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Abstract: Inland lake variations are considered sensitive indicators of global climate change.
However, human activity is playing as a more and more important role in inland lake area
variations. Therefore, it is critical to identify whether anthropogenic activity or natural event is
playing as the dominant factor in inland lake surface area change. In this study, we proposed a
Douglas-Peucker simplification algorithm and bend simplification algorithm combined method to
locate major lake surface area disturbances; these disturbances were then characterized to extract
the time series change features according to documented records; and the disturbances were finally
classified into anthropogenic or natural. We took the nine lakes in Yunnan Province as test sites, a
31 years long (from 1987 to 2017) time series Landsat TM/OLI images and HJ-1A/1B used as data
sources, the official records was used as references to aid the feature extraction and disturbance
identification accuracy. Results of our method for both disturbance location and the disturbance
identification could be concluded as follows: 1) The method can accurately locate the main lake
changing events based on the time series lake surface area curve. The accuracy of this model for
segmenting the lake area time series curves in our study area was 95.24%. 2) Our proposed method
achieved an overall accuracy of 91.67%, with F-score of 94.67 for anthropogenic disturbances and F-
score of 85.71 for natural disturbances. 3) According to our results, lakes in Yunnan Provence, China,
have undergone extensive disturbances, and the human-induced disturbances occurred almost
twice as often as natural disturbances, indicating intensified disturbances caused by human
activities. This inland lake area disturbance identification method is expected to uncover whether a
disturbance to inland lake area is human activity-induced or natural event.
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1. Introduction

Inland lakes are important aspects of land surface cover that participate in the natural water
cycle and are considered highly sensitive to the impacts of climate change and human activities [1-
2]. Shrinkage or extension of inland lakes can reflect global climate and environment changes [3].
Thus, inland lake variations are considered sensitive indicators of global climate change [4-5]. Most
lake variations are caused by natural events or anthropogenic activities. However, these variations
are mostly documented by the local authorities or institutions and are rarely obtained from remote
sensing technology.
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This study focuses on remote sensing methods to identify the dominant factors affecting changes
to inland lake surface area. With advantages of wide coverage, high frequency data collection, labor
and economic cost-effectiveness, remote sensing technology has been used in previous lake change
studies [6-8], especially for lakes located in remote and less developed areas where lake surface
changes have been only rarely documented [2].

With ongoing earth observation projects (such as NASA's Earth Observing System (EOS) and
the European Union’s Copernicus program) and the development of sensors (from visible to infrared
and SAR), times series lake observation data are providing new means to study lake change. Remote
sensing data used for lake monitoring could be divided into three categories according to their spatial
resolution: coarse-, medium- and high-spatial resolution data. Although coarse spatial resolution
remote sensing data (such as NOAA/AVHRR, MODIS, Suomi NPP-VIIRS and Sentinel-3) have lower
spatial resolution and inherent defects, they often have higher revisit frequency and a wider
coverage; therefore, they have been widely used in water monitoring [9-10]. For example, Che et al.
[11] applied the synthesized monthly MODIS09A1 data to extract the lake area of the Qinghai-Tibet
Plateau from 2000 to 2013 using the synthesized NDWI and NDWI water body index proposed by
Mcfeeters [12]; the results showed that the lake area of the Qinghai-Tibet Plateau significantly
expanded during 2000 and 2013. Using time series MODIS data to identify Poyang lake water area
changes, Feng et al. [13] found that Poyang Lake had significant seasonal and interannual changes
during 2000 and 2010, mainly due to the influence of climate fluctuations. With the development of
better sensors, high spatial resolution land monitoring satellites, such as QuickBird, IKONOS,
Worldview, RapidEye, ZY-3, GF-1/2, can provide more accurate and higher spatially resolved land
cover observations. However, the small image coverage and the long revisit periods of high spatial
resolution data remain obstacles for the detection of change in larger inland water bodies [6].

Among these three kinds of data, the medium-resolution data, such as Landsat, HJ-1A/B,
ASTER, and Sentinel-2 data, are the most widely used in water monitoring applications. The main
reason for their frequency of use is the free data access policy and the long-term monitoring of Earth's
surface changes that these datasets represent; e.g., Landsat data includes continuous observations of
up to 40 a [14-16]. A wide range of studies have been employed to study changes to the lake surfaces
using medium-resolution remote sensing data. For example, in order to obtain the water area of the
Yunnan-Guizhou Plateau from 1985 to 2015, Xiao et al. [17] extracted lake surface areas using Landsat
image data from 5 periods at 5 a intervals and found that the water area of lakes in the Yunnan-
Guizhou Plateau first increased and then decreased during this period. Tulbure et al. [8] studied the
relationship between water body areas and changes in the weather in the Murray-Darling Basin and
the Barmah-Millewa forests from 1986 to 2011; the results show that extreme weather events, such as
drought and rainfall, have a significant impact on surface water bodies and submergence dynamics.
Using Landsat time series data, Arvor et al. [18] developed a method for automatically identifying
small water bodies and used it to extract the area and quantity of small reservoirs in the Amazon
region of southern Brazil from 1985 to 2015. The results show that the total area and quantity of small
reservoirs in the area increased by 10 times and more than 5 times during the study period,
respectively.

In summary, existing remote sensing technology used in inland water body identification with
median spatial resolution has provided reliable results for monitoring inland lake change. However,
most inland lakes are affected by human activities, and few studies have tried to identify the
dominant factor affecting inland lake surface change based on remote sensing data: human activities
or natural events? This identification is critical for uncovering the relationship between human
activities and the natural environment on both local and global scales. Thus, in this study, we take 9
large inland lakes on the Yunnan Plateau for our study area and apply the proposed time series lake
surface area change analysis method to uncover changes in inland lakes and to identify whether
human activities or natural events dominate these changes.

2. Study Area and Data
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2.1 Overview of study area

The Yunnan Plateau is part of the Yunnan-Guizhou Plateau, which is one of the four major
plateaus in China. This area is located in southwest China and is characterized by rough terrain and
a subtropical monsoon climate. There are many inland lakes on the Yunnan-Guizhou Plateau; lakes
here play important roles in the ecological environment and regional water security and even have
been considered important strategic resources for the state economy and social development.

There are more than 40 lakes that vary in size on the Yunnan Plateau and lake basins are where
industry and agriculture activities are mostly concentrated. The nine lakes selected for this study are
located in different areas with varied geographical environments in Yunnan Province (Figure 1) and
include 5 faulted tectonic lakes (Dianchi and Qilu, Erhai, Haixi, and Bita), 1 faulted karst lake (Lashi),
1 structural faulted glacial lake (Shudu) located in northwest Yunnan, and 2 karst lakes (Yilong and
Yuxian) located in south and southeast Yunnan. The nine lakes span the subtropical alpine monsoon
climate zone, the low-latitude warm temperate zone plateau mountain monsoon climate, and the
plateau cold and warm humid climate. The elevation of Yunnan Province varies from 1,420 m.a.s.L.
to 3,620 m.a.s.l. Among the nine lakes, Dianchi Lake, known as the “Plateau Pearl,” is the largest
freshwater lake in Yunnan Province; Yuxian Lake completely dried out in several years according to
surveys by [19]. The surface area of this lake rapidly decreased to approximately 150 m2 in August
2013 and the lake had completely dried up when a survey was conducted again in March 2014 by Hu
Kui. Qilu Lake and Yilong Lake are undergoing severe anthropogenic disturbance, and Bita Lake is
currently being subjected to minimal anthropogenic disturbance. These lakes are distributed in
different regions and at different elevations and are therefore highly representative.
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Figure 1. Overview of the study area.

2.2 Data source and preprocessing

In this study, Landsat TM/OLI remote sensing image data with a time span of 31 years (1986—
2017) were used as the main data source for extracting lake surface area. Due to the malfunction of
the Landsat-7 ETM+ scanning line corrector, there were no usable Landsat data for this study area
during the time period between November 3, 2011 and April 12, 2013, expect for ETM+. Therefore,


https://doi.org/10.20944/preprints201912.0392.v1
https://doi.org/10.3390/rs12040612

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2019 d0i:10.20944/preprints201912.0392.v1

40f21

we used HJ-1A/B CCD data, which has the same spatial resolution as the Landsat data (30 m spatial
resolution), to supplement the missing Landsat data during this period. The level-1 Landsat data
were downloaded from the United States Geological Survey website (https://glovis.usgs.gov/) and
the HJ-1A/B data were downloaded from the China Centre for Resources Satellite Data and
Application (CRESDA) (http://www.cresda.com/). Because of the distinct dry and wet seasons in
Yunnan Province, approximately 90% of the year’s precipitation is concentrated in the rainy season
(from May to October of a year), while only 10% occurs during the dry season (from November to
the next April) [20]. In addition, because the available remote sensing image data for the rainy season
in this study area are very limited, the remote sensing data were all selected from the period between
November and the next April to ensure that there was at least one available Landsat observation for
each year. A total of 795 Landsat level-1 images were downloaded, covering 6 different scenes (see
Table 1 for details). In addition, 27 HJ-1A/B images were used, and each of the selected images was
cloud-free over the lakes in the study area.

Remote sensing data used in this study were preprocessed, which included radiation calibration,
atmospheric correction, and geometric correction. For the atmosphere correction of Landsat data, the
FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) model, which is based
on the ModTRAN model on ENVITM 5.3 software, was used to create the Landsat-based surface
reflectance data [21]. Because clouds and cloud shadows are obstacles to optical remote sensing data-
used classification, the Fmask algorithm provided by Zhu was used to remove the clouded and
shadowed pixels [22], and the removed pixels were filled with the nearest available data. The
radiation calibration and atmospheric correction of the HJ-1A/B data were also performed using
ENVITM 5.3 software. The calibration parameters and spectral response functions required for the
radiation calibration and the atmospheric correction of the HJ1A/B data were obtained from the
China Centre for Resources Satellite Data and Application CRESDA  website
(http://www.cresda.cn/CN/Downloads/dbcs/index.shtml). In addition, Landsat orthophoto images
were used as reference images to register the HJ-1A/B data, and approximately 16 ground control
points were uniformly selected for each image. The polynomial model and the nearest neighbor
resampling methods were used to correct the HJ-1A/B data.

Table 1. Remote sensing images used in this study

Number of
Satellite Spatial
Date Images Data Source
Sensors Resolution
selected

11/01/1986-11/02/2011 Landsat TM 686 30 m https://glovis.usgs.gov/
11/03/2011-04/12/2013 HJ-1A/B 27 30m http://www.cresda.com/
04/13/2013-04/30/2017  Landsat OLI 109 30 m https://glovis.usgs.gov/

3. Methods

Climate variability and human interventions are commonly considered two major contributors
to variations in inland lakes [23]. To identify lake disturbances that are dominated by different factors
using time series remote sensing data, this paper proposes a lake disturbance identification algorithm
that consists of two parts: the first is the Douglas-Peucker algorithm [24] and bend simplification
algorithm [25] to segment the Landsat data derived time series lake surface area curve. Second,
according to the documented lake surface area change records, the characteristics of the change in
the main lake surface in the time series curve are summarized and the classification features are
extracted to identify the main lake surface area change events. The specific steps are as follows: 1)
time series lake surface area curve construction; 2) curve simplification following the Douglas-
Peucker algorithm; 3) bend simplification to further simplify the segmented time series curve; and 4)
feature extraction and event identification.
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3.1 Lake surface extraction and time series lake surface area curve construction

Many inland water body identification methods have been developed since the emergence of
remote sensing technology. However, among these methods, the water index-based method has
proven to be simple and effective for extracting the water body [26-28].

Widely used water indices include the normalized difference water index (NDWI), modified
normalized difference water index (MNDWI), enhanced water index (EWI), automated water
extraction index (AWEI), multiband water index (MBWI), and WI2015 [29]. In particular, the NDWI
and MNDWI are the most widely used [6]. Therefore, in this study, we adopted the MNDWI index
combined with the Otsu algorithm to adaptively determine the optimum segmentation threshold for
extracting lake areas from the Landsat images. The Otsu method [30] algorithm proposed by Otsu is
a type of self-adaptive thresholding method that is also referred to as the maximum interclass
variance method and is derived by least square estimation. The Otsu method used in this study will
exclude the influence of mis-segmentation to water and non-water areas due to artificially set
thresholds to the MNDWL

The MNDWI that was obtained by Xu [31] by revising the waveband combination of the NDWI
is one of the most typical and most widely used methods for water extraction. The basic principle of
this index is that the reflectivity of water in the mid-infrared band continues to decrease, while the
reflectivity of ground features, such as soil and buildings, abruptly increases from the near-infrared
band to the mid-infrared band. This pattern greatly reduces confusing water and buildings, reduces
the background noise, and benefits the extraction of thematic information about the water. Therefore,
in this study, we use the MNDWI (see formula (1)) to extract water bodies, as follows:

_ Green — MIR 1
NDWT = Green + MIR @
where Green represents the green light band and MIR represents the mid-infrared band.

The single-band threshold method was used to extract water from the HJ-1A/1B images. After
PC (principal component) transformation of the HJ-1A/1B data, a significant difference between
water and non-water was maximized on the 2nd component (or band) [32]. Thus, by selecting an
appropriate threshold, water information can be satisfactorily extracted using the single-band
method.

Analysis of a time series curve plotted with sufficiently continuous lake area data not only
effectively reflects the lake area variation trend but also captures any major lake disturbance events.
In this study, the input data used to construct the time series curve were the annual average lake area
measurements extracted from the remote sensing images during each dry season (November to April
of the next year) from 1987 to 2017.

3.2 Time series lake surface area curve segmentation and identification of disturbance events

(1) Simplification of the time series curve using the Douglas-Peucker algorithm

The occurrence of large natural or human activities in (or around) a lake will cause lake area
disturbances. For example, dam construction or water storage in a lake will cause a sudden increase
in lake area, whereas land reclamation around a lake will cause a rapid decrease in lake area.
Furthermore, strong natural events such as rainfall or drought can also cause increases or decreases
in lake area. Such event-induced lake changes manifest as sudden changes in the time series lake
surface area curve. However, minor events or precipitation differences will also cause variations in
the time series curve. These changes are not key factors affecting the lake area but may be obstacles
to the identification of key disturbances; thus, they are considered noise that should be removed for
the time-series analysis.

Several methods, such as LandTrendr [33], CCDC [34], and BFAST [35], have been proposed to
identify disturbances using remotely sensed time series indices (such as the NDVI (Normalized
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Difference Vegetation Index), NBR (Normalized Burn Ratio), TCA (Tasselled Cap Angle). However,
most of the lake surface area time series appear to be purely random and nonstationary time series
(see Table 2); unlike indices such as NDVI, NBR, and TCA, lake surface areas are dimensionless,
which means existing models are theoretically unsuitable for the analysis of lake surface area time
series. Fortunately, the Douglas-Peucker (D-P) line simplification algorithm, which is used to
eliminate low-intensity noises and smooth minor changes on the curve to better capture larger
changes on the curve, is an appropriate alternative.

Table 2. Stability test by the Ad test to lake surface area time series of the 9 lakes.

Lake Ad Test (at 0.05 level)  Stationary (yes/ no)
Shudu lake P=0.5355 > 0.05 no
Qilu Lake P=0.341 > 0.05 no
Yilong Lake P=0.1825> 0.05 no
Bitahai Lake P=0.03192 < 0.05 yes
Lashihai Lake P=0.04617 < 0.05 yes
Yuxian Lake P=0.3644 > 0.05 no
Haixihai Lake P=0.5563 > 0.05 no
Dianchi Lake P=0.01<0.05 yes
Erhai Lake P=0.1577 > 0.05 no

The D-P algorithm was proposed by Douglas and Peucker in 1973 [24]. Currently, this algorithm
is recognized as a classical algorithm for vector line simplification in GIS (geographic informational
system). The basic idea of the algorithm is as follows: 1) line AB (see Figure 2) connects the two end
points A and B of a time series curve, forming the chord of the curve; 2) for each of the points (for
example, point C) between A and B on the curve, there will be a distance to this chord (to line AB),
forming a set of distances D, and the maximum distance of D is d(max); 3) d(max) is then compared
with the given tolerance ¢, and if d(max) is smaller than &, then line AB is taken to be the
approximation of the curve, and the processing of this curve section ends, but if d(max) is larger than
g, then the corresponding point (point C) is used to divide the curve into two subsegments (AC and
BC), and each of the two subsegments is further processed following steps 1 through 3 until each of
their d(max) values is less than the given ¢; and 4) after all the curves are processed, the segmentation
points are connected sequentially to form a polyline that represents a simplification of the curve.
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Figure 2. Segmentation method for time series curves.

(2) Bend simplification and time series curve segmentation

After D-P simplification of the time series curve, several minor-change points may not have been
removed. As these points are not indicative of major lake disturbance events, they should be
removed. To retain only the feature points with the main fluctuations on time series curves, we use
the bend simplification algorithm, which can eliminate smaller fluctuations [36], to simplify the D-P
algorithm simplified curve.

The bend simplification algorithm is used to determine whether the variation in the curvature
at each point is smooth. Given a predefined threshold, if the curvature is smaller than the threshold,
then the point will be eliminated and a new segment will be created between the two points adjacent
to the eliminated point. However, if the curvature exceeds the predefined threshold, the
corresponding point will be considered a potential feature point and will be retained. After each point
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is processed, the retained potential points are then connected sequentially to form the finally
simplified time series curve. The specific steps of the bend simplification algorithm are illustrated in
Figure 2 and are explained as follows: 1) first, we calculate the curvatures on each point of the curve
except for the first and last points; 2) second, for the curvature on the second point (for example point
B), the two adjacent points A and C are used to construct vectors AB and BC, and the angle formed
by these two vectors is calculated as al; if al is larger than the preset threshold «, the curvature on
point B is considered to be large and will be retained as a key point; however, if the angle a1l between
vector AB and BC is less than the preset threshold «, point B will be removed. Following the steps
above, curvatures on point C, D, etc. will be judged one by one; 3) after step 2), all points, except the
beginning and the end points, that meet the given curvature threshold a are retained as feature points
that are representative of the main lake surface area change events.

(3) Feature extraction and disturbance identification

After the segmentation of the time series curve of the lake area, the lake surface area disturbance
events that occurred during the long-term change of the lake will be obtained (known as the
trajectory); each segment represents different lake disturbance events, and the beginning of a segment
is usually the year in which the corresponding disturbance occurred, and the end corresponds to the
year in which the disturbance ended. When the lake is greatly disturbed by external influences, the
variation in the lake area time series curve segmentation reflects this and the lake disturbance features
caused by different leading factors in the time series curve are also quite distinguishable. To
accurately classify the identified lake disturbance events based on the segmentation results, 23 lake
disturbance events recorded in 9 lakes in the study area were divided into two groups; one group
was used to establish the lake disturbance classification rules, while the other group was used to
verify the accuracy of the classification results.

Unlike trajectory classifications of disturbances in forests, lake disturbance classifications are
small sample-based classification tasks, because major lake surface area disturbances are small
probability events that cause training sample insufficiency of classifiers, such as statistical classifiers,
machine learning classifiers or artificial intelligence classifiers. In addition, the binary classification
problem in this study is to classify disturbances into anthropogenic or natural events. By analyzing
each type of disturbance and its time series curve features, we find that there are strong relationships
between the disturbance types and their curve changing trajectory. Therefore, we used a decision rule
based disturbance type identification method to classify disturbances into anthropogenic or natural
events. The decision rules for each node are based on the features extracted, as described above.

This study followed the CART (Classification and Regression Trees) method developed by
Breiman [37]. The CART method classifies samples into a predefined number of classes by splitting
learning samples into smaller parts following a set of rules at each split node. The CART is robust for
isolating outliers in an individual node or nodes [38]. The splitting algorithm that maximizes the
difference at each node through all possible values of variables is key for building the CART method.
One of the most widely used splitting rules is the Gini splitting rule, given as follows:

Gini Index =1-Y%,p? (2)

where p_i is the conditional probability of class i in a training sample S that will be correctly
classified, and C is the number of classes (anthropogenic or natural disturbances in this study). A
lower Gini indicates the greater separability for that node, and the Gini will be calculated at each
node using the specified features of lake surface area change. The features used in the CART method
includes the amplitude of a disturbance, its duration, and the curve shape formed by the changing
and recovering process. If one of the features (F for instance) has a minimum Gini value, then the
training sample S will be split into S_1 and S_2 by Equation 3, as follows:

Ginip = 2Gini(s,)+ 2Gini(s,) 3
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4. Results and discussion

4.1. Accuracy evaluation of extracted lake surface area

The water storage of inland lakes significantly changes seasonally, and it is not possible to
accurately obtain in situ measurements of the lake surface area for each remotely sensed image.
Moreover, visual interpretation would result in the confusion between lake boundary and water
body. However, the satellite borne synthetic aperture radar (SAR) system with longer working bands
makes the radar image have all-weather imaging capability, and several sensors (such as Sentinel-1,
RADARSAT, TanDEM-X, TerraSAR-X) have high spatial resolution, which can greatly improve land
cover detection efficiency and accuracy [39]. The Sentinel-1A data are the first radar data in the
history of SAR that are publicly available for free download (https://vertex.daac.asf.alaska.edu/).
With a 12 day revisit capability and 10 m spatial resolution, the Sentinel-1 SAR data was chosen as
the validation data to assess the lake extraction accuracy. To minimize the influence of seasonal
precipitation, the Sentinel-1 data with the closest imaging time to Landsat images were selected to
validate the lake surface area extraction accuracy.

The SAR and the MNDWI-based lake surface area extraction results of the 9 chosen lakes are
shown in Table 3. Compared with the Sentinel-1 data extracted lake areas, the maximum bias was
0.0918% for Lashihai Lake and the minimum bias was 0.0016% for Shudu Lake, and each of the 9
lakes had a bias of less than 0.1% between the Sentinel-1 and the OLI extracted results. The extracted
annual lake area data with a small bias and the Sentinel-1 extracted lake areas were used to establish
a reliable time series curve. Landsat-derived lake surface areas are presented in Figure 3.

Table 3. Accuracies of different lake water extraction results.

Lakes Landsat-OLI Area(km?)  Sentinel-1A  Area(km?) Area differences
(km?)

Shudu Lake 02/15/2017 1.69020 02/10/2017 1.68757 0.00263
Qilu Lake 03/14/2017 32.1237 03/13/2017 30.9925 1.1312
Yilong Lake 03/14/2017 18.2070 03/13/2017 17.3267 0.8803
Bitahai Lake 02/15/2017 1.61190 02/10/2017 1.59107 0.02083
Lashihai Lake 02/03/2015 12.2823 01/30/2015 11.2494 1.0329
Yuxian Lake 03/23/2017 0.95760 03/22/2017 0.91313 0.04447
Haixihai Lake 02/08/2017 3.76830 02/10/2017 3.54764 0.22066
Dianchi Lake 03/14/2017 298.323 03/13/2017 295.423 29

Erhai Lake 02/08/2017 242.337 02/10/2017 241.348 0.989



https://doi.org/10.20944/preprints201912.0392.v1
https://doi.org/10.3390/rs12040612

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2019 d0i:10.20944/preprints201912.0392.v1

10 of 21

(d) Bitahai lake

Figure 3. The 9 lakes and their extracted boundaries (polygon in red line).

4.2. Time series curve segmentation accuracy assessment

4.2.1. Parameter tuning for time series surface area curve segmentation method

To identify major lake surface area disturbances, the time series curve segmentation method
removes small fluctuations but keeps major inflection points by setting thresholds for our curve
segmentation method. There are two primary thresholding steps in our method, one for the D-P
algorithm and the other for the bend simplification algorithm. Using a preset tolerance ¢ for D-P
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algorithm and the angle threshold «, the time series curve will be segmented. The input data for the
bend simplification algorithm are the data simplified by the D-P algorithm; therefore, it is especially
important to select the threshold for the D-P algorithm. A high threshold for the D-P algorithm will
result in important lake disturbance information losses, but a low threshold value will cause
overfitting. Figure 4 shows the schematic diagram of the threshold selection for the time series curve
segmentation, and panels 4(a), 4(b), 4(c), and 4(d) show the segmentation results from the D-P
algorithm used with different thresholds. As shown in Figure 4, the threshold of 4(a) is too small and
failed to reject most of the small variations that are not considered major disturbances. However, a
high threshold value will result in the loss of major disturbances. Only the threshold of 0.06 set in
panel 4(b) is reasonable in that it not only rejects several small variations but also maintains the major
fluctuations.

Bend simplification algorithm

D-P simplification algorithm

(e)
£=0.03 a=0.0 e=0.06 a=5.0
A —— D
()
£=0.06 0=0.0 e=0.06 a=12.5

(c)

€=0.25 0=0.0

The segmentation result (b) of the optimal

threshold of the selection is used as the
original input data of the curvature
transformation algorithm.

(g)

£=0.06 0=17.0

(h)

£=0.06 ¢=30.0

Optimal threshold segmentation result (f).

Figure 4. Selection of thresholds for the time series curve segmentation.

As there are still several small fluctuations not removed by the D-P simplification, the bend
simplification algorithm is used to further simplify the segments obtained by the D-P algorithm. As
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shown in Figure 4(e), when the threshold a for the bend simplification algorithm was too low, several
small fluctuations were not eliminated. However, a greater threshold will cause several major
disturbances to be eliminated, as shown in Figure 4(g) and 4(h). A threshold of 12.5 set in panel 4(f)
is reasonable in that it not only maintains the large fluctuations but also rejects the small fluctuations.
Thresholds used in this study are as listed in Table 4 for the D-P and bend simplification algorithms
for segmenting the curves of the 9 lakes. For the D-P algorithm, the threshold was set to a value
between 0.1 to 0.35 times the difference between the maximum and the minimum value on the curve.
The threshold a for the bend simplification algorithm was set between 10° and 30° to obtain the
optimum threshold.

Table 4. Tuning of time series curve segmentation parameters and their accuracies.

Lake Maximum Minimum Area difference Threshold ¢ = Threshold a for bend
area(km?) area(km?) (km?) for D-P simplification

Shudu lake 1.7224 1.1853 0.5371 0.06 12.5
Qilu lake 46.4386 23.9597 22.4789 3.0 17.5
Yilong lake 43.2061 12.4935 30.7126 3.5 19.5
Bitahai lake 1.6434 1.5579 0.0855 0.03 23.0
Lashihai lake 13.1519 6.4716 6.6803 15 25.0
Yuxian lake 2.0114 0 2.0114 0.45 11.5
Haixihai lake 4.05 2.5017 1.5483 0.35 18.0
Dianchi lake 300.4219 293.9209 6.501 1.6 28.5
Erhai lake 2449026 237.9613 6.9413 1.15 13.5

4.2.2 Time series curve segmentation results

The time series curve segmentation algorithm is key for identifying disturbances based on time
series remote sensing observations [40]. However, noise caused by the lake surface extraction
method, seasonal variation in the lake areas, random precipitation etc., in the time series curve is the
main obstacle to time series curve-based analysis. Smoothing or simplification of a time series curve
is needed to extract the features of disturbances from the curve [41].

After the D-P and bend simplification processing, segments that represent major lake surface
disturbances are obtained; these segments indicate the duration, amplitude, beginning and ending
time, etc., of each disturbance and are further used in the disturbance type classification. This is a key
step for accurately identifying the disturbances; thus, the accuracy of the segmented segments has to
be assessed prior to the classification step. This study used the simple and easy operational threshold
determination method to simplify and segment the time series curves. As shown in Figure 5, the lake
surface area time series curves of the 9 chosen lakes were segmented into 83 segments using our curve
segmentation method and 21 records are marked in the results, indicating that our method could
accurately locate these disturbances, including those from anthropogenic activities, such as reservoir
constructions, irrigations, dam constructions, water storage projects, and natural factors, such as
droughts and heavy rainfalls.

This study used yearly Landsat-extracted lake surface area data to construct the time series curve
from 1987 to 2017; according to the 21 lake disturbance records, the 20 recorded disturbance dates are
consistent with the segmentation results, for a total accuracy of 95.24%.
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184(a) Event 1:Dam construction and water storage,1995 [46]. (b)Event 1:The reservoir was discharged for irrigation during a period

of long drought and limited rain in the winter and spring [47].
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Figure 5. Time series curve segmentation and event identification results for lake areas in the study
region during the period 1987-2017. Shudu Lake (a), Qilu Lake (b), Yilong Lake (c), Bitahai Lake (d),
Lashihai Lake (e), Yuxian Lake(f), Haixihai Lake (g), Dianchi Lake (h), and Erhai Lake (i).
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4.3. Lake surface area disturbance feature extraction and identification

4.3.1. Lake surface area disturbance feature extraction

Inland lakes vary in area and morphology; this is often the result of human activities or natural
factors [42]. However, the temporal and spatial characteristics help distinguish these two kinds of
lake surface area variations. To classify these major lake surface area changes into anthropogenic or
natural events, we extracted the lake surface area features based on the segmented time series curves
and their documented records. We found 21 officially documented lake change records for the 9 lakes
(see Appendix 1); according to these references, anthropogenic lake surface area disturbances
included reservoir constructions, irrigation, transforming lakes into fields, etc., and natural events
included droughts, heavy rainfalls, etc.

Documented events and their characteristics of change on the time series curves are shown in
Figure 5 and Appendix 1, and these distinguishable features can be summarized as follows: 1)
human-induced lake surface area changes will cause an abrupt increase (or decrease) in the time
series curve and the area increments are commonly larger for anthropogenic events compared to
those for the natural disturbances, for example, due to anthropogenic activities, the lake surface area
for Shudu Lake increased to 1.4 times that of 1993 between 1993 and 1995, the lake area of Lashihai
Lake in 1993 increased to 2.03 times that of 1992, Yuxian Lake became 2.1 times larger in 2011 than it
was 2006, and Haixihai Lake was in 1.4 times larger in area in 1996 than it was in 1994. In contrast,
natural disturbances-induced lake area changes for Shudu Lake between 1998 and 1999, Bitahai Lake
between 1990 and 1992, Lashihai Lake between 2010 and 2013, Haixihai Lake between 2010 and 2013
were 1.2, 1.1, 1.1, and 1.2 times the areas, respectively. The increased areas rarely revert to their
original level in a short period of time (years) for these anthropogenic disturbances. 2) For natural
disturbances, there are abrupt increases (or decreases) on the time series curves as well, but these
increments (or decreases) decrease (or increase) to their original level at the end of a disturbance;
therefore, these disturbances show a “V’ (or “A’) shape on the time series curves, and these natural
event-caused changes typically consist of two parts, a change and a recovery, and the recovery is
commonly missing from anthropogenic disturbances.

The 21 documented lake surface area disturbance events that we collected were randomly
separated into two groups of samples; the first group of 9 events was used as a training sample to
extract lakes disturbance features and to identify lake change type rules, and the second group of 12
events was used to validate the accuracy of the lake disturbance event type classification results. In
this study, the documented disturbance records of Shudu Lake, Qilu Lake, Yilong Lake, Bitahai Lake
and Lashihai Lake were used in integration with their curve segmentation results to extract lake
change features, and the records of Yuxian Lake, Haixihai Lake, Dianchi Lake and Erhai Lake were
used to validate and assess the accuracies of our lake change event identification method.

In this study, a total of 83 segments were generated for the 9 time series lake surface area curves;
there was at least one major event for each of these lakes, either anthropogenic or natural. These
disturbances caused remarkable fluctuations on the time series curves, and according to the shape of
each fluctuation on the time series curves, fluctuations with remarkable durations indicate that there
are close correlations between the current events and their adjacent procedures. Based on this
characteristic of each disturbance and using these records as references, we define and extract the
semantic features for each disturbance. Considering the adjacent procedure deficiency for
disturbances segmented at the beginning or end of the curves, disturbances on the beginning or end
of the curves were ignored. As a result, 65 disturbances (segments) in total were classified. Statistic
results of the disturbances and their classes are shown in Appendix 1.

4.3.2. Classification results of lake surface area disturbances

According to the segmented curves, lake surface disturbance features such as the amplitude,
trajectory, duration, and trends before and after a disturbance were extracted to classify each
disturbance following an optimal decision rule. The amplitude was the ratio of the difference between
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the area at the beginning of the segment and that at the end, and the difference between the maximum
and the minimum area on the whole time series curve. Our statistical analysis of the documented
records indicates that if this ratio is within the range [-0.11, 0.11], the corresponding disturbances are
major disturbances, otherwise they are not major disturbances. For major disturbances, the
documented records indicated that anthropogenic disturbances tend to not recover to their original
level within a duration of approximately 3 years after a disturbance; however, natural disturbances
had evident recover and mostly returned to their original levels. We quantify this recovery as the
ratio between the beginning value of the previous segment and the ending value of the subsequent
segment with the duration. The records for these recorded disturbances show that the anthropogenic
disturbances had a recovery rate between 0.95 and 1.15 years, mostly within 3 years; otherwise, they
were natural disturbances.

Amplitude of a fluctuation
(Within -0.11 and 0.117?)

Yes No
l Disturbance recovery rate
No major disturbance (Within 0.95 and 1.157?)
Yes No

¢ l

Disturbance recovery duration .
(Within 3 years?) Anthropogenic disturbance
Yes No
Natural disturbance Anthropogenic disturbance

Figure 6. Classification tree to lake surface area disturbances.

Table 5. Statistics on the number of disturbances caused by different factors

Anthropogenic Natural No
Lake name ] ) disturbances . Total
disturbances (times) ] disturbances
(times)

Shudu lake 1 1 1 3
Qilu lake 4 0 2 6
Yilong lake 1 2 2 5
Bitahai lake 0 2 1 3
Lashihai lake 7 1 1 9
Yuxian lake 2 0 1 3
Haixihai lake 2 4 1 7
Dianchi lake 4 2 1 7
Erhai lake 7 2 0 9
Total 28 14 10 52

During the past 30 years, there were 42 major disturbances for the 9 lakes in Yunnan Plateau,
and only 10 segments were with no major disturbances (see Figure 5 and Table 5). Among these
disturbances, up to 28 were human-induced, and these disturbances had a major impact on lake
surface area change. Human-induced disturbances are commonly ‘irreversible’, because lake surface
area will not revert to its original levels within a short period of time; for example, lake surfaces for
Shudu Lake between 1993 and 1995, Qilu Lake between 2010 and 2015, Yilong Lake between 2010
and 2016, Lashihai Lake between 1992 and 1993, Yuxian Lake between 2006 and 2011, and Haixihai
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Lake between 1994 and 1996 increased (or decreased) to 1.4, 1.5, 2.2, 2.03, 2.1 and 1.4 times their
original areas, respectively. Yuxian Lake completely dried between 2011 and 2014 because of human
activities, including reclaiming land from this lake and irrigation [19][ 43]. These results indicated
that the human-induced disturbances tend to be durable.

In our study period, natural event-induced major lake surface area disturbances occurred 14
times, half that of the human induced disturbances. These disturbances were far less impactful,
because lake surface areas reverted to their original levels after these disturbances and, therefore,
these disturbances were not long lasting. For example, natural disturbances for Shudu Lake between
1998 and 1999, Bitahai Lake between 1990 and 1992, Lashihai Lake between 2010 and 2013, and
Haixihai Lake between 2010 and 2013, caused lake surface area increases (or decreases) to 1.2, 1.1, 1.1,
and 1.2 times their original levels, respectively, and the lakes with natural disturbances had less of
an increment (or decrement) compared to those with the human activity-induced disturbances, and
they reverted to their original levels after a short period of time (within 2 years). In our study area,
each of the lakes, except Bitahai Lake, had large human activity-induced disturbances, and there were
much more anthropogenic disturbances for Lashihai Lake, Erhai Lake, Dianchi Lake and Qilu Lake.
According to the documented records, most of these human activities were dam construction,
irrigation, and land reclamation.

Disturbance identification accuracy was determined using the confusion matrix, which uses
overall accuracy (OA) to represent the percentage of correctly classified disturbances, the user’s
accuracy (UA) to denote how well training-set samples are classified, and the producer’s accuracy
(PA) to show the probability that a classified sample represents a given class in reality [44]. In this
study, we use UAad and UAnd to represent the user’s accuracies of anthropogenic disturbances and
natural disturbances and the PAda and PAnd to represent the producer’s accuracies of anthropogenic
disturbances and natural disturbances (see Table 6). We employed the method given by Adeline et
al. [45] to evaluate the disturbances identification accuracy levels, and validation samples were
randomly selected from the documented disturbance event records. Reference data and predicted
results of the confusion matrix were defined as TP (true positive), TN (true negative), FP (false
positive) and FEN (false negative). TP denotes the number of correctly classified as anthropogenic
disturbances, TN is the number of correctly detected as natural disturbances, FP represents the
number of natural disturbances misclassified as anthropogenic disturbances, and FN is the number
of anthropogenic disturbances misclassified as natural disturbances. As the F-score strikes a good
balance between under- and overdetection accuracy levels, it is used in this study to evaluate the
accuracy of the methods used (see Table 6).

Table 6. Classification accuracy assessment indices and formulas.

Producer’s accuracy User’s accuracy
Anthropogenic Natural Anthropogenic Natural Overall accuracy F-score
disturbances  disturbances disturbances disturbances
PA UA
= TP PA,, = TN A, = TP UA,, = TN A= TP+TN F=o PAgUA,
TP+EN TN+FP TP+FP FN+TN TP+TN+FP+FN PA, +UA,

Table 7. Disturbance identification accuracy assessment.

Producer’s accuracy (%) User’s accuracy (%)
Anthropogenic Natural Anthropogenic Natural Overall F(ad)-  F(nd)-
disturbances disturbances disturbances disturbances accuracy score score
100 75 88.89 100 91.67 94.67 85.71

The predicted disturbance types agreed well with the records according to the accuracy
assessment results in Table 7; among the 12 recorded disturbances, only 1 natural disturbance was
misclassified as an anthropogenic disturbance, and the overall identification accuracy was 91.67%,
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with an F-score of 94.67 for anthropogenic disturbances and 85.71% for natural disturbances. This
result suggests the reliability of our proposed method.

5. Conclusions

In this study, annual Landsat remote sensing images taken during the dry seasons from 1986 to
2017 were used to extract lake surface area information for 9 typical lakes in Yunnan Province, China.
To identify whether human activity or natural events dominate inland lake surface change, we
proposed a method based on the D-P simplification algorithm combined with the bend simplification
method to locate large lake change events and then characterize the features of change for each event
to classify them into anthropogenic or natural lake surface area disturbances. Based on validation
data from a documented governmental report or year book, we assessed the accuracy of our method
for both the disturbance location and the disturbance identification, and the results are as follows:

(1) The method can accurately locate the main lake changing events based on the time series lake
surface area curve. When a large disturbance event occurs for a lake, its area will also increase (or
decrease). The method proposed in this paper effectively eliminates noise in the time series of lake
surface area using the combined D-P simplification algorithm and bend simplification algorithm.
This method retains the large mutation points in the time series lake surface area curve and accurately
locates the lake changing events within the time series lake surface curve; the temporal accuracy of
this model for segmenting the lake area time series curves was 95.24% in our study.

(2) To characterize the disturbances on each time series curve, we extracted the disturbance
classification features, including the amplitude, trajectory, duration, and trend before and after a
disturbance. Combined with the CART decision tree classification method, we achieved an overall
accuracy of disturbance identification of 91.67%, with an F-score of 94.67 for anthropogenic
disturbances and 85.71% for natural disturbances.

(3) According to our results, lakes in Yunnan Provence, China, have undergone extensive
disturbances, and the human-induced disturbances occurred almost twice as often as natural
disturbances, indicating intensified disturbances caused by human activities, such as reservoir
constructions, irrigation, turning lakes into fields, etc. Worse still, the anthropogenic disturbances
appear to be lasting compared with the natural disturbances. Lakes subjected to natural disturbances
tend to recover within a short period of time (3 years), while lakes subjected to anthropogenic
disturbances had longer recovery times or never recovered.

Because the available remote sensing image data of satisfactory cloud-free quality from the study
period are predominantly concentrated during Yunnan’s dry season, the data selected were all from
November to April. In future studies, multisensor spatial-temporal fusion techniques and radar
remote sensing image data should be combined to obtain year-round lake water areas to
comprehensively analyze the annual variation characteristics to more accurately capture lake
disturbance events.
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Appendix 1. Lake surface area change events and their semantic feature extraction results.

Year

Documented events

Year

Segmentation results and
time series curve patterns

Semantic feature extraction

1995-

1993

2008-
2010

2009-
2013

2013-

2009-
2013

2012-
2015

In 1995, the construction of
the reservoir was completed
and the reservoir was
impounded.

The reservoir was
discharged for irrigation
during a period of long
drought and limited rain in
the winter and spring, 1993.
Completion of the water
transfer and storage tunnel
project for Qilu Lake in
March 2008.

From 2009 to 2013, yunnan
experienced a continuous
drought, which increased the
demand for agricultural
water.

From 2009 to 2013, during a
drought in yunnan, villagers
cultivated crops around the
parched lake.

In 2009-2013, Yunnan
Province continued to suffer
from drought and
agricultural water
consumption has increased
dramatically.

Villagers reclaimed and
planted along the dry
lakeside

1994-

1989-
1994

2008-
2010

2010-
2013

2013-

2010-
2016

2013-
2015

After 1994, the lake area
rapidly increased by a large
margin, and in the
following years; it keeps
running at a higher water
level.

The lake area declined
slightly from that of
previous years.

The lake area increased
from 2008-2010.

From 2010 to 2013, the lake
area decreased rapidly.

The lake area did not
immediately recover after
the drought ended in 2013.

The lake area declined
rapidly from 2010 to 2013.

The drought ended, but the
lake area did not recover,
and the lake area had a
“platform” from 2013 to
2016.

Anthropogenic disturbances
on time series curve tend to
be:

a. Abrupt increase (or
decrease);

b. With larger disturbance
amplitude;

c. Not recover within short
period (3 years)

Event type Lake
Shudu
lake
Qilu
lake
Human factors
dominate lake
disturbance
events
Yilong
lake
Yilong
lake
Natural factors Bi:::n
dominate lake
disturbance
Lashihai
lake

1995

2009-
2013

2009-
2013

On October 3rd, 1995, the
Mabaolong embankment of
Yilong Lake collapsed,
flooding more than 7,000 mu
of fields and fish ponds
around the lake.

Yunnan Province continued
to suffer from drought, 2009-
2013

Yunnan Province continued
to suffer from drought, 2009-
2013

1993-
1996

2010-
2013

2010-
2013

The lake area increased
rapidly and reached a high
value in 1995-1996,
followed by a rapid decline
in the following two years.

In 2010-2013, the lake area
declined and then rose back
to the previous year's water

level.

In 2009-2013, the lake area
declined rapidly and then
quickly rose back to the
previous year's water level.

Natural disturbances on time
series curve tend to show:
a. An abrupt increase (or
decrease);

b. A smaller disturbance
amplitude compared to those
from anthropogenic
disturbances;

c. Recovery within short
period (3 years), and the
trajectory of a natural
disturbance on the time
series curve will be in “V” or
“A” shape.
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