. 7 pts.

10 pts. 10 pts.
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(a) (b) 

Figure 8. (a) Taylor diagram and (b) target diagram representing the statistics between the true and estimated 

spatial distribution. The abbreviation “Q” imply the quantitative and graphical optimization, respectively. 

 

  
(a) (b) 

Figure 9. (a) RMSDs and (b) CORs of spatial distribution reconstructed by array of quantitative and graphical 

optimization. 

 

The GE has considerable spatial and temporal variabilities of water qualities due to the change 

of freshwater discharge, which can cause extreme situations. Therefore, in addition to the normal 

case discussed earlier and named as the scenario N here, three more scenarios were built and tested. 

The scenario 2N releases twice the amount of freshwater discharge of the scenario N, and the scenario 

3N does three times. The scenario I reduces the amount of freshwater discharge to 50% and increases 

twice the frequency of releasing of the scenario N. The numerical simulations were performed based 

on the scenarios, and the same method was applied to design the monitoring network for extreme 

events. Even though the scenarios are the functions of the amount of freshwater discharge and 

frequency, the representative variables are T and S as in the scenario N. Also, the trend of the first 

and second PCs from the EOF represents seasonality and irregular freshwater discharge and 

contributes by about 90% to the total time-series variance. As a result, the number of points required 

to reconstruct the spatial distribution by graphical optimization for three extreme scenarios is the 

same as the scenario N, but their locations are slightly different from the scenario N (Figure 10). 

 

3.3. Optimal design of the water quality monitoring network 

Since the on-site monitoring points selected in the four scenarios are distributed at slightly 

different locations, it is necessary to find a way to determine a location representing them. The time-
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series of data at the monitoring points of each scenario were analyzed, and the representative 

locations were expressed in the form of influence radius by grouping the points located near each 

other (Figure 10). The influence radius (black dotted ellipse) was determined by a distance-dependent 

weighting function of the time-series of the variable characteristics, and the center (red+) was 

determined by using the nonlinear least square method using the equation (7) with 1 =  and e-

folding value. Since the marked points in each ellipse are solutions of each scenario, the center of 

ellipsis could be regarded as a representative point that characterizes the elliptic region with the 

influence radius. Therefore, time-series of data acquired within the radius of influence are almost 

similar to the values corresponding to weight 1 from the center. Such a series of steps led to select 

seven representative points in GE. 

In order to evaluate how well those representative points reconstruct the true distribution of all 

variables, the spatial distribution of each water quality variable were reconstructed and compared 

with the true values (Table 5). Overall, the CORs are much higher than 0.8, and the RMSD is very low 

in terms of their scale of mean and standard deviation. These statistical quantities mean that the 

representative points can reconstruct the spatial distribution very similar to the true distribution 

while expressing the spatial variability of each variable very well. Besides, if the locations are selected 

reasonably, then with deploying even the minimum number of representative monitoring points, the 

spatial distribution of the six water quality variables can be pretty well reconstructed individually. 

Therefore, if the on-site monitoring network is designed by the framework of this study, an array, a 

set of representative points having the influence radius, can be considered as an example of a good 

representation of GE’s spatial characteristics. 

In order to determine where to install the real-time monitoring station in the representative area 

(i.e., area within influence radius), the signals at each area were compared and analyzed based on the 

reference signals of an area with the high external force or variations. The signals of the representative 

area (hereafter RA) 1 is assigned as a reference which is closest to the sea-dike and compared with 

the signals of the remaining areas. Table 6 shows the comparison of time-series for six variables in 

each area with that of RA1 statistically. The CORs of time-series shows that all variables except T and 

DO decrease as the monitoring point gets farther away from the reference point of RA1. Also, RMSDs 

increase as the points get farther away from RA1, but T and DO do not increase much relative to the 

magnitudes of mean and standard deviation. This is because T and DO are strongly subject to 

seasonal variability rather than freshwater discharge, while other variables are more significantly 

affected by the amount of freshwater discharge. Besides, in the area close to the sea-dike (i.e., RA2 

and 3), the time-series of irregular freshwater discharge is reflected more than the others (i.e., RA4-

7). From these results, global signals, such as seasonal variability, can be obtained in any area, while 

local signals, such as freshwater discharge, can only be obtained in certain areas (e.g., RA1-3). 

Therefore, one station must be unconditionally installed close to RA1, and other stations should be 

deployed near RA2 and RA3 in order to obtain the local water quality characteristics of GE. 

Once a station is chosen and installed on RA1, 2, and 3 to acquire local signals, it is necessary to 

determine whether to install the monitoring stations in RA4, 5, 6, and 7. This is because irregular 

signals due to freshwater discharge can be obtained from S, Chl-a, TN, TP in RA 1-3, while it is 

difficult to obtain their global signals originated from offshore characteristics. In order to determine 

whether to install the monitoring stations in RA4, 5, 6, and 7, the signals from the seven RAs were 

compared with the reference signals of an offshore observatory which is the same location currently 

operated by the Korean government (Figure 10). Table 7 shows the statistical comparison of the time-

series for six variables at each location with the offshore signals as the reference. The signals in RA4, 

5, 6, and 7 are highly correlated with the offshore signals for all variables. In addition, their RMSDs 

show relatively low values considering the magnitude of mean and standard deviation of them. 

However, the signals in RA1, 2, and 3 have a relatively low correlation with the signals in the offshore. 

In particular, S and TN cannot infer the global signals originated from the offshore with the signal in 

RA1, 2, and 3. Consequently, the global signals of six variables in RA4, 5, 6, and 7 are not necessarily 

monitored in this domain because they can be obtained from the outside of the domain and 

sufficiently infer all of them. 
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Figure 10. The selected points of the on-site monitoring (red+) and the installable area of real-time monitoring 

station (blue rectangular) in accordance with each scenario. The series of black dotted ellipse indicate maximum 

distances from the reference points (red+) corresponding to weight 1, and the blue rectangular regions are the 

installation area of the real-time monitoring station, which represent the temporal distribution of the local 

characteristic well. The blue triangle located in the outside of the target domain is the reference point of the 

offshore real-time monitoring station. The abbreviation “RA” imply the representative area. 

 

Table 5. Statistical quantities of the reconstructed spatial distribution for six variables. 

Statistics Temperature Salinity 
Dissolved 

Oxygen 
Chlorophyll-a Total Nitrogen 

Total 

Phosphorus 

COR 0.99 0.99 0.80 0.93 0.98 0.96 

RMSD 0.07 0.46 0.06 0.24 0.06 0.00 

MEAN 15.48 31.64 8.43 4.39 0.52 0.05 

STD 0.45 2.68 0.10 0.60 0.25 0.01 
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Table 6. Statistical quantities of the time-series distribution for six variables at each optimal point with RA1 as a reference 

point. 

Statistics 
Temperature 

RA1 RA2 RA3 RA4 RA5 RA6 RA7 

COR 1.00 0.99 1.00 0.96 0.95 0.88 0.90 

RMSD 0.00 1.65 0.85 2.80 3.20 4.79 4.26 

BIAS 0.00 0.50 -0.02 0.94 1.00 1.53 1.32 

MEAN 16.38 15.88 16.40 15.44 15.38 14.85 15.06 

STD 9.35 9.17 9.52 8.83 8.47 7.72 8.15 

 Salinity 

COR 1.00 0.38 0.45 0.35 0.37 0.22 0.26 

RMSD 0.00 14.36 16.87 17.53 18.15 18.71 18.75 

BIAS 0.00 -13.02 -15.73 -16.37 -17.01 -17.56 -17.61 

MEAN 15.47 28.48 31.20 31.84 32.48 33.03 33.08 

STD 6.55 2.50 1.28 1.01 0.67 0.51 0.53 

 Dissolved Oxygen 

COR 1.00 0.75 0.72 0.72 0.72 0.72 0.72 

RMSD 0.00 1.94 2.01 2.05 2.10 2.12 2.11 

BIAS 0.00 0.52 0.17 0.45 0.40 0.44 0.49 

MEAN 8.82 8.31 8.65 8.38 8.43 8.38 8.33 

STD 2.73 1.53 1.28 1.29 1.16 1.11 1.17 

 Chlorophyll-a 

COR 1.00 0.82 0.80 0.77 0.73 0.66 0.69 

RMSD 0.00 1.57 2.81 1.79 1.90 2.32 2.03 

BIAS 0.00 -0.20 -2.02 0.37 -0.13 -0.35 0.20 

MEAN 4.07 4.27 6.08 3.70 4.20 4.41 3.87 

STD 2.71 2.22 3.30 1.91 2.31 2.86 2.32 

 Total Nitrogen 

COR 1.00 0.54 0.30 0.27 0.16 0.20 0.15 

RMSD 0.00 1.26 1.68 1.67 1.72 1.72 1.72 

BIAS 0.00 1.10 1.51 1.50 1.56 1.56 1.56 

MEAN 1.99 0.89 0.47 0.48 0.43 0.43 0.43 

STD 0.74 0.27 0.05 0.05 0.04 0.04 0.04 

 Total Phosphorus 

COR 1.00 0.84 0.59 0.62 0.62 0.66 0.64 

RMSD 0.00 0.03 0.04 0.04 0.04 0.04 0.04 

BIAS 0.00 0.02 0.03 0.03 0.03 0.03 0.03 

MEAN 0.07 0.06 0.04 0.05 0.04 0.05 0.05 

STD 0.03 0.02 0.01 0.01 0.01 0.01 0.01 
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Table 7. Statistical quantities of the time-series distribution for six variables at each optimal point with the 

offshore as a reference point. 

Statistics 
Temperature  

RA1 RA2 RA3 RA4 RA5 RA6 RA7 Offshore 

COR 0.76 0.84 0.79 0.90 0.92 0.97 0.96 1.00 

RMSD 6.58 5.51 6.49 4.52 3.98 2.49 3.09 0.00 

BIAS -2.28 -1.78 -2.30 -1.34 -1.27 -0.75 -0.96 0.00 

MEAN 16.38 15.88 16.40 15.44 15.38 14.85 15.06 14.10 

STD 9.35 9.17 9.52 8.83 8.47 7.72 8.15 5.99 

 Salinity  

COR 0.16 0.29 0.10 0.65 0.56 0.89 0.85 1.00 

RMSD 18.79 5.21 2.30 1.50 0.83 0.26 0.29 0.00 

BIAS 17.63 4.61 1.89 1.26 0.62 0.06 0.02 0.00 

MEAN 15.47 28.48 31.20 31.84 32.48 33.03 33.08 33.10 

STD 6.55 2.50 1.28 1.01 0.67 0.51 0.53 0.38 

 Dissolved Oxygen  

COR 0.72 0.97 0.97 0.99 0.99 1.00 1.00 1.00 

RMSD 2.13 0.59 0.41 0.31 0.17 0.13 0.21 0.00 

BIAS -0.35 0.17 -0.17 0.10 0.05 0.10 0.15 0.00 

MEAN 8.82 8.31 8.65 8.38 8.43 8.38 8.33 8.48 

STD 2.73 1.53 1.28 1.29 1.16 1.11 1.17 1.04 

 Chlorophyll-a  

COR 0.62 0.76 0.80 0.82 0.94 0.99 0.96 1.00 

RMSD 3.37 2.90 2.45 3.11 2.27 1.53 2.39 0.00 

BIAS 1.32 1.13 -0.69 1.69 1.19 0.98 1.53 0.00 

MEAN 4.07 4.27 6.08 3.70 4.20 4.41 3.87 5.39 

STD 2.71 2.22 3.30 1.91 2.31 2.86 2.32 3.93 

 Total Nitrogen  

COR 0.28 0.40 0.75 0.80 0.94 0.98 0.95 1.00 

RMSD 1.71 0.52 0.05 0.06 0.02 0.01 0.02 0.00 

BIAS -1.55 -0.46 -0.04 -0.05 0.00 0.01 0.01 0.00 

MEAN 1.99 0.89 0.47 0.48 0.43 0.43 0.43 0.43 

STD 0.74 0.27 0.05 0.05 0.04 0.04 0.04 0.05 

 Total Phosphorus  

COR 0.69 0.90 0.94 0.96 0.98 0.99 0.99 1.00 

RMSD 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

BIAS -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 

MEAN 0.07 0.06 0.04 0.05 0.04 0.05 0.05 0.05 

STD 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 
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4. Summary and Conclusions 

The coastal monitoring system, which is composed of several different series of sensors, aims to 

provide reliable information to forecast sea weather, sustain sound water quality, and plan to 

decision-making. Therefore, monitoring has been carried out to understand the inherent 

characteristics of the bay ([19]) carefully, but still it is not schematically determined how the 

monitoring network is constructed, but rather arbitrarily chosen. Therefore, the present study 

proposed a way to design an optimal monitoring network to fully reflect the spatiotemporal 

variability of water quality in semi-enclosed estuaries such as GE, which is a complex coastal system 

connected to the upstream watershed. 

For designing an optimal monitoring network, instead of using ground-truth data that is not 

available realistically, the results from the well-validated numerical model were used to secure high-

resolution assuming as ground-truth data. Such highly resolved numerical models allowed us to 

design a comprehensive monitoring network. With the results from the simulation, design variables 

were chosen to reflect the spatiotemporal characteristics of the bay adequately. As a representative 

design variable, the present work selected the cosine angle between the two eigenvectors of the 

representative variables in the three-dimensional PC space, which is decomposed by using the EOF 

analysis. This approach analyzes the inherent characteristics of the representative variables with 

other variables so that even if the monitoring network is designed with only a variable, it can 

sufficiently represent the characteristics of the other variables. 

The most challenging part of the present study is that we can consider “where” as well as “how 

many” monitoring points to be placed. Conventional quantitative optimization could determine 

“how many” monitoring points are needed, but the solutions converged locally so that at every trial, 

a consistent arrangement of solutions could not be achieved. Therefore, the graphical optimization is 

applied and results in a consistent array for each simulation once the target number of points is set 

without high computational cost. With the distance-dependent weighting, the interpolation functions 

are constrained for bounding a region to be feasible for converging the objective function to the 

optimal solution. After that, the array of the monitoring points can be found on the interpolated space 

by applying the ALGA.  

Finally, the spatiotemporal distribution reconstructed by using the selected optimal array is 

compared to the true distribution. The estimated spatial distribution is statistically evaluated by the 

skill metrics, on which to design an array of the on-site monitoring network. Moreover, the installable 

region of the real-time monitoring station can be determined by time-series comparison based on the 

reference point from which the bay’s global and local signals can be acquired. As a result, GE requires 

a total of seven on-site monitoring points to fully represent the spatial distribution of water quality 

variables, and three real-time monitoring stations within the installable regions to simultaneously 

acquire global and local time-series characteristics. 

Such a design method for finding the optimal estuarine monitoring network could be useful as 

a tool for strategically supporting decision-making. Besides, it is more meaningful in that the method 

can help not only designing the on-site monitoring array but also finding the installable regions of 

the real-time monitoring station that has been rarely studied so far. Such a monitoring network can 

reduce the cost, time, and effort for operating and managing the coastal monitoring and increase the 

reliability of the monitoring data ([17]). Also, the design procedure of this study can strategically 

organize the standard framework to determine the monitoring network in a semi-enclosed estuary, 

as well as the lake, bay, and open ocean. Moreover, an appropriate monitoring network can secure 

additional advantages in improving the accuracy of hydrodynamic models for data assimilation ([65, 

66]). 
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