Article

Global Protectionism and Port Logistic Demand

Jungran Cho¹, Emma Kyoungseo Hong², Jeongho Yoo³ and Inkyo Cheong⁴,*

¹ Department of FTA Policy, Graduate School, Inha University; jungran@inha.ac.kr
² Department of Political Science, Graduate School, New York University; kyoungseo@uni.edu
³ Trade, Investment and Innovation Division, UN ESCAP; jeong.yoo@un.org
⁴ Department of International Trade, Inha University; inkyo@gmail.com
* Correspondence: inkyo@gmail.com; Tel.: +82-10-9571-6288

Abstract: Various risks and uncertainties are strengthening the downside of the global economy. This paper aims to estimate the impact of US-China conflict and the WTO Appellate Body’s shutdown on global logistics demand and to show the seriousness of the situation. Existing literature studies on protectionism or US-China trade conflict, with a focus on the effects of specific issues or impact on bilateral relations. No research has considered the adverse effects of the WTO Appellate Body’s shutdown. This paper considers both US-China conflict and the installation of new NTBs in other countries due to weakened WTO function, and tries to suggest that the combination of tariffs and NTBs can severely reduce international trade and the demand for maritime logistics services, making this paper differs from previous studies. This paper suggests that a catastrophe could occur in global maritime logistics, based on quantitative estimates for the impact of global protectionism. Finally, underlining that the international trade order should not seriously be damaged, this paper proposes that countries around the world should seriously discuss this issue at the 12th WTO Trade Ministers’ Meeting in Kazakhstan June 2020.

Keywords: US-China trade conflict, Port Cargo, WTO Appellate Body, NTBs

1. Introduction

The sustainability issues of maritime transport and logistics services have been considered in terms of environment, economy, and society. Recently, a substantial amount of research has been conducted on the improvement of energy efficiency and the use of cutting-edge technology [1]. While there are many concerns about the ongoing US-China trade conflict and the proliferation of global protectionism, an in-depth research is lacking. Trade volume and maritime logistics services are closely linked, and sea freight prices have fluctuated widely since January 2018, as illustrated by the trend of the Baltic Dry Index (BDI) in Figure 1

Figure 1. The trend of cargo freight (Unit: US$)

The title of the article in the recently published Foreign Policy (2019.12.9) is “How Trump May Finally Kill the WTO.” The WTO Appellate Body, which is the supreme court of the WTO, has lost

¹ The BDI is a shipping cost index, which is used to be a leading indicator of future economic growth.
its function on December 11, 2019, with the US’ strategic objection about new judge [2]. This means incapacitating the WTO system since the WTO cannot sanction any country, which violates the WTO rules. US’ WTO paralysis is directly or indirectly related to trade sanctions against China.

What would be the impact on international trade and maritime logistics if the US continues to push ahead with “decoupling” against China and the WTO’s ability to govern world trade is ceased? The WTO will exist as an international organization, but it will be difficult to curb trade conflicts and the protectionist trade barriers by its members. The collapse of the WTO is to become a reality. Imposing new tariffs on China is a clear violation of the WTO rules, but the US is not concerned about the WTO’s decision, because the Appellate Body is not working until enough number of judges is secured [3]. Many countries find their own means of trade protection as they watch over the protectionism of their great powers. This is worried about several WTO reports [3-6].

The US imposed an additional tariff of 10-25% on most of the goods imported from China. China retaliated against the US as much as it could, leaving it in a typical tariff war. The 25% of tariffs imposed by the US, with an average tariff rate of 3%, is meant to block the imports from China. Although negotiations have been settled in some areas recently, the prospect is not optimistic.

No country except the US and China dares to unilaterally impose new tariffs. Obviously, nobody wants to be finger-pointed by violating WTO rules. However, non-tariff trade barriers (NTBs) are difficult to determine if they are violated. The WTO member countries will be less cautious in adopting new NTBs since violation can be determined through a dispute settlement body process. The Appellate Body, the final judging body of the WTO, cannot be opened due to the lack of judges. This is the reason for the spread of NTBs from next year.

While trade volume plunged due to the global financial crisis in 2018, international trade has expanded under the WTO, and the current GVC has formed. In this process, the demand for international logistics services grew rapidly. Global protectionism, consisting of tariffs and NTBs, can seriously damage the world economy and global logistics services. According to UNCTAD [7], global maritime trade expanded at a slower pace of 2.7% and 2.8% in 2018 and 2019 respectively, down from 4.1% in 2017, but it is expected to grow 3.4% for the period of 2019-2024. But UNCTAD [7] seems to be optimistic in that the organization assumes the current WTO system would regulate global trade, although it considers several downside risks in trade tensions and protectionism, and the Brexit (UK’s withdrawal from the EU). It does not take into account the combined effects of high tariffs and NTBs on global port cargo-handling business and containerized global port throughput. G2 accounts for 40.0% and 22.6% of global GDP and world trade, respectively, and these two are the core countries of global value chain (GVC). The impact of the tariff war on international trade and logistics demand can be very large. Considering tariffs and NTBs at the same time, the adverse effect will be magnified.

In this paper, we use various quantitative techniques to estimate the impact of global protectionism from the perspective of trade and logistics services and draw policy implications. Although previous studies on protectionism or the US-China trade conflict have mainly analyzed the effects of specific issues or impact on bilateral relations, this paper tries to consider that the US-China conflict and the weakened WTO function may lead to the installation of new NTBs in other countries and suggests that the combination of tariffs and NTBs can severely reduce international trade and the demand for maritime logistics services, making this paper differs from previous studies.

2. Literature review on trade conflict, NTBs and logistics

The world has experienced trade and economic growth as a result of trade liberalization under the multilateral trade system of the WTO, but now the protection trade policy is spreading around the world. World trade has been reduced by heightened trade tensions [8]. WTO [3-5] and CGTN [9] discuss the risk of the WTO, and Mr. Azevêdo, Director-General of the WTO, states “A well-functioning, impartial and binding dispute settlement system is a core pillar of the WTO system.” Ms. Georgieva [10], IMF Managing Director, confirms that “unfortunately, this time
growth is decelerating” due to protectionism. The prolonged period of trade conflict will cause a periodic slowdown of the world economy [4, 11].

Johnson [12] performed the modern economic analysis of trade conflict, based on a two-person non-cooperative game in order to select their optimal tariffs considering the partner’s retaliatory tariffs. Tariff wars were analyzed with various approaches by Kennan and Riezman [13], Eggert and Hauffer [14] and Syropoulos [15]. Kennan and Riezman [13] and Syropoulos [15] tried to identify the significance of economic size in trade models, that consider the terms of trade. Baldwin [16] and Grossman and Helpman [17] tried to theorize domestic politics in forming a protective trade policy. Breuss [18] analyzed the effects of retaliatory tariffs, showing more efficient and more accessible instruments than a tariff war.

Based on the relationship between tariff and the terms of trade, Zissimos [19] showed the importance of multilateral trade liberalization and region-wide free trade agreements (FTAs). Ossa [20] developed a quantitative evaluation methodology of trade conflict, estimating Nash-equilibrium tariffs of 56.6% for the US and 62.9% for China, assuming the two-country model and optimal retaliation strategy. A similar approach was done in Nicita et al. [21], of which they re-estimated Nash tariffs, drawing that trade conflict would increase average tariffs by 32% point to the World.

Analyzing traditional trade theory and global trade model, tariff war and protection trade policy cause economic losses not only in the dispute parties but also in the world economy. However, strategic approaches by Zissimos [19], Ossa [20], and Kee and Nicita [22], and Nicita et al. [21] demonstrate the optimal tariffs for large economies in the context of strategic response and long-term gains. It could be one of the backgrounds for the US to enter into a tariff war with China.

A close relationship between logistic efficiency improvements and export performance can be found in substantial literature in Hummels [23], Limao and Venables [24], Wei and Yi [25], Redding and Venables [26], Wilson et al. [27], Anderson and Banomyong [28], Tongzon [29], Tongzon and Cheong [30], Cheong and Suthiwartnarueput [31], Arvis et al. [32] and others. These existing studies analyzed the ripple impact of the reduction of logistics costs due to technical and institutional improvements, while this paper analyzes the adverse effect when the trade cost increases due to the increase in tariffs and the expansion of NTBs. CIF-based import costs include trade-related costs such as freight, tariffs and insurance, as well as commodity prices, but the costs of overcoming non-tariff barriers must also be included in the cost of trade.

Existing research on NTBs is abundant. Examples are Carrère and De Melo [33], Beghin et al. [34], Ghodsi and Stehrer [35] and McCallum and Lincoln [36]. Many literatures, such as Kee et al. [36], Disdier and Marette [38] and Khoulid and Echaoui [39] used the gravity model in order to estimate the effect of protective trade policies on international trade. Researches such as Arkolakis [40], Hummels and Klenow [41], Steingress [42] and Lincoln and McCallum [36] approached the NTBs as an additional entry cost to international trade.

The global logistics industry is very concerned about the current international situation and the deterioration of the international trade environment. They expect the US-China trade conflict would distort the supply chain and shrink international trade and international logistics demand. This can be found in various sources such as Financial Times [43], Supply Chain Digital [44], Inbound Logistics [45], Supply Chain Brain [46], The Asian Banker [47], Forbes [48], DHL [49], Supply Chain Quarterly [50] and Logistics Management [51-52]. They see a serious shock to the recovering global logistics market. According to Supply Chain Digital [44], CEOs of the world’s major logistics companies believe that trade conflicts affect the global economy as a whole and will cause a severe recession for logistics industries. Forbes [48] argues that the US’ policy of “decoupling,” scrambles GVC and freezes investment minds. The ‘geopolitical bridges’ between the G2, which have been built over the past 40 years, will burn down. Logistics Management [52] predicts that Trump’s China policy will also cause significant losses to the US logistics industry, citing that in October 2019, inquiries about ships in the Port of Los Angeles decreased by 25% year-on-year and cargo volume decreased by 19.1%.

Regarding the costs of the US-China trade conflict, Ciuriak and Xiao [53] estimated a 0.062-0.07% decline of global GDP, and Abiad et al. [54] found 0.2~1.0% GDP losses for the G2
countries. Carvalho et al [55] predicted the welfare losses of 39-43 billion dollars to China and 19-24 billion dollars to US. Global GDP and trade volume were to be reduced by 1.96% and 17%, respectively, according to Bekkers and Teh [56]. Trade conflict is hurting China more, but supply chain disruption causes the US to lose its GDP [57-59], and US exports to China up to 71% [60].

Although there are many previous studies on the trade conflict model, NTBs, and the effects of the US-China trade conflict, there is no research that the collapse of the WTO could lead to a new wave of protectionism with NTBs. Furthermore, no debate has been made on the impact of the combined action of US-China trade conflict between the G2 and the protectionism of other countries on global trade and logistics. The global logistics industry is also unaware that the suspension of the Appellate Body will have a decisive impact on the international trade system itself under the WTO. This paper focuses on the impact on the global logistics industry from fundamental changes in the international trade environment that are not currently attracting attention.

3. Research Design and Trade Barriers

3.1. Outline of the Research and Research Design

Although there are several reports concerned about the impact of WTO deactivation, it is difficult to find a quantitative study on the impact of the weakening of WTO’s capacity on international trade and logistics demand, which will bring another negative impact during the US-China trade conflict. The protectionism triggered by the US-China trade friction is spreading around the world in forms of NTBs. We presume global trade as a whole to be exposed to protectionism more frequently and with higher strength, as envisioned by Foreign Policy [61], WTO [3-5] and the UN [11].

![Figure 2. Outline of the research](image)

Although there are some studies on the impact of trade protection on trade and economic growth, there is little research on the effect of protectionism on global maritime logistics (container) demand. Based on the preceding research, we try to calculate two types of trade barriers: the tariff hikes between the US and China; the tariff equivalents of NTBs by remaining countries. We will use a dynamic computational general equilibrium (CGE) model, which is widely used in trade policy analysis, to simulate the impacts of global protectionism. This study establishes scenarios for the spread of protectionism and estimates the effect of protectionism on world trade. By using the trade-container conversion coefficients by industry following the methodology in Lee et al. [62], Cheong and Cho [63] and Cheong and Suthiwartnarueput [31], the impact on the demand for global maritime services is estimated, and policy implications are drawn.

2) The magazine of A plus (2018, p.13) states that “As one of the world’s leading logistic service providers, we are expecting a direct hit on our business, mainly in the trade lane between China and U.S., in both exports and imports.”
3.2. Tariff war between China and the US

In December 2019, the US and China agreed on a “phase I out of phase IV” (as President Trump claims) 17 months after the US imposed high tariffs on China in July 2018. The agreement is a “small deal,” dealing with only a few of the controversial issues between the two parties. Although the expansion of the G2 trade conflict was avoided, it is not optimistic that the G2 countries will establish a sound trade relationship in the near future. With the idea of a ‘decoupling’ between the US and China, the US is “burning down the geopolitical bridges that were built over the past four decades between Washington and Beijing [48].”

The U.S. charges an additional 25% tariff on Chinese exports of $250 billion and 15% on a $115 billion dollars, while China imposes a 5-25% tariff on US exports of $110 billion, as of November 2019. As the negotiations were sluggish in mid-2019, President Trump threatened to raise tariffs to China. In the early days of the tariff war, China imposed retaliatory tariffs on the same level as the United States, but abandoned its direct response to the US’s huge tariff imposition and proposed to negotiate with the US. The key to Phase I negotiations is as follows. Instead of raising additional tariffs (15% to $110.5 billion to 30%) by the US, China promised to import $40-50 billion of US agricultural products with some measures about intellectual property rights, financial service market, exchange rate transparency and others.

Although the details are not disclosed, the known contents of the phase I seem to be very disadvantageous for China. The US has decided to lower the 15% tariff to 7.5% for some of the current tariffs (on $11.5 billion), but they are subject to Snapback. That is, if China does not implement the agreement properly, the US can restore or reinstate tariffs on China. The tariff war is still open. Considering the sensitivity of the issues that the US-China should negotiate in the next phases II to IV negotiations, the road ahead will not be smooth.

Many issues such as forced technology transfers, subsidies by the government of China and state-owned enterprise reform, that will be covered in the second phase of negotiations, are not easily concluded. These are directly related to the structural reform of China’s economy. Phase III negotiations could be China’s mechanism for implementing the details of the agreements. The first phase of negotiations is only an outpost, and the second and third stages of negotiations are the main game. The US’ sanction against Huawei, the symbol of Chinese technology companies, is deeply linked with its goal of disturbing China’s technological hegemony. The US is referring to Hong Kong, Taiwan and Xinjiang Uyghur in intentionally irritating China about the “One China” policy in order to pressure China, which may make the US-China relationship more tangible in the future. The US could also seek a new multilateral trading system to replace the current WTO, pushing for global solidarity to contain China’s unfair trade. As Zeihan [64] analyzes, the US is either out of the WTO or excludes China from international trade.

Table 1. Summary of the tariff war between the US and China

<table>
<thead>
<tr>
<th>Date of raising tariffs</th>
<th>US’s tariffs on China’s exports</th>
<th>China’s tariffs on US’ exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of raising tariffs</td>
<td>2018.7</td>
<td>2018.8</td>
</tr>
<tr>
<td>Amount ($ billion)</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Accumulation ($ billion)</td>
<td>34</td>
<td>50</td>
</tr>
<tr>
<td>Share of exports (%)</td>
<td>6.72</td>
<td>9.88</td>
</tr>
<tr>
<td>Tariff rates</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Major items under high tariffs</td>
<td>Industrial goods, food, others</td>
<td>Consumer goods, car parts</td>
</tr>
</tbody>
</table>

Notes: 1 China’s Ministry of Commerce announced additional tariffs of 5% or 10% covering a total of 5,078 items from the US, but no details were presented. China suspended this after the conclusion of phase I. 2 Share of the US’s exports to China out of US’ total exports to China.

Source: Assembled from various sources such as the USTR and China’s Ministry of Commerce.
The US-China will approach these issues in the context of hegemony competition and may lead to uncompromising disputes. It will be difficult to reach a second phase agreement, and in the process, the US may issue a new tariff card. The first stage agreement should not be overestimated, and the possibility of a tariff war still exists.

As of November 2019, an additional tariff of 15-25% is imposed on US $366.5 billion, covering 72.13% of the US’ imports from China, and 49.41% of those are required to pay additional 25% tariffs. In 2018, China’s imports from the US were $122.3 billion, with 89.43% of the total imports being levied at 5-25%. The tariff increase in the US’ imports from China is 16% on average for all items, and China’s increase of average tariff rates is 21%. This reduced US imports from China by more than 10%, and China’s import from the US by about 20%.

However, the impact of the increase in tariffs was not fully reflected in trade this year, as companies rush trade before tariffs, making the Chinese logistics companies enjoy an unexpected boom this year. In the future, however, the increased tariff rates will put a heavy burden on trade. High tariffs between the US and China have worked against global growth, “both via the direct effects on trade flows, supply chains and import costs, and via the wider indirect effects on business sentiment, uncertainty and investment around the world [65] (p.32).”

3.3 Paralysis of the Appellate Body and NTBs by other countries

The impact of US-China trade friction is not limited to bilateral relations. The US believes that the current WTO rules do not properly regulate China in many aspects such as protecting intellectual property rights and regulating subsidy. Although there are a number of reasons, the US decided to make the Appellate Body come to a halt in order to put China in check. The US’ approach to deactivate the WTO is to be against the appointment of a new judge. New member of the Appellate Body cannot be appointed with the agreement by all member countries.

There is only one member of the Appellate Body after December 11, 2019. Since the Appellate committee cannot be formed with one member, the WTO completely lost its ability to resolve disputes among its members [9, 61]. This situation extends beyond dispute resolution and affects other member countries in the compliance with the WTO rules since the Appellate Body cannot determine the violation of the trade rules. This is a part of the reasons why the fact that NTBs have risen to the highest level ever this year, as analyzed by the WTO, which reports the highest level of trade restrictions by WTO members this year. “The trade coverage of import-restrictive measures implemented by members was estimated at USD 747 billion. This is the highest trade coverage recorded since October 2012 [4].”

Tariff barriers have been steadily falling due to trade liberalization under the multilateral trading system after World War II, while NTBs have recently increased rapidly. In addition, most of the NTBs are TBT and SPS measures, and the proportion of TBT and SPS measures is increasing. The average world tariff rate is 8.9% in 2017, falling from 13.34% in 1999. Nevertheless, the world has seen a reversed trend in the NTBs since mid-2018. Especially the escalation of bilateral tariffs between China and the US raised the average global tariff rates. (Not reflected in Figure 3)

![Figure 3. The trend of global average tariff rates and NTBs](image)
Even if the WTO became ineffective, few countries except the US and China would impose additional tariffs, since this can lead to trade retaliation by the other country. The protectionist trade policy using NTBs tends to have a gray measure, which is less repulsive to counterparts than tariffs. In addition, it is expected that many countries will use it as a means of a protectionist trade policy because it is possible to tailor differentiated measures aimed at specific countries and companies, and it is easy to establish trade barriers without the recognition of other countries due to changes in domestic institutions and practices [66]. Despite the fact that the WTO regulates the adoption of unfair TBT and SPS, the rapid increase of these in recent years (Figure 3) suggests that trade barriers by TBT and SPS will increase more rapidly if WTO's monitoring of NTBs is weakened.

3.4. Conversion coefficients of trade-container shipping in TEU

Trade statistics are readily available, but the data for converting trade into cargo and containerized logistics demand is limited. This has not been improved since Tongzon [29] had previously pointed out. During the customs clearance, information such as the name of an item, HS code, amount, weight and number of items is collected. This information could be used to capture the relationship between trade and maritime cargo logistics services. This paper focuses on maritime transportation that covers about 80% of global trade by volume. Maritime cargo can be transported in bulk forms or in containers. Only the weight of the export/import cargo arriving at the port is known, and there is no information on whether the forms of bulk or container are used for a specific trade or not.

The dynamic CGE model estimates the impacts of global protectionism in terms of the trade value, and this will be converted into the cargo weight equivalents and the demand for containerized cargo (in TEUs) based on the containerization conversion coefficients. In order to formulate the estimates for the impact of global protectionism into the demand for containerized logistics services, four stages of coefficient calculation should be done. First, the average weights of the cargo by industry per US $ 1 million classified in this study should be calculated. Second, the ratio of port transportation by industry should be calculated in order to find the demand for port throughput, since a part of the cargo will be transported via port. Third, the containerization ratio is derived based on the data of the trade values and the cargo in TEU. Finally, the conversion coefficients for containerized cargo is needed.

<table>
<thead>
<tr>
<th>Weight per million dollars ($)</th>
<th>Port transportation ratio (%)</th>
<th>Containerization ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>2,819</td>
<td>83</td>
</tr>
<tr>
<td>Processed food, Beverages and tobacco</td>
<td>371</td>
<td>96</td>
</tr>
<tr>
<td>Textiles and apparel, leather</td>
<td>98</td>
<td>94</td>
</tr>
<tr>
<td>Petrochemicals</td>
<td>1,571</td>
<td>58</td>
</tr>
<tr>
<td>Iron and steel, non-ferrous metal</td>
<td>872</td>
<td>67</td>
</tr>
<tr>
<td>Transportation and parts</td>
<td>131</td>
<td>69</td>
</tr>
<tr>
<td>Electrical goods</td>
<td>468</td>
<td>63</td>
</tr>
<tr>
<td>Machinery, metal products</td>
<td>141</td>
<td>57</td>
</tr>
<tr>
<td>Other manufacturing</td>
<td>594</td>
<td>72</td>
</tr>
<tr>
<td>Total average</td>
<td>785</td>
<td>73</td>
</tr>
</tbody>
</table>

Source: Based on the modification of Cheong and Suthiwartnarueput [31]

Trade-container conversion was studied in a few studies such as Cheong and Suthiwartnarueput [31], because of the difficulties in collecting data for many countries to calculate

3) TEU: Twenty-foot Equivalent Unit
conversion coefficients. Although this study requires an abundant amount of data as it estimated the impact on the global trade, we want to obtain coefficients based on the data of Cheong and Suthiwarthnarueput [31] due to the data accessibility⁴. These results are shown in Table 2. The average weight of exports or imports of US $1 million is 785 tons, 73% of all international cargo is transported by sea on average, and the proportion of container freight is 61% across all industries. The conversion coefficient for containerized cargo is to be 13.87 tons per container calculated with the information of the UNCTAD [7]⁵.

4. Simulation and Result Interpretation

4.1. Model and Data

Trade tension, protective trade policy and related uncertainty have increased sharply, and surveys suggest that investors regard the current trade conflict as the top risk and that global protectionism will distort the GVC [65]. The collapse of the WTO will make global business environment worse over time.

This paper uses a dynamic CGE model of the Global Trade Analysis Project (GTAP), which is called as the GDyn, whose structure is described in Ianchovichina and Walmsley [67]. This model is run with a well-balanced global database of multiple sectors and regions. Among primary production factors, capital is allowed to move across industries in a region as well as between regions, but labor forces are only mobile across industries in a region. International trade is modeled with the traditional Armington structure, and a market structure of perfect competition is assumed for all industries and production factors, and production sectors decide intermediate goods with CRS production structure.

The left figure of Figure 4 summarizes the model structure of GTAP, while the right figure shows regional investment adaptation mechanism with a complicated structure of equations, coefficients and database. There may be temporary imbalances in investment, but as simulations continue to converge until the model arrives at another full equilibrium. If, for some reason, the rate of return (ROR) on investments of an area rises, the world’s inflow of investment increases according to the adaptation coefficient. A detailed explanation is given in Ianchovichina and Walmsley [67].

Source: Modification of Hertel [68]

Source: Cheong and Cho [63]

Figure 4. The basic structure of the GTAP and the specification of dynamism

⁴ Cheong and Suthiwarthnarueput [31] used the port trade database provided by Korea’s Shipping and Port Internet Data Center (SP-IDC).

⁵ According to the UNCTAD [7], total volumes of 11 billion tons were handled in 793.26 million TEUs. Simple average of Cheong and Suthiwarthnarueput [31] for Korea and Lee et al. [62] for Taiwan was 16 tons, which are heavier than this paper. For reference, gross weight of a loaded container should be less than 25 tons.
A database is needed along with the quantitative simulation model. In this study, we will use the GTAP database version 10 released in 2019. The GTAP database breaks down the global economy into 141 countries, each of which consists of 65 industries. This study aggregates the global economy into five regions (US, China, EU, developed and developing countries) and the industries into ten. Nine industries except services are equivalent to the conversion index in Table 3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Industry classification</th>
<th>GTAP country/region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agriculture</td>
<td>The US</td>
</tr>
<tr>
<td>2</td>
<td>Food, Beverages and tobacco</td>
<td>China</td>
</tr>
<tr>
<td>3</td>
<td>Textiles and apparel, leather</td>
<td>EU</td>
</tr>
<tr>
<td>4</td>
<td>Petrochem., chemical prod</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Iron and steel, metal</td>
<td>Developed countries</td>
</tr>
<tr>
<td>6</td>
<td>Transportation and parts</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Electrical goods</td>
<td>Developing countries</td>
</tr>
<tr>
<td>8</td>
<td>Machinery, metal products</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Other manufacturing</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Services</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Classification of industry and country/region

4.2. Simulation scenarios

As discussed in Chapter 2, global protectionism consists of the US-China trade conflict and the proliferation of NTBs by the rest of the world. It is difficult to predict future US-China relations under the hegemonic struggle and US’ decoupling strategy. Although suspended by negotiations, in 2019, the US pushed for a 30% surcharge on China. 15% and 25% are imposed on some items now. As a baseline scenario, we assume that the US set a 20% surcharge on all items imported from China. An optimistic scenario can be an addition of a 10% tariff, while a pessimistic scenario to be that of 30%. Considering such multifaceted measures against China, including heavy sanctions against the Chinese firms such as Huawei, investment regulations, and exchange rate transparency, are going on or under planning, the scenarios are set to capture these effects as tariff barriers. Despite the disadvantaged conflict structure compared to the US, it is assumed that China corresponds to US trade sanctions.

It is very difficult to set NTBs scenarios for the rest of the world. This is because it has to be converted to tariff equivalents (TEs) rather than non-tariff barriers themselves. According to Cadot, Gourdon and Tongeren [69], which estimated the trade effects of NTB measures in more than 80 countries using the OECD METRO model, the TEs of NTBs, taking into account frequency, was the highest at 28.7% in processed foods, followed with 26.8% in wood and furniture, 22.3% in motor vehicles. The industries with relatively low barriers are 8.3% for shoes, 7.7% for paper and 6.4% for metal products.

Nicita, Olarreaga and Silva [21] predicted that US-China trade war would increase average tariffs by 32%.
A study analyzing the effects of Korea’s non-tariff measures on imported beef shows that non-tariff barriers were as much as the prices of imported beef between 2000 and 2014, when high level of non-tariff measures were applied (Figure 5). In response to Korea’s SPS action, Canada filed a dispute case in the WTO (dispute case: DS391), and Korea withdrew its measure in response to claim from the exporting country. This can be regarded as a good piece of evidence of the result of functioning dispute settlement system in the WTO.

Table 4. Scenarios for tariffs and TEs of NTBs

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Tariffs for US and China</th>
<th>TEs for other countries</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10%</td>
<td>10%</td>
<td>Optimistic scenario</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>15%</td>
<td>Baseline scenario</td>
</tr>
<tr>
<td>3</td>
<td>30%</td>
<td>20%</td>
<td>Pessimistic scenario</td>
</tr>
</tbody>
</table>

TEs can be over 100% depending on the measures as seen in the case of Korea, but we take the TEs from the research results by Cadot, et al. [69]. It may be controversial, but for the sake of convenience, we will set TEs 15% as the baseline scenario and 10% and 15% as alternative scenarios. The tariff and NTBs scenarios are summarized in Table 4.

As suggested above, NTBs are mainly TBT and SPS-related measures, and they are gray in nature, making it difficult to quantify the effects of NTBs. In particular, Carrère, Céline and De Melo [33] point out that NTBs are the most difficult to model because of the grey characteristics. According to Crivelli and Groeschl [70], SPS itself provides high flexibility for importing countries, so many countries use it as the most effective means of protecting domestic producers. These obstacles make it more difficult to calculate the TEs of NTBs in this study. Therefore, we will establish a set of scenarios by integrating the results of the existing research. We think the estimates in Table 4 are reasonable, but there is no problem in estimating using more accurate information, if any.

4.3. Simulation results

Table 5 summarizes the impact on international trade, global cargo and container logistics under the scenario set out in this paper. The impact on the global logistics industry could be significant. In Scenario 1, international trade would shrink by $ 7.2 trillion, and if Scenario 3 is realized, $ 12.8 trillion of trade is anticipated to disappear. Considering that the world’s total trade
volume in 2018 is $39.3 trillion [5], 32.5% will be reduced under Scenario 3, and the impact on the international logistics industry can be enormous.

Table 5. Impact of global protectionism (summary)

<table>
<thead>
<tr>
<th>Change in trade volume</th>
<th>Cargo weights</th>
<th>Port cargo</th>
<th>Non-container cargo</th>
<th>Container cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>million $</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>-7,256,896</td>
<td>-6,168,140</td>
<td>-3,950,485</td>
<td>-1,829,943</td>
</tr>
<tr>
<td></td>
<td>-2,120,542</td>
<td>-152,887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td>-10,220,218</td>
<td>-8,655,309</td>
<td>-5,537,248</td>
<td>-2,565,407</td>
</tr>
<tr>
<td></td>
<td>-2,971,841</td>
<td>-214,264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 3</td>
<td>-12,774,384</td>
<td>-10,800,260</td>
<td>-6,902,482</td>
<td>-3,199,116</td>
</tr>
<tr>
<td></td>
<td>-3,703,366</td>
<td>-267,005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

International cargo losses are expected to be between 6.2 and 10.8 trillion tons by weight, and port cargo is expected to decrease by 3.95 to 6.9 trillion tons, depending on the scenario. Under Scenario 2, which is the baseline scenario, the reduction in containerized cargo is expected to be 2.97 trillion tons, while the non-container cargo is expected to be reduced by 2.56 trillion tons. The weight reduction of containerized cargo in terms of TEUs translates into 153-267 million TEUs across the scenarios. Considering that the annual container throughput of Shanghai Port, the world’s largest container port in 2018, is 42 million TEUs, if Scenario 3 is realized, the impact on the global logistics industry will have the same impact as the volume of six times of Shanghai is lost. This must be a huge shock.

Table 6-8 presents the contents of Table 5 by each scenario and industry. It is suggested that the industry with the most trade and logistics losses throughout the scenarios will be petrochemicals and chemicals. Following petrochemicals, electrical goods could be hit hard. The steel and transportation equipment industries are expected to have moderate impacts and the impacts on the rest of the industry to be relatively modest.

Table 6. Impact of global protectionism (Scenario 1)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Cargo weights</th>
<th>Port cargo</th>
<th>Non-container cargo</th>
<th>Container cargo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,000 tons</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
</tr>
<tr>
<td>Agriculture</td>
<td>-619,024</td>
<td>-513,790</td>
<td>-226,067</td>
<td>-287,722</td>
</tr>
<tr>
<td>Food, Beverages and tobacco</td>
<td>-147,778</td>
<td>-141,867</td>
<td>-52,491</td>
<td>-89,376</td>
</tr>
<tr>
<td>Textiles and apparel, leather</td>
<td>-40,138</td>
<td>-37,730</td>
<td>-4,905</td>
<td>-32,825</td>
</tr>
<tr>
<td>Petrochem., chemical prod</td>
<td>-3,536,594</td>
<td>-2,051,225</td>
<td>-1,066,637</td>
<td>-984,588</td>
</tr>
<tr>
<td>Iron and steel, metal</td>
<td>-761,343</td>
<td>-510,100</td>
<td>-198,939</td>
<td>-311,161</td>
</tr>
<tr>
<td>Transportation and parts</td>
<td>-99,917</td>
<td>-68,943</td>
<td>-22,062</td>
<td>-46,881</td>
</tr>
<tr>
<td>Electrical goods</td>
<td>-604,327</td>
<td>-380,726</td>
<td>-152,290</td>
<td>-228,436</td>
</tr>
<tr>
<td>Machinery, metal products</td>
<td>-82,590</td>
<td>-47,076</td>
<td>-24,950</td>
<td>-22,126</td>
</tr>
<tr>
<td>Other manufacturing</td>
<td>-276,429</td>
<td>-199,029</td>
<td>-81,602</td>
<td>-117,427</td>
</tr>
<tr>
<td>Total</td>
<td>-6,168,140</td>
<td>-3,950,485</td>
<td>-1,829,943</td>
<td>-2,120,542</td>
</tr>
</tbody>
</table>

Looking at the estimates under Scenario 1, more than half of the total trade and volume losses are in the petrochemical industry, but the losses in the textile and apparel industry are likely to be small, less than 1% of the total. Non-container cargo losses in the petrochemical industry are expected to decrease by 1.06 trillion tons and to lose 71 million TEUs of cargo handling.
opportunities. Container cargo losses in steel and agriculture are also expected to exceed 20 million TEUs.

Table 7. Impact of global protectionism (Scenario 2)

<table>
<thead>
<tr>
<th>Cargo weights</th>
<th>Port cargo</th>
<th>Non-container cargo</th>
<th>Container cargo weights</th>
<th>TEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
<td>1,000 tons</td>
</tr>
<tr>
<td>Agriculture</td>
<td>-844,603</td>
<td>-701,021</td>
<td>-308,449</td>
<td>-392,572</td>
</tr>
<tr>
<td>Food, Beverages and tobacco</td>
<td>-205,835</td>
<td>-197,602</td>
<td>-73,113</td>
<td>-124,489</td>
</tr>
<tr>
<td>Textiles and apparel, leather</td>
<td>-56,204</td>
<td>-52,832</td>
<td>-6,868</td>
<td>-45,964</td>
</tr>
<tr>
<td>Petrochem., chemical prod</td>
<td>-4,974,717</td>
<td>-2,885,336</td>
<td>-1,500,375</td>
<td>-1,384,961</td>
</tr>
<tr>
<td>Iron and steel, metal</td>
<td>-1,066,558</td>
<td>-714,594</td>
<td>-278,692</td>
<td>-435,902</td>
</tr>
<tr>
<td>Transportation and parts</td>
<td>-141,852</td>
<td>-97,878</td>
<td>-31,321</td>
<td>-66,557</td>
</tr>
<tr>
<td>Electrical goods</td>
<td>-863,897</td>
<td>-544,255</td>
<td>-217,702</td>
<td>-326,553</td>
</tr>
<tr>
<td>Other manufacturing</td>
<td>-385,296</td>
<td>-277,413</td>
<td>-113,739</td>
<td>-163,674</td>
</tr>
</tbody>
</table>

If scenarios change to 2 and 3, the estimates will increase more than in Scenario 1, suggesting that the adverse effects of global trade protection will deepen. Still, the proportion of petrochemicals in non-container and container cargo losses is overwhelmingly high. The industry with the weakest container cargo loss across all scenarios is machinery, with container cargo losses between 1.59 and 2.8 million TEUs.

5. Conclusion

Various risks and uncertainties are strengthening the downside of the global economy [71]. The industry of financial and international trade services is cheering on the fragmentary news of positive discussions between the US and China, probably because of the anticipation of avoiding the worst
situation. However, the US-China conflict cannot be resolved within 1-2 years. The US sees China in the context of a security-trade nexus, while China is trying to resolve it in the trade landscape.

Academics and the industry have not fully considered the adverse effects of the WTO Appellate Body's shutdown. The WTO itself will remain, and the trade environment will gradually deteriorate due to invisible non-tariff barriers, but the cumulative effect can be enormous. This paper suggests that a catastrophe could occur in global maritime logistics.

Although it is difficult for a third country to intervene in the US-China trade conflict, further deterioration should be prevented from seriously damaging the international trade order. Colonization (raw materials, markets) and international trade acted as one of the key factors that led to World War I and World War II. Reasonable dispute settlement procedures are of paramount importance in the WTO's function, ensuring that each member country complies with the WTO trade rules and prevents trade conflicts from escalating into a war. This is why the 12th WTO Ministerial Conference (Nur-Sultan, Kazakhstan in June 2020) will be critical in restoring the global trade order. The international community should re-establish the status of the WTO by agreeing to a well-functioning dispute settlement system and to discontinue its protectionist policies.

Overall, this paper suggests that the global logistics industry may have a shocking impact. In this regard, the limitations in this estimation can also be pointed out. First, the question of the adequacy of the scenario setting can be raised. A partially relaxed level of global trade protection can be established, but the international trade environment should never be taken lightly when the WTO system becomes incapacitated. Second, the refinement of the conversion coefficient by region will increase the accuracy of the estimates. Since it is difficult to secure data, and is a task that requires a lot of effort, it should be balanced with importance. Third, the petrochemical industry accounts for more than half of the overall impact in Table 6-8. There are many different types of petrochemicals. Dry products can be transported in containerized cargo, but a large portion of liquid petrochemicals are transported in tank ships. These characteristics of the petrochemical industry need to be reflected more precisely in research. While estimates may change as new conversion factors become available, the conclusion that a serious impact is expected for the global logistics industry can be maintained.

Author Contributions: Methodology, cargo coefficients, J.C. and J.Y.; literature survey, K.H. and J.Y.; editing, K.H.; Trade estimation, conceptualization and supervision, I.C. and K.H

Funding: None

Acknowledgments:

Conflicts of Interest: The authors declare no conflict of interest.

7) Mr. Jack Ma of Alibaba said that “the US-China relationship will be in some turbulence for the next 20 years” in his interview with Bloomberg November 14, 2019.
References

41. Hummels, David; and Peter J. Klenow; The variety and quality of a nation’s exports. American Economic Review 2005, 95, 704-723.

52. Logistics Management. Lose-lose’ trade war threatens 1.5 million jobs, $186 billion in economic activity, new study shows. Available online: https://www.logisticsmgmt.com/article/lose_lose_trade_war_threatens_1.5_million_jobs_186_billion_in_economic_activity (accessed on 1 December 2019).

