

Separation axioms interval-valued fuzzy soft topology via quasi-neighbourhood structure

Mabruka Ali ¹, A. Kılıçman ², Azadeh Zahedi Khameneh ³

^{1,3} Department of Mathematics, University Putra Malaysia,
43400 UPM, Serdang, Selangor, Malaysia

^{2,3} Institute for Mathematical Research, University Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia

Abstract

In this study, we present the concept of interval-valued fuzzy soft point and then introduce the notions of neighborhood and quasi-neighbourhood of it in interval-valued fuzzy soft topological spaces. Separation axioms in interval-valued fuzzy soft topology, so-called q - T_i for $i = 0, 1, 2, 3, 4$, is introduced and some of its basic properties are also studied.

Keywords: interval-valued fuzzy soft set, interval-valued fuzzy soft topology, interval-valued fuzzy soft point, interval-valued fuzzy soft neighbourhood, interval-valued fuzzy soft quasi-neighbourhood, interval-valued fuzzy soft separation axioms.

1 Introduction

In 1999, Molodtsov[1] proposed a new mathematical approach known as soft set theory, for dealing with uncertainties and vagueness. Traditional tools such as fuzzy sets[25] and rough sets[26], cannot clearly define objects. Where the soft set theory is different from traditional tools for dealing with uncertainties. A soft set, defined by a collection of approximate descriptions of an object based on parameters by a given set-valued map. Maji et al.[3] initiated the research on both fuzzy sets and soft sets hybrid structures called fuzzy soft sets and presented a concept was subsequently discussed by many researchers. Different extensions of the classical fuzzy soft sets were introduced, such as generalized fuzzy soft sets[4], intuitionist fuzzy soft sets[5,6], vague soft sets[7], interval-valued fuzzy soft sets[8] and interval-valued intuitionist fuzzy soft sets[9]. In particular, to alleviate some disadvantages of fuzzy soft sets, interval-valued fuzzy soft sets was introduced where no objective procedure is available to select the crisp membership degree of elements in a fuzzy soft sets. Tanya and Kandemir [10] started topological studies of fuzzy soft sets. They used classical concept of topology to construct a topological space over a fuzzy

soft set and named it fuzzy soft topology. They also studied some fundamental topological properties for fuzzy soft topology, such as interior, closure, and base. Later Simsekler and Yuksel[11] studied fuzzy soft topological space in the case of Tanay and Kandemir[10]. But they established the concept of fuzzy soft topology over a fuzzy soft set with a set of fixed parameters and considered some topological concepts for fuzzy soft topological spaces such as base, subbase, neighbourhood, and Q-neighbourhood. Roy and Samanta [15] noted a new concept of fuzzy soft topology. They suggested the notion of fuzzy soft topology over an ordinary set by adding fuzzy soft subsets of it where everywhere parameter set is supposed to be fixed. Then in[12], they continued to study fuzzy soft topology and established a fuzzy soft point definition and various neighbourhood structures. Atmaca and Zorlutuna [16] were considering the concept of soft quasi-coincidence for fuzzy soft sets. By applying this new concept, they also studied the basic topological notions such as interior and closure for a fuzzy soft sets. The concept of product fuzzy soft topology and the boundary fuzzy soft topology have introduced by Zahedi et al.[13],[14] and some of its properties have been studied. They also suggested a new definition for fuzzy soft point and then, different neighbourhood structures. Separation axioms of fuzzy topological and fuzzy soft topological, it had been studied by many authors[18,19,21,22,23]. The aim of this work is to develop interval-valued fuzzy soft separation axioms. We start with preliminaries and then, give definition of interval-valued fuzzy soft point as a generalization of interval-valued fuzzy point and fuzzy soft point, both in order to create different neighborhood structures in interval-valued fuzzy soft topological space in sections 3 and 4. Finally, in section 5, the notion of separation axioms $q\text{-}T_i$, $i = 0, 1, 2, 3, 4$, in interval-valued fuzzy soft topology is introduced and some of its basic properties were also studied.

2 preliminaries

Throughout this paper X is the set of objects and E is the set of parameters. The set of all subset, of X is denoted by $P(X)$ and $A \subset E$. Shows a subset of E .

Definition 2.1. [1] *A pair (f, A) is called a soft set over X , where f is a mapping given by*

$$f : A \rightarrow P(X).$$

For any parameter $e \in A$, $f(e) \subset X$ may be considered as the set e -approximate elements of the soft set (f, A) . In other words, the soft set is not a kind of set. but a parameterized family of subset of the set X .

Before introduce the notion of the interval-valued fuzzy soft sets, we give the concept of interval-valued fuzzy set.

Definition 2.2. [20] *An interval-valued fuzzy (IVF) set over X , is defined by the membership function $f : X \rightarrow \text{int}([0, 1])$, where $\text{int}([0, 1])$ denotes the set of all closed*

subintervals of $[0, 1]$. Suppose that $x \in X$. Then $f(x) = [f^-(x), f^+(x)]$ is called the degree of membership of the element $x \in X$, where $f^-(x)$ and f^+ are the lower and upper degree of membership of x and $0 < f^-(x) < f^+(x) < 1$.

Yang et al.[8] suggested the concept of interval-valued fuzzy soft set by combined of interval-valued fuzzy set and soft set as below.

Definition 2.3. [8] An interval-valued fuzzy soft(IVFS) set, denoted by f_E or (f, E) over X , is defined by the mapping $f : E \rightarrow \mathcal{IVF}(X)$, where $\mathcal{IVF}(X)$ is the set of all interval-valued fuzzy set over X . For any $e \in E$, $f(e)$ can be written as an interval-valued fuzzy set such that $f(e) = \{\langle x, [f_e^-(x), f_e^+(x)] \rangle : x \in X\}$ where $f_e^-(x)$ and $f_e^+(x)$ are the lower and upper degrees of membership, of x with respect to e , respectively, where $0 \leq f_e^-(x) \leq f_e^+(x) \leq 1$.

Note that $\mathcal{IVFS}(X, E)$ shows the set of all IVFS-set over X .

Definition 2.4. [8] Let f_A and g_B be two IVFS-sets over X . We say:

1. f_A is an interval-valued fuzzy soft subset of g_B , denoted by $f_A \tilde{\leq} g_B$, if and only if:

(i) $A \leq B$,

(ii) For all $e \in A$, $f_e^-(x) \leq g_e^-(x)$ and $f_e^+(x) \leq g_e^+(x)$, $\forall x \in X$.

2. $f_A = g_B$ if and only if $f_A \tilde{\leq} g_B$ and $g_A \tilde{\leq} f_B$.

3. The union of two IVFS sets f_A and g_B , denoted by $f_A \tilde{\vee} g_B$, is the IVFS set $(f \vee g, C)$, where $C = A \cup B$ and for all $e \in C$, we have

$$(f \vee g)_e(x) = \begin{cases} [f_e^-(x), f_e^+(x)], & e \in A - B \\ [g_e^-(x), g_e^+(x)], & e \in B - A, \\ [max(f_e^-(x), g_e^-(x)), max(f_e^+(x), g_e^+(x))] & e \in A \cap B. \end{cases}$$

for all $x \in X$.

4. The intersection of two IVFS sets f_A and g_B , denoted by $f_A \tilde{\wedge} g_B$, is the IVFS set $(f \wedge g, C)$, where $C = A \cap B$ and for all $e \in C$, we have $(f \wedge g)_e(x) = [min f_e^-(x), g_e^-(x), min f_e^+(x), g_e^+(x)]$ for all $x \in X$.

5. The complement of IVFS set f_A is denoted by $f_A^c(x)$ where for all $e \in A$ we have $f_e^c(x) = [1 - f_e^+(x), 1 - f_e^-(x)]$.

Definition 2.5. [8] Let f_E be an IVFS set.

1. The interval-valued fuzzy soft set f_E is called null interval-valued fuzzy soft set, denoted by \emptyset_E , if $f_e^-(x) = f_e^+(x) = 0$, for all $x \in X, e \in E$.

2. The interval-valued fuzzy soft set f_E is called absolute interval-valued fuzzy soft set, denoted by X_E , if $f_e^-(x) = f_e^+(x) = 1$, for all $x \in X, e \in E$.

Motivated by definition of soft mapping, discussed in [27], we define the concept of *IVFS* mapping as the following:

Definition 2.6. Suppose f_A is an *IVFS* set over X_1 and g_B is an *IVFS* set over X_2 where $A \subseteq E_1$ and $B \subseteq E_2$. If $\Phi_u : X_1 \rightarrow X_2$ and $\Phi_p : E_1 \rightarrow E_2$ are two mappings, then

1. The map $\Phi : \mathcal{IVFS}(X_1, E_1) \rightarrow \mathcal{IVFS}(X_2, E_2)$ is called an *IVFS*-map from X_1 to X_2 and for any $y \in X_2$ and $\varepsilon \in B \subseteq E_2$, The lower image and the upper image of f_A under Φ is the $\mathcal{IVFS}\Phi(f_A)$ over X_2 , respectively, defined as below:

$$[\Phi(f^-)](\varepsilon)(y) = \begin{cases} \sup_{x \in \Phi_{u^{-1}}(y)} [\sup_{e \in \Phi_{p^{-1}} \cap A} f^-(e)](x), & \text{if } \Phi_p^{-1}(\varepsilon) \cap A \neq \emptyset \text{ and } \Phi_u^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise,} \end{cases}$$

$$[\Phi(f^+)](\varepsilon)(y) = \begin{cases} \sup_{x \in \Phi_{u^{-1}}(y)} [\sup_{e \in \Phi_{p^{-1}} \cap A} f^+(e)](x), & \text{if } \Phi_p^{-1}(\varepsilon) \cap A \neq \emptyset \text{ and } \Phi_u^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

2. Let $\Phi : \mathcal{IVFS}(X_1, E_1) \rightarrow \mathcal{IVFS}(X_2, E_2)$ be an *IVFS*-map from X_1 to X_2 . The lower inverse image and the upper inverse image of *IVFS* g_B under Φ denoting by $\Phi^{-1}(g_B)$, is an *IVFS* over X_1 , respectively, that for all $x \in X_1$ and $e \in E_1$ it is defined as below:

$$[\Phi^{-1}(g^-)](e)(x) = \begin{cases} g_{\Phi_p(e)}^-\Phi_u(x), & \text{if } \Phi_p(e) \in B \\ 0, & \text{otherwise,} \end{cases}$$

$$[\Phi^{-1}(g^+)](e)(x) = \begin{cases} g_{\Phi_p(e)}^+\Phi_u(x), & \text{if } \Phi_p(e) \in B \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 2.1. Let $\Phi : \mathcal{IVFS}(X, E) \rightarrow \mathcal{IVFS}(Y, F)$ be an *IVFS*-mapping between X and Y , and Let $\{f_{iA}\}_{i \in J} \subset \mathcal{IVFS}(X, E)$ and $\{g_{iB}\}_{i \in J} \subset \mathcal{IVFS}(Y, F)$ be two families of *IVFS* sets over X and Y , respectively, where $A \subseteq E$ and $B \subseteq F$, then the following properties hold.

1. $[\Phi(f_{jA})]^c \tilde{\leq} \Phi(f_{jA})^c$ for each $j \in J$.
2. $[\Phi^{-1}(g_{jB})]^c = \Phi^{-1}(g_{jB})^c$ for each $j \in J$.
3. If $g_{iB} \tilde{\leq} g_{jB}$, then $\Phi^{-1}(g_{iB}) \tilde{\leq} \Phi^{-1}(g_{jB})$ for each $i, j \in J$.
4. If $f_{iA} \tilde{\leq} f_{jA}$, then $\Phi(f_{iA}) \tilde{\leq} \Phi(f_{jA})$ for each $i, j \in J$.
5. $\Phi(\Phi^{-1}(g_{jB})) \leq g_{jB}$ for each $j \in J$.
6. $(f_{jA}) \leq \Phi(\Phi^{-1}(F_{jA}))$ for each $j \in J$.

$$7. \Phi[\tilde{\vee}_{j \in J} f_{jA}] = \tilde{\vee}_{j \in J} \Phi(f_{jA}) \text{ and } \Phi^{-1}[\tilde{\vee}_{j \in J} g_{jB}] = \tilde{\vee}_{j \in J} \Phi^{-1}(g_{jB}).$$

$$8. \Phi[\tilde{\wedge}_{j \in J} f_{jA}] = \tilde{\wedge}_{j \in J} \Phi(f_{jA}) \text{ and } \Phi^{-1}[\tilde{\wedge}_{j \in J} g_{jB}] = \tilde{\wedge}_{j \in J} \Phi^{-1}(g_{jB}).$$

Proof. We only prove part(7). The other parts follow the similar technique. For any $k \in F, y \in Y$, and $a \in A$ Then

$$\begin{aligned} \Phi[\tilde{\vee}_{j \in J} f_{jA}](k)(y) &= \sup_{x \in \Phi_u^-(y)} (\sup_{z \in \Phi_p^{-1}(k)} (\tilde{\vee}_{j \in J} f_{jA})(z)(x)) \\ &= \sup_{x \in \Phi_u^-(y)} (\sup_{z \in \Phi_p^{-1}(k)} (\max_{j \in J} ([f_{ja}^-, f_{ja}^+])))(k)(y) \\ &= \sup_{x \in \Phi_u^-(y)} (\max_{j \in J} (\sup_{z \in \Phi_p^{-1}(k)} [f_{ja}^-(k), f_{ja}^+(k)]))(y) \\ &= \max_{j \in J} (\sup_{x \in \Phi_u^-(y)} (\sup_{z \in \Phi_p^{-1}(k)} [f_{ja}^-(k), f_{ja}^+(k)])(y), f_{ja}^+(k))) \\ &= \max_{j \in J} (\sup_{x \in \Phi_u^-(y)} (\sup_{z \in \Phi_p^{-1}(k)} f_{jA}(k)(y))) \\ &= \max_{j \in J} \Phi(f_{jA})(k)(y) \\ &= \tilde{\vee}_{j \in J} \Phi(f_{jA})(k)(y). \end{aligned}$$

Now we prove that $\Phi^{-1}[\tilde{\vee}_{j \in J} g_{jB}] = \tilde{\vee}_{j \in J} \Phi^{-1}(g_{jB})$. For any $e \in E, x \in X$ and $b \in B$

$$\begin{aligned} \Phi^{-1}[\tilde{\vee}_{j \in J} g_{jB}](e)(x) &= (\tilde{\vee}_{j \in J} g_{jB})(\Phi_p(e))(\Phi_u(x)) \\ &= [\max_{j \in J} g_{jb}^-, \max_{j \in J} g_{jb}^+](\Phi_p(e))(\Phi_u(x)) \\ &= [[\max_{j \in J} g_{jb}^-(\Phi_p(e))(\Phi_u(x)), \max_{j \in J} g_{jb}^+(\Phi_p(e))(\Phi_u(x))]] \\ &= [\max_{j \in J} \Phi_u^{-1}(g_{jb}^-)(e)(x), \max_{j \in J} \Phi_u^{-1}(g_{jb}^+)(e)(x)] \\ &= \max_{j \in J} [\Phi_u^{-1}(g_{jb}^-)(e)(x), \Phi_u^{-1}(g_{jb}^+)(e)(x)] \\ &= \max_{j \in J} \Phi_u^{-1}(g_{jb})(e)(x) \\ &= \tilde{\vee}_{j \in J} \Phi_u^{-1}(g_{jb})(e)(x). \end{aligned}$$

□

3 Interval-valued fuzzy soft topological spaces

The interval-valued fuzzy topology *IVFT* was discussed by Mondal and Samanta [17]. In this section, we recall their definition and then present different neighborhood structures in the interval-valued fuzzy soft topology (*IVFST*).

Definition 3.1. Let X be a non-empty set and let τ be a collection of interval valued fuzzy soft set over X with the following properties:

(i) \emptyset_E, X_E belong to τ ,

(ii) If f_{1E}, f_{2E} are IVFS sets belong to τ .

As the ordinary topologies, the indiscrete IVFST over X contains only \emptyset_E and X_E , while the discrete IVFST over X contains all IVFS sets. Every member of τ is called an interval-valued fuzzy soft open set (IVFS-open) in X . The complement of an IVFS-open set is said an IVFS-closed set. Then $f_{1E} \tilde{\wedge} f_{2E}$ belong to τ .

(iii) If the collection of IVFS sets $\{f_{jE} | j \in J\}$ where J is an index set, belong to τ then $\tilde{\vee}_{j \in J} f_{jE}$ belong to τ ,

then τ is called interval-valued fuzzy soft topology over X and the triplet (X, E, τ) is called the interval-valued fuzzy soft topological space (IVFST).

Remark 3.1. If $f_e^-(x) = f_e^+(x) = a \in [0, 1]$. Then we put $[f_e^-(x), f_e^+(x)] = [a, a] = a$.

Example 3.1. Let $X = [0, 1]$ and E be any subset of X . Consider IVFS set f_E over X by the mapping

$$f : E \rightarrow \mathcal{IVF}([0, 1])$$

Such that for any $e \in E, x \in X$

$$\tilde{f}_e(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1. \end{cases}$$

The collection $\tau = \{\Phi_E, X_E, f_E\}$ is an IVFST over X .

1. Clearly $X_E, \emptyset_E \in \tau$.

2. Let $\{f_{jE}\}_{j \in J}$ is a sub-family of τ where for any $j \in J$ if $x \in X$ such that for all $e \in E$

$$f_{je}(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1. \end{cases}$$

Since

$$\vee_j f_{je}(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1 \end{cases}$$

Then $\tilde{\vee}_j f_{jE} \in \tau$.

3. Let $f_E, g_E \in \tau$, where

$$f_e(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1, \end{cases}$$

and

$$g_e(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1. \end{cases}$$

Since

$$f_e(x) \wedge g_e(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1. \end{cases}$$

Thus, $f_E \wedge g_E \in \tau$.

Example 3.2. [24] Let \mathbb{R} be the set of all real numbers with the usual topology τ_u where $\tau_u = \langle \{(a, b), a, b \in \mathbb{R}\} \rangle$ and E be a parameter set. Let $U = (a, b) \subset \mathbb{R}$ be an open interval in \mathbb{R} , we define IVFS \tilde{U}_E over \mathbb{R} by the mapping

$$\tilde{U} : E \rightarrow (\text{Int}[0, 1])^{\mathbb{R}}$$

such that for all $x \in \mathbb{R}$

$$\tilde{U}_e(x) = \begin{cases} 1 & x \in (a, b) \\ 0 & x \notin (a, b). \end{cases}$$

The family $\{\tilde{U}_E : (a, b) \subset \mathbb{R}, \forall a, b \in \mathbb{R}\}$ generates an IVFS over \mathbb{R} , we denote it by $\tau_u^{(IVFS)}$:

1. Clearly $\mathbb{R}_E, \emptyset_E \in \tau_u^{(IVFS)}$ where for all $e \in E$ and $k \in \mathbb{R}$, $\mathbb{R}_E(e)(k) = [1, 1]$ and $\emptyset_e(k) = 0$
2. Let $\{\tilde{U}_{jE}\}_{j \in J}$ is a sub-family of $\tau_u^{(IVFS)}$ where for any $j \in J$ if $x \in (a_j, b_j)$ and interval (a_j, b_j) in \mathbb{R} such that for all $e \in E$

$$\tilde{U}_{je}(x) = \begin{cases} 1 & x \in (a_j, b_j) \\ 0 & x \notin (a_j, b_j). \end{cases}$$

Since $\tilde{V}_j \tilde{U}_{jE} = (\widetilde{\cup_j U_j}, E)$ where $\cup_j U_{jE} \in \tau_u$. Then $\tilde{V}_j \tilde{U}_{jE} \in \tau_u^{(IVFS)}$

3. Let $\tilde{U}_E, \tilde{V}_E \in \tau_u^{(IVFS)}$. Then $\tilde{U}_E \tilde{\wedge} \tilde{V}_E \in \tau_u^{(IVFS)}$ since $\tilde{U}_E \tilde{\wedge} \tilde{V}_E = (\widetilde{U \cap V}, E)$ where $U \cap V \in \tau_u$.

Definition 3.2. Let interval $[\lambda_e^-, \lambda_e^+] \subseteq [0, 1]$ for all $e \in E$. Then \tilde{x}_E is called an interval-valued fuzzy soft point (in short IVFS-Point) with support $x \in X$ and e -lower value λ_e^- and e -upper value λ_e^+ if for each $y \in X$

$$\tilde{x}(e)(y) = \begin{cases} [\lambda_e^-, \lambda_e^+] & y = x \\ 0 & \text{otherwise.} \end{cases}$$

Example 3.3. Let $X = [0, 1]$ and E be any subset of X . Consider IVFS-point \tilde{x}_E with support x and lower value 0 and upper value 0.3, we define IVFS-point \tilde{x}_E by

$$\tilde{x}(e)(c) = \begin{cases} [0, 0.3] & c = x \\ 0 & \text{otherwise.} \end{cases}$$

For any $e \in E$ and $c \in X$.

Definition 3.3. The IVFS-point \tilde{x}_E belong to IVFS set f_E , denoting by $\tilde{x}_E \tilde{\in} f_E$, whenever for all $e \in E$ we have $\lambda_e^- \leq f_e^-(x)$ and $\lambda_e^+ \leq f_e^+(x)$.

Theorem 3.1. Let f_E be an IVFS set. f_E is the union of all its IVFS-points
i.e $f_E = \tilde{\vee}_{\tilde{x}_E \tilde{\in} f_E} \tilde{x}_E$.

Proof. Let $x \in X$ be a fixed point, $y \in X$ and $e \in E$. Take all $\tilde{x}_E \tilde{\in} f_E$ with different e -lower and e -upper values $\lambda_{je}^-, \lambda_{je}^+$ where $j \in J$ there exists $\lambda_{je}^- = f_e^-(x), \lambda_{je}^+ = f_e^+(x)$

$$\begin{aligned} \tilde{\vee}_{\tilde{x}_E \tilde{\in} f_E} \tilde{x}_e(y) &= [\sup \tilde{x}_e^-(y), \sup \tilde{x}_e^+(y)] \\ &= [\sup_{\lambda_{je}^- \leq f_e^-(x)} \lambda_{je}^-, \sup_{\lambda_{je}^+ \leq f_e^+(x)} \lambda_{je}^+] \\ &= [f_e^-(x), f_e^+(x)] \end{aligned}$$

□

Proposition 3.1. Let $\{f_{je}\}_{j \in J}$ be a family of IVFS sets over X , where J is an index set and \tilde{x}_E be an IVFS-point with support x and e -lower value λ_e^- and e -upper value λ_e^+ . If $\tilde{x}_E \tilde{\in} \tilde{\wedge}_{j \in J} \{f_{je}\}$, then $\tilde{x}_E \tilde{\in} \{f_{je}\}$ for each $j \in J$.

Proof. Let \tilde{x}_E be an IVFS-point with support x and e -lower value λ_e^- and e -upper value λ_e^+ and let $\tilde{x}_E \tilde{\in} \tilde{\wedge}_{j \in J} \{f_{je}\}$, then $\lambda_e^- \leq \wedge_{j \in J} \{f_{je}^-\}(x) \leq \{f_{je}^-\}(x)$ for each $e \in E, x \in X$ and $\lambda_e^+ \leq \wedge_{j \in J} \{f_{je}^+\}(x) \leq \{f_{je}^+\}(x)$ for each $e \in E, x \in X$. Then,

$$[\lambda_e^-, \lambda_e^+] \leq [\{f_{je}^-\}(x), \{f_{je}^+\}(x)], \text{ for each } e \in E, x \in X. \text{ Hence } \tilde{x}_E \tilde{\in} \{f_{je}\}_{j \in J}. \quad \square$$

Remark 3.2. If $\tilde{x}_E \tilde{\in} f_E \tilde{\vee} g_E$ dose not imply $\tilde{x}_E \tilde{\in} f_E$ or $\tilde{x}_E \tilde{\in} g_E$.

This is shown in following example.

Example 3.4. Let τ be an IVFST over X , where $\tau = \{\emptyset_E, X_E, f_E, g_E, f_E \tilde{\wedge} g_E\}$ and \tilde{x}_E be absolute IVFS-point with support x and e -lower value λ_e^- and e -upper value λ_e^+ . If f_E and g_E are two IVFS sets in X defined as below:

$$f : E \rightarrow \mathcal{IVF}([0, 1])$$

and

$$g : E \rightarrow \mathcal{IVF}([0, 1])$$

Such that for any $e \in E, x \in X$

$$f_e(x) = \begin{cases} [1, 0.5] & 0 \leq x \leq e \\ 0 & e < x \leq 1, \end{cases}$$

and

$$g_e(x) = \begin{cases} [0.2, 1] & 0 \leq x \leq e \\ 0 & e < x \leq 1. \end{cases}$$

Since

$$f_e(x) \vee g_e(x) = \begin{cases} 1 & \text{if } 0 \leq x \leq e \\ 0 & \text{if } e < x \leq 1. \end{cases}$$

Then $\tilde{x}_E \in f_E \tilde{\vee} g_E$, but $\tilde{x}_E \notin f_E$ and $\tilde{x}_E \notin g_E$.

Theorem 3.2. Let \tilde{x}_E be an IVFS-point with support x and e -lower value λ_e^- and e -upper value λ_e^+ and f_E and g_E be an IVFS sets. If $\tilde{x}_E \in f_E \tilde{\vee} g_E$, then there exists IVFS-point $\tilde{x}_{1E} \in f_E$ and IVFS-point $\tilde{x}_{2E} \in g_E$ such that $\tilde{x}_E = \tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E}$

Proof. Let $\tilde{x}_E \in f_E \tilde{\vee} g_E$, then, $\lambda_e^- \leq f_e^-(x) \vee g_e^-(x)$, and $\lambda_e^+ \leq f_e^+(x) \vee g_e^+(x)$, for each $e \in E, x \in X$. Let choose

$E_1 = \{e \in E | \lambda_e^- \leq f_e^-(x), \lambda_e^+ \leq f_e^+(x) : x \in X\}$ $E_2 = \{e \in E | \lambda_e^- \leq g_E^-(x), \lambda_e^+ \leq g_E^+(x) : x \in X\}$ and

$$\tilde{x}_1(e)(y) = \begin{cases} [\lambda_e^-, \lambda_e^+] & \text{if } y = x_1, e \in E_1 \\ 0, & \text{otherwise.} \end{cases}$$

$$\tilde{x}_2(e)(y) = \begin{cases} [\lambda_e^-, \lambda_e^+], & \text{if } y = x_2, e \in E_2 \\ 0, & \text{otherwise.} \end{cases}$$

Since $x_{1e}^- \leq f_{1e}^-(x)$, and $x_{1e}^+ \leq f_{1e}^+(x)$ for each $e \in E_1, x \in X$, that implies $\tilde{x}_{1E} \in f_{1E}$ and also $x_{2e}^- \leq f_{2e}^-(x)$, and $x_{2e}^+ \leq f_{2e}^+(x)$ for each $e \in E_2, x \in X$, that implies $\tilde{x}_{2E} \in f_{2E}$. Consequently, $E_1 \tilde{\vee} E_2 = E$ and $\tilde{x}_E = \tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E}$. \square

Definition 3.4. Let (X, E, τ) be an IVFST space and \tilde{x}_E be an IVFS-point with support x , e -lower value λ_e^- and e -upper value λ_e^+ . The IVFS set g_E is called interval-valued fuzzy soft neighbourhood (IVFSN) of IVFS-point \tilde{x}_E if there exists the IVFS-open set f_E in X such that $\tilde{x}_E \in f_E \tilde{\prec} g_E$. So the IVFS-open set f_E is an IVFSN of the IVFS-point \tilde{x}_E if $\forall e \in E, x \in X$ such that $\lambda_e^- < f_e^-(x)$ and $\lambda_e^+ < f_e^+(x)$.

Definition 3.5. Let (X, E, τ) be an IVFST space and \tilde{x}_E be an IVFS-point with support x , e -lower value λ_e^- and e -upper value λ_e^+ and \tilde{x}_E^* be an IVFS-point with support x^* , e -lower value ε_e^- and e -upper value ε_e^+ . \tilde{x}_E^* is called to compatible with λ_e^-, λ_e^+ , if \tilde{x}_E^* provides that $0 \leq \varepsilon_e^- \leq \lambda_e^-$ and $0 \leq \varepsilon_e^+ \leq \lambda_e^+$ for each $e \in E$.

Proposition 3.2. 1. If f_E is an IVFSN of the IVFS-point \tilde{x}_E and $f_E \tilde{\leq} h_E$, then h_E is also an IVFSN of \tilde{x}_E .

2. If f_E and g_E are two IVFSN of the IVFS-point \tilde{x}_E , then $f_E \tilde{\wedge} g_E$ is also IVFSN of \tilde{x}_E .

3. If f_E is an IVFSN of the IVFS-point \tilde{x}_E^* with support x^* , e -lower value $\lambda_e^- - \varepsilon_e^-$ and e -upper value $\lambda_e^+ - \varepsilon_e^+$, for all ε_e^- compatible with λ_e^- and ε_e^+ compatible with λ_e^+ . Then f_E is an IVFSN of the IVFS-point \tilde{x}_E .

4. If f_E is an IVFSN of the IVFS-point \tilde{x}_{1E} and g_E is an IVFSN of the IVFS-point \tilde{x}_{2E} then $f_E \tilde{\wedge} g_E$ is also an IVFSN of \tilde{x}_{1E} and \tilde{x}_{2E} .
5. If f_E is an IVFSN of the IVFS-point \tilde{x}_E , then there exists IVFSN g_E of \tilde{x}_E such that $g_E \tilde{\leq} f_E$ and g_E is IVFSN of IVFS-point \tilde{y} with support y and e -lower value γ_e^- and e -upper value γ_e^+ , for all $\tilde{y}_E \tilde{\in} g_E$.

Proof. 1. Let f_E be an IVFSN of the IVFS-point \tilde{x} . Then there exists the IVFS-open set g_E in X such that $\tilde{x}_E \tilde{\in} g_E \tilde{\leq} f_E$. Since $f_E \tilde{\leq} h_E$, then $\tilde{x}_E \tilde{\in} g_E \tilde{\leq} f_E \tilde{\leq} h_E$, therefore h_E is an IVFSN of \tilde{x}_E .

2. Let f_E and g_E are two IVFSN of the IVFS-point \tilde{x}_E . Then there exists two IVFS-open sets h_E , k_E in X such that $\tilde{x}_E \tilde{\in} h_E \tilde{\leq} f_E$ and $\tilde{x}_E \tilde{\in} k_E \tilde{\leq} g_E$, so $\tilde{x}_E \tilde{\in} h_E \tilde{\wedge} k_E \tilde{\leq} f_E \tilde{\wedge} g_E$. Since $h_E \tilde{\wedge} k_E$ is IVFS-open set, then $g_E \tilde{\wedge} f_E$ is an IVFSN of \tilde{x}_E .
3. Let f_E be an IVFSN of the IVFS-point \tilde{x}_E^* with support x^* and e -lower value $\lambda_e^- - \varepsilon_e^-$ and e -upper value $\lambda_e^+ - \varepsilon_e^+$, for all ε_e^- compatible with λ_e^- and ε_e^+ compatible with λ_e^+ . Then, there exists IVFS-open set $g_E^{x^*}$ such that $\tilde{x}_E^* \tilde{\in} g_E^{x^*} \tilde{\leq} f_E$. Let $g_E = \tilde{\vee}_{x^*} g_E^{x^*}$, then g_E is IVFS-open in X and $g_E \tilde{\leq} f_E$. By the Theorem 3.2 and since for all $e \in E$, then $\tilde{\vee} \tilde{x}_E^* = \tilde{x}_E \tilde{\leq} \tilde{\vee}_{x^*} g_E^{x^*} = g_E \tilde{\leq} f_E$. Hence, $\tilde{x}_E \tilde{\in} g_E \tilde{\leq} f_E$, i.e f_E is IVFSN of \tilde{x}_E .
4. Let f_E be an IVFSN of the IVFS-point \tilde{x}_{1E} with support x_1 and e -lower value λ_{1e}^- and e -upper value λ_{1e}^+ and g_E be an IVFSN of the IVFS-point \tilde{x}_{2E} with support x_2 and e -lower value λ_{2e}^- and e -upper value λ_{2e}^+ . Then there exists IVFS-open sets h_{1E} , h_{2E} such that $\tilde{x}_{1E} \tilde{\in} h_{1E} \tilde{\leq} f_E$ and $\tilde{x}_{2E} \tilde{\in} h_{2E} \tilde{\leq} f_E$, respectively, Since $\tilde{x}_{1E} \tilde{\in} h_{1E}$, then $\lambda_{1e}^- \leq h_{1e}^-(x)$, $\lambda_{1e}^+ \leq h_{1e}^+(x)$ for each $e \in E$ and $x \in X$, Since $\tilde{x}_{2E} \tilde{\in} h_{2E}$, then $\lambda_{2e}^- \leq h_{2e}^-(x)$, $\lambda_{2e}^+ \leq h_{2e}^+(x)$ for each $e \in E$ and $x \in X$. Then, we have

$\max\{[\lambda_{1e}^-, \lambda_{1e}^+], [\lambda_{2e}^-, \lambda_{2e}^+]\} \leq \max\{[h_{1e}^-(x), h_{1e}^+(x)], [h_{2e}^-(x), h_{2e}^+(x)]\}$ for each $e \in E$, $x \in X$. So $\tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E} \tilde{\in} h_{1E} \tilde{\vee} h_{2E}$ and $h_{1E} \tilde{\vee} h_{2E} \in \tau$ and $h_{1E} \tilde{\vee} h_{2E} \tilde{\leq} f_E \tilde{\vee} g_E$. Consequently, $f_E \tilde{\vee} g_E$ is IVFSN of $x_{1E} \tilde{\vee} x_{2E}$.

5. Let f_E be an IVFSN of the IVFS-point \tilde{x}_E , with support x and e -lower value λ_e^- and e -upper value λ_e^+ . Then there exists IVFS-open set g_E such that $\tilde{x}_E \tilde{\in} g_E \tilde{\leq} f_E$. Since g_E IVFS-open set, g_E is a neighborhood of its points, i.e g_E is IVFSN of IVFS-point \tilde{y}_E with support y and e -lower value γ_e^- and e -upper value γ_e^+ , for all $e \in E$. Also, g_E is IVFSN of IVFS-point \tilde{x}_E since $\tilde{x}_E \tilde{\in} g_E$. Therefore, there exists g_E is IVFSN of \tilde{x}_E such that $g_E \tilde{\leq} f_E$ and g_E is IVFSN of \tilde{y}_E , Since f_E is IVFSN of \tilde{x}_E .

□

Definition 3.6. Let (X, E, τ) be an IVFST space and f_E be an IVFS set. The IVFS-closure of f_E denoted by $Cl f_E$ is intersection of all IVFS-closed super sets of f_E . Clearly, $Cl f_E$ is the smallest IVFS-closed set over X which contains f_E .

Example 3.5. [24] Consider IVFST τ_u^{IVFS} over \mathbb{R} as introduced in Example 3.2 if \tilde{H}_E is an IVFS over \mathbb{R} related of the open interval $H = (a, b) \subset \mathbb{R}$ by mapping

$$\tilde{H} : E \rightarrow (\text{Int}[0, 1])^{\mathbb{R}}$$

$$\tilde{H}_e(x) = \begin{cases} 1 & x \in (a, b) \\ 0 & x \notin (a, b), \end{cases}$$

where $e \in E$ and $x \in \mathbb{R}$. Then closure of \tilde{H}_E defined as

$$Cl\tilde{H} : E \rightarrow (\text{Int}[0, 1])^{\mathbb{R}}$$

$$\tilde{H}_e(x) = \begin{cases} 1 & x \in [a, b] \\ 0 & x \notin [a, b]. \end{cases}$$

Remark 3.3. By replacing \tilde{x}_E for f_E . The IVFS-closure of \tilde{x}_E denoted by $Cl\tilde{x}_E$ is intersection of all IVFS-closed super sets of \tilde{x}_E .

Proposition 3.3. Let (X, E, τ) be an IVFST space and f_E and g_E be two IVFSS over X . Then

1. $Cl\emptyset_E = \emptyset_E$ and $Cl\tilde{X}_E = \tilde{X}_E$.
2. $f_E \tilde{\leq} Clf_E$, and Clf_E is the smallest IVFS-closed set containing the IVFS f_E .
3. $Cl(Cl f_E) = Cl f_E$.
4. if $f_E \tilde{\leq} g_E$, then $(Cl f_E) \tilde{\leq} Cl g_E$.
5. f_E is an IVFS-closed set if and only if $f_E = Cl f_E$.
6. $Cl(f_E \tilde{\vee} g_E) = Cl f_E \tilde{\vee} Cl g_E$.
7. $Cl(f_E \tilde{\wedge} g_E) \tilde{\leq} Cl f_E \tilde{\wedge} Cl g_E$.

Proof. We only prove part(6). The similar technique is used to show the other parts.

Since $f_E \tilde{\leq} f_E \tilde{\vee} g_E$ and $g_E \tilde{\leq} f_E \tilde{\vee} g_E$, by part(4) we have $Cl f_E \tilde{\leq} Cl(f_E \tilde{\vee} g_E)$ and $Cl g_E \tilde{\leq} Cl(f_E \tilde{\vee} g_E)$. Thus $Cl f_E \tilde{\vee} Cl g_E \tilde{\leq} Cl(f_E \tilde{\vee} g_E)$.

Conversely, we have $f_E \tilde{\leq} Cl f_E$ and $g_E \tilde{\leq} Cl g_E$, by part(2). Hence, $f_E \tilde{\vee} g_E \tilde{\leq} Cl f_E \tilde{\vee} Cl g_E$ where $Cl f_E \tilde{\vee} Cl g_E$ is an IVFS-closed set. Thus, $Cl(f_E \tilde{\vee} g_E) \tilde{\leq} Cl f_E \tilde{\vee} Cl g_E$.

So $Cl(f_E \tilde{\vee} g_E) = Cl f_E \tilde{\vee} Cl g_E$. \square

Definition 3.7. Let (X_1, E_1, τ_1) and (X_2, E_2, τ_2) be two IVFSTS and

$$\Phi : (X_1, E_1, \tau_1) \rightarrow (X_2, E_2, \tau_2)$$

be an IVFS map. Ten Φ is called an

1. interval-valued fuzzy soft continuous (IVFSC) map if and only if for each $g_{E_2} \in \tau_2$, we have $\Phi^{-1}(g_{E_2}) \in \tau_1$.

2. interval-valued fuzzy soft open (IVFSO) map if and only if for each $f_E \in \tau_1$, we have $\Phi(f_{E_1}) \in \tau_2$.

Theorem 3.3. Let (X_1, E_1, τ_1) and (X_2, E_2, τ_2) be two IVFST and Φ be an IVFS-mapping from X_1 to X_2 , then the following statements are equivalent:

1. Φ is IVFC.
2. for each IVFS-point \tilde{x}_E on X_1 the inverse of every neighbourhood of $\Phi(\tilde{x}_E)$ under Φ is neighbourhood of \tilde{x}_E .
3. for each IVFS-point \tilde{x}_E on X_1 and each neighbourhood g_E of $\Phi(\tilde{x}_E)$, there exists a neighbourhood f_E of \tilde{x}_E such that $\Phi(f_E) \tilde{\leq} g_E$.

Proof.

(1) \Rightarrow (2) Let g_E be an IVFSN of $\Phi(\tilde{x}_E)$ in τ_2 . Then there exists IVFS-open set f_E in τ_2 such that $\Phi(\tilde{x}_E) \tilde{\in} f_E \tilde{\leq} g_E$, since Φ is IVFSC, $\Phi^{-1}(f_E)$ is an IVFS-open in τ_1 and we have $\tilde{x}_E \tilde{\in} \Phi^{-1}(f_E) \tilde{\leq} \Phi^{-1}(g_E)$.

(2) \Rightarrow (3) Let g_E be an IVFSN of $\Phi(\tilde{x}_E)$. By hypothesis $\Phi^{-1}(g_E)$ is an IVFSN of \tilde{x}_E . Consider the $f_E = \Phi^{-1}(g_E)$ is an IVFSN of \tilde{x}_E . Therefore, we have $\Phi(f_E) = \Phi(\Phi^{-1}(g_E)) \tilde{\leq} g_E$.

(3) \Rightarrow (1) Let g_E be an IVFS-open set in τ_2 . We must show that $\Phi^{-1}(g_E)$ is an IVFS-open set in τ_1 . Now let $\tilde{x}_E \tilde{\in} \Phi^{-1}(g_E)$. Then $\Phi(\tilde{x}_E) \tilde{\in} g_E$ and since g_E is IVFS-open set in τ_2 , we get g_E is an IVFSN $\Phi(\tilde{x}_E)$ in τ_2 . By hypothesis there exists IVFS-open set f_E is IVFSN of \tilde{x}_E such that $\Phi(f_E) \tilde{\leq} g_E$, then $f_E \tilde{\leq} \Phi^{-1}[\Phi(f_E)] \tilde{\leq} \Phi^{-1}(g_E)$ for f_E is an IVFSN of \tilde{x}_E . Form here, $f_E \tilde{\leq} \Phi^{-1}(g_E)$, for f_E is an IVFSN of \tilde{x}_E . Hence, $\Phi^{-1}(g_E) \tilde{\in} \tau_1$.

□

4 Quasi coincident neighbourhood structure of interval-valued fuzzy soft topological spaces

In this section, we present quasi coincident neighborhood structure in the interval-valued fuzzy soft topology (IVFST) and its properties.

Definition 4.1. The IVFS-point \tilde{x}_E is called a soft quasi-coincident whit IVFS f_E , denoting by $\tilde{x}_E \tilde{q} f_E$, if and only if there exists $e \in E$ such that $\lambda_e^- + f_e^-(x) > 1$ and $\lambda_e^+ + f_e^+(x) > 1$. If f_E is not soft quasi-coincident whit f_E , we write $f_E \tilde{\neg} q g_E$.

Definition 4.2. The IVFS-set f_E is called a soft quasi-coincident whit IVFS g_E , denoting by $f_E \tilde{q} g_E$, if and only if there exists $e \in E$ such that $f_e^-(x) + g_e^-(x) > 1$ and $f_e^+(x) + g_e^+(x) > 1$.

Proposition 4.1. \tilde{x}_E be an IVFS-point with support x and e-lower value λ_e^- and e-upper value λ_e^+ and f_E, g_E two IVFS sets :

$$(i) f_E \tilde{\leq} g_E \Leftrightarrow f_E \neg \tilde{q} g_E^c.$$

$$(ii) \tilde{x}_E \tilde{\in} f_E \Leftrightarrow \tilde{x}_E \neg \tilde{q} f_E^c.$$

Proof. We just prove part(1). The similar technique is used to show the part (2). For two IVFS sets f_E, g_E we have:

$$\begin{aligned} f_E \tilde{\leq} g_E &\Leftrightarrow \forall e \in E : [f_e^-(x), f_e^+(x)] \leq [g_e^-(x), g_e^+(x)], \forall x \in X \\ &\Leftrightarrow \forall e \in E : f_e^-(x) \leq g_e^-(x) \text{ and } f_e^+(x) \leq g_e^+(x), \forall x \in X \\ &\Leftrightarrow \forall e \in E : f_e^-(x) + 1 - g_e^-(x) \leq 1 \text{ and } f_e^+(x) + 1 - g_e^+(x) \leq 1, \forall x \in X \\ &\Leftrightarrow \forall e \in E : f_e^-(x) + g_e^{-c}(x) \leq 1 \text{ and } f_e^+(x) + g_e^{+c}(x) \leq 1, \forall x \in X \\ &\Leftrightarrow f_E \neg \tilde{q} g_E^c. \end{aligned}$$

□

Proposition 4.2. Let $\{f_{jE} : j \in J\}$ is a family of IVFS sets over X and \tilde{x}_E , be an IVFS-point with support x and e-lower value λ_e^- and e-upper value λ_e^+ . If $\tilde{x}_E \tilde{q}(\tilde{\wedge} f_{jE})$, then $\tilde{x}_E \tilde{q} f_{jE}$ for each $j \in J$.

Proof. Let $\tilde{x}_E \tilde{q}(\tilde{\wedge} f_{jE})$. Then $\lambda_e^- \tilde{q}(\tilde{\wedge}_j f_{je}^-)(x)$ and $\lambda_e^+ \tilde{q}(\tilde{\wedge}_j f_{je}^+)(x)$ for $e \in E$ and $x \in X$. This implies that $\lambda_e^- > 1 - \wedge_j(f_{je}^-)(x)$ and $\lambda_e^+ > 1 - \wedge_j(f_{je}^+)(x)$, $x \in X$. Since $\wedge_j f_{je}^-(x) \leq f_{je}^-(x)$ and $\wedge_j f_{je}^+(x) \leq f_{je}^+(x)$, then $\lambda_e^- > 1 - \wedge_j(f_{je}^-)(x) > 1 - f_{je}^-(x)$ for each $e \in E, x \in X$ and $\lambda_e^+ > 1 - \wedge_j(f_{je}^+)(x) > 1 - f_{je}^+(x)$ for each $e \in E, x \in X$. Hence $\lambda_e^- > 1 - f_{je}^-(x)$ and $\lambda_e^+ > 1 - f_{je}^+(x)$. So, $[\lambda_e^-, \lambda_e^+] > [1, 1] - [f_{je}^-(x), f_{je}^+(x)]$, implies that $\tilde{x}_E > 1 - f_{je}^-(x)$ and $\tilde{x}_E \tilde{q} f_{jE}$ for each $j \in J$. □

Remark 4.1. $\tilde{x}_E \tilde{q}(f_E \vee g_E)$ does not imply $\tilde{x}_E \tilde{q} f_E$ or $\tilde{x}_E \tilde{q} g_E$. This is shown in the following example.

Example 4.1. Let consider Example 3.5 in this example $\tilde{x}_E \tilde{q}(f_E \tilde{\vee} g_E)$ but $\tilde{x}_E \neg \tilde{q} f_E$ and $\tilde{x}_E \neg \tilde{q} g_E$.

Theorem 4.1. Let \tilde{x}_E be an IVFS-point \tilde{x}_E with support x and e-lower value λ_e^- and e-upper value λ_e^+ and f_E, g_E are IVFS-sets over X . If $\tilde{x}_E \tilde{q}(f_E \vee g_E)$, then there exists $\tilde{x}_{1E} \tilde{q} f_E$ and $\tilde{x}_{2E} \tilde{q} g_E$ such that $\tilde{x}_E = \tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E}$.

proof Analogously with Theorem 3.2.

Definition 4.3. Let (X, E, τ) be an IVFSTS and \tilde{x}_E be an IVFS-point with support x , e-lower values λ_e^- and e-upper values λ_e^+ . The IVFS set g_E is called a quasi soft neighbourhood (QIVFSN) of IVFS-point \tilde{x}_E if there exists the IVFS-open set f_E in X such that $\tilde{x}_E \tilde{q} f_E \tilde{\leq} g_E$. Thus the IVFS-open set f_E is a QIVFSN of the IVFS-point \tilde{x}_E if and only if $\exists e \in E, x \in X$ such that $\lambda_e^- + f_e^-(x) > 1$ and $\lambda_e^+ + f_e^+(x) > 1$.

Remark 4.2. A quasi-coincident soft neighbourhood of IVFS-point generally does not contain the point itself. It is shown by the following:

Example 4.2. Let $X = [0, 1]$ and E be any subset of X . Consider two IVFS sets f_E, g_E over X by the mapping $f : E \rightarrow \mathcal{IVF}([0, 1])$ and $f : E \rightarrow \mathcal{IVF}([0, 1])$ Such that for any $e \in E, x \in X$

$$\tilde{f}_e(x) = \begin{cases} [0.4, 0.5] & 0 \leq x \leq e \\ 0 & e < x \leq 1, \end{cases}$$

and

$$\tilde{g}_e(x) = \begin{cases} [0.6, 0.7] & 0 \leq x \leq e \\ 0 & e < x \leq 1, \end{cases}$$

and \tilde{x}_E be any IVFS-point defined by

$$\tilde{x}_e(c) = \begin{cases} [0.4, 0.5] & c = x \\ 0 & c \neq x. \end{cases}$$

Let $\tau = \{\emptyset_E, X_E, f_E, g_E\}$. Then clearly τ an IVFST over X . Since $f_E \tilde{\leq} g_E$ and $\tilde{x}_E \tilde{q} f_E$. Then g_E is QIVFSN of \tilde{x}_E . But $\tilde{x}_E \notin g_E$.

Proposition 4.3. (1) If $f_E \tilde{\leq} g_E$ and f_E is QINVSN of \tilde{x}_E , then g_E is also QINVSN of \tilde{x}_E .

(2) If f_E, g_E are QINVSN of \tilde{x}_E , then $f_E \tilde{\wedge} g_E$ is also QINVSN of \tilde{x}_E .

(3) If f_E is QINVSN of \tilde{x}_{1E} and g_E is QINVSN of \tilde{x}_{2E} , then $f_E \tilde{\vee} g_E$ is also QINVSN of $\tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E}$.

(4) If f_E is QINVSN of \tilde{x}_E . Then there exists g_E is QINVSN of \tilde{x}_E , such that $g_E \tilde{\leq} f_E$ and g_E is QINVSN of y_E , $\forall y_E \tilde{q} g_E$.

Proof. (1),(2) are straightforward.

(3) Let f_E is QINVSN of \tilde{x}_{1E} and g_E is QINVSN of \tilde{x}_{2E} , then there exists IVFS-open set h_{1E} in X such that $\tilde{x}_{1E} \tilde{q} h_{1E} \tilde{\leq} f_E$ and g_E is QINVSN of \tilde{x}_{2E} , then there exists IVFS-open set h_{2E} in X such that $\tilde{x}_{2E} \tilde{q} h_{2E} \tilde{\leq} g_E$. Since $\tilde{x}_{1E} \tilde{q} h_{1E}$, then for each $e \in E, x \in X$, $\lambda_{1e}^- + h_{1e}^- > 1$, $\lambda_{1e}^+ + h_{1e}^+ > 1$ and this implies that $\lambda_{1e}^- > 1 - h_{1e}^-$, $\lambda_{1e}^+ > 1 - h_{1e}^+$ for each $e \in E$ and since $\tilde{x}_{2E} \tilde{q} h_{2E}$, then for each $e \in E, x \in X$, $\lambda_{2e}^- + h_{2e}^- > 1$, $\lambda_{2e}^+ + h_{2e}^+ > 1$ and this implies that $\lambda_{2e}^- > 1 - h_{2e}^-$, $\lambda_{2e}^+ > 1 - h_{2e}^+$ for each $e \in E, x \in X$. From here, $\max(\lambda_{1e}^-, \lambda_{2e}^-) > \max(1 - h_{1e}^-(x), 1 - h_{2e}^-(x))$, $\max(\lambda_{1e}^+, \lambda_{2e}^+) > \max(1 - h_{1e}^+(x), 1 - h_{2e}^+(x))$. Hence, $\tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E} \tilde{q} (h_{1E} \tilde{\vee} h_{2E}) \tilde{\leq} f_E \tilde{\vee} g_E$. Consequently, $f_E \tilde{\vee} g_E$ is QINVSN of $\tilde{x}_{1E} \tilde{\vee} \tilde{x}_{2E}$.

(4) Let f_E is QINVSN of \tilde{x}_E , then there exists g_E is QINVSN of \tilde{x}_E such that $\tilde{x}_E \tilde{q} g_E \tilde{\leq} f_E$. Consider the $g_E = h_E$. Indeed, since $\tilde{x}_E \tilde{q} h_E$ and h_E is IVFS-open set, then h_E is QINVSN of \tilde{x}_E , we obtain h_E is QINVSN of y_E .

□

Theorem 4.2. *In the IVFST(X, E, τ), the IVFS-point \tilde{x}_E belongs to Clf_E if and only if each QIVFS of \tilde{x}_E is soft quasi-coincident with f_E .*

Proof. Let IVFS-point \tilde{x}_E with support x , e-lower value λ_e^- and e-upper value λ_e^+ belongs to Clf_E , i.e., $\tilde{x}_E \in Clf_E$. For any IVFS-closed g_E which containing f_E , $\tilde{x}_E \in g_E$ which implies that $\lambda_e^- \leq g_e^-(x)$ and $\lambda_e^+ \leq g_e^+(x)$, for all $x \in X, e \in E$. Consider h_E be an QIVFN of the IVFS-point \tilde{x}_E and $h_E \sim \tilde{q}f_E$. Then for any $e \in E$ and $x \in X$, $h_e^-(x) + f_e^-(x) \leq 1$, $h_e^+(x) + f_e^+(x) \leq 1$ and so $f_E \leq h_E^c$. Since h_E is QIVFSN of the IVFS-point \tilde{x}_E , by \tilde{x}_E dose not belong to h_E^c . Therefore, we have that \tilde{x}_E dose not belong to Clf_E . This is a contradiction.

Conversely, let any QIVFSN of the IVFS-point \tilde{x}_E be soft quasi-coincident with f_E . Consider \tilde{x}_E dose not belong to Clf_E , i.e., $\tilde{x}_E \notin Clf_E$. Then there exists an IVFS-closed set g_E which is containing f_E such that \tilde{x}_E dose not belong to g_E . we have $\tilde{x}_E \sim g_E^c$. Then g_E^c is an QIVFSN of the IVFS-point \tilde{x}_E and $f_E \sim \tilde{q}g_E^c$. This is a contradiction with the hypothesis. □

5 IVFS quasi-separation axioms

In this section we develop the separation axioms to *IVFST*, so-called *IVFSQ*-separation axioms(*IVFSq-T_i* axioms) for $i = 0, 1, 2, 3, 4$ and consider some properties of them.

Definition 5.1. *Let (X, E, τ) be an IVFST space. Let \tilde{x}_E and \tilde{y}_E are IVFS-points over X where*

$$\begin{aligned}\tilde{x}(e)(z) &= \begin{cases} [\lambda_e^-, \lambda_e^+] & z = x \\ 0 & \text{otherwise} \end{cases} \\ \tilde{y}(e)(z) &= \begin{cases} [\gamma_e^-, \gamma_e^+] & z = y \\ 0 & \text{otherwise.} \end{cases}\end{aligned}$$

\tilde{x}_E and \tilde{y}_E are said distinct if and only if $\tilde{x}_E \sim \tilde{y}_E = \emptyset_E$, which meaning $x \neq y$.

Definition 5.2. *Let (X, E, τ) be an IVFST space. The IVFS-point \tilde{x}_E is called a crisp IVFS-point $x_E^{[1,1]}$ if $\lambda_e^- = \lambda_e^+ = 1$ for all $e \in E$.*

Definition 5.3. *Let (X, E, τ) be an IVFST space and \tilde{x}_E and \tilde{y}_E be two IVFS-points. If there exists IVFS open sets f_E and g_E such that:*

(a.) when \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, λ_e^+ and γ_e^-, γ_e^+ , respectively, and f_E is IVFSN of the IVFS-point \tilde{x}_E and $\tilde{y}_E \sim \tilde{q}f_E$ or g_E is IVFSN of the IVFS-point \tilde{y}_E and $\tilde{x}_E \sim \tilde{q}g_E$.

(b.) when \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-value $\lambda_e^- < \gamma_e^-$ and e-value $\lambda_e^+ < \gamma_e^+$ and f_E is a QIVFSN of the IVFS-point \tilde{y}_E such that $\tilde{x}_E \neg \tilde{q}f_E$.

Then (X, E, τ) be interval-valued fuzzy soft quasi- T_0 space (IVFSq- T_0 space).

Example 5.1. Consider IVFS set defined in Example 3.1. and \tilde{x}_E, \tilde{y}_E be any two distinct IVFS-point in X defined by

$$\tilde{x}(e)(z) = \begin{cases} 1 & z = x \\ 0 & z \neq x. \end{cases}$$

and

$$\tilde{y}(e)(z) = \begin{cases} 0 & \text{if } z = y \\ 1 & \text{if } z \neq y \end{cases}$$

f_E is IVFSN of \tilde{x}_E and $\tilde{y}_E \neg \tilde{q}f_E$. Thus X is IVFSq- T_0 space.

Theorem 5.1. (X, E, τ) is an IVFSq- T_0 space if and only if for every two IVFS-points \tilde{x}_E, \tilde{y}_E and $\tilde{x}_E \notin Cl\tilde{y}_E$ or $\tilde{y}_E \notin Cl\tilde{x}_E$.

Proof. Let (X, E, τ) is an IVFSq- T_0 space and \tilde{x}_E and \tilde{y}_E be two IVFS-points in X . First consider that \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, a crisp IVFS-point $\tilde{x}_E^{[1,1]}$ has an IVFSN f_E such that $\tilde{y}_E \neg \tilde{q}f_E$ or a crisp IVFS-point $\tilde{y}_E^{[1,1]}$ has an IVFSN g_E such that $\tilde{x}_E \neg \tilde{q}f_E$. Consider the crisp IVFS-point $\tilde{x}_E^{[1,1]}$ has an IVFSN f_E such that $\tilde{y}_E \neg \tilde{q}f_E$. Moreover, f_E is an QINFSN of \tilde{x}_E and $\tilde{y}_E \neg \tilde{q}f_E$. Hence $\tilde{x}_E \notin Cl\tilde{y}_E$. Next we consider the case \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-lower value $\lambda_e^- < \gamma_e^-$ and e-upper value $\lambda_e^+ < \gamma_e^+$, then \tilde{y}_E has a QIVFSN which is not quasi-coincident with \tilde{x}_E and so by Theorem 4.1 $\tilde{x}_E \notin Cl\tilde{y}_E$.

Conversely, let \tilde{x}_E and \tilde{y}_E be two IVFS-points in X . Consider the without loss of generality, that $\tilde{x}_E \notin Cl\tilde{y}_E$. First consider that \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, since $\tilde{x}_E \notin Cl\tilde{y}_E$ for any $e \in E$, $f_e^-(y) = f_e^+(y) = 0$ and $f_e^-(x) = f_e^+(x) = 1$. Then $Cl(\tilde{y}_E)^c$ is an IVFSN of \tilde{x}_E such that $Cl(\tilde{y}_E)^c \neg \tilde{q}\tilde{y}_E$. Next, let when \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and we must have e-lower value $\lambda_e^- > \gamma_e^-$ and e-upper value $\lambda_e^+ > \gamma_e^+$ and then \tilde{x}_E has QIVFSN which is not quasi-coincident with \tilde{y}_E . \square

Definition 5.4. Let (X, E, τ) be an IVFST and \tilde{x}_E and \tilde{y}_E be two IVFS-points, if there exists IVFS open sets f_E and g_E such that:

(a.) when \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively and f_E is IVFSN of the IVFS-point \tilde{x}_E and $\tilde{y}_E \neg \tilde{q}f_E$ and g_E is IVFSN of the IVFS-point \tilde{y}_E and $\tilde{x}_E \neg \tilde{q}g_E$.

(b.) when \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-value $\lambda_e^- < \gamma_e^-$ and e-value $\lambda_e^+ < \gamma_e^+$ and f_E is a QIVFSN of the IVFS-point \tilde{y}_E such that $\tilde{x}_E \neg \tilde{q}f_E$.

Then (X, E, τ) be interval-valued fuzzy soft quasi- T_1 space (IVFSq- T_1 space).

Theorem 5.2. (X, E, τ) is an IVFSq- T_1 space if and only if for any IVFS-point \tilde{x}_E in X is an IVFS-closed set.

Proof. Suppose that for each IVFS-point \tilde{x}_E in X is an IVFS-closed set, i.e., $g_E = \tilde{x}_E^c$. Then g_E is an IVFS-open set. Let x_E and y_E two IVFS-point such that: First consider that \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, g_E is an IVFS-open set such that g_E is IVFSN of IVFS-point \tilde{y}_E and $\tilde{x}_E \neg \tilde{q}g_E$. Similarly, $f_E = \tilde{y}_E^c$ is IVFS-open set and f_E is IVFSN of the IVFS-point \tilde{x}_E and $\tilde{y}_E \neg \tilde{q}f_E$. Next, we consider the case \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-value $\lambda_e^- < \gamma_e^-$ and e-value $\lambda_e^+ < \gamma_e^+$, then \tilde{y}_E has a QIVFSN g_E which is not quasi-coincident with \tilde{x}_E . Thus X is an IVFSq- T_1 space.

Conversely, Let (X, E, τ) be an IVFSq- T_1 space. Suppose that any IVFS-point \tilde{x}_E is not IVFS-closed set in X , i.e., $f_E \neq \tilde{x}_E^c$. Then $\tilde{f}_E \neq Cl\tilde{f}_E$ and there exists $\tilde{y}_E \in Cl\tilde{f}_E$ such that $\tilde{x}_E \neq \tilde{y}_E$. First consider that \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, suppose that e-lower value $\lambda_e^- \leq 0.5$ and e-upper value $\lambda_e^+ \leq 0.5$. Since $\tilde{y}_E \in Clf_E$, by Theorem 4.1 for any f_E is QIVFSN of \tilde{y}_E and $\tilde{x}_E \neg \tilde{q}f_E$. Then there exists IVFS-open set h_E such that $\tilde{y}_E \tilde{q}h_E \leq \tilde{f}_E$. Hence $h_E^-(y) + \gamma_e^- > 1$. Next, let \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-value $\lambda_e^- < \gamma_e^-$ and e-value $\lambda_e^+ < \gamma_e^+$, since $y_E \in Clx_E$, by Theorem 4.1 for each f_E is QIVFSN of IVFS-point \tilde{y}_E , $\tilde{x}_E \neg \tilde{q}f_E$. This is contradiction. \square

Definition 5.5. Let (X, E, τ) be an IVFST and \tilde{x}_E and \tilde{y}_E be two IVFS-points, if there exists IVFS open sets f_E and g_E such that:

(a.) when \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, f_E is IVFSN of the IVFS-point \tilde{x}_E , g_E is IVFSN of the IVFS-point \tilde{y}_E , such that $f_E \neg \tilde{q}g_E$.

(b.) when \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$ and e-value $\lambda_e^- < \gamma_e^-$ and e-value $\lambda_e^+ < \gamma_e^+$, f_E is a IVFSN of the IVFS-point \tilde{x}_E , g_E is a QIVFSN of the IVFS-point \tilde{y}_E .

Then (X, E, τ) be interval-valued fuzzy soft quasi- T_2 space (IVFS q- T_2 space).

Example 5.2. Suppose that $X = [0, 1]$ and E be any proper ($E \subset X$) Consider IVFS sets f_E and g_E over X defined as below: $f : E \rightarrow \mathcal{IVF}([0, 1])$ and $g : E \rightarrow$

$\mathcal{IVF}([0, 1])$, such that for any $e \in E, x \in X$

$$f(e)(x) = \begin{cases} 1 & 0 \leq x \leq e \\ 0 & e < x \leq 1, \end{cases}$$

and

$$g(e)(x) = \begin{cases} 0 & 0 \leq x \leq e \\ 1 & e \leq x \leq 1. \end{cases}$$

Let $\tau = \{\emptyset_E, X_E, f_E, g_E\}$. Then clearly τ is an IVFST over X . Therefore for any two absolute distinct IVFS-points \tilde{x}_E, \tilde{y}_E in X defined by

$$\tilde{x}(e)(z) = \begin{cases} 1 & z = x \\ 0 & z \neq x \end{cases}$$

and

$$\tilde{y}(e)(z) = \begin{cases} 0 & \text{if } z = y \\ 1 & \text{if } z \neq y \end{cases}$$

f_E is IVFSN of the \tilde{x}_E and g_E is IVFSN of \tilde{y}_E , such that $f_E \neg \tilde{q} g_E$. Then X is IVFS q - T_2 space

Theorem 5.3. *The IVFST(X, E, τ) is an IVFSq- T_2 space if and only if for any $x \in X$, we have*

$$\tilde{x}_E = \tilde{\bigwedge} \{Clf_E : f_E \in \text{IVFSN of } \tilde{x}_E\}.$$

Proof. Let (X, E, τ) be a crisp IVFSq- T_2 space and \tilde{x}_E be IVFS-point with support x , e-lower value λ_e^- and e-upper value γ_e^+ . For any y_E be a crisp IVFS-point with support y , e-lower value γ_e^- and e-upper value λ_e^+ . If \tilde{x}_E and \tilde{y}_E be two IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, γ_e^- and λ_e^+, γ_e^+ , respectively, then there exist two IVFS-open sets f_E and g_E containing IVFS-points \tilde{y}_E and \tilde{x}_E respectively, such that $f_E \neg \tilde{q} g_E$. Then g_E is IVFSN of IVFS-point \tilde{x}_E and f_E is QIVFSN of \tilde{y}_E such that $f_E \neg \tilde{q} g_E$. Hence $\tilde{y}_E \notin Clg_E$. If \tilde{x}_E and \tilde{y}_E be two IVFS-points with the same supports $x = y$, then $\gamma_e^- > \lambda_e^-$ and $\gamma_e^- > \lambda_e^+$ and hence there are QIVFSN f_E of IVFS-point \tilde{y}_E and IVFSN g_E such that $f_E \neg \tilde{q} g_E$. Then $\tilde{y}_E \notin Clg_E$.

Conversely, let \tilde{x}_E and \tilde{y}_E be two distinct IVFS-points with different supports x and y and e-lower values and e-upper values λ_e^-, λ_e^+ and γ_e^-, γ_e^+ , respectively. Since $\tilde{x}_E = \tilde{\bigwedge} \{Clf_E : f_E \in \text{IVFSN of } \tilde{x}_E\}$, then $\bigwedge \{Cl([f_e^-, f_e^+])(y) : f_E \in \text{IVFSN of } \tilde{x}_E\} = 0$ then, $\tilde{y}_E \neg \tilde{q} \tilde{\bigwedge} \{Clf_E : f_E \in \text{IVFSN mbox of } \tilde{x}_E\}$. Therefore, there exists f_E is IVFSN of \tilde{x} and $\tilde{y}_E \neg \tilde{q} Clf_E$. Take two τ -IVFS-open sets f_E and $(Clf_E)^c$. So f_E is IVFSN of IVFS-point \tilde{x}_E and $(Clf_E)^c$ is IVFSN of IVFS-point \tilde{y}_E , and $f_E \neg \tilde{q} (Clf_E)^c$.

□

Definition 5.6. Let (X, E, τ) be an IVFST. If for any IVFS-point \tilde{x}_E with support x , e-lower values λ_e^- and e-upper values λ_e^+ and any IVFS-closed set f_E in X such that $\tilde{x}_E \neg \tilde{q} f_E$, there exists two IVFS-open sets h_E and k_E such that $\tilde{x}_E \in h_E$ and $f_E \tilde{\leq} k_E$, $h_E \neg \tilde{q} k_E$. Then (X, E, τ) is called interval-valued fuzzy soft quasi regular space (IVFS q-regular space).

(X, E, τ) is called an interval-valued fuzzy soft quasi T_3 space, if it is IVFS q-regular space and IVFS q- T_1 space.

Theorem 5.4. The IVFST (X, E, τ) is an IVFS q- T_3 space if and only if for any IVFSN g_E of IVFS-point \tilde{x}_E there exists an IVFS-open set f_E in X such that $\tilde{x}_E \in f_E \tilde{\leq} \text{cl } f_E \tilde{\leq} g_E$.

Proof. Let g_E be an IVFS set in X and \tilde{x}_E be an IVFS-point with support x , e-lower value λ_e^- and e-upper value λ_e^+ such that $\tilde{x}_E \in g_E$, then clearly, g_E^c is IVFS-closed set. Since X is an IVFS q- T_3 space, there exists two IVFS-open sets f_E, h_E such that $\tilde{x}_E \in f_E, g_E^c \tilde{\leq} h_E, h_E$ and $f_E \neg \tilde{q} h_E$. So, $f_E^c \tilde{\leq} h_E^c$. Then $\text{Cl } f_E \tilde{\leq} h_E^c$ implies $\text{Cl } f_E \tilde{\leq} g_E$. Hence $\tilde{x}_E \in f_E \tilde{\leq} \text{Cl } f_E \tilde{\leq} g_E$.

Conversely, let \tilde{x}_E be an IVFS-point with different support x and e-lower value λ_e^- and e-upper value λ_e^+ and let g_E be an IVFS-closed set such that $\tilde{x}_E \neg \tilde{q} g_E$. Then g_E^c is an IVFS-open set containing the IVFS-point \tilde{x}_E , i.e., $\tilde{x}_E \in g_E^c$. Therefore, there exists an IVFS-open set f_E containing \tilde{x}_E such that $\tilde{x}_E \in f_E \tilde{\leq} \text{Cl } f_E \tilde{\leq} g_E$ $g_E \tilde{\leq} (\text{Cl } f_E)^c$. Then clearly, $(\text{Cl } f_E)^c$ is an IVFS-open set containing g_E and $f_E \neg \tilde{q} (\text{Cl } f_E)^c$. Hence X is IVFS q- T_3 space. \square

Definition 5.7. Let (X, E, τ) be an IVFST. If for any two IVFS-closed sets f_E and g_E such that $f_E \neg \tilde{q} g_E$, there exists two IVFS-open sets h_E and k_E such that $f_E \tilde{\leq} h_E$ and $g_E \tilde{\leq} k_E$. Then (X, E, τ) is called interval-valued fuzzy soft quasi normal space (IVFS q-normal space).

(X, E, τ) is called an interval-valued fuzzy soft quasi T_4 space, if it is IVFS q-normal space and IVFSq- T_1 space.

Theorem 5.5. The IVFST (X, E, τ) is an IVFS q- T_4 space if and only if for any IVFS-closed set f_E and of IVFS-open set containing f_E , there exists an IVFS-open set h_E in X such that $f_E \tilde{\leq} h_E \tilde{\leq} \text{cl } h_E \tilde{\leq} g_E$.

Proof. Let f_E be an IVFS-closed set in X and g_E be an IVFS-open set in X containing f_E , i.e., $f_E \tilde{\leq} g_E$. So, g_E^c is an IVFS-closed set such that $f_E \neg \tilde{q} g_E^c$. Since X is an IVFS q- T_4 space, there exists two IVFS-open sets h_E, k_E such that $f_E \tilde{\leq} h_E, g_E^c \tilde{\leq} k_E$, and $h_E \neg \tilde{q} k_E$. Thus, $h_E \tilde{\leq} k_E^c$, but $\text{Cl } h_E \tilde{\leq} \text{Cl } k_E^c = k_E$. Also $g_E^c \tilde{\leq} k_E$ implies $k_E^c \tilde{\leq} g_E$. IVFS-closed set over X . So $\text{Cl } h_E \tilde{\leq} k_E^c$. Hence we have $f_E \tilde{\leq} h_E \tilde{\leq} \text{Cl } h_E \tilde{\leq} g_E$.

Conversely, let f_E and g_E be any IVFS-closed sets such that $f_E \neg \tilde{q} g_E$. So $f_E \tilde{\leq} g_E^c$. There exists an IVFS-open set h_E such that $f_E \tilde{\leq} h_E \tilde{\leq} \text{Cl } h_E \tilde{\leq} g_E$. Thus there are two IVFS-open sets h_E and $(\text{Cl } h_E)^c$ such that $f_E \tilde{\leq} h_E$, $g_E \tilde{\leq} (\text{Cl } h_E)^c$. This shows that X is an IVFS q- T_4 space. \square

Theorem 5.6. If $\Phi : (X_1, E_1, \tau_1) \rightarrow (X_2, E_2, \tau_2)$ is a IVFSC and IVFSO map where $\Phi_u X_1 \rightarrow X_2$ and $\Phi_p E_1 \rightarrow E_2$ are two ordinary bijections, then X_1 is an IVFSq-T_i space if and only if X_2 is an IVFSq-T_i space for $i = 0, 1, 2, 3, 4$.

Proof. We just prove when $i = 2$. The other parts similarly.

Suppose that we have two IVFS-points \tilde{k}_{E_2} and \tilde{s}_{E_2} with different supports k and s and e -lower value and e -upper values λ_e^-, λ_e^+ and γ_e^-, γ_e^+ , respectively. for any $e \in E_2$. The inverse lower and upper image of IVFS-point \tilde{k}_{E_2} under the IVFSO map Φ is an IVFS-point in X_1 with different support $\Phi^{-1}(k)$ as below:

$$\Phi^{-1}(\tilde{k}^-)(e)(x) = \tilde{k}^-(\Phi_p(e))(\Phi_u(x)) \text{ and } \Phi^{-1}(\tilde{k}^+)(e)(x) = \tilde{k}^+(\Phi_p(e))(\Phi_u(x)).$$

And also the inverse lower and upper image of IVFS-point \tilde{s}_{E_2} under the IVFSO map Φ is an IVFS-point in X_1 with different support $\Phi^{-1}(s)$ as below:

$$\Phi^{-1}(\tilde{s}^-)(e)(x) = \tilde{s}^-(\Phi_p(e))(\Phi_u(x)) \text{ and } \Phi^{-1}(\tilde{s}^+)(e)(x) = \tilde{s}^+(\Phi_p(e))(\Phi_u(x)).$$

Since (X_1, E_1, τ_1) is an IVFSq-T₂ space, there exist two IVFS-open sets f_E and g_E in X_1 such that $\Phi^{-1}(\tilde{k}_{E_2}) \in f_E$, $\Phi^{-1}(\tilde{s}_{E_2}) \in g_E$, and $f_E \neg \tilde{q} g_E$. So $\tilde{k}_{E_2} \in f_E$ and $\tilde{s}_{E_2} \in g_E$, while $\Phi(f_E) \neg \tilde{q} \Phi(g_E)$. Then (X_2, E_2, τ_2) is an IVFSq-T₂ space.

Conversely, Suppose that we have two IVFS-points \tilde{x}_E and \tilde{y}_E with different supports $x, y \in X_1$ and e -lower value and e -upper value λ_e^-, λ_e^+ and γ_e^-, γ_e^+ , respectively. The lower and upper image of an IVFS-point \tilde{x}_E under the IVFSC map Φ is an IVFS-point in X_2 with different support $\Phi_u(x)$ as below:

$$\begin{aligned} \Phi(\tilde{x}^-)(\varepsilon)(k) &= \sup_{z \in \Phi^{-1}(k)} [\sup_{e \in \Phi_p^{-1}(\varepsilon)} (\tilde{x}^-)(e)](z) \\ &= \begin{cases} \lambda_e^- & \text{if } k = \Phi_u(x) \\ 0 & \text{otherwis,} \end{cases} \end{aligned}$$

$$\begin{aligned} \Phi(\tilde{x}^+)(\varepsilon)(k) &= \sup_{z \in \Phi^{-1}(k)} [\sup_{e \in \Phi_p^{-1}(\varepsilon)} (\tilde{x}^+)(e)](z) \\ &= \begin{cases} \lambda_e^+ & \text{if } k = \Phi_u(x) \\ 0 & \text{otherwis,} \end{cases} \end{aligned}$$

and The lower and upper image of an IVFS-point \tilde{y}_E under the IVFSC map Φ is an IVFS-point in X_2 with different support $\Phi_u(y)$ as below:

$$\begin{aligned} \Phi(\tilde{y}^-)(\varepsilon)(k) &= \sup_{z \in \Phi^{-1}(k)} [\sup_{e \in \Phi_p^{-1}(\varepsilon)} (\tilde{y}^-)(e)](z) \\ &= \begin{cases} \gamma_e^- & \text{if } k = \Phi_u(y) \\ 0 & \text{otherwis,} \end{cases} \end{aligned}$$

$$\begin{aligned} \Phi(\tilde{y}^+)(\varepsilon)(k) &= \sup_{z \in \Phi^{-1}(k)} [\sup_{e \in \Phi_p^{-1}(\varepsilon)} (\tilde{y}^+)(e)](z) \\ &= \begin{cases} \gamma_e^+ & \text{if } k = \Phi_u(y) \\ 0 & \text{otherwis.} \end{cases} \end{aligned}$$

Since (X_2, E_2, τ_2) is an IVFSq-T₂ space, there exist two IVFS-open sets f_{E_2} and g_{E_2} in X_2 such that $\Phi(\tilde{x}) \in f_{E_2}$, $\Phi(\tilde{y}) \in g_{E_2}$, and $f_{E_2} \neg \tilde{q} g_{E_2}$. Clearly, $\tilde{x}_E \in \Phi^{-1}(f_{E_2})$, $\tilde{y}_E \in \Phi^{-1}(g_{E_2})$ and $\Phi^{-1}(f_{E_2}) \neg \tilde{q} \Phi^{-1}(g_{E_2})$. Then (X_1, E_1, τ_1) is an IVFSq-T₂ space. \square

6 Conclusion

In this paper, we have introduced a new definition of interval-valued fuzzy soft point and then consider some properties of it, and different types of neighbourhoods of *IVFS*-point were studied in interval-valued fuzzy soft topological space. The separation axioms of interval-valued fuzzy soft topological is presented and of its basic properties are also studied.

Funding

This research partially supported by University Putra Malaysia giving the vot number 5540153.

Conflicts of interest

The authors declare they have no conflict of interest.

References

- [1] Molodtsov, D. (1999). Soft set theory first results. *Computers and Mathematics with Applications*, 37(4-5), 19–31
- [2] Kharal, A. (2010). Distance and similarity measures for soft sets. *New Mathematics and Natural Computation*, 6(03), 321–334.
- [3] Maji, P. K., Biswas, P., & Roy, A. R. (2001). A fuzzy soft sets, *Journal of Fuzzy Mathematics*, 9(3), 589–602.
- [4] Majumdar, P., & Samanta, S. K. (2010). Generalised fuzzy soft sets. *Computers & Mathematics with Applications*, 59(4), 1425–1432.
- [5] Maji, P. K., Biswas, R., & Roy, A. R. (2001). Intuitionistic fuzzy soft sets. *Journal of Fuzzy Mathematics*, 9(3), 677–692.
- [6] Maji, P. K., Roy, A. R., & Biswas, R. (2004). On intuitionistic fuzzy soft sets. *Journal of Fuzzy Mathematics*, 12(3), 669–684.
- [7] Xu, W., Ma, J., Wang, S., & Hao, G. (2010). Vague soft sets and their properties. *Computers & Mathematics with Applications*, 59(2), 787–794.
- [8] Yang, X., Lin, T. Y., Yang, J., Li, Y., & Yu, D. (2009). Combination of interval-valued fuzzy set and soft set. *Computers & Mathematics with Applications*, 58(3), 521–527.

- [9] Jiang, Y., Tang, Y., Chen, Q., Liu, H., & Tang, J. (2010). Interval-valued intuitionistic fuzzy soft sets and their properties. *Computers & Mathematics with Applications*, 60(3), 906–918.
- [10] Tanay, B., & Kandemir, M. B. (2011). Topological structure of fuzzy soft sets. *Computers & Mathematics with Applications*, 61(10), 2952–2957
- [11] Simsekler, T., & Yuksel, S. (2013). Fuzzy soft topological spaces. *Annals of Fuzzy Mathematics and Informatics*, 5(1), 87–96.
- [12] Roy, S., & Samanta, T. K. (2013). An introduction to open and closed sets on fuzzy soft topological spaces. *Annals of Fuzzy Mathematics and Informatics*, 6(2), 425–431.
- [13] Khameneh, A. Z., Kiliman, A., & Salleh, A. R. (2014). Fuzzy soft product topology. *Annals of Fuzzy Mathematics and Informatics*, 7(6), 935–947.
- [14] Khameneh, A. Z., Kilicman, A., & Salleh, A. R. (2014). Fuzzy soft boundary. *Annals of Fuzzy Mathematics and Informatics*, 8(5), 687–703.
- [15] Roy, S., & Samanta, T. K. (2012). A note on fuzzy soft topological spaces. *Annals of Fuzzy Mathematics and Informatics*, 3(2), 305–311.
- [16] Atmaca, Serkan, and Idris Zorlutuna (2013). "On fuzzy soft topological spaces." *Annals of Fuzzy Mathematics and Informatics* 5(2), 377–386.
- [17] Mondal, T. K., & Samanta, S. K. (1999). Topology of interval-valued fuzzy sets. *Indian Journal of Pure and Applied Mathematics*, 30, 23–29.
- [18] Wuyts, P., & Lowen, R. (1983). On separation axioms in fuzzy topological spaces, fuzzy neighborhood spaces, and fuzzy uniform spaces. *Journal of Mathematical Analysis and Applications*, 93(1), 27–41.
- [19] Sinha, S. P. (1992). Separation axioms in fuzzy topological spaces. *Fuzzy Sets and Systems*, 45(2), 261–270.
- [20] Gorzaczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy sets. *Fuzzy Sets and Systems*, 21(1), 1–17.
- [21] El-Latif, A. M. A. (2015). Characterizations of fuzzy soft pre separation axioms. *Journal of New Theory*, (7), 47–63.
- [22] El-Latif, A. A. (2015). Fuzzy soft separation axioms based on fuzzy -open soft sets. *Annals of Fuzzy Mathematics and Informatics*, 11(2), 223–239.
- [23] Ghanim, M. H., Kerre, E. E., & Mashhour, A. S. (1984). Separation axioms, subspaces and sums in fuzzy topology. *Journal of Mathematical Analysis and Applications*, 102(1), 189–202.

- [24] Zahedi Khameneh, A.(2017). Bitopological spaces associated with fuzzy soft topology and their applications in multi-attribute group decision-making problems.(Doctoral thesis). Universiti Putra Malaysia. Retrieved from <http://ethesis.upm.edu.my>, 23 Dec 2019
- [25] Zadeh, L. A. (1965). Fuzzy sets. *Information and Control*, 8(3), 338–353.
- [26] Pawlak, Z. (1982). Rough sets. *International Journal of Computer & Information Sciences*, 11(5), 341–356.
- [27] Majumdar, P., & Samanta, S. K. (2010). On soft mappings. *Computers & Mathematics with Applications*, 60(9), 2666–2672.