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Abstract: Inland lake variations are considered sensitive indicators of global climate change. 

However, human activity is playing as a more and more important role in inland lake area 

variations. Therefore, it is critical to identify whether anthropogenic activity or natural event is 

playing as the dominant factor in inland lake surface area change. In this study, we proposed a 

Douglas-Peucker simplification algorithm and bend simplification algorithm combined method to 

locate major lake surface area disturbances; these disturbances were then characterized to extract 

the time series change features according to documented records; and the disturbances were finally 

classified into anthropogenic or natural. We took the nine lakes in Yunnan Province as test sites, a 

31 years long (from 1987 to 2017) time series Landsat TM/OLI images and HJ-1A/1B used as data 

sources, the official records was used as references to aid the feature extraction and disturbance 

identification accuracy. Results of our method for both disturbance location and the disturbance 

identification could be concluded as follows: 1) The method can accurately locate the main lake 

changing events based on the time series lake surface area curve. The accuracy of this model for 

segmenting the lake area time series curves in our study area was 95.24%. 2) Our proposed method 

achieved an overall accuracy of 91.67%, with F-score of 94.67 for anthropogenic disturbances and F-

score of 85.71 for natural disturbances. 3) According to our results, lakes in Yunnan Provence, China, 

have undergone extensive disturbances, and the human-induced disturbances occurred almost 

twice as often as natural disturbances, indicating intensified disturbances caused by human 

activities. This inland lake area disturbance identification method is expected to uncover whether a 

disturbance to inland lake area is human activity-induced or natural event. 
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1. Introduction 

Inland lakes are important aspects of land surface cover that participate in the natural water 

cycle and are considered highly sensitive to the impacts of climate change and human activities [1–

2]. Shrinkage or extension of inland lakes can reflect global climate and environment changes [3]. 

Thus, inland lake variations are considered sensitive indicators of global climate change [4–5]. Most 

lake variations are caused by natural events or anthropogenic activities. However, these variations 

are mostly documented by the local authorities or institutions and are rarely obtained from remote 

sensing technology. 
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This study focuses on remote sensing methods to identify the dominant factors affecting changes 

to inland lake surface area. With advantages of wide coverage, high frequency data collection, labor 

and economic cost-effectiveness, remote sensing technology has been used in previous lake change 

studies [6–8], especially for lakes located in remote and less developed areas where lake surface 

changes have been only rarely documented [2]. 

With ongoing earth observation projects (such as NASA's Earth Observing System (EOS) and 

the European Union’s Copernicus program) and the development of sensors (from visible to infrared 

and SAR), times series lake observation data are providing new means to study lake change. Remote 

sensing data used for lake monitoring could be divided into three categories according to their spatial 

resolution: coarse-, medium- and high-spatial resolution data. Although coarse spatial resolution 

remote sensing data (such as NOAA/AVHRR, MODIS, Suomi NPP-VIIRS and Sentinel-3) have lower 

spatial resolution and inherent defects, they often have higher revisit frequency and a wider 

coverage; therefore, they have been widely used in water monitoring [9–10]. For example, Che et al. 

[11] applied the synthesized monthly MODIS09A1 data to extract the lake area of the Qinghai-Tibet 

Plateau from 2000 to 2013 using the synthesized NDWI and NDWI water body index proposed by 

Mcfeeters [12]; the results showed that the lake area of the Qinghai-Tibet Plateau significantly 

expanded during 2000 and 2013. Using time series MODIS data to identify Poyang lake water area 

changes, Feng et al. [13] found that Poyang Lake had significant seasonal and interannual changes 

during 2000 and 2010, mainly due to the influence of climate fluctuations. With the development of 

better sensors, high spatial resolution land monitoring satellites, such as QuickBird, IKONOS, 

Worldview, RapidEye, ZY-3, GF-1/2, can provide more accurate and higher spatially resolved land 

cover observations. However, the small image coverage and the long revisit periods of high spatial 

resolution data remain obstacles for the detection of change in larger inland water bodies [6]. 

Among these three kinds of data, the medium-resolution data, such as Landsat, HJ-1A/B, 

ASTER, and Sentinel-2 data, are the most widely used in water monitoring applications. The main 

reason for their frequency of use is the free data access policy and the long-term monitoring of Earth's 

surface changes that these datasets represent; e.g., Landsat data includes continuous observations of 

up to 40 a [14–16]. A wide range of studies have been employed to study changes to the lake surfaces 

using medium-resolution remote sensing data. For example, in order to obtain the water area of the 

Yunnan-Guizhou Plateau from 1985 to 2015, Xiao et al. [17] extracted lake surface areas using Landsat 

image data from 5 periods at 5 a intervals and found that the water area of lakes in the Yunnan-

Guizhou Plateau first increased and then decreased during this period. Tulbure et al. [8] studied the 

relationship between water body areas and changes in the weather in the Murray-Darling Basin and 

the Barmah-Millewa forests from 1986 to 2011; the results show that extreme weather events, such as 

drought and rainfall, have a significant impact on surface water bodies and submergence dynamics. 

Using Landsat time series data, Arvor et al. [18] developed a method for automatically identifying 

small water bodies and used it to extract the area and quantity of small reservoirs in the Amazon 

region of southern Brazil from 1985 to 2015. The results show that the total area and quantity of small 

reservoirs in the area increased by 10 times and more than 5 times during the study period, 

respectively. 

In summary, existing remote sensing technology used in inland water body identification with 

median spatial resolution has provided reliable results for monitoring inland lake change. However, 

most inland lakes are affected by human activities, and few studies have tried to identify the 

dominant factor affecting inland lake surface change based on remote sensing data: human activities 

or natural events? This identification is critical for uncovering the relationship between human 

activities and the natural environment on both local and global scales. Thus, in this study, we take 9 

large inland lakes on the Yunnan Plateau for our study area and apply the proposed time series lake 

surface area change analysis method to uncover changes in inland lakes and to identify whether 

human activities or natural events dominate these changes. 

2. Study Area and Data 
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2.1 Overview of study area 

The Yunnan Plateau is part of the Yunnan-Guizhou Plateau, which is one of the four major 

plateaus in China. This area is located in southwest China and is characterized by rough terrain and 

a subtropical monsoon climate. There are many inland lakes on the Yunnan-Guizhou Plateau; lakes 

here play important roles in the ecological environment and regional water security and even have 

been considered important strategic resources for the state economy and social development. 

There are more than 40 lakes that vary in size on the Yunnan Plateau and lake basins are where 

industry and agriculture activities are mostly concentrated. The nine lakes selected for this study are 

located in different areas with varied geographical environments in Yunnan Province (Figure 1) and 

include 5 faulted tectonic lakes (Dianchi and Qilu, Erhai, Haixi, and Bita), 1 faulted karst lake (Lashi), 

1 structural faulted glacial lake (Shudu) located in northwest Yunnan, and 2 karst lakes (Yilong and 

Yuxian) located in south and southeast Yunnan. The nine lakes span the subtropical alpine monsoon 

climate zone, the low-latitude warm temperate zone plateau mountain monsoon climate, and the 

plateau cold and warm humid climate. The elevation of Yunnan Province varies from 1,420 m.a.s.l. 

to 3,620 m.a.s.l. Among the nine lakes, Dianchi Lake, known as the “Plateau Pearl,” is the largest 

freshwater lake in Yunnan Province; Yuxian Lake completely dried out in several years according to 

surveys by [19]. The surface area of this lake rapidly decreased to approximately 150 m2 in August 

2013 and the lake had completely dried up when a survey was conducted again in March 2014 by Hu 

Kui. Qilu Lake and Yilong Lake are undergoing severe anthropogenic disturbance, and Bita Lake is 

currently being subjected to minimal anthropogenic disturbance. These lakes are distributed in 

different regions and at different elevations and are therefore highly representative. 

 

 

Figure 1. Overview of the study area. 

2.2 Data source and preprocessing 

In this study, Landsat TM/OLI remote sensing image data with a time span of 31 years (1986–

2017) were used as the main data source for extracting lake surface area. Due to the malfunction of 

the Landsat-7 ETM+ scanning line corrector, there were no usable Landsat data for this study area 

during the time period between November 3, 2011 and April 12, 2013, expect for ETM+. Therefore, 
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we used HJ-1A/B CCD data, which has the same spatial resolution as the Landsat data (30 m spatial 

resolution), to supplement the missing Landsat data during this period. The level-1 Landsat data 

were downloaded from the United States Geological Survey website (https://glovis.usgs.gov/) and 

the HJ-1A/B data were downloaded from the China Centre for Resources Satellite Data and 

Application (CRESDA) (http://www.cresda.com/). Because of the distinct dry and wet seasons in 

Yunnan Province, approximately 90% of the year’s precipitation is concentrated in the rainy season 

(from May to October of a year), while only 10% occurs during the dry season (from November to 

the next April) [20]. In addition, because the available remote sensing image data for the rainy season 

in this study area are very limited, the remote sensing data were all selected from the period between 

November and the next April to ensure that there was at least one available Landsat observation for 

each year. A total of 795 Landsat level-1 images were downloaded, covering 6 different scenes (see 

Table 1 for details). In addition, 27 HJ-1A/B images were used, and each of the selected images was 

cloud-free over the lakes in the study area. 

Remote sensing data used in this study were preprocessed, which included radiation calibration, 

atmospheric correction, and geometric correction. For the atmosphere correction of Landsat data, the 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) model, which is based 

on the ModTRAN model on ENVITM 5.3 software, was used to create the Landsat-based surface 

reflectance data [21]. Because clouds and cloud shadows are obstacles to optical remote sensing data-

used classification, the Fmask algorithm provided by Zhu was used to remove the clouded and 

shadowed pixels [22], and the removed pixels were filled with the nearest available data. The 

radiation calibration and atmospheric correction of the HJ-1A/B data were also performed using 

ENVITM 5.3 software. The calibration parameters and spectral response functions required for the 

radiation calibration and the atmospheric correction of the HJ1A/B data were obtained from the 

China Centre for Resources Satellite Data and Application CRESDA website 

(http://www.cresda.cn/CN/Downloads/dbcs/index.shtml). In addition, Landsat orthophoto images 

were used as reference images to register the HJ-1A/B data, and approximately 16 ground control 

points were uniformly selected for each image. The polynomial model and the nearest neighbor 

resampling methods were used to correct the HJ-1A/B data. 

Table 1. Remote sensing images used in this study 

Date 
Satellite 

Sensors 

Number of 

Images 

selected 

Spatial 

Resolution 
Data Source 

11/01/1986-11/02/2011 Landsat TM 686 30 m https://glovis.usgs.gov/ 

11/03/2011-04/12/2013 HJ-1A/B 27 30 m http://www.cresda.com/ 

04/13/2013-04/30/2017 Landsat OLI 109 30 m https://glovis.usgs.gov/ 

3. Methods 

Climate variability and human interventions are commonly considered two major contributors 

to variations in inland lakes [23]. To identify lake disturbances that are dominated by different factors 

using time series remote sensing data, this paper proposes a lake disturbance identification algorithm 

that consists of two parts: the first is the Douglas-Peucker algorithm [24] and bend simplification 

algorithm [25] to segment the Landsat data derived time series lake surface area curve. Second, 

according to the documented lake surface area change records, the characteristics of the change in 

the main lake surface in the time series curve are summarized and the classification features are 

extracted to identify the main lake surface area change events. The specific steps are as follows: 1) 

time series lake surface area curve construction; 2) curve simplification following the Douglas-

Peucker algorithm; 3) bend simplification to further simplify the segmented time series curve; and 4) 

feature extraction and event identification. 
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3.1 Lake surface extraction and time series lake surface area curve construction 

Many inland water body identification methods have been developed since the emergence of 

remote sensing technology. However, among these methods, the water index-based method has 

proven to be simple and effective for extracting the water body [26–28]. 

Widely used water indices include the normalized difference water index (NDWI), modified 

normalized difference water index (MNDWI), enhanced water index (EWI), automated water 

extraction index (AWEI), multiband water index (MBWI), and WI2015 [29]. In particular, the NDWI 

and MNDWI are the most widely used [6]. Therefore, in this study, we adopted the MNDWI index 

combined with the Otsu algorithm to adaptively determine the optimum segmentation threshold for 

extracting lake areas from the Landsat images. The Otsu method [30] algorithm proposed by Otsu is 

a type of self-adaptive thresholding method that is also referred to as the maximum interclass 

variance method and is derived by least square estimation. The Otsu method used in this study will 

exclude the influence of mis-segmentation to water and non-water areas due to artificially set 

thresholds to the MNDWI. 

The MNDWI that was obtained by Xu [31] by revising the waveband combination of the NDWI 

is one of the most typical and most widely used methods for water extraction. The basic principle of 

this index is that the reflectivity of water in the mid-infrared band continues to decrease, while the 

reflectivity of ground features, such as soil and buildings, abruptly increases from the near-infrared 

band to the mid-infrared band. This pattern greatly reduces confusing water and buildings, reduces 

the background noise, and benefits the extraction of thematic information about the water. Therefore, 

in this study, we use the MNDWI (see formula (1)) to extract water bodies, as follows: 

 

𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑀𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑀𝐼𝑅
 (1) 

where Green represents the green light band and MIR represents the mid-infrared band. 

The single-band threshold method was used to extract water from the HJ-1A/1B images. After 

PC (principal component) transformation of the HJ-1A/1B data, a significant difference between 

water and non-water was maximized on the 2nd component (or band) [32]. Thus, by selecting an 

appropriate threshold, water information can be satisfactorily extracted using the single-band 

method. 

Analysis of a time series curve plotted with sufficiently continuous lake area data not only 

effectively reflects the lake area variation trend but also captures any major lake disturbance events. 

In this study, the input data used to construct the time series curve were the annual average lake area 

measurements extracted from the remote sensing images during each dry season (November to April 

of the next year) from 1987 to 2017. 

3.2 Time series lake surface area curve segmentation and identification of disturbance events 

(1) Simplification of the time series curve using the Douglas-Peucker algorithm 

The occurrence of large natural or human activities in (or around) a lake will cause lake area 

disturbances. For example, dam construction or water storage in a lake will cause a sudden increase 

in lake area, whereas land reclamation around a lake will cause a rapid decrease in lake area. 

Furthermore, strong natural events such as rainfall or drought can also cause increases or decreases 

in lake area. Such event-induced lake changes manifest as sudden changes in the time series lake 

surface area curve. However, minor events or precipitation differences will also cause variations in 

the time series curve. These changes are not key factors affecting the lake area but may be obstacles 

to the identification of key disturbances; thus, they are considered noise that should be removed for 

the time-series analysis. 

Several methods, such as LandTrendr [33], CCDC [34], and BFAST [35], have been proposed to 

identify disturbances using remotely sensed time series indices (such as the NDVI (Normalized 
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Difference Vegetation Index), NBR (Normalized Burn Ratio), TCA (Tasselled Cap Angle). However, 

most of the lake surface area time series appear to be purely random and nonstationary time series 

(see Table 2); unlike indices such as NDVI, NBR, and TCA, lake surface areas are dimensionless, 

which means existing models are theoretically unsuitable for the analysis of lake surface area time 

series. Fortunately, the Douglas-Peucker (D-P) line simplification algorithm, which is used to 

eliminate low-intensity noises and smooth minor changes on the curve to better capture larger 

changes on the curve, is an appropriate alternative. 

Table 2. Stability test by the Ad test to lake surface area time series of the 9 lakes. 

Lake Ad Test (at 0.05 level) Stationary (yes/ no) 

Shudu lake P=0.5355 > 0.05 no 

Qilu Lake P=0.341 > 0.05 no 

Yilong Lake P=0.1825 > 0.05 no 

Bitahai Lake P=0.03192 < 0.05 yes 

Lashihai Lake P=0.04617 < 0.05 yes 

Yuxian Lake P=0.3644 > 0.05 no 

Haixihai Lake P=0.5563 > 0.05 no 

Dianchi Lake P=0.01 < 0.05 yes 

Erhai Lake P=0.1577 > 0.05 no 

The D-P algorithm was proposed by Douglas and Peucker in 1973 [24]. Currently, this algorithm 

is recognized as a classical algorithm for vector line simplification in GIS (geographic informational 

system). The basic idea of the algorithm is as follows: 1) line AB (see Figure 2) connects the two end 

points A and B of a time series curve, forming the chord of the curve; 2) for each of the points (for 

example, point C) between A and B on the curve, there will be a distance to this chord (to line AB), 

forming a set of distances D, and the maximum distance of D is d(max); 3) d(max) is then compared 

with the given tolerance ε, and if d(max) is smaller than ε, then line AB is taken to be the 

approximation of the curve, and the processing of this curve section ends, but if d(max) is larger than 

ε, then the corresponding point (point C) is used to divide the curve into two subsegments (AC and 

BC), and each of the two subsegments is further processed following steps 1 through 3 until each of 

their d(max) values is less than the given ε; and 4) after all the curves are processed, the segmentation 

points are connected sequentially to form a polyline that represents a simplification of the curve. 
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Figure 2. Segmentation method for time series curves. 

(2) Bend simplification and time series curve segmentation 

After D-P simplification of the time series curve, several minor-change points may not have been 

removed. As these points are not indicative of major lake disturbance events, they should be 

removed. To retain only the feature points with the main fluctuations on time series curves, we use 

the bend simplification algorithm, which can eliminate smaller fluctuations [36], to simplify the D-P 

algorithm simplified curve. 

The bend simplification algorithm is used to determine whether the variation in the curvature 

at each point is smooth. Given a predefined threshold, if the curvature is smaller than the threshold, 

then the point will be eliminated and a new segment will be created between the two points adjacent 

to the eliminated point. However, if the curvature exceeds the predefined threshold, the 

corresponding point will be considered a potential feature point and will be retained. After each point 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 December 2019                   doi:10.20944/preprints201912.0392.v1

Peer-reviewed version available at Remote Sens. 2020, 12, 612; doi:10.3390/rs12040612

https://doi.org/10.20944/preprints201912.0392.v1
https://doi.org/10.3390/rs12040612


 8 of 21 

 

 

is processed, the retained potential points are then connected sequentially to form the finally 

simplified time series curve. The specific steps of the bend simplification algorithm are illustrated in 

Figure 2 and are explained as follows: 1) first, we calculate the curvatures on each point of the curve 

except for the first and last points; 2) second, for the curvature on the second point (for example point 

B), the two adjacent points A and C are used to construct vectors AB and BC, and the angle formed 

by these two vectors is calculated as α1; if α1 is larger than the preset threshold α, the curvature on 

point B is considered to be large and will be retained as a key point; however, if the angle α1 between 

vector AB and BC is less than the preset threshold α, point B will be removed. Following the steps 

above, curvatures on point C, D, etc. will be judged one by one; 3) after step 2), all points, except the 

beginning and the end points, that meet the given curvature threshold α are retained as feature points 

that are representative of the main lake surface area change events. 

(3) Feature extraction and disturbance identification 

After the segmentation of the time series curve of the lake area, the lake surface area disturbance 

events that occurred during the long-term change of the lake will be obtained (known as the 

trajectory); each segment represents different lake disturbance events, and the beginning of a segment 

is usually the year in which the corresponding disturbance occurred, and the end corresponds to the 

year in which the disturbance ended. When the lake is greatly disturbed by external influences, the 

variation in the lake area time series curve segmentation reflects this and the lake disturbance features 

caused by different leading factors in the time series curve are also quite distinguishable. To 

accurately classify the identified lake disturbance events based on the segmentation results, 23 lake 

disturbance events recorded in 9 lakes in the study area were divided into two groups; one group 

was used to establish the lake disturbance classification rules, while the other group was used to 

verify the accuracy of the classification results. 

Unlike trajectory classifications of disturbances in forests, lake disturbance classifications are 

small sample-based classification tasks, because major lake surface area disturbances are small 

probability events that cause training sample insufficiency of classifiers, such as statistical classifiers, 

machine learning classifiers or artificial intelligence classifiers. In addition, the binary classification 

problem in this study is to classify disturbances into anthropogenic or natural events. By analyzing 

each type of disturbance and its time series curve features, we find that there are strong relationships 

between the disturbance types and their curve changing trajectory. Therefore, we used a decision rule 

based disturbance type identification method to classify disturbances into anthropogenic or natural 

events. The decision rules for each node are based on the features extracted, as described above. 

This study followed the CART (Classification and Regression Trees) method developed by 

Breiman [37]. The CART method classifies samples into a predefined number of classes by splitting 

learning samples into smaller parts following a set of rules at each split node. The CART is robust for 

isolating outliers in an individual node or nodes [38]. The splitting algorithm that maximizes the 

difference at each node through all possible values of variables is key for building the CART method. 

One of the most widely used splitting rules is the Gini splitting rule, given as follows: 

Gini Index = 1 − ∑ 𝑝𝑖
2𝑐

𝑖=1  (2) 

where p_i is the conditional probability of class i in a training sample 𝑆 that will be correctly 

classified, and C is the number of classes (anthropogenic or natural disturbances in this study). A 

lower Gini indicates the greater separability for that node, and the Gini will be calculated at each 

node using the specified features of lake surface area change. The features used in the CART method 

includes the amplitude of a disturbance, its duration, and the curve shape formed by the changing 

and recovering process. If one of the features (F for instance) has a minimum Gini value, then the 

training sample S will be split into S_1 and S_2 by Equation 3, as follows: 

𝐺𝑖𝑛𝑖𝐹 =
|𝑆1|

𝑆
Gini(𝑆1)+ 

|𝑆2|

𝑆
Gini(𝑆2) (3) 
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4. Results and discussion 

4.1. Accuracy evaluation of extracted lake surface area 

The water storage of inland lakes significantly changes seasonally, and it is not possible to 

accurately obtain in situ measurements of the lake surface area for each remotely sensed image. 

Moreover, visual interpretation would result in the confusion between lake boundary and water 

body. However, the satellite borne synthetic aperture radar (SAR) system with longer working bands 

makes the radar image have all-weather imaging capability, and several sensors (such as Sentinel-1, 

RADARSAT, TanDEM-X, TerraSAR-X) have high spatial resolution, which can greatly improve land 

cover detection efficiency and accuracy [39]. The Sentinel-1A data are the first radar data in the 

history of SAR that are publicly available for free download (https://vertex.daac.asf.alaska.edu/). 

With a 12 day revisit capability and 10 m spatial resolution, the Sentinel-1 SAR data was chosen as 

the validation data to assess the lake extraction accuracy. To minimize the influence of seasonal 

precipitation, the Sentinel-1 data with the closest imaging time to Landsat images were selected to 

validate the lake surface area extraction accuracy. 

The SAR and the MNDWI-based lake surface area extraction results of the 9 chosen lakes are 

shown in Table 3. Compared with the Sentinel-1 data extracted lake areas, the maximum bias was 

0.0918% for Lashihai Lake and the minimum bias was 0.0016% for Shudu Lake, and each of the 9 

lakes had a bias of less than 0.1% between the Sentinel-1 and the OLI extracted results. The extracted 

annual lake area data with a small bias and the Sentinel-1 extracted lake areas were used to establish 

a reliable time series curve. Landsat-derived lake surface areas are presented in Figure 3. 

Table 3. Accuracies of different lake water extraction results. 

Lakes Landsat-OLI Area(km²) Sentinel-1A Area(km²) Area differences 

(km²) 

Shudu Lake 02/15/2017 1.69020 02/10/2017 1.68757 0.00263 

Qilu Lake 03/14/2017 32.1237 03/13/2017 30.9925 1.1312 

Yilong Lake 03/14/2017 18.2070 03/13/2017 17.3267 0.8803 

Bitahai Lake 02/15/2017 1.61190 02/10/2017 1.59107 0.02083 

Lashihai Lake 02/03/2015 12.2823 01/30/2015 11.2494 1.0329 

Yuxian Lake 03/23/2017 0.95760 03/22/2017 0.91313 0.04447 

Haixihai Lake 02/08/2017 3.76830 02/10/2017 3.54764 0.22066 

Dianchi Lake 03/14/2017 298.323 03/13/2017 295.423 2.9 

Erhai Lake 02/08/2017 242.337 02/10/2017 241.348 0.989 
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Figure 3. The 9 lakes and their extracted boundaries (polygon in red line). 

4.2. Time series curve segmentation accuracy assessment 

4.2.1. Parameter tuning for time series surface area curve segmentation method 

To identify major lake surface area disturbances, the time series curve segmentation method 

removes small fluctuations but keeps major inflection points by setting thresholds for our curve 

segmentation method. There are two primary thresholding steps in our method, one for the D-P 

algorithm and the other for the bend simplification algorithm. Using a preset tolerance ε for D-P 
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algorithm and the angle threshold α, the time series curve will be segmented. The input data for the 

bend simplification algorithm are the data simplified by the D-P algorithm; therefore, it is especially 

important to select the threshold for the D-P algorithm. A high threshold for the D-P algorithm will 

result in important lake disturbance information losses, but a low threshold value will cause 

overfitting. Figure 4 shows the schematic diagram of the threshold selection for the time series curve 

segmentation, and panels 4(a), 4(b), 4(c), and 4(d) show the segmentation results from the D-P 

algorithm used with different thresholds. As shown in Figure 4, the threshold of 4(a) is too small and 

failed to reject most of the small variations that are not considered major disturbances. However, a 

high threshold value will result in the loss of major disturbances. Only the threshold of 0.06 set in 

panel 4(b) is reasonable in that it not only rejects several small variations but also maintains the major 

fluctuations. 

 

Figure 4. Selection of thresholds for the time series curve segmentation. 

As there are still several small fluctuations not removed by the D-P simplification, the bend 

simplification algorithm is used to further simplify the segments obtained by the D-P algorithm. As 
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shown in Figure 4(e), when the threshold α for the bend simplification algorithm was too low, several 

small fluctuations were not eliminated. However, a greater threshold will cause several major 

disturbances to be eliminated, as shown in Figure 4(g) and 4(h). A threshold of 12.5 set in panel 4(f) 

is reasonable in that it not only maintains the large fluctuations but also rejects the small fluctuations. 

Thresholds used in this study are as listed in Table 4 for the D-P and bend simplification algorithms 

for segmenting the curves of the 9 lakes. For the D-P algorithm, the threshold was set to a value 

between 0.1 to 0.35 times the difference between the maximum and the minimum value on the curve. 

The threshold α for the bend simplification algorithm was set between 10° and 30° to obtain the 

optimum threshold. 

Table 4. Tuning of time series curve segmentation parameters and their accuracies. 

Lake 
Maximum 

area(km²) 

Minimum 

area(km²) 

Area difference 

(km²) 

Threshold ε 

for D-P 

Threshold α for bend 

simplification 

Shudu lake 1.7224 1.1853 0.5371 0.06 12.5 

Qilu lake 46.4386 23.9597 22.4789 3.0 17.5 

Yilong lake 43.2061 12.4935 30.7126 3.5 19.5 

Bitahai lake 1.6434 1.5579 0.0855 0.03 23.0 

Lashihai lake 13.1519 6.4716 6.6803 1.5 25.0 

Yuxian lake 2.0114 0 2.0114 0.45 11.5 

Haixihai lake 4.05 2.5017 1.5483 0.35 18.0 

Dianchi lake 300.4219 293.9209 6.501 1.6 28.5 

Erhai lake 244.9026 237.9613 6.9413 1.15 13.5 

4.2.2 Time series curve segmentation results 

The time series curve segmentation algorithm is key for identifying disturbances based on time 

series remote sensing observations [40]. However, noise caused by the lake surface extraction 

method, seasonal variation in the lake areas, random precipitation etc., in the time series curve is the 

main obstacle to time series curve-based analysis. Smoothing or simplification of a time series curve 

is needed to extract the features of disturbances from the curve [41]. 

After the D-P and bend simplification processing, segments that represent major lake surface 

disturbances are obtained; these segments indicate the duration, amplitude, beginning and ending 

time, etc., of each disturbance and are further used in the disturbance type classification. This is a key 

step for accurately identifying the disturbances; thus, the accuracy of the segmented segments has to 

be assessed prior to the classification step. This study used the simple and easy operational threshold 

determination method to simplify and segment the time series curves. As shown in Figure 5, the lake 

surface area time series curves of the 9 chosen lakes were segmented into 83 segments using our curve 

segmentation method and 21 records are marked in the results, indicating that our method could 

accurately locate these disturbances, including those from anthropogenic activities, such as reservoir 

constructions, irrigations, dam constructions, water storage projects, and natural factors, such as 

droughts and heavy rainfalls. 

This study used yearly Landsat-extracted lake surface area data to construct the time series curve 

from 1987 to 2017; according to the 21 lake disturbance records, the 20 recorded disturbance dates are 

consistent with the segmentation results, for a total accuracy of 95.24%. 
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Figure 5. Time series curve segmentation and event identification results for lake areas in the study 

region during the period 1987–2017. Shudu Lake (a), Qilu Lake (b), Yilong Lake (c), Bitahai Lake (d), 

Lashihai Lake (e), Yuxian Lake(f), Haixihai Lake (g), Dianchi Lake (h), and Erhai Lake (i). 
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4.3. Lake surface area disturbance feature extraction and identification 

4.3.1. Lake surface area disturbance feature extraction 

Inland lakes vary in area and morphology; this is often the result of human activities or natural 

factors [42]. However, the temporal and spatial characteristics help distinguish these two kinds of 

lake surface area variations. To classify these major lake surface area changes into anthropogenic or 

natural events, we extracted the lake surface area features based on the segmented time series curves 

and their documented records. We found 21 officially documented lake change records for the 9 lakes 

(see Appendix 1); according to these references, anthropogenic lake surface area disturbances 

included reservoir constructions, irrigation, transforming lakes into fields, etc., and natural events 

included droughts, heavy rainfalls, etc. 

Documented events and their characteristics of change on the time series curves are shown in 

Figure 5 and Appendix 1, and these distinguishable features can be summarized as follows: 1) 

human-induced lake surface area changes will cause an abrupt increase (or decrease) in the time 

series curve and the area increments are commonly larger for anthropogenic events compared to 

those for the natural disturbances, for example, due to anthropogenic activities, the lake surface area 

for Shudu Lake increased to 1.4 times that of 1993 between 1993 and 1995, the lake area of Lashihai 

Lake in 1993 increased to 2.03 times that of 1992, Yuxian Lake became 2.1 times larger in 2011 than it 

was 2006, and Haixihai Lake was in 1.4 times larger in area in 1996 than it was in 1994. In contrast, 

natural disturbances-induced lake area changes for Shudu Lake between 1998 and 1999, Bitahai Lake 

between 1990 and 1992, Lashihai Lake between 2010 and 2013, Haixihai Lake between 2010 and 2013 

were 1.2, 1.1, 1.1, and 1.2 times the areas, respectively. The increased areas rarely revert to their 

original level in a short period of time (years) for these anthropogenic disturbances. 2) For natural 

disturbances, there are abrupt increases (or decreases) on the time series curves as well, but these 

increments (or decreases) decrease (or increase) to their original level at the end of a disturbance; 

therefore, these disturbances show a ‘V’ (or ‘Ʌ’) shape on the time series curves, and these natural 

event-caused changes typically consist of two parts, a change and a recovery, and the recovery is 

commonly missing from anthropogenic disturbances. 

The 21 documented lake surface area disturbance events that we collected were randomly 

separated into two groups of samples; the first group of 9 events was used as a training sample to 

extract lakes disturbance features and to identify lake change type rules, and the second group of 12 

events was used to validate the accuracy of the lake disturbance event type classification results. In 

this study, the documented disturbance records of Shudu Lake, Qilu Lake, Yilong Lake, Bitahai Lake 

and Lashihai Lake were used in integration with their curve segmentation results to extract lake 

change features, and the records of Yuxian Lake, Haixihai Lake, Dianchi Lake and Erhai Lake were 

used to validate and assess the accuracies of our lake change event identification method. 

In this study, a total of 83 segments were generated for the 9 time series lake surface area curves; 

there was at least one major event for each of these lakes, either anthropogenic or natural. These 

disturbances caused remarkable fluctuations on the time series curves, and according to the shape of 

each fluctuation on the time series curves, fluctuations with remarkable durations indicate that there 

are close correlations between the current events and their adjacent procedures. Based on this 

characteristic of each disturbance and using these records as references, we define and extract the 

semantic features for each disturbance. Considering the adjacent procedure deficiency for 

disturbances segmented at the beginning or end of the curves, disturbances on the beginning or end 

of the curves were ignored. As a result, 65 disturbances (segments) in total were classified. Statistic 

results of the disturbances and their classes are shown in Appendix 1. 

4.3.2. Classification results of lake surface area disturbances 

According to the segmented curves, lake surface disturbance features such as the amplitude, 

trajectory, duration, and trends before and after a disturbance were extracted to classify each 

disturbance following an optimal decision rule. The amplitude was the ratio of the difference between 
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the area at the beginning of the segment and that at the end, and the difference between the maximum 

and the minimum area on the whole time series curve. Our statistical analysis of the documented 

records indicates that if this ratio is within the range [-0.11, 0.11], the corresponding disturbances are 

major disturbances, otherwise they are not major disturbances. For major disturbances, the 

documented records indicated that anthropogenic disturbances tend to not recover to their original 

level within a duration of approximately 3 years after a disturbance; however, natural disturbances 

had evident recover and mostly returned to their original levels. We quantify this recovery as the 

ratio between the beginning value of the previous segment and the ending value of the subsequent 

segment with the duration. The records for these recorded disturbances show that the anthropogenic 

disturbances had a recovery rate between 0.95 and 1.15 years, mostly within 3 years; otherwise, they 

were natural disturbances. 

Amplitude of a fluctuation 

( Within -0.11 and 0.11?)

  Disturbance recovery rate

(Within 0.95 and 1.15?)

Disturbance recovery duration

(Within 3 years?)

Natural disturbance Anthropogenic disturbance 

Yes No

Yes No

Yes No

Anthropogenic disturbance 

No major disturbance

 

Figure 6. Classification tree to lake surface area disturbances. 

 
Table 5. Statistics on the number of disturbances caused by different factors 

Lake name 
Anthropogenic 

disturbances (times) 

Natural 

disturbances 

(times) 

No 

disturbances 
Total 

Shudu lake 1 1 1 3 

Qilu lake 4 0 2 6 

Yilong lake 1 2 2 5 

Bitahai lake 0 2 1 3 

Lashihai lake 7 1 1 9 

Yuxian lake 2 0 1 3 

Haixihai lake 2 4 1 7 

Dianchi lake 4 2 1 7 

Erhai lake 7 2 0 9 

Total 28 14 10 52 

During the past 30 years, there were 42 major disturbances for the 9 lakes in Yunnan Plateau, 

and only 10 segments were with no major disturbances (see Figure 5 and Table 5). Among these 

disturbances, up to 28 were human-induced, and these disturbances had a major impact on lake 

surface area change. Human-induced disturbances are commonly ‘irreversible’, because lake surface 

area will not revert to its original levels within a short period of time; for example, lake surfaces for 

Shudu Lake between 1993 and 1995, Qilu Lake between 2010 and 2015, Yilong Lake between 2010 

and 2016, Lashihai Lake between 1992 and 1993, Yuxian Lake between 2006 and 2011, and Haixihai 
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Lake between 1994 and 1996 increased (or decreased) to 1.4, 1.5, 2.2, 2.03, 2.1 and 1.4 times their 

original areas, respectively. Yuxian Lake completely dried between 2011 and 2014 because of human 

activities, including reclaiming land from this lake and irrigation [19][ 43]. These results indicated 

that the human-induced disturbances tend to be durable. 

In our study period, natural event-induced major lake surface area disturbances occurred 14 

times, half that of the human induced disturbances. These disturbances were far less impactful, 

because lake surface areas reverted to their original levels after these disturbances and, therefore, 

these disturbances were not long lasting. For example, natural disturbances for Shudu Lake between 

1998 and 1999, Bitahai Lake between 1990 and 1992, Lashihai Lake between 2010 and 2013, and 

Haixihai Lake between 2010 and 2013, caused lake surface area increases (or decreases) to 1.2, 1.1, 1.1, 

and 1.2 times their original levels, respectively, and the lakes with natural disturbances had less of 

an increment (or decrement) compared to those with the human activity-induced disturbances, and 

they reverted to their original levels after a short period of time (within 2 years). In our study area, 

each of the lakes, except Bitahai Lake, had large human activity-induced disturbances, and there were 

much more anthropogenic disturbances for Lashihai Lake, Erhai Lake, Dianchi Lake and Qilu Lake. 

According to the documented records, most of these human activities were dam construction, 

irrigation, and land reclamation. 

Disturbance identification accuracy was determined using the confusion matrix, which uses 

overall accuracy (OA) to represent the percentage of correctly classified disturbances, the user’s 

accuracy (UA) to denote how well training-set samples are classified, and the producer’s accuracy 

(PA) to show the probability that a classified sample represents a given class in reality [44]. In this 

study, we use UAad and UAnd to represent the user’s accuracies of anthropogenic disturbances and 

natural disturbances and the PAda and PAnd to represent the producer’s accuracies of anthropogenic 

disturbances and natural disturbances (see Table 6). We employed the method given by Adeline et 

al. [45] to evaluate the disturbances identification accuracy levels, and validation samples were 

randomly selected from the documented disturbance event records. Reference data and predicted 

results of the confusion matrix were defined as TP (true positive), TN (true negative), FP (false 

positive) and FN (false negative). TP denotes the number of correctly classified as anthropogenic 

disturbances, TN is the number of correctly detected as natural disturbances, FP represents the 

number of natural disturbances misclassified as anthropogenic disturbances, and FN is the number 

of anthropogenic disturbances misclassified as natural disturbances. As the F-score strikes a good 

balance between under- and overdetection accuracy levels, it is used in this study to evaluate the 

accuracy of the methods used (see Table 6). 

Table 6. Classification accuracy assessment indices and formulas. 

Producer’s accuracy User’s accuracy 

Overall accuracy F-score Anthropogenic 

disturbances 

Natural 

disturbances 

Anthropogenic 

disturbances 

Natural 

disturbances 

ad

TP
PA =

TP + FN

 
nd

TN
PA =

TN + FP

 
ad

TP
UA =

TP + FP

 
nd

TN
UA =

FN + TN

 TP + TN
OA =

TP + TN + FP + FN

 ad ad

ad ad

PA UA
2

PA + UA
F =

 

 

Table 7. Disturbance identification accuracy assessment. 

Producer’s accuracy (%)  User’s accuracy (%)  

Overall 

accuracy 

 

F(ad)-

score 

 

F(nd)-

score 

Anthropogenic 

disturbances 

Natural 

disturbances 
 

Anthropogenic 

disturbances 

Natural 

disturbances 

100 75  88.89 100 91.67 94.67 85.71 

The predicted disturbance types agreed well with the records according to the accuracy 

assessment results in Table 7; among the 12 recorded disturbances, only 1 natural disturbance was 

misclassified as an anthropogenic disturbance, and the overall identification accuracy was 91.67%, 
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with an F-score of 94.67 for anthropogenic disturbances and 85.71% for natural disturbances. This 

result suggests the reliability of our proposed method. 

5. Conclusions 

In this study, annual Landsat remote sensing images taken during the dry seasons from 1986 to 

2017 were used to extract lake surface area information for 9 typical lakes in Yunnan Province, China. 

To identify whether human activity or natural events dominate inland lake surface change, we 

proposed a method based on the D-P simplification algorithm combined with the bend simplification 

method to locate large lake change events and then characterize the features of change for each event 

to classify them into anthropogenic or natural lake surface area disturbances. Based on validation 

data from a documented governmental report or year book, we assessed the accuracy of our method 

for both the disturbance location and the disturbance identification, and the results are as follows: 

(1) The method can accurately locate the main lake changing events based on the time series lake 

surface area curve. When a large disturbance event occurs for a lake, its area will also increase (or 

decrease). The method proposed in this paper effectively eliminates noise in the time series of lake 

surface area using the combined D-P simplification algorithm and bend simplification algorithm. 

This method retains the large mutation points in the time series lake surface area curve and accurately 

locates the lake changing events within the time series lake surface curve; the temporal accuracy of 

this model for segmenting the lake area time series curves was 95.24% in our study. 

(2) To characterize the disturbances on each time series curve, we extracted the disturbance 

classification features, including the amplitude, trajectory, duration, and trend before and after a 

disturbance. Combined with the CART decision tree classification method, we achieved an overall 

accuracy of disturbance identification of 91.67%, with an F-score of 94.67 for anthropogenic 

disturbances and 85.71% for natural disturbances. 

(3) According to our results, lakes in Yunnan Provence, China, have undergone extensive 

disturbances, and the human-induced disturbances occurred almost twice as often as natural 

disturbances, indicating intensified disturbances caused by human activities, such as reservoir 

constructions, irrigation, turning lakes into fields, etc. Worse still, the anthropogenic disturbances 

appear to be lasting compared with the natural disturbances. Lakes subjected to natural disturbances 

tend to recover within a short period of time (3 years), while lakes subjected to anthropogenic 

disturbances had longer recovery times or never recovered. 

Because the available remote sensing image data of satisfactory cloud-free quality from the study 

period are predominantly concentrated during Yunnan’s dry season, the data selected were all from 

November to April. In future studies, multisensor spatial-temporal fusion techniques and radar 

remote sensing image data should be combined to obtain year-round lake water areas to 

comprehensively analyze the annual variation characteristics to more accurately capture lake 

disturbance events. 
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Appendix: 

Appendix 1. Lake surface area change events and their semantic feature extraction results. 

Event type Lake Year Documented events Year 
Segmentation results and 

time series curve patterns 
Semantic feature extraction 

 

 

 

 

 

 

 

 

 

Human factors 

dominate lake 

disturbance 

events 

Shudu 

lake 
1995- 

In 1995, the construction of 

the reservoir was completed 

and the reservoir was 

impounded. 

1994- 

After 1994, the lake area 

rapidly increased by a large 

margin, and in the 

following years; it keeps 

running at a higher water 

level. 

Anthropogenic disturbances 

on time series curve tend to 

be: 

a. Abrupt increase (or 

decrease); 

b. With larger disturbance 

amplitude; 

c. Not recover within short 

period (3 years) 

Qilu 

lake 

1993 

 

 

 

2008-

2010 

The reservoir was 

discharged for irrigation 

during a period of long 

drought and limited rain in 

the winter and spring, 1993. 

Completion of the water 

transfer and storage tunnel 

project for Qilu Lake in 

March 2008. 

1989-

1994 

 

 

 

2008-

2010 

The lake area declined 

slightly from that of 

previous years. 

 

 

The lake area increased 

from 2008–2010. 

 

 
2009-

2013 

From 2009 to 2013, yunnan 

experienced a continuous 

drought, which increased the 

demand for agricultural 

water. 

2010-

2013 

From 2010 to 2013, the lake 

area decreased rapidly. 

 2013- 

From 2009 to 2013, during a 

drought in yunnan, villagers 

cultivated crops around the 

parched lake. 

2013- 

The lake area did not 

immediately recover after 

the drought ended in 2013. 

Yilong 

lake  

2009-

2013 

In 2009-2013, Yunnan 

Province continued to suffer 

from drought and 

agricultural water 

consumption has increased 

dramatically. 

2010-

2016 

The lake area declined 

rapidly from 2010 to 2013. 

 
2012-

2015 

Villagers reclaimed and 

planted along the dry 

lakeside 

2013-

2015 

The drought ended, but the 

lake area did not recover, 

and the lake area had a 

“platform” from 2013 to 

2016. 

 

 

 

 

 

Natural factors 

dominate lake 

disturbance 

Yilong 

lake 
1995 

On October 3rd, 1995, the 

Mabaolong embankment of 

Yilong Lake collapsed, 

flooding more than 7,000 mu 

of fields and fish ponds 

around the lake. 

1993-

1996 

The lake area increased 

rapidly and reached a high 

value in 1995-1996, 

followed by a rapid decline 

in the following two years. 

Natural disturbances on time 

series curve tend to show: 

a. An abrupt increase (or 

decrease); 

b. A smaller disturbance 

amplitude compared to those 

from anthropogenic 

disturbances; 

c. Recovery within short 

period (3 years), and the 

trajectory of a natural 

disturbance on the time 

series curve will be in “V” or 

“Ʌ” shape.  

Bitahai 

lake 

2009-

2013 

Yunnan Province continued 

to suffer from drought, 2009-

2013 

2010-

2013 

In 2010-2013, the lake area 

declined and then rose back 

to the previous year's water 

level. 

Lashihai 

lake 

2009-

2013 

Yunnan Province continued 

to suffer from drought, 2009-

2013 

2010-

2013 

In 2009-2013, the lake area 

declined rapidly and then 

quickly rose back to the 

previous year's water level. 
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