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Abstract

In this study, we present the concept of interval-valued fuzzy soft point and
then introduce the notions of neighborhood and quasi-neighbourhood of it in
interval-valued fuzzy soft topological spaces. Separation axioms in interval-
valued fuzzy soft topology, so-called q-Ti for i = 0, 1, 2, 3, 4, is introduced and
some of its basic properties are also studied.
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1 Introduction

In 1999, Molodtsov[1] proposed a new mathematical approach known as soft set
theory, for dealing with uncertainties and vagueness.Traditinal tools such as fuzzy
sets[25] and rough sets[26], cannot clearly defined objects. Where the soft set theory
is different from traditional tools for dealing with uncertainties. A soft set, defined
by a collection of approximate descriptions of an object based on parameters by a
given set-valued map. Maji et al.[3]initiated the research on both fuzzy sets and
soft sets hybrid structures called fuzzy soft sets and presented a concept was sub-
sequently discussed by many researchers. Different extensions of the classical fuzzy
soft sets were introduced, such as generalized fuzzy soft sets[4], intuitionist fuzzy
soft sets[5,6] , vague soft sets[7], interval-valued fuzzy soft sets[8] and interval val-
ued intuitive fuzzy soft sets[9]. In particular, to alleviate some disadvantages of
fuzzy soft sets, interval-valued fuzzy soft sets was introduced where no objective
procedure is available to select the crisp membership degree of elements in a fuzzy
soft sets. Tanya and Kandemir [10] started topological studies of fuzzy soft sets.
They used classical concept of topology to construct a topological space over a fuzzy
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soft set and named it fuzzy soft topology. They also studied some fundamental
topological properties for fuzzy soft topology, such as interior, closure, and base.
Later Simsekler and Yuksel[11] studied fuzzy soft topological space in the case of
Tanay and Kandemir[10]. But they established the concept of fuzzy soft topology
over a fuzzy soft set with a set of fixed parameters and considered some topologi-
cal concepts for fuzzy soft topological spaces such as base, subbase, neighbourhood,
and Q-neighbourhood. Roy and Samanta [15] noted a new concept of fuzzy soft
topology . They suggested the notion of fuzzy soft topology over an ordinary set
by adding fuzzy soft subsets of it where everywhere parameter set is supposed to
be fixed. Then in[12], they continued to study fuzzy soft topology and established
a fuzzy soft point definition and various neighbourhood structures. Atmaca and
Zorlutuna [16] were considering the concept of soft quasi-coincidence for fuzzy soft
sets . By applying this new concept, they also studied the basic topological notions
such as interior and closure for a fuzzy soft sets. The concept of product fuzzy
soft topology and the boundary fuzzy soft topology have introduced by Zahedi et
al.[13],[14] and some of its properties have been studied. They also suggested a new
definition for fuzzy soft point and then,different neighbourhood structures. Sepa-
ration axioms of fuzzy topological and fuzzy soft topological, it had been studied
by many authors[18,19,21,22,23]. The aim of this work is to develop interval-valued
fuzzy soft separation axioms. We start with preliminaries and then, give definition
of interval-valued fuzzy soft point as a generalization of interval-valued fuzzy point
and fuzzy soft point, both in order to create different neighborhood structures in
interval-valued fuzzy soft topological space in sections 3 and 4.Finally, in section
5, the notion of separation axioms q-Ti, i = 0, 1, 2, 3, 4, in interval-valued fuzzy soft
topology is introduced and some of its basic properties were also studied.

2 preliminaries

Throughout this paper X is the set of objects and E is the set of parameters. The
set of all subset, of X is denoted by P (X) and A ⊂ E. Shows a subset of E.

Definition 2.1. [1] A pair (f,A) is called a soft set over X, where f is a mapping
given by

f : A→ P (X).

For any parameter e ∈ A, f(e) ⊂ X may be considered as the set e-approximate
elements of the soft set (f,A). In other words, the soft set is not a kind of set. but
a parameterized family of subset of the set X.

Before introduce the notion of the interval-valued fuzzy soft sets, we give the
concept of interval-valued fuzzy set.

Definition 2.2. [20] An interval-valued fuzzy (IV F ) set over X, is defined by the
membership function f : X → int([0, 1]), where int([0, 1]) denotes the set of all closed
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subintervals of [0, 1]. Suppose that x ∈ X. Then f(x) = [f−(x), f+(x)] is called the
degree of membership of the element x ∈ X, where f−(x) and f+ are the lower and
upper degree of membership of x and 0 < f−(x) < f+(x) < 1.

Yang et al.[8] suggested the concept of interval-valued fuzzy soft set by combined
of interval-valued fuzzy set and soft set as below.

Definition 2.3. [8] An interval-valued fuzzy soft(IV FS) set, denoted by fE or (f,E)
over X, is defined by the mapping f : E → IVF(X), where IVF(X) is the set of all
interval-valued fuzzy set over X. For any e ∈ E, f(e) can be written as an interval-
valued fuzzy set such that f(e) = {〈x, [f−e (x), f+

e (x)]〉 : x ∈ X} where f−e (x)andf+
e (x)

are the lower and upper degrees of membership,of x with respect to e, respectively,
where 0 ≤ f−e (x) ≤ f+

e (x) ≤ 1.

Note thatIVFS(X,E) shows the set of all IV FS-set over X.

Definition 2.4. [8] Let fA and gB be two IV FS-sets overX. We say:

1. fA is an interval-valued fuzzy soft subset of gB, denoted by fA≤̃gB, if and only
if:

(i) A ≤ B,

(ii) For all e ∈ A, f−e (x) ≤ g−e (x) and f+
e (x) ≤ g+

e (x), ∀x ∈ X.

2. fA = gB if and only if fA≤̃gB and gA≤̃fB.

3. The union of two IV FS sets fA and gB, denoted by fA∨̃gB, is theIV FS set
(f ∨ g, C), where C = A ∪B and for all e ∈ C, we have

(f ∨ g)e(x) =


[f−e (x), f+

e (x)], e ∈ A−B
[g−e (x), g+

e (x)], e ∈ B −A,
[max(f−e (x), g−e (x),max(f+

e (x), g+
e (x)] e ∈ A ∩B.

for all x ∈ X.

4. The intersection of two IV FS setsfA and gB,denoted by fA∧̃gB, is theIV FS
set (f ∧ g, C),where C = A ∩ B and for all e ∈ C, we have (f ∧ g)e(x) =
[minf−e (x), g−e (x),minf+

e (x), g+
e (x)] for all x ∈ X.

5. The complement of IV FS set fA is denoted by f cA(x) where for all e ∈ A we
have f ce (x) = [1− f+

e (x), 1− f−e (x)].

Definition 2.5. [8] Let fE be an IV FS set.

1. The interval-valued fuzzy soft set fE is called null interval-valued fuzzy soft
set, denoted by ∅E , if f−e (x) = f+

e (x) = 0, for all x ∈ X, e ∈ E.
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2. The interval-valued fuzzy soft set fE is called absolute interval-valued fuzzy soft
set, denoted by XE , if f−e (x) = f+

e (x) = 1, for all x ∈ X, e ∈ E.

Motivated by definition of soft mapping, discussed in [27], we define the concept
of IV FS mapping as the following:

Definition 2.6. Suppose fA is an IV FS set over X1 and gB is an IV FS set over
X2 where A ⊆ E1 and B ⊆ E2. If Φu : X1 → X2 and Φp : E1 → E2 are two
mappings, then

1. The map Φ : IVFS(X1, E1) → IVFS(X2, E2) is called an IV FS-map from
X1 to X2 and for any y ∈ X2 and ε ∈ B ⊆ E2, The lower image and the
upper image of fA under Φ is the IV FSΦ(fA) over X2, respectively, defined
as below:

[Φ(f−)](ε)(y) =

{
supx∈Φ

u−1 (y)[supe∈Φ
p−1∩A

f−(e)](x), ifΦ−1
p (ε) ∩A 6= ΦandΦ−1

u (y) 6= Φ

0, otherwise,

[Φ(f+)](ε)(y) =

{
supx∈Φ

u−1 (y)[supe∈Φ
p−1∩A

f+(e)](x), ifΦ−1
p (ε) ∩A 6= ΦandΦ−1

u (y) 6= Φ

0, otherwise.

2. Let Φ : IVFS(X1, E1) → IVFS(X2, E2) be an IV FS-map from X1 to X2.
The lower inverse image and the upper inverse image of IV FS gB under Φ
denoting by Φ−1(gB), is an IV FS over X1, respectively, that for all x ∈ X1

and e ∈ E1 it is defined as below:

[Φ−1(g−)](e)(x) =

{
g−Φp(e)

Φu(x), if Φp(e) ∈ B
0, otherwise,

[Φ−1(g+)](e)(x) =

{
g+

Φp(e)
Φu(x), if Φp(e) ∈ B

0 otherwise.

Proposition 2.1. Let Φ : IVFS(X,E) → IVFS(Y, F ) be an IV FS-mapping be-
tween X and X, and Let {fiA}i∈J ⊂ IVFS(X,E) and {giB}i∈J ⊂ IVFS(Y, F ) be
two families of IV FS sets over X and Y, respectively, where A ⊆ E and B ⊆ F,
then the following properties hold.

1. [Φ(fjA)]c≤̃Φ(fjA)c for each j ∈ J.

2. [Φ−1(gjB)]c = Φ−1(gjB)c for each j ∈ J.

3. If giB≤̃gjB, then Φ−1(giB)≤̃Φ−1(gjB) for each i, j ∈ J.

4. If fiA≤̃fjA, then Φ(fiA)≤̃Φ(fjA) for each i, j ∈ J.

5. Φ(Φ−1(gjB)) ≤ gjB for each j ∈ J.

6. (fjA) ≤ Φ(Φ−1(FjA)) for each j ∈ J.
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7. Φ[∨̃j∈JfjA] = ∨̃j∈JΦ(fjA) and Φ−1[∨̃j∈JgjB] = ∨̃j∈JΦ−1(gjB).

8. Φ[∧̃j∈JfjA] = ∧̃j∈JΦ(fjA) and Φ−1[∧̃j∈JgjB] = ∧̃j∈JΦ−1(gjB).

Proof. We only prove part(7). The other parts follow the similar technique. For any
k ∈ F, y ∈ Y, and a ∈ A Then

Φ[∨̃j∈JfjA](k)(y) = supx∈Φ−u (y)(supz∈Φ−1
p (k)(∨̃j∈J)fjA)(z)(x)

= supx∈Φ−1
u (y)(supz∈Φ−1

p (k)(max
j∈J

([f−ja, f
+
ja])))(k)(y)

= supx∈Φ−1
u (y)(max

j∈J
(supz∈Φ−1

p (k)[f
−
ja(k), f+

ja(k)]))(y)

= max
j∈J

(supx∈Φ−1
u (y)(supz∈Φ−1

p (k)[f
−
ja(k))(y), f+

ja(k)]))(y)]

= max
j∈J

(supx∈Φ−u (y)(supz∈Φ−1
p (k)fjA(k)(y)))

= max
j∈J

Φ(fjA)(k)(y)

= ∨̃j∈JΦ(fjA)(k)(y).

Now we prove that Φ−1[∨̃j∈JgjB] = ∨̃j∈JΦ−1(gjB). For any e ∈ E, x ∈ X and b ∈ B

Φ−1[∨̃j∈JgjB](e)(x) = (∨̃j∈J)gjB(Φp(e))(Φu(x))

= [max
j∈J

g−jb,max
j∈J

g+
jb](Φp(e))(Φu(x))

= [[max
j∈J

g−jb(Φp(e))(Φu(x)),max
j∈J

g+
jb(Φp(e))(Φu(x))]

= [max
j∈J

Φ−1
u (g−jb)(e)(x),max

j∈J
Φ−1
u (g+

jb)(e)(x)]

= max
j∈J

[Φ−1
u (g−jb)(e)(x),Φ−1

u (g+
jb)(e)(x)]

= max
j∈J

Φ−1
u (gjB)(e)(x)

= ∨̃j∈JΦ−1
u (gjB)(e)(x).

3 Interval-valued fuzzy soft topological spaces

The interval-valued fuzzy topology IV FT was discussed by Mondal and Samanta
[17]. In this section, we recall their definition and then present different neighbor-
hood structures in the interval-valued fuzzy soft topology (IV FST ).

Definition 3.1. Let X be a non-empty set and let τ be a collection of interval valued
fuzzy soft set over X with the following properties:

(i) ∅E, XE belong to τ,
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(ii) If f1E , f2E are IV FS sets belong to τ.

As the ordinary topologies, the indiscrete IV FST over X contains only ∅E
and XE , while the discrete IV FST over X contains all IV FS sets. Every
member of τ is called an interval-valued fuzzy soft open set (IV FS-open ) in
X. The complement of an IV FS-open set is said an IV FS-closed set. Then
f1E∧̃f2E belong to τ.

(iii) If the collection of IV FS sets {fjE |j ∈ J} where J is an index set, belong to
τ then ∨̃j∈JfjE belong to τ,

then τ is called interval-valued fuzzy soft topology over X and the triplet (X,E, τ)
is called the interval-valued fuzzy soft topological space (IV FST ).

Remark 3.1. If f−e (x) = f+
e (x) = a ∈ [0, 1]. Then we put [f−e (x), f+

e (x)] = [a, a] =
a.

Example 3.1. Let X = [0, 1] and E be any subset of X. Consider IV FS set fE
over X by the mapping

f : E → IVF([0, 1])

Such that for any e ∈ E, x ∈ X

f̃e(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

The collection τ = {ΦE , XE , fE} is an IV FST over X.

1. Clearly XE , ∅E ∈ τ.

2. Let {fjE}j∈J is a sub-family of τ where for any j ∈ J if x ∈ X such that for
all e ∈ E

fje(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Since

∨jfje(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1

Then ∨̃jfjE ∈ τ.

3. Let fE , gE ∈ τ, where

fe(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1,

and

ge(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.
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Since

fe(x)∧ge(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1.

Thus, fE ∧ gE ∈ τ.

Example 3.2. [24] Let R be the set of all real numbers with the usual topology τu
where τu = 〈{(a, b), a, b ∈ R}〉 and E be a parameter set. Let U = (a, b) ⊂ R be an
open interval in R, we define IV FS ŨE over R by the mapping

Ũ : E → (Int[0, 1])R

such that for all x ∈ R

Ũe(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b).

The family {ŨE : (a, b) ⊂ R, ∀a, b ∈ R} generates an IV FS over R, we denote it by

τ
(IV FS)
u :

1. Clearly RE , ∅E ∈ τ (IV FS)
u where for all e ∈ E and k ∈ R,RE(e)(k) = [1, 1] and

∅e(k) = 0

2. Let {ŨjE}j∈J is a sub-family of τ
(IV FS)
u where for any j ∈ J if x ∈ (aj , bj)

and interval (aj , bj) in R such that for all e ∈ E

Ũje(x) =

{
1 x ∈ (aj , bj)
0 x /∈ (aj , bj).

Since ∨̃jŨjE = (∪̃jUj , E) where ∪jUjE ∈ τu. Then ∨̃jŨjE ∈ τ (IV FS)
u

3. Let ŨE , ṼE ∈ τ
(IV FS)
u . Then ŨE∧̃ṼE ∈ τ

(IV FS)
u since ŨE∧̃ṼE = (Ũ ∩ V ,E)

where U ∩ V ∈ τu.

Definition 3.2. Let interval [λ−e , λ
+
e ] ⊆ [0, 1] for all e ∈ E. Then x̃E is called

an interval-valued fuzzy soft point (in short IV FS-Point)with support x ∈ X and
e-lower value λ−e and e-upper value λ+

e if for each y ∈ X

x̃(e)(y) =

{
[λ−e , λ

+
e ] y = x

0 otherwise.

Example 3.3. Let X = [0, 1] and E be any subset of X. Consider IV FS-point x̃E
with support x and lower value 0 and upper value 0.3, we define IV FS-point x̃E by

x̃(e)(c) =

{
[0, 0.3] c = x

0 otherwise.

For any e ∈ E and c ∈ X.
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Definition 3.3. The IV FS-point x̃E belong to IV FS set fE , denoting by x̃E∈̃fE ,
whenever for all e ∈ E we have λ−e ≤ f−e (x) and λ+

e ≤ f+
e (x).

Theorem 3.1. Let fE be an IV FS set. fE is the union of all its IV FS-points

i.e fE = ∨̃x̃E∈̃fE x̃E .

Proof. Let x ∈ X be a fixed point, y ∈ X and e ∈ E. Take all x̃E∈̃fE with different
e-lower and e-upper values λ−je, λ

+
je where j ∈ J there exists λ−je = f−e , λ

+
je = f+

e

∨̃x̃E∈fE x̃e(y) = [sup x̃−e (y), sup x̃+
e (y)]

= [supλ−je≤̃f−(x)λ
−
je, supλ+

je≤̃f+(x)λ
+
je]

= [f−e (x), f+
e (x)]

Proposition 3.1. Let {fjE}j∈J be a family of IV FS sets over X, where J is an
index set and x̃E be an IV FS-point with support x and e-lower value λ−e and e-upper
value λ+

e . If x̃∈̃∧̃j∈J{fjE}, then x̃E∈̃{fjE} for each j ∈ J.

Proof. Let x̃E be an IV FS-point with support x and e-lower value λ−e and e-upper
value λ+

e and let x̃∈̃∧̃j∈J{fjE}, then λ−e ≤∧j∈J{f−je}(x)≤{f−je}(x) for each e ∈ E, x ∈
X and λ+

e ≤∧j∈J{f+
je}(x)≤{f+

je}(x) for each e ∈ E, x ∈ X. Then,

[λ−e , λ
+
e ]≤[{f−je}(x), {f+

je}(x)], for each e ∈ E, x ∈ X. Hence x̃E∈̃{fjE}j∈J .

Remark 3.2. If x̃E∈̃fE∨̃gE dose not imply x̃E∈̃fE or x̃E∈̃gE .

This is shown in following example.

Example 3.4. Let τ be an IV FST over X, where τ = {∅E , XE , fE , gE , fE∧̃gE}
and x̃E be absolute IV FS-point with support x and e-lower value λ−e and e-upper
value λ+

e . If fEand gE are two IV FS sets in X defined as below:

f : E → IVF([0, 1])

and

g : E → IVF([0, 1])

Such that for any e ∈ E, x ∈ X

fe(x) =

{
[1, 0.5] 0 ≤ x ≤ e

0 e < x ≤ 1,

and

ge(x) =

{
[0.2, 1] 0 ≤ x ≤ e

0 e < x ≤ 1.
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Since

fe(x)∨ge(x) =

{
1 if 0 ≤ x ≤ e
0 if e < x ≤ 1.

Then x̃E∈̃fE∨̃gE , but x̃E /̃∈fE and x̃E /̃∈gE .

Theorem 3.2. Let x̃E be an IV FS-point with support x and e-lower value λ−e and
e-upper value λ+

e and fE and gE be an IV FS sets. If x̃E∈̃fE∨̃gE , then there exists
IV FS-point x̃1E∈̃fE and IV FS-point x̃2E∈̃gE such that x̃E = x̃1E∨̃x̃2E

Proof. Let x̃E∈̃fE∨̃gE , then, λ−e ≤f−e (x)∨g−e (x), and λ+
e ≤f+

e (x)∨g+
e (x), for each e ∈

E, x ∈ X. Let choose

E1 = {e ∈ E|λ−e ≤f−e (x), λ+
e ≤f+

e (x) : x ∈ X} E2 = {e ∈ E|λ−e ≤g−E(x), λ+
e ≤g+

E(x) :
x ∈ X} and

x̃1(e)(y) =

{
[λ−e , λ

+
e ] if y = x1, e ∈ E1

0, otherwise.

x̃2(e)(y) =

{
[λ−e , λ

+
e ], if y = x2, e ∈ E2

0, otherwise.

Since x−1e ≤ f−1e(x), and x+
1e ≤ f+

1e(x) for each e ∈ E1, x ∈ X, that implies x̃1E∈̃f1E

and also x−2e ≤ f−2e(x), and x+
2e ≤ f+

2e(x) for each e ∈ E2, x ∈ X, that implies
x̃2E∈̃f2E . Consequently, E1∨̃E2 = E and x̃E = x̃1E∨̃x̃2E .

Definition 3.4. Let (X,E, τ) be an IV FST space and x̃E be an IV FS-point with
support x, e-lower value λ−e and e-upper value λ+

e . The IV FS set gE is called
interval-valued fuzzy soft neighbourhood (IV FSN) of IV FS-point x̃E if there ex-
ists the IV FS-open set fE in X such that x̃E∈̃fE<̃gE . So the IV FS-open set fE
is an IV FSN of the IV FS-point x̃E if ∀e ∈ E, x ∈ X such that λ−e < f−e (x) and
λ+
e < f+

e (x).

Definition 3.5. Let (X,E, τ) be an IV FST space and x̃E be an IV FS-point with
support x, e-lower value λ−e and e-upper value λ+

e and x̃?E be an IV FS-point with
support x?, e-lower value ε−e and e-upper value ε+

e . x̃
?
E is called to compatible with

λ−e , λ
+
e , if x̃?E provides that 0 ≤ ε−e ≤ λ−e and 0 ≤ ε+

e ≤ λ+
e for each e ∈ E.

Proposition 3.2. 1. If fE is an IV FSN of the IV FS-point x̃E and fE≤̃hE ,
then hE is also an IV FSN of x̃E .

2. If fE and gE are two IV FSN of the IV FS-point x̃E , then fE∧̃gE is also
IV FSN of x̃E .

3. If fE is an IV FSN of the IV FS-point x̃?E with support x?, e-lower value
λ−e − ε−e and e-upper value λ+

e − ε+
e , for all ε−e compatible with λ−e and ε+

e

compatible with λ+
e . Then fE is an IV FSN of the IV FS-point x̃E .
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4. If fE is an IV FSN of the IV FS-point x̃1E and gE is an IV FSN of the
IV FS-point x̃2E then fE∨̃gE is also an IV FSN of x̃1E and x̃2E .

5. If fE is an IV FSN of the IV FS-point x̃E , then there exists IV FSN gE of
x̃E such that gE≤̃fE and gE is IV FSN of IV FS-point ỹ with support y and
e-lower value γ−e and e-upper value γ+

e , for all ỹE∈̃gE .

Proof. 1. Let fE be an IV FSN of the IV FS-point x̃. Then there exists the
IV FS-open set gE in X such that x̃E∈̃gE≤̃fE . Since fE≤̃hE , then

x̃E∈̃gE≤̃fE≤̃hE , therefore hE is an IV FSN of x̃E .

2. Let fE and gE are two IV FSN of the IV FS-point x̃E . Then there exists
two IV FS-open sets hE , kE in X such that x̃E∈̃hE≤̃fE and x̃E∈̃kE≤̃gE ,
so x̃E∈̃hE∧̃kE≤̃fE∧̃gE . Since hE∧̃kE is IV FS-open set, then gE∧̃fE is an
IV FSN of x̃E .

3. Let fE be an IV FSN of the IV FS-point x̃?E with support x? and e-lower
value λ−e − ε−e and e-upper value λ+

e − ε+
e , for all ε−e compatible with λ−e

and ε+
e compatible with λ+

e . Then, there exists IV FS-open set gx
?

E such that
x̃?E∈̃gx

?

E ≤̃fE . Let gE = ∨̃x?gx
?

E , then gE is IV FS-open in X and gE≤̃fE . By
the Theorem 3.2 and since for all e ∈ E, then ∨̃x̃?E = x̃E≤̃∨̃x?gx

?

E = gE≤̃fE .
Hence, x̃E∈̃gE≤̃fE , i.e fE is IV FSN of x̃E .

4. Let fE be an IV FSN of the IV FS-point x̃1E with support x1 and e-lower
value λ−1e and e-upper value λ+

1e and gE be an IV FSN of the IV FS-point
x̃2E with support x2 and e-lower value λ−2e and e-upper value λ+

2e. Then there
exists IV FS-open sets h1E , h2E such that x̃1E∈̃h1E≤̃fE and x̃2E∈̃h2E≤̃fE ,
respectively, Since x̃1E∈̃h1E , then λ−1e ≤ h−1e(x), λ+

1e ≤ h+
1e(x) for each e ∈ E

and x ∈ X, Since x̃2E∈̃h2E , then λ−2e ≤ h−2e(x), λ+
2e ≤ h+

2e(x) for each e ∈ E
and x ∈ X. Then, we have

max{[λ−1e, λ
+
1e], [λ

−
2e, λ

+
2e]} ≤ max{[h

−
1e(x), h+

1e(x)], [h−2e(x), h+
2e(x)]} for each e ∈

E, x ∈ X. So x̃1E∨̃x̃2E∈̃h1E∨̃h2E and h1E∨̃h2E ∈ τ and h1E∨̃h2E≤̃fE∨̃gE .
Consequently, fE∨̃gE is IV FSN of x1E∨̃x2E .

5. Let fE be an IV FSN of the IV FS-point x̃E , with support x and e-lower
value λ−e and e-upper value λ+

e . Then there exists IV FS-open set gE such
that x̃E∈̃gE≤̃fE . Since gE IV FS-open set, gE is a neighborhood of its points,
i.e gE is IV FSN of IV FS-point ỹE with support y and e-lower value γ−e and
e-upper value γ+

e , for all e ∈ E. Also, gE is IV FSN of IV FS-point x̃E since
x̃E∈̃gE . Therefore, there exists gE is IV FSN of x̃E such that gE≤̃fE and gE
is IV FSN of ỹE , Since fE is IV FSN of x̃E .

Definition 3.6. Let (X,E, τ) be an IV FST space and fE be an IV FS set. The
IV FS-closure of fE denoted by ClfE is intersection of all IV FS-closed super sets
of fE . Clearly, ClfE is the smallest IV FS-closed set over X which contains fE .
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Example 3.5. [24] Consider IV FST τ IV FSu over R as introduced in Example 3.2
if H̃E is an IV FS over R related of the open interval H = (a, b) ⊂ R by mapping

H̃ : E → (Int[0, 1])R

H̃e(x) =

{
1 x ∈ (a, b)
0 x /∈ (a, b),

where e ∈ E and x ∈ R. Then closure of H̃E defined as

ClH̃ : E → (Int[0, 1])R

H̃e(x) =

{
1 x ∈ [a, b]
0 x /∈ [a, b].

Remark 3.3. By replacing x̃E for fE . The IV FS-closure of x̃E denoted by Clx̃E
is intersection of all IV FS-closed super sets of x̃E .

Proposition 3.3. Let (X,E, τ) be an IV FST space and fE and gE be two IV FSS
over X. Then

1. Cl∅E = ∅E and ClX̃E = X̃E .

2. fE≤̃ClfE , and ClfE is the smallest IV FS-closed set containing the IV FSfE .

3. Cl(ClfE) = ClfE .

4. if fE≤̃gE , then (ClfE)≤̃ClgE .

5. fE is anIV FS-closed set if and only if fE = ClfE .

6. Cl(fE∨̃gE) = ClfE∨̃ClgE .

7. Cl(fE∧̃gE)≤̃ClfE∧̃ClgE .

Proof. We only prove part(6). The similar technique is used to show the other parts.
Since fE≤̃fE∨̃gE and gE≤̃fE∨̃gE , by part(4) we have ClfE≤̃Cl(fE∨̃gE) and

Clg≤̃Cl(fE∨̃gE). Thus ClfE∨̃ClgE≤̃Cl(fE∨̃gE).
Conversely, we have fE≤̃ClfE and gE≤̃ClgE , by part(2).Hence, fE∨̃gE≤̃ClfE∨̃ClgE

where ClfE∨̃ClgE is an IV FS-closed set. Thus, Cl(fE∨̃gE)≤̃ClfE∨̃ClgE .
So Cl(fE∨̃gE) = ClfE∨̃ClgE .

Definition 3.7. Let (X1, E1, τ1) and (X2, E2, τ2) be two IV FSTS and

Φ : (X1, E1, τ1)→ (X2, E2, τ2)

be an IV FS map. Ten Φ is called an

1. interval-valued fuzzy soft continuous (IV FSC) map if and only if for each
gE2 ∈ τ2, we have Φ−1(gE2) ∈ τ1.
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2. interval-valued fuzzy soft open (IV FSO) map if and only if for each fE ∈ τ1,
we have Φ(fE1) ∈ τ2.

Theorem 3.3. Let (X1, E1, τ1) and (X2, E2, τ2) be two IV FST and Φ be an IV FS-
mapping from X1 to X2, then the following statements are equivalent:

1. Φ is IV FC.

2. for each IV FS-point x̃E on X1 the inverse of every neighbourhood of Φ(x̃E)
under Φ is neighbourhood of x̃E .

3. for each IV FS-point x̃E on X1 and each neighbourhood gE of Φ(x̃E), there
exists a neighbourhood fE of x̃E such that Φ(fE)≤̃gE .

Proof.

(1) ⇒ (2) Let gE be an IV FSN of Φ(x̃E) in τ2. Then there exists IV FS-open
set fE in τ2 such that Φ(x̃E)∈̃fE≤̃gE , since Φ is IV FSC, Φ−1(fE) is an IV FS-open
in τ1 and we have x̃E∈̃Φ−1(fE)≤̃Φ−1(gE).

(2)⇒ (3) Let gE be an IV FSN of Φ(x̃E). By hypothesis Φ−1(gE) is an IV FSN
of x̃E . Consider the fE = Φ−1(gE) is an IV FSN of x̃E . Therefore, we have Φ(fE) =
Φ(Φ−1(gE))≤̃gE .

(3) ⇒ (1) Let gE be an IV FS-open set in τ2. We must show that Φ−1(gE)
is an IV FS-open set in τ1. Now let x̃E∈̃Φ−1(gE). Then Φ(x̃E)∈̃gE and since gE is
IV FS-open set in τ2, we get gE is an IV FSN Φ(x̃E) in τ2. By hypothesis there exists
IV FS-open set fE is IV FSN of x̃E such that Φ(fE)≤̃gE , then fE≤̃Φ−1[Φ(fE)]≤̃Φ−1(gE)
for fE is an IV FSN of x̃E . Form here, fE≤̃Φ−1(gE), for fE is an IV FSN of x̃E .
Hence,Φ−1(gE)∈̃τ1.

4 Quasi coincident neighbourhood structure of interval-
valued fuzzy soft topological spaces

In this section, we present quasi coincident neighborhood structure in the interval-
valued fuzzy soft topology (IV FST ) and its properties.

Definition 4.1. The IV FS-point x̃E is called a soft quasi-coincident whit IV FS
fE , denoting by x̃E q̃fE , if and only if there exists e ∈ E such that λ−e + f−e (x) > 1
and λ+

e + f+
e (x) > 1. If fE is not soft quasi-coincident whit fE , we write fE¬q̃gE .

Definition 4.2. The IV FS-set fE is called a soft quasi-coincident whit IV FS gE ,
denoting by fE q̃gE , if and only if there exists e ∈ E such that f−e (x) + g−e (x) > 1
and f+

e (x) + g+
e (x) > 1.

Proposition 4.1. x̃E be an IV FS-point with support x and e-lower value λ−e and
e-upper value λ+

e and fE , gE two IV FS sets :
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(i) fE≤̃gE ⇔ fE¬q̃gcE .

(ii) x̃E∈̃fE ⇔ x̃E¬q̃f cE .

Proof. We just prove part(1). The similar technique is used to show the part (2).
For two IV FS sets fE , gE we have:

fE≤̃gE ⇔ ∀e ∈ E : [f−e (x), f+
e (x)] ≤ [g−e (x), g+

e (x)], ∀x ∈ X
⇔ ∀e ∈ E : f−e (x) ≤ g−e (x) and f+

e (x) ≤ g+
e (x), ∀x ∈ X

⇔ ∀e ∈ E : f−e (x) + 1− g−e (x) ≤ 1 and f+
e (x) + 1− g+

e (x) ≤ 1, ∀x ∈ X
⇔ ∀e ∈ E : f−e (x) + g−

c
e(x) ≤ 1 and f+

e (x) + g+c
e(x) ≤ 1,∀x ∈ X

⇔ fE¬q̃gcE .

Proposition 4.2. Let {fjE : j ∈ J} is a family of IV FS sets over X and x̃E ,
be an IV FS-point with support x and e-lower value λ−e and e-upper value λ+

e . If
x̃E q̃(∧̃fjE), then x̃E q̃fjE for each j ∈ J.

Proof. Let x̃E q̃(∧̃fjE). Then λ−e q̃(∧̃jf−je)(x) and λ+
e q̃(∧̃jf+

je)(x) for e ∈ E and x ∈ X.
This implies that λ−e > 1 − ∧j(f−je)(x) and λ+

e > 1 − ∧j(f+
je)(x), x ∈ X. Since

∧jf−je(x) ≤ f−je(x) and ∧jf+
je(x) ≤ f+

je(x), then λ−e > 1− ∧j(f−je)(x) > 1− f−je(x) for

each e ∈ E, x ∈ X and λ+
e > 1 − ∧j(f+

je)(x) > 1 − f+
je(x) for each e ∈ E, x ∈ X.

Hence λ−e > 1 − f−je(x) and λ+
e > 1 − f+

je(x). So, [λ−e , λ
+
e ] > [1, 1] − [f−je(x), f+

je(x)],

implies that x̃E > 1− f−jE and x̃E q̃fjE for each j ∈ J.

Remark 4.1. x̃E q̃(fE ∨ gE) does not imply x̃E q̃fE or x̃E q̃gE . This is shown in the
following example.

Example 4.1. Let consider Example 3.5 in this example x̃E q̃(fE∨̃gE) but x̃E¬q̃fE
and x̃E¬q̃gE .

Theorem 4.1. Let x̃E be anIV FS-point x̃E with support x and e-lower value λ−e
and e-upper value λ+

e and fE , gE are IV FS-sets over X. If x̃E q̃(fE ∨gE), then there
exists x̃1E q̃fE and x̃2E q̃gE such that x̃E = x̃1E∨̃x̃2E .

proof Analogously with Theorem 3.2.

Definition 4.3. Let (X,E, τ) be an IV FSTS and x̃E be an IV FS-point with sup-
port x, e-lower values λ−e and e-upper values λ+

e . The IV FS set gE is called a quasi
soft neighbourhood (QIV FSN) of IV FS-point x̃E if there exists the IV FS-open
set fE in X such that x̃E q̃fE≤̃gE . Thus the IV FS-open set fE is a QIV FSN of
the IV FS-point x̃E if and only if ∃e ∈ E, x ∈ X such that λ−e + f−e (x) > 1 and
λ+
e + f+

e (x) > 1.
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Remark 4.2. A quasi-coincident soft neighbourhood of IV FS-point generally does
not contain the point itself. It is shown by the following:

Example 4.2. Let X = [0, 1] and E be any subset of X. Consider two IV FS sets
fE , gE over X by the mapping f : E → IVF([0, 1]) and f : E → IVF([0, 1]) Such
that for any e ∈ E, x ∈ X

f̃e(x) =

{
[0.4, 0.5] 0 ≤ x ≤ e

0 e < x ≤ 1,

and

g̃e(x) =

{
[0.6, 0.7] 0 ≤ x ≤ e

0 e < x ≤ 1,

and x̃E be any IV FS-point defined by

x̃e(c) =

{
[0.4, 0.5] c = x

0 c 6= x.

Let τ = {∅E , XE , fE , gE}. Then clearly τ an IV FST over X. Since fE≤̃gE and
x̃q̃fE . Then gE is QIV FSN of x̃E . But x̃E /∈ gE .

Proposition 4.3. (1) If fE≤̃gE and fE is QINV SN of x̃E , then gE is also
QINV SN of x̃E .

(2) If fE , gE are QINV SN of x̃E , then fE∧̃gE is also QINV SN of x̃E .

(3) If fE is QINV SN of x̃1E and gE is QINV SN of x̃2E , then fE∨̃gE is also
QINV SN of x̃1E∨̃x̃2E .

(4) If fE is QINV SN of x̃E . Then there exists gE is QINV SN of x̃E , such that
gE≤̃fE and gE is QINV SN of yE , ∀yE q̃gE .

Proof. (1),(2) are straightforward.

(3) Let fE is QINV SN of x̃1E and gE is QINV SN of x̃2E , then there exists
IV FS-open set h1E in X such that x̃1E q̃h1E≤̃fE and gE is QINV SN of
x̃2E , then there exists IV FS-open set h2E in X such that x̃2E q̃h2E≤̃gE . Since
x̃1E q̃h1E , then for each e ∈ E, x ∈ X,λ−1e + h−1e > 1, λ+

1e + h+
1e > 1 and this

implies that λ−1e > 1 − h−1e, λ
+
1e > 1 − h+

1e for each e ∈ E and since x̃2E q̃h2E ,
then for each e ∈ E, λ−2e + h−2e > 1, λ+

2e + h+
2e > 1 and this implies that

λ−2e > 1−h−2e, λ
+
2e > 1−h+

2e for each e ∈ E, x ∈ X. From here, max(λ−1e, λ
−
2e) >

max(1− h−1e(x)), (1− h−2e(x)),max(λ+
1e, λ

+
2e) > max(1− h+

1e(x)), (1− h+
2e(x)).

Hence, x̃1E∨̃x̃2E q̃(h1E∨̃h2E)≤̃fE∨̃gE . Consequently, fE∨̃gE is QINV SN of
x̃1E∨̃x̃2E .

(4) Let fE is QINV SN of x̃E , then there exists gE is QINV SN of x̃E such that
x̃E q̃gE≤̃fE . Consider the gE = hE . Indeed, since x̃E q̃hE and hE is IV FS-open
set, then hE is QINV SN of x̃E , we obtain hE is QINV SN of ỹE .

14

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2019                   doi:10.20944/preprints201912.0360.v1

Peer-reviewed version available at Mathematics 2020, 8, 178; doi:10.3390/math8020178

https://doi.org/10.20944/preprints201912.0360.v1
https://doi.org/10.3390/math8020178


Theorem 4.2. In the IV FST (X,E, τ), the IV FS-point x̃E belongs to ClfE if and
only if each QIV FS of x̃E is soft quasi-coincident with fE .

Proof. Let IV FS-point x̃E with support x, e-lower value λ−e and e-upper value
λ+
e belongs to ClfE , i.e, x̃E∈̃ClfE . For any IV FS-closed gE which containing fE ,
x̃E∈̃gE which implies that λ−e ≤ g−e (x) and λ+

e ≤ g+
e (x), for all x ∈ X, e ∈ E.

Consider hE be an QIV FN of the IV FS-point x̃E and hE¬q̃fE . Then for any
e ∈ E and x ∈ X, h−e (x) +f−e (x) ≤ 1, h+

e (x) +f+
e (x) ≤ 1 and so fE≤̃hcE . Since hE is

QIV FSN of the IV FS-point x̃E , by x̃E dose not belong to hcE . Therefore, we have
that x̃E dose not belong to ClfE . This is a contradiction.

Conversely, let any QIV FSN of the IV FS-point x̃E be soft quasi-coincident
with fE . Consider x̃E dose not belong to ClfE , i.e, x̃E /∈ ClfE . Then there exists an
IV FS-closed set gE which is containing fE such that x̃E dose not belong to gE . we
have x̃E q̃g

c
E . Then gcE is an QIV FSN of the IV FS-point x̃E and fE¬q̃gcE . This is

a contradiction with the hypothesis.

5 IVFS quasi-separation axioms

In this section we develop the separation axioms to IV FST, so-called IV FSQ-
separation axioms(IV FSq-Ti axioms)for i = 0, 1, 2, 3, 4 and consider some properties
of them.

Definition 5.1. Let (X,E, τ) be an IV FST space. Let x̃E and ỹE are IV FS-points
over X where

x̃(e)(z) =

{
[λ−e , λ

+
e ] z = x

0 otherwis

ỹ(e)(z) =

{
[γ−e , γ

+
e ] z = y

0 otherwis.

x̃E and ỹE are said distinct if and only if x̃E∧̃ỹE = ∅E , which meaning x 6= y.

Definition 5.2. Let (X,E, τ) be an IV FST space. The IV FS-point x̃E is called

a crisp IV FS-point x
[1,1]
E if λ−e = λ+

e = 1 for all e ∈ E.

Definition 5.3. Let (X,E, τ) be an IV FST space and x̃E and ỹE be two IV FS-
points. If there exists IV FS open sets fE and gE such that:

(a.) when x̃E and ỹE be two distinct IV FS-points with different supports x and
y and e-lower values and e-upper values λ−e , λ

+
e and γ−e , γ

+
e , respectively, and

fE is IV FSN of the IV FS-point x̃E and ỹE¬q̃fE or gE is IV FSN of the
IV FS-point ỹE and x̃E¬q̃gE .
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(b.) when x̃E and ỹE be two IV FS-points with the same supports x = y and e-value
λ−e < γ−e and e-value λ+

e < γ+
e and fE is a QIV FSN of the IV FS-point ỹE

such that x̃E¬q̃fE .

Then (X,E, τ) be interval-valued fuzzy soft quasi-T0 space (IV FSq-T0 space).

Example 5.1. Consider IV FS set defined in Example 3.1. and x̃E , ỹE be any two
distinct IV FS-point in X defined by

x̃(e)(z) =

{
1 z = x
0 z 6= x.

and

ỹ(e)(z) =

{
0 if z = y

1 if z 6= y

fE is IV FSN of x̃E and ỹE¬q̃fE . Thus X is IV FSq-T0 space.

Theorem 5.1. (X,E, τ) is an IV FSq-T0 space if and only if for every two IV FS-
points x̃E, ỹE and x̃E /∈ ClỹE or ỹE /∈ Clx̃E .

Proof. Let (X,E, τ) is an IV FSq-T0 space and x̃E and ỹE be two IV FS-points in X.
First consider that x̃E and ỹE be two distinct IV FS-points with different supports x
and y and e-lower values and e-upper values λ−e , γ

−
e and λ+

e , γ
+
e , respectively, a crisp

IV FS-point x̃
[1,1]
E has an IV FSN fE such that ỹE¬q̃fE or a crisp IV FS-point ỹ

[1,1]
E

has an IV FSN gE such that x̃E¬q̃fE . Consider the crisp IV FS-point x̃
[1,1]
E has an

IV FSN fE such that ỹE¬q̃fE . Moreover, fE is an QINFSN of x̃E and ỹE¬q̃fE .
Hence x̃E /∈ ClỹE . Next we consider the case x̃E and ỹE be two IV FS-points with
the same supports x = y and e-lower value λ−e < γ−e and e-upper value λ+

e < γ+
e ,

then ỹE has a QIV FSN which is not quasi-coincident with x̃E and so by Theorem
4.1 x̃E /∈ ClỹE .

Conversely, let x̃E and ỹE be two IV FS-points in X. Consider the without loss
of generality, that x̃E /∈ ClỹE . First consider that x̃E and ỹE be two distinct IV FS-
points with different supports x and y and e- lower values and e-upper values λ−e , γ

−
e

and λ+
e , γ

−
e , respectively, since x̃E /∈ ClỹE for any e ∈ E, f−e (y) = f+

e (y) = 0 and
f−e (x) = f+

e (x) = 1. Then Cl(ỹE)c is an IV FSN of x̃E such that Cl(ỹE)c¬q̃ỹE .
Next, let when x̃E and ỹE be two IV FS-points with the same supports x = y and
we must have e- lower value λ−e > γ−e and e-upper value λ+

e > γ+
e and then x̃E has

QIV FSN which is not quasi-coincident with ỹE .

Definition 5.4. Let (X,E, τ) be an IV FST and x̃E and ỹE be two IV FS-points,
if there exists IV FS open sets fE and gE such that:

(a.) when x̃E and ỹE be two distinct IV FS-points with different supports x and
y and e-lower values and e-upper values λ−e , γ

−
e and λ+

e , γ
+
e , respectively and

fE is IV FSN of the IV FS-point x̃E and ỹE¬q̃fE and gE is IV FSN of the
IV FS-point ỹE and x̃E¬q̃gE .
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(b.) when x̃E and ỹE be two IV FS-points with the same supports x = y and e-value
λ−e < γ−e and e-value λ+

e < γ+
e and fE is a QIV FSN of the IV FS-point ỹE

such that x̃E¬q̃fE .

Then (X,E, τ) be interval-valued fuzzy soft quasi-T1 space (IV FSq-T1 space).

Theorem 5.2. (X,E, τ) is an IV FSq-T1 space if and only if for any IV FS-point
x̃E in X is an IV FS-closed set.

Proof. Suppose that for each IV FS-point x̃E in X is an IV FS-closed set, i.e, gE =
x̃cE . Then gE is an IV FS-open set. Let xE and yE two IV FS-point such that: First
consider that x̃E and ỹE be two distinct IV FS-points with different supports x and
y and e-lower values and e-upper values λ−e , γ

−
e and λ+

e , γ
+
e , respectively, gE is an

IV FS-open set such that gE is IV FSN of IV FS-point ỹE and x̃E¬q̃gE . Similarly,
fE = ỹcE is IV FS-open set and fE is IV FSN of the IV FS-point x̃E and ỹE¬q̃fE .
Next, we consider the case x̃E and ỹE be two IV FS-points with the same supports
x = y and e-value λ−e < γ−e and e-value λ+

e < γ+
e , then ỹE has a QIV FSN gE which

is not quasi-coincident with x̃E . Thus X is an IV FSq-T1 space.
Conversely, Let (X,E, τ) be an IV FSq-T1 space. Suppose that any IV FS-point

x̃E is not IV FS-closet set in X, i.e, fE
.
= x̃cE . Then f̃E 6= Clf̃E and there exists

ỹE∈̃Clf̃E such that x̃E 6= ỹE . First consider that x̃E and ỹE be two distinct IV FS-
points with different supports x and y and e-lower values and e-upper values λ−e , γ

−
e

and λ+
e , γ

+
e , respectively, suppose that e-lower value λ−e ≤ 0.5 and e-upper value

λ+
e ≤ 0.5. Since ỹE∈̃ClfE , by Theorem 4.1 for any fE is QIV FSN of ỹE and x̃E q̃fE .

Then there exists IV FS-open set hE such that ỹq̃hE≤̃fE . Hence h−e (y) + γ−e > 1
Next,let x̃E and ỹE be two IV FS-points with the same supports x = y and e-value
λ−e < γ−e and e-value λ+

e < γ+
e , since yE∈̃ClxE , by Theorem 4.1 for each fE is

QIV FSN of IV FS-point ỹE , x̃E q̃fE . This is contradiction.

Definition 5.5. Let (X,E, τ) be an IV FST and x̃E and ỹE be two IV FS-points,
if there exists IV FS open sets fE and gE such that:

(a.) when x̃E and ỹE be two distinct IV FS-points with different supports x and y
and e-lower values and e-upper values λ−e , γ

−
e and λ+

e , γ
+
e , respectively, fE is

IV FSN of the IV FS-point x̃E, gE is IV FSN of the IV FS-point ỹE, such
that fE¬q̃gE .

(b.) when x̃E and ỹE be two IV FS-points with the same supports x = y and e-value
λ−e < γ−e and e-value λ+

e < γ+
e , fE is a IV FSN of the IV FS-point x̃E , gE is

a QIV FSN of the IV FS-point ỹE .

Then (X,E, τ) be interval-valued fuzzy soft quasi-T2 space (IV FS q-T2 space).

Example 5.2. Suppose that X = [0, 1] and E be any proper(E ⊂ X) Consider
IV FS sets fE and gE over X defined as below: f : E → IVF([0, 1]) and g : E →
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IVF([0, 1]), such that for any e ∈ E, x ∈ X

f(e)(x) =

{
1 0 ≤ x ≤ e
0 e < x ≤ 1,

and

g(e)(x) =

{
0 0 ≤ x ≤ e
1 e ≤ x ≤ 1.

Let τ = {∅E , XE , fE , gE}. Then clearly τ is an IV FST over X. Therefore for any
two absolute distinct IV FS-points x̃E , ỹE in X defined by

x̃(e)(z) =

{
1 z = x
0 z 6= x

and

ỹ(e)(z) =

{
0 if z = y

1 if z 6= y

fE is IV FSN of the x̃E and gE is IV FSN of ỹE, such that fE¬q̃gE . Then X is
IV FS q-T2 space

Theorem 5.3. The IV FST (X,E, τ) is an IV FSq-T2 space if and only if for any
x ∈ X, we have

x̃E =
∧̃
{ClfE : fE ∈ IV FSN of x̃E}.

Proof. Let (X,E, τ) be a crisp IV FSq-T2 space and x̃E be IV FS-point with support
x, e-lower value λ−e and e-upper value γ+

e . For any yE be a crisp IV FS-point with
support y, e-lower value γ−e and e-upper value λ+

e . If x̃E and ỹE be two IV FS-points
with different supports x and y and e-lower values and e-upper values λ−e , γ

−
e and

λ+
e , γ

+
e , respectively, then there exist two IV FS-open sets fE and gE containing

IV FS-points ỹE and x̃E respectively, such that fE¬q̃gE . Then gE is IV FSN of
IV FS-point x̃E and fE is QIV FSN of ỹE such that fE¬q̃gE . Hence ỹE /∈ ClgE . If
x̃E and ỹE be two IV FS-points with the same supports x = y, then γ−e > λ−e and
γ−e > λ+

e and hence there are QIV FSN fE of IV FS-point ỹE and IV FSN gE such
that fE¬q̃gE . Then ỹE /∈ ClgE .

Conversely, let x̃E and ỹE be two distinct IV FS-points with different sup-
ports x and y and e-lower values and e-upper values λ−e , λ

+
e and γ−e , γ

+
e ,respec-

tively. Since x̃E =
∧̃
{ClfE : fE ∈ IV FSNof x̃E}, then

∧̃
{Cl([f−e , f+

e ])(y) : fE ∈
IV FSN ofx̃E} = 0 then, ỹE¬q̃

∧̃
{ClfE : fE ∈ IV FSN mboxofx̃E}. Therefore,

there exists fE is IV FSN of x̃ and ỹE¬q̃ClfE . Take two τ -IV FS-open sets fE and
(ClfE)c. So fE is IV FSN of IV FS-point x̃E and (ClfE)c is IV FSN of IV FS-point
ỹE , and fE¬q̃(ClfE)c.
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Definition 5.6. Let (X,E, τ) be an IV FST . If for any IV FS-point x̃E with sup-
port x, e-lower values λ−e and e-upper values λ+

e and any IV FS-closed set fE in X
such that x̃E¬q̃fE , there exists two IV FS-open sets hE and kE such that x̃E∈̃hE
and fE≤̃kE , hE¬q̃kE . Then (X,E, τ) is called interval-valued fuzzy soft quasi regular
space( IV FS q-regular space).

(X,E, τ) is called an interval-valued fuzzy soft quasi T3 space, if it is IV FS
q-regular space and IV FS q-T1 space.

Theorem 5.4. The IV FST (X,E, τ) is an IV FS q-T3 space if and only if for any
IV FSN gE of IV FS-point x̃E there exists an IV FS-open set fE in X such that
x̃E∈̃fE≤̃clfE≤̃gE .

Proof. Let gE be an IV FS set in X and x̃E be IV FS-point with support x, e-lower
value λ−e and e-upper value λ+

e such that x̃E∈̃gE , then clearly, gcE is IV FS-closed set.
Since X is an IV FS q-T3 space, there exists two IV FS-open sets fE , hE such that
x̃E∈̃fE , gcE≤̃hE , hE and fE¬q̃hE . So, f cE≤̃hcE . Then ClfE≤̃hcE implies ClfE≤̃gE .
Hance x̃E∈̃fE≤̃ClfE≤̃gE .

Conversely, let x̃E be an IV FS-point with different support x and e-lower value
λ−e and e-upper value λ+

e and let gE be an IV FS-closed set such that x̃E¬q̃gE . Then
gcE is an IV FS-open set containing the IV FS-point x̃E , i.e, x̃E∈̃gcE . Therefore, there
exists an IV FS-open set fE containing x̃E such that x̃E∈̃fE≤̃ClfE≤̃gE gE≤̃(ClfE)c.
Then clearly, (ClfE)c is an IV FS-open set containing gE and fE¬q̃(ClfE)c. Hance
X is IV FS q-T3 space.

Definition 5.7. Let (X,E, τ) be an IV FST .If for any two IV FS-closed sets fE
and gE such that fE¬q̃gE , there exists two IV FS-open sets hE and kE such that
fE≤̃hE and gE≤̃kE . Then (X,E, τ) is called interval-valued fuzzy soft quasi normal
space( IV FS q-normal space).

(X,E, τ) is called an interval-valued fuzzy soft quasi T4 space, if it is IV FS
q-normal space and IV FSq-T1 space.

Theorem 5.5. The IV FST (X,E, τ) is an IV FS q-T4 space if and only if for any
IV FS-closed set fE and of IV FS-open set containing fE , there exists an IV FS-
open set hE in X such that fE≤̃hE≤̃clhE≤̃gE .

Proof. Let fE be an IV FS-closed set in X and gE be an IV FS-open set in X con-
taining fE , i.e, fE≤̃gE . So, gcE is an IV FS-closed set such that fE¬q̃gcE . Since X is an
IV FS q-T4 space, there exists two IV FS-open sets hE , kE such that fE≤̃hE , gcE≤̃kE ,
and hE¬q̃kE . Thus, hE≤̃kcE , but ClhE≤̃ClkcE = kE . Also gcE≤̃kE implies kc≤̃gE .
IV FS-closed set over X. So ClhE≤̃kcE . Hence we have fE≤̃hE≤̃ClhE≤̃gE .

Conversely, let f̃E and gE be any IV FS-closed sets such that fE¬q̃gE . So fE≤̃gcE .
There exists an IV FS-open set hE such that fE≤̃hE≤̃ClhE≤̃gE . Thus there are two
IV FS-open sets hE and (ClhE)c such that fE≤̃hE , gE≤̃(ClhE)c. This shows that
X is an IV FS q-T4 space.
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Theorem 5.6. If Φ : (X1, E1, τ1) → (X2, E2, τ2) is a IV FSC and IV FSO map
where ΦuX1 → X2 and ΦpE1 → E2 are two ordinary bijections, then X1 is an
IV FSq-Ti space if and only if X2 is an IV FSq-Ti space for i = 0, 1, 2, 3, 4.

Proof. We just prove when i = 2. The other parts similarly.
Suppose that we have two IV FS-points k̃E2 and s̃E2 with different supports k

and s and e-lowers value and e-upper values λ−e , λ
+
e and γ−e , γ

+
e , respectively. for any

e ∈ E2. The inverse lower and upper image of IV FS-point k̃E2 under the IV FSO
map Φ is an IV FS-point in X1 with different support Φ−1(k) as below:

Φ−1(k̃−)(e)(x) = k̃−(Φp(e))(Φu(x)) and Φ−1(k̃+)(e)(x) = k̃+(Φp(e))(Φu(x)).

And also the inverse lower and upper image of IV FS-point s̃E2 under the IV FSO
map Φ is an IV FS-point in X1 with different support Φ−1(s) as below:

Φ−1(s̃−)(e)(x) = s̃−(Φp(e))(Φu(x)) and Φ−1(s̃+)(e)(x) = s̃+(Φp(e))(Φu(x)).

Since (X1, E1, τ1) is an IV FSq-T2 space, there exist two IV FS-open sets fE and gE
in X1 such that Φ−1(k̃E2)∈̃fE , Φ−1(s̃E2)∈̃gE , and fE¬q̃gE . So k̃E2∈̃fE and s̃E2∈̃gE ,
while Φ(fE)¬q̃Φ(gE). Then (X2, E2, τ2) is an IV FSq-T2 space.

Conversely, Suppose that we have two IV FS-points x̃E and ỹE with different
supports x, y ∈ X1 and e-lower value and e-upper value λ−e , λ

+
e and γ−e , γ

+
e , respec-

tively. The lower and upper image of an IV FS-point x̃E under the IV FSC map Φ
is an IV FS-point in X2 with different support Φu(x) as below:

Φ(x̃−)(ε)(k) = supz∈Φ−1(k)[supe∈Φ−1
p (ε)(x̃

−)(e)](z)

=

{
λ−e if k = Φu(x)
0 otherwis,

Φ(x̃+)(ε)(k) = supz∈Φ−1(k)[supe∈Φ−1
p (ε)(x̃

+)(e)](z)

=

{
λ+
e if k = Φu(x)
0 otherwis,

and The lower and upper image of an IV FS-point ỹE under the IV FSC map
Φ is an IV FS-point in X2 with different support Φu(y) as below:

Φ(ỹ−)(ε)(k) = supz∈Φ−1(k)[supe∈Φ−1
p (ε)(ỹ

−)(e)](z)

=

{
γ−e if k = Φu(y)
0 otherwis,

Φ(ỹ+)(ε)(k) = supz∈Φ−1(k)[supe∈Φ−1
p (ε)(ỹ

+)(e)](z)

=

{
γ+
e if k = Φu(y)
0 otherwis.

Since (X2, E2, τ2) is an IV FSq-T2 space, there exist two IV FS-open sets fE2 and gE2

inX2 such that Φ(x̃)∈̃fE2 , Φ(ỹ)∈̃gE2 , and fE2¬q̃gE2 . Clearly, x̃E∈̃Φ−1(fE2), ỹE∈̃Φ−1(gE2)
and Φ−1(fE2)¬q̃Φ−1(gE2). Then (X1, E1, τ1) is an IV FSq-T2 space.
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6 Conclusion

In this paper, we have introduced a new definition of interval-valued fuzzy soft
point and then consider some properties of it, and different types of neighbourhoods
of IV FS-point were studied in interval-valued fuzzy soft topological space. The
separation axioms of interval-valued fuzzy soft topological is presented and of its
basic properties are also studied.
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