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Abstract

In this study, we present the concept of interval-valued fuzzy soft point and
then introduce the notions of neighborhood and quasi-neighbourhood of it in
interval-valued fuzzy soft topological spaces. Separation axioms in interval-
valued fuzzy soft topology, so-called ¢-T; for ¢ = 0,1, 2, 3,4, is introduced and
some of its basic properties are also studied.
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1 Introduction

In 1999, Molodtsov[l] proposed a new mathematical approach known as soft set
theory, for dealing with uncertainties and vagueness.Traditinal tools such as fuzzy
sets[25] and rough sets[26], cannot clearly defined objects. Where the soft set theory
is different from traditional tools for dealing with uncertainties. A soft set, defined
by a collection of approximate descriptions of an object based on parameters by a
given set-valued map. Maji et al.[3]initiated the research on both fuzzy sets and
soft sets hybrid structures called fuzzy soft sets and presented a concept was sub-
sequently discussed by many researchers. Different extensions of the classical fuzzy
soft sets were introduced, such as generalized fuzzy soft sets[4], intuitionist fuzzy
soft sets[5,6] , vague soft sets[7], interval-valued fuzzy soft sets[8] and interval val-
ued intuitive fuzzy soft sets[9]. In particular, to alleviate some disadvantages of
fuzzy soft sets, interval-valued fuzzy soft sets was introduced where no objective
procedure is available to select the crisp membership degree of elements in a fuzzy
soft sets. Tanya and Kandemir [10] started topological studies of fuzzy soft sets.
They used classical concept of topology to construct a topological space over a fuzzy
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soft set and named it fuzzy soft topology. They also studied some fundamental
topological properties for fuzzy soft topology, such as interior, closure, and base.
Later Simsekler and Yuksel[11] studied fuzzy soft topological space in the case of
Tanay and Kandemir[10]. But they established the concept of fuzzy soft topology
over a fuzzy soft set with a set of fixed parameters and considered some topologi-
cal concepts for fuzzy soft topological spaces such as base, subbase, neighbourhood,
and Q-neighbourhood. Roy and Samanta [15] noted a new concept of fuzzy soft
topology . They suggested the notion of fuzzy soft topology over an ordinary set
by adding fuzzy soft subsets of it where everywhere parameter set is supposed to
be fixed. Then in[12], they continued to study fuzzy soft topology and established
a fuzzy soft point definition and various neighbourhood structures. Atmaca and
Zorlutuna [16] were considering the concept of soft quasi-coincidence for fuzzy soft
sets . By applying this new concept, they also studied the basic topological notions
such as interior and closure for a fuzzy soft sets. The concept of product fuzzy
soft topology and the boundary fuzzy soft topology have introduced by Zahedi et
al.[13],[14] and some of its properties have been studied. They also suggested a new
definition for fuzzy soft point and then,different neighbourhood structures. Sepa-
ration axioms of fuzzy topological and fuzzy soft topological, it had been studied
by many authors[18,19,21,22,23]. The aim of this work is to develop interval-valued
fuzzy soft separation axioms. We start with preliminaries and then, give definition
of interval-valued fuzzy soft point as a generalization of interval-valued fuzzy point
and fuzzy soft point, both in order to create different neighborhood structures in
interval-valued fuzzy soft topological space in sections 3 and 4.Finally, in section
5, the notion of separation axioms ¢-1;,7 = 0,1, 2, 3,4, in interval-valued fuzzy soft
topology is introduced and some of its basic properties were also studied.

2 preliminaries

Throughout this paper X is the set of objects and F is the set of parameters. The
set of all subset, of X is denoted by P(X) and A C E. Shows a subset of E.

Definition 2.1. [1] A pair (f, A) is called a soft set over X, where f is a mapping
given by
f:A— P(X).

For any parameter e € A, f(e) C X may be considered as the set e-approrimate
elements of the soft set (f, A). In other words, the soft set is not a kind of set. but
a parameterized family of subset of the set X.

Before introduce the notion of the interval-valued fuzzy soft sets, we give the
concept of interval-valued fuzzy set.

Definition 2.2. [20] An interval-valued fuzzy (IVF) set over X, is defined by the
membership function f : X — int([0, 1]), where int(]0, 1]) denotes the set of all closed
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subintervals of [0,1]. Suppose that x € X. Then f(z) = [f~(x), fT(x)] is called the
degree of membership of the element x € X, where f~(x) and f* are the lower and
upper degree of membership of v and 0 < f~(x) < fT(z) < 1.

Yang et al.[8] suggested the concept of interval-valued fuzzy soft set by combined
of interval-valued fuzzy set and soft set as below.

Definition 2.3. [8] An interval-valued fuzzy soft(IV F'S) set, denoted by fr or (f, E)
over X, is defined by the mapping f : E — IVF(X), where ZVF(X) is the set of all
interval-valued fuzzy set over X. For any e € E, f(e) can be written as an interval-
valued fuzzy set such that f(e) = {(z, [fo (x), f*( )]) : x € X} where f (z)andf (x)
are the lower and upper degrees of membership,of x with respect to e, respectively,
where 0 < 7 (z) < fif(z) < 1.

Note thatZVFS (X, E) shows the set of all IV FS-set over X.
Definition 2.4. [8] Let f4 and gp be two IV FS-sets overX. We say:

1. fa is an interval-valued fuzzy soft subset of gg, denoted by fa<gg, if and only

if:
(i) A< B,
(ii) For alle € A, f7 (z) < g. (z) and f}(z) < gt (z),Vx € X.
2. fa =g if and only if fa<gp and ga<fp.

3. The union of two IVFS sets fa and gg, denoted by faVgp, is theIVES set
(fVg,C), where C = AU B and for all e € C, we have

[ (x),fj(x)] ec A—B
(fVgle(z) = 4 l9c (), 92 (2)], e€B-A,
[maz(f; (2), g7 (x), maz (£ (2), g ()] e € ANB.

for all x € X.

4. The intersection of two IVFS setsfa and gg,denoted by falgg, is thelVES
set (f N g,C),where C = AN B and for all e € C, we have (f A g)e(z) =

[minfe (x), gz (x), minfd (), g ()] for all x € X.

5. The complement of IVFS set fa is denoted by fG(x) where for all e € A we
have f&(x) = [1— ff(z),1 = f (2)].

Definition 2.5. [8] Let fr be an IVFS set.

1. The interval-valued fuzzy soft set fr is called null interval-valued fuzzy soft
set, denoted by O, if f7(x) = fF(x) =0, for allx € X,e € E.
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2. The interval-valued fuzzy soft set fg is called absolute interval-valued fuzzy soft
set, denoted by Xg, if fo(x) = fr(z) =1, forallz € X,e € E.

Motivated by definition of soft mapping, discussed in [27], we define the concept
of IV F'S mapping as the following:

Definition 2.6. Suppose fa is an IVFS set over X1 and gp is an IVES set over
Xo where A C Ey and B C Ey. If ®, : X1 — X3 and ®, : By — E» are two

mappings, then
1. The map ® : ZVFS(X1, E1) — IVFS(Xo, Es) is called an IV FS-map from
X1 to Xo and for any y € Xg and € € B C FEs, The lower image and the

upper image of fa under ® is the IVFS®(fa) over Xy, respectively, defined
as below:

suppew,_ (lsupecn i fT(OI@), ifPy () NA#£ Panddy (y) # @

0, otherwise,

()N y) = {

[<I>(f+)](€)(y) _ {supxgpul () [supe€q>p_1nAf+(e)](a;), ifq);l(g) NA# @andd);l(y) # o

0, otherwise.

2. Let ® : IVFS(X1, E1) — IVFS(Xoe, E3) be an IVFS-map from X to Xo.
The lower inverse image and the upper inverse image of IVFS gp under ®
denoting by ® (gp), is an IVFS over X1, respectively, that for all x € X
and e € E7 it is defined as below:

9o @u(m)a if q)p(e) €B

p(e)
0, otherwise,

[~ (g7)(e)(2) = {

g$p(e>‘1’u(f€), if ®p(e) € B

0 otherwise.

(@7 (g)(e)(x) = {

Proposition 2.1. Let ® : ZVFS(X,E) — IVFS(Y, F) be an IV FS-mapping be-
tween X and X, and Let {fia}ics C IVFS(X,E) and {gip}tics C IVFS(Y,F') be
two families of IVFES sets over X and Y, respectively, where A C E and B C F,
then the following properties hold.

1. [®(fjA)°<®(fja)° for each j € J.

(@71 (g;B)] = D (g;B) for each j € J.

If gip<gjB, then ®1(g;5)<® 1(g;B) for each i,j € J.
If fiAéfjA, then @(fiA)éé(fjA) for each i,j € J.
(@Y (g;B)) < gjp for each j € J.

SO S

(fja) < q)(‘P_l(FjA)) for each j € J.

4
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7. ®[Vjesfial = Vies®(fja) and ' [Vier9;8] = Vjes® (g;B).
8 ®[Ajesfial = Njes®(fia) and @ A jes9;8] = Ajes® (g;B)-

Proof. We only prove part(7). The other parts follow the similar technique. For any
ke F,yeY, and a € A Then

BV fial ()W) = sup,q ) (5uPscqt gy (Vie) fa) (2)(2)
= D ) (U gy (x(Fjan D) (R) )
= U ) (5D e o o (), £ (R)]) (9)
= Tg}‘(sul)xecpgl(y)(SUpZecpzjl(k)[f;:;(k))(y)vf;(k)]))(y)]

= max(sup,cp ) (5UP.cq 1 (1 fia(H) (@)

jeJ

= max ®(f;4)(k)(y)
je

= Vies®(fija)(k)(y).

Now we prove that ®1[V;c;9;8] = V;jes® (g9jB). For any e € E,z € X and b € B
O [Viesgipl(@)(@) = (Vies)gin(Pp(e))(Pu())

= [rygfgﬁ,,gleafgﬁ](‘bp(e))(@u(x))
= [[I;lgfgj_b(q’p(e))(@u(w)),I;lg}(gﬁ,(%(e))(%(x))]

3 Interval-valued fuzzy soft topological spaces

The interval-valued fuzzy topology IV FT was discussed by Mondal and Samanta
[17]. In this section, we recall their definition and then present different neighbor-
hood structures in the interval-valued fuzzy soft topology (IV FST).

Definition 3.1. Let X be a non-empty set and let T be a collection of interval valued
fuzzy soft set over X with the following properties:

(i) Og, Xg belong to T,
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(ii) If fig, for are IVFS sets belong to .

As the ordinary topologies, the indiscrete IVFST over X contains only 0g
and Xg, while the discrete IVFST over X contains all IVFS sets. FEvery
member of T is called an interval-valued fuzzy soft open set (IV FS-open ) in
X. The complement of an IV EF'S-open set is said an IV FS-closed set. Then

fieAfag belong to T.

(i) If the collection of IVFS sets {fjr|j € J} where J is an index set, belong to
T then Ve fjE belong to T,

then 7 is called interval-valued fuzzy soft topology over X and the triplet (X, E,T)
is called the interval-valued fuzzy soft topological space (IVFST).

Remark 3.1. If f. (z) = f(z) = a € [0,1]. Then we put [f; (x), fF(z)] = [a,a] =

Example 3.1. Let X = [0,1] and E be any subset of X. Consider IVFS set fg
over X by the mapping
f:E—=1TVF(0,1])

Such that for any e € E,x € X

~ 1 0<x<e
fe(x):{ 0 e<z<l.

The collection T = {®g, Xg, fg} is an IVFST over X.
1. Clearly Xg,0p € 7.

2. Let {fjr}jes is a sub-family of T where for any j € J if x € X such that for

alle e E
1 0<zx<e

fje(x):{ 0 e<zxz<l.

Since
1 0<z<e

\/Jf]@(x)_{o e<r<l1
Then V,fiE € T.

3. Let fg,gr € T, where

1 0<z<e
fE(x)_{o e<x<l,

and
0<z<e

_ 1
9e(w) = 0 e<xz<l.
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Since
1 0<z<e
fonaa) ={ o CEXEE

Thus, fE Ngg € T.

Example 3.2. [24] Let R be the set of all real numbers with the usual topology T,
where 7, = ({(a,b),a,b € R}) and E be a parameter set. Let U = (a,b) C R be an
open interval in R, we define IVFS Ug over R by the mapping

U:E— (Int0,1))®

such that for all x € R

~ |1 ze€(ab)
Ue(w)—{o ¢ (a,b).

The family {Ug : (a,b) C R,Va,b € R} generates an IVFS over R, we denote it by

AIVES)
1 o (IVFS) _
. Clearly Rg,0p € T where for alle € E and k € R,Rg(e)(k) = [1,1] and
De(k)=0

2. Let {0jE}jeJ is a sub-family of 7SVES) where for any j € J if x € (aj,b;)

and interval (aj,b;) in R such that for alle € E

1z € (aj, b))

Uielw) = { 0 ¢ (aj,b).

Since \7.7(?]E = (Lj‘_j\U/vJLE) where U]U]E € Ty- Then VJU]E c T,L(LIVFS)
3. Let Ug, Vi € TL(LIVFS)- Then UpAVEg € T&IVFS) since UpAVg = (U/HT/, E)

where U NV € 1.

Definition 3.2. Let interval [A;,A\}] C [0,1] for all e € E. Then Tg is called
an interval-valued fuzzy soft point (in short IV FS-Point)with support x € X and
e-lower value N\, and e-upper value N\ if for each y € X

~ _ [)‘e_a )‘2_] y=x
(e)y) = { 0 otherwise.

Example 3.3. Let X = [0,1] and E be any subset of X. Consider IV FS-point T
with support x and lower value 0 and upper value 0.3, we define IV F'S-point T by

z(e)(e) = { [0’8‘3] othcejwzse.

For anye € E and c € X.
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Definition 3.3. The IV FS-point g belong to IVFS set fg, denoting by T€fEg,
whenever for all e € E we have \; < f;(z) and A} < fF(x).

Theorem 3.1. Let fg be an IVFS set. fg is the union of all its IV FS-points
i.e fE = QfEéijE’

Proof. Let z € X be a fixed point, y € X and e € E. Take all g€ fp with different

e-lower and e-upper values )\]76, )\;re where j € J there exists )\;e =fo, )\;re = fr

Vipefa@e(y) = [sup . (y), sup T5(y)]
= lsupys 2o SUPAEZp+ Nl

= [fe (@), f5(@)]

O]

Proposition 3.1. Let {fjg}jes be a family of IVFS sets over X, where J is an
index set and T be an IV F S-point with support x and e-lower value ] and e-upper
value \}. If €A jej{fir}, then Tp€{fjp} for each j € J.

Proof. Let g be an IV F'S-point with support x and e-lower value A\ and e-upper
value AS and let €A e {fjr}, then A7 <Ajes{f;.}(z)<{f;.}(z) for each e € B,z €
X and )\jg/\jej{f;}(a:)g{f;}(a:) for each e € £,z € X. Then,

Ao, )\j]g[{fj_e}(x), {f;}(x)], for each e € E,z € X. Hence Zr€{f;r}jeJ. O
Remark 3.2. If 2g€frVgr dose not imply TpE€fr or TE€gk.

This is shown in following example.

Example 3.4. Let 7 be an IVFST over X, where 7 = {0p, Xp, fg, 98, f[EA9E}

and g be absolute IV F'S-point with support x and e-lower value A\_ and e-upper

value \}. If fgand gg are two IVES sets in X defined as below:
f:E—=1IVF(0,1])

and

g: E—=TIVF([0,1])
Such that for anye € E,x € X

and
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Since
|1 ifo<z<e
fe(@)Vge(w) = { 0 ife<ax<1.

Then Tr€feVgE, but :EEéfE and jEégE.

Theorem 3.2. Let g be an IV F'S-point with support x and e-lower value A\, and
e-upper value A} and fg and gg be an IVFS sets. If g€ fpVgg, then there exists
IVFS-point 21E€fr and IV FS-point 29p€gE such that Tp = T1gViaE

Proof. Let Zg€ fpVgp, then, A, <f. (z)Vg, (z), and \I <f.F(z)VgS (), for each e €
F,x € X. Let choose
By ={e€ EP;<fo (2), M\ <ff(2) 2 € X} By = {e € E]A; <gp(z), N <gj(x) :

x € X} and
~ [AgaAj] ify:xl, e € Fy
Z1(e =
1)) {0, otherwise.
- Ao AT, ify=ux9,e€ Ey
Fale)(y) = { DN .
0, otherwise.

Since 27, < f;.(z), and :L'fe < flt(m) for each e € F1,x € X, that implies Z1g€ fig

and also 75, < fo (), and 2§, < fii(z) for each e € Ey,x € X, that implies
Zor€ far. Consequently, E1VEy = E and I = Z1pViaE. O

Definition 3.4. Let (X, E,7) be an IVFST space and Tg be an IV FS-point with
support x, e-lower value \; and e-upper value \J. The IVFES set gg is called
interval-valued fuzzy soft neighbourhood (IVFSN) of IVFS-point Tg if there ex-
ists the IVFEFS-open set fg in X such that Tg€fr<gg. So the IVFS-open set fg
is an IVFSN of the IVFS-point T if Ve € E,x € X such that A\, < f(x) and
A < [ ().

Definition 3.5. Let (X, E,7) be an IVFST space and g be an IV FS-point with
support x, e-lower value A, and e-upper value N} and &%, be an IV FS-point with
support x*, e-lower value e, and e-upper value €. &%, is called to compatible with
A AL, if @3 provides that 0 <e; < A7 and 0 < el < \} for each e € E.

e’ ’te

Proposition 3.2. 1. If fg is an IVFSN of the IVFS-point & and fp<hg,
then hg is also an IVFSN of .

2. If fg and gg are two IVFSN of the IVFS-point g, then feAgg is also
IVFSN of 2.

3. If fg is an IVFSN of the IVFS-point 23, with support x*, e-lower value

Ao — e, and e-upper value \f — e, for all e, compatible with N\, and &

compatible with \}. Then fg is an IVFSN of the IV FS-point Tg.
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4. If fg is an IVFSN of the IVFS-point Z1g and gg is an IVFSN of the
IV FS-point o then fgVgE is also an IVFSN of 15 and Tok.

5. If fg is an IVFSN of the IVFS-point g, then there exists IVFSN gg of
Tg such that ge<fg and gg is IVFSN of IV FS-point y with support y and
e-lower value v, and e-upper value v, for all yp€gp.

Proof. 1. Let fg be an IVFSN of the IVFS-point Z. Then there exists the
IV FS-open set gg in X such that Zg€grp<fg. Since fp<hg, then

Zp€gp<fp<hg, therefore hg is an IVFSN of &p.

2. Let fr and gg are two IVFSN of the IV FS-point Zg. Then there exists
two IV FS-open sets hg, kg in X such that Zp€hp<fg and Zp€kp<gp,
so Zp€hpAkp<frpAgg. Since hpAkg is IV FS-open set, then gpAfg is an
IVFESN of Tg.

3. Let fg be an IVFSN of the IVFS-point 7}, with support z* and e-lower
value A\, — e and e-upper value A\I — el for all e compatible with A\
and € compatible with A\J. Then, there exists IV F'S-open set gE* such that
a:EEgE <fg. Let gp = \/x*gE , then gg is IV FS-open in X and gE<fE By
the Theorem 3.2 and since for all e € E, then \/ZL'E = 33E<\/z*gE = gE<fE

Hence, 2p€gp<fg, i.e fg is IVFSN of Zg.

4. Let fp be an IVFSN of the IV FS-point 1 with support x1 and e-lower
value A}, and e-upper value )\fe and gg be an IVEFSN of the IV FS-point
Zop with support x2 and e-lower value )5, and e-upper value )\;e. Then there
exists IV F'S-open sets hig, hop such that #1p€hp<fr and Zsp€hop<fg,
respectively, Since #15€h1g, then A}, < hi (x), A, < h{ (x) for each e € E
and z € X, Since Zap€hop, then Ay, < hy (), )\;re < h+( ) for each e € E
and x € X. Then, we have

maz{ (A Mo, g M) < maw{ b (2), b, ()], (o, (), 1 ()]} for cach ¢ €

E,.CL' € X. So xlE\75:2Eéh1E\7h2E and hlE\7h2E € 7 and hlEVhQEévagE.
Consequently, feVgg is IVFSN of x1gVrag.

5. Let fg be an IVFSN of the IVFS-point g, with support x and e-lower
value A\; and e-upper value A\. Then there exists IV F'S-open set gg such
that Z5€gp<fr. Since gy IV FS-open set, g is a neighborhood of its points,
i.e gp is IVFSN of IV FS-point yg with support y and e-lower value 7, and
e-upper value v, for all e € E. Also, gg is [VFSN of IV FS-point g since
Zp€gg. Therefore, there exists gg is IVFSN of g such that gEéfE and gp
is IVFSN of gy, Since fg is IVFSN of zg.

O

Definition 3.6. Let (X,E,7) be an IVFST space and fr be an IVFES set. The
IV FS-closure of fr denoted by Clfg is intersection of all IV FS-closed super sets
of fg. Clearly, Clfr is the smallest IV F'S-closed set over X which contains fg.

10
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Example 3.5. [24] Consider IVFST TIVES over R as introduced in Example 3.2
if Hg is an IVFS over R related of the open interval H = (a,b) C R by mapping

H: FE — (Int[0,1))®

~ 1 z€(a,b)
He(“)_{o z ¢ (a,b),

where e € E and x € R. Then closure of Hg defined as

ClH : E — (Int[0,1))¥

= 1 zelad]
He(l’)—{o v ¢ b,

Remark 3.3. By replacing g for fg. The IV FS-closure of Zr denoted by Clzpg
is intersection of all IV FS-closed super sets of Tg.

Proposition 3.3. Let (X, E,7) be an IVFST space and fr and gg be two IVFSS
over X. Then

1. Clg =0p and ClXgp = Xg.

fe<Clfg, and Clfy is the smallest IV FS-closed set containing the IVFS fg.
CU(Clfz) = Clfs.

if fe<gm, then (Clfp)<Clgg.

fE is anIV FS-closed set if and only if fr = ClfE.

Cl(feVgr) = ClfpVClyg.

Cl(fehgr)<ClfeAClyp.

X S v

Proof. We on~ly prove part(6). ~The similar technique is used to sh0v~v the other parts.
Since fe<feVgg and gESfE(/gf;, by part(4) we have Clfp<CI(fgVggr) and
Clg<CI(fgVgE). Thus ClfpVClgp<CIl(frVgEr).

Conversely, we have fp<Clfr and gp<Clgg, by part(2).Hence, frVgr<ClfrVClgg

where ClfpVClgg is an IV FS-closed set. Thus, Cl(fgVgr)<ClfrVClgE.
So Cl(vagE) = leEVClgE O

Definition 3.7. Let (X1, F1,71) and (X2, E2,T2) be two IVEFSTS and
®: (X1, E1,7m1) = (Xo, B2, 72)
be an IVFS map. Ten ® is called an

1. interval-valued fuzzy soft continuous (IVFSC) map if and only if for each
9B, € T2, we have q)_l(gEQ) €.

11
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2. interval-valued fuzzy soft open (IVFSO) map if and only if for each fr € 11,
we have ®(fg,) € 1.

Theorem 3.3. Let (X1, E1,71) and (Xo, Ea,72) be two IVEST and ® be an IVFS-
mapping from X1 to Xo, then the following statements are equivalent:

1. @ is IVFC.

2. for each IVFS-point T on X, the inverse of every neighbourhood of ®(Zpg)
under ® is neighbourhood of T .

3. for each IVFS-point Zp on X1 and each neighbourhood gr of ®(Zg), there
exists a neighbourhood fr of T such that ®(fr)<gg.

Proof.

(1) = (2) Let gg be an IVFSN of ®(Zg) in 7. Then there exists IV F'S-open
set fg in 73 such that ®(Zg)€ fe<gg, since ® is IVFSC, ®~!(fg) is an IV F'S-open
in 71 and we have Zp€®~!(fr)<® (gp).

(2) = (3) Let gg be an IVFSN of ®(7g). By hypothesis ®~!(gg) is an IVFSN
of . Consider the fp = ®~!(gg) is an IVFSN of . Therefore, we have ®(fg) =
(@ (gr))Zgm.

(3) = (1) Let gg be an IVFS-open set in 72. We must show that ®1(gg)
is an IV F'S-open set in 71. Now let 25€® ! (gg). Then ®(Zg)Egp and since gg is
IV FS-open set in 79, we get gg is an IV FSN ®(zg) in 19. By hypothesis there exists
IV FS-open set fg is IVFSN of &g such that ®(fg)<gg, then f5<®1[®(f5)]<P ' (gr)
for fg is an IVFSN of Zg. Form here, f5<® !(gg), for fg is an IVFSN of Zp.
Hence,® ! (gp)ET1.

[

4  Quasi coincident neighbourhood structure of interval-
valued fuzzy soft topological spaces

In this section, we present quasi coincident neighborhood structure in the interval-
valued fuzzy soft topology (IVFST) and its properties.

Definition 4.1. The IV FS-point g is called a soft quasi-coincident whit IV FS
fE, denoting by Trqfr, if and only if there exists e € E such that \; + fo (x) > 1
and N\ + fF(x) > 1. If fg is not soft quasi-coincident whit fg, we write fE—qgg.

Definition 4.2. The IVFS-set fr is called a soft quasi-coincident whit IVFS gg,
denoting by frdgr, if and only if there exists e € E such that f7(x) + g (z) > 1
and () + g7 (1) > 1.

Proposition 4.1. 2 be an IV FS-point with support x and e-lower value A\, and
e-upper value N\ and fg,gg two IVFS sets :

12
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(i) fe<gr < fE-q9%.
(i) TpE€fp & Tpqfg.

Proof. We just prove part(1). The similar technique is used to show the part (2).
For two IV FS sets fr,gr we have:

fe<gr & Yee E:[f (z),fF(2)] < [9: (2),0f (2)], Ve € X
& VYecE: f (z) <g,(x)and ff(x) < gf(z),Vre X
& VeeE:fe_(x)—i—l—ge( y<land ff(z)+1—-gf(z)<1L,Voe X
e YecE:fi(x)+g o(x)<land ff(z)+g"i(z) <1,Vre X
& feq9g-

O]

Proposition 4.2. Let {fjr : j € J} is a family of IVFS sets over X and g,
be an IV FS-point with support x and e-lower value A\, and e-upper value \'. If
Zpq(AfiE), then Tpqf;p for each j € J.

Proof. Let pd(Afjr). Then AZ G(A; f;.)(x) and \FG(A; f;7)(x) for e € E and € X.
This implies that A\ > 1 — A;(f}, )(a:) and Al > 1 — Aj(fi£)(2), z € X. Since
N fial@) € Fio(a) and AGF(e) < (), then Ay > 1= Aj(fa)(&) > 1 () for
cach e € B,z € X and A\ > 1 - Aj(ff)(x) > 1 - fi(a )foreacheEEmEX.
Hence Ay > 1 fio(x) and AF > 1~ f1(2). So, [\, AF] > [1,1] — [fa(e), £1(2))
implies that £ > 1 — fij and Trqfjr for each j € J. O

Remark 4.1. 2p§(fr V gg) does not imply Tpqfr or pdgr. This is shown in the
following example.

Example 4.1. Let consider Example 3.5 in this example TpG(feVgE) but Tp—qfE
and Tp—4gEg.

Theorem 4.1. Let 2 be anlV FS-point Tg with support x and e-lower value \;
and e-upper value N} and fg,gr are IVFS-sets over X. If pq(fEV gg), then there
exists T1pqfr and Topqge such that Tp = T1pVIaE.

proof Analogously with Theorem 3.2.

Definition 4.3. Let (X, E,7) be an IVFSTS and g be an IV FS-point with sup-
port z, e-lower values N\, and e-upper values \}. The IVFES set gg is called a quasi
soft neighbourhood (QIVFSN) of IVFS-point T if there exists the IV EFS-open
set fg in X such that TpGfp<gp. Thus the IVFS-open set fr is a QIVFSN of
the IV FS-point Tg if and only if Je € E,x € X such that \] + f; (z) > 1 and
A+ ff(z) > 1

13
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Remark 4.2. A quasi-coincident soft neighbourhood of IV FS-point generally does
not contain the point itself. It is shown by the following:

Example 4.2. Let X = [0,1] and E be any subset of X. Consider two IVFS sets
fe, 98 over X by the mapping f : E — IVF([0,1]) and f : E — ZVF([0,1]) Such
that for any e € E,x € X

~ [ [04,05] 0<z<e
fe(x){ 0 e<x <1,

and
o (2) = [0.6,0.7 0<z<e
Ge\T) = 0 e<x <1,

and Tp be any IV FS-point defined by

- [ [04,05] c==x
Te(c) = { 0 c# .

Let 7 = {0g, XE, fe,95}. Then clearly T an IVFST over X. Since fz<gp and
Z4fg. Then gg is QIVFSN of tg. But g ¢ gE.

Proposition 4.3. (1) If fg<gr and fg is QINVSN of ig, then gg is also
QINVSN of .

(2) If fe,g9e are QINVSN of ig, then feAgp is also QINV SN of Tg.

(3) If fr is QINVSN of #1g and gg is QINV SN of Zap, then frVgg is also
QINVSN of &15VF0p.

(4) If fg is QINV SN of g. Then there exists gg is QINV SN of g, such that
9e<fE and gg is QINVSN of yg, Vypqge-

Proof. (1),(2) are straightforward.

(3) Let fr is QINVSN of Z15 and gg is QINV SN of Zop, then there exists
IV FS-open set hig in X such that :Z‘lE(jhlEifE and gg is QINVSN of
Zop, then there exists IV F'S-open set hop in X such that ZspGhop<gp. Since
F1pGhig, then for each e € E,x € X,\[, + hy, > 1, A\[_ + h], > 1 and this
implies that A}, > 1 — h]_, )\1: >1-— hfe for each e € FE and since ZopGhop,
then for each e € E, A5, + hy, > 1, )\;e + h;re > 1 and this implies that
Ay, > 1—hy,, Aj, > 1—hJ, for each e € E,x € X. From here, maz (A, \,) >
maw(1— hy, (@), (1~ hy, (2)), maz(\f, Af,) > maz(L - b, (2)), (1 - b, (2).
Hence, #1pVZ2pq(higVhop)<feVge. Consequently, fgVgg is QINVSN of
T1pVT2p.

(4) Let fg is QINV SN of Zg, then there exists gg is QINV SN of Zg such that
JEEcngéfE. Consider the gg = hg. Indeed, since Zgghg and hg is IV F'S-open
set, then hg is QINV SN of g, we obtain hg is QINVSN of gg.

14
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O]

Theorem 4.2. In the IVFST(X, E, 1), the IVFS-point g belongs to Clfg if and
only if each QIV FS of g is soft quasi-coincident with fg.

Proof. Let IV FS-point g with support x, e-lower value A\_ and e-upper value
AT belongs to Clfg,i.e,tg€ClfE. For any IV FS-closed gg which containing fg,
Tgp€gp which implies that A\, < g7 (z) and A\ < gf(z), for all z € X,e € E.
Consider hg be an QIVFN of the IV FS-point g and hg—{fr. Then for any
e€ Eandz € X, hy (z) + £ (z) < 1,hf(z) + £ (z) <1 and so fp<h$%. Since hp is
QIVEFSN of the IVFS-point 2, by g dose not belong to h¢%,. Therefore, we have
that £r dose not belong to Clfg. This is a contradiction.

Conversely, let any QIVFSN of the IV FS-point £ be soft quasi-coincident
with fg. Consider &g dose not belong to Clfg,i.e, g ¢ Clfr. Then there exists an
IV FS-closed set gg which is containing fg such that g dose not belong to gg. we
have Trqggf. Then g% is an QIVEFSN of the IV FS-point g and fg—qgy. This is
a contradiction with the hypothesis. O

5 IVFS quasi-separation axioms

In this section we develop the separation axioms to IV FST, so-called IV FSQ-
separation axioms(/V F'Sq-T; axioms)for i = 0, 1,2, 3,4 and consider some properties
of them.

Definition 5.1. Let (X, E,7) be an [VFST space. Let Tr and §g are IV F'S-points

over X where
- _ [ DA 2=w
z(e)(2) = { 0 otherwis

yle)(z) = { he_(’)%j] otZeijZs.

Tg and §g are said distinct if and only if TpAyp = Og, which meaning x # y.

Definition 5.2. Let (X, E,7) be an IVFST space. The IV FS-point Tg is called
a crisp IV FS-point $[E£’1] if A\, =X =1 foraleckE.

Definition 5.3. Let (X, E,7) be an IVFST space and Tg and §g be two IVES-
points. If there exists IVFES open sets fg and gg such that:

(a.) when T and gg be two distinct IV FS-points with different supports x and
y and e-lower values and e-upper values \; , \I and v, , v, respectively, and
fE is IVFSN of the IVFS-point 2 and yg—{fr or gg is IVFSN of the
IV FS-point yg and Tp—qgg.

15
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(b.) when Tg and g be two IV FS-points with the same supports x = y and e-value
A, <. and e-value A\ < v and fg is a QIVFSN of the IVFS-point §g
such that T—qfE.

Then (X, E,T) be interval-valued fuzzy soft quasi-Ty space (IV FSq-Ty space).

Example 5.1. Consider IVFS set defined in Example 3.1. and Zg,yg be any two
distinct IV F'S-point in X defined by

1 z==x

and

1 ifz#y
fe is IVFSN of 2 and §yp—qfr. Thus X is IVFSq- Ty space.

Theorem 5.1. (X, E,7) is an IVFSq-Ty space if and only if for every two IVFS-
points Ty, yp and Tp ¢ Clyg or yg ¢ Clig.

Proof. Let (X, E,7)is an IV FSq-T space and Zg and g be two IV F'S-points in X.
First consider that Zp and ¢ be two distinct IV F'S-points with different supports x
and y and e-lower values and e-upper values A\ ,~, and A}, v, respectively, a crisp

IV F S-point 57%’1] has an IVEFSN fg such that yp—¢fg or a crisp IV F'S-point gjg’”

has an IVFSN gg such that £g—qfgr. Consider the crisp IV F'S-point JE%’” has an
IVFSN fg such that yg—¢fr. Moreover, fg is an QINFSN of g and §p—GfEp.
Hence 2 ¢ Clyg. Next we consider the case Zp and gg be two IV F S-points with
the same supports z = y and e-lower value A, < v, and e-upper value A\ < ~vI,
then yg has a QIV FSN which is not quasi-coincident with Zg and so by Theorem
4.1 g ¢ Clyg.

Conversely, let g and gg be two IV F S-points in X. Consider the without loss
of generality, that 2 ¢ Clyg. First consider that g and g be two distinct IV F'S-
points with different supports = and y and e- lower values and e-upper values \_, v,
and A\J, v, , respectively, since g ¢ Clyg for any e € E, f7 (y) = f(y) = 0 and
fo(x) = ff(x) = 1. Then Cl(yg)© is an IVFSN of &g such that Cl(§r)°*—qig.
Next, let when T and gg be two IV F'S-points with the same supports = y and
we must have e- lower value \; > . and e-upper value AT > v and then g has
QIV FSN which is not quasi-coincident with gg. O

3e)(2) = {0 ey

Definition 5.4. Let (X, E,7) be an IVFST and T and yg be two IV FS-points,
if there exists IVFS open sets fg and gg such that:

(a.) when T and gg be two distinct IV FS-points with different supports x and

y and e-lower values and e-upper values A ,~y, and A&, vF, respectively and

fE is IVFSN of the IVFS-point &g and yg—{fr and gg is IVFSN of the
IV FS-point yg and Tp—qgg.
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(b.) when Tg and g be two IV FS-points with the same supports x = y and e-value
A, <. and e-value A\ < v and fg is a QIVFSN of the IVFS-point §g
such that T—qfE.

Then (X, E,T) be interval-valued fuzzy soft quasi-T1 space (IV FSq-T1 space).

Theorem 5.2. (X, E,7) is an IVFSq- Ty space if and only if for any IV F'S-point
T in X is an IVFS-closed set.

Proof. Suppose that for each IV F'S-point £ in X is an IV F S-closed set, i.e, gg =
2%. Then gg is an IV F'S-open set. Let xg and yg two IV F'S-point such that: First
consider that g and §g be two distinct IV F'S-points with different supports z and
y and e-lower values and e-upper values A, ,~v, and A1, ~F, respectively, gg is an
1V F'S-open set such that gg is IVFSN of IV FS-point g and £g—{dgg. Similarly,
fe = 9% is IVFS-open set and fg is IVEFSN of the IVFS-point 2 and §r—¢fE.
Next, we consider the case T and yg be two IV F.S-points with the same supports
z =y and e-value A\, < v, and e-value \] < 4, then gg has a QIVFSN gg which
is not quasi-coincident with zg. Thus X is an IV F'Sq-17 space.
Conversely, Let (X, E, 1) be an IV F'Sq-T; space. Suppose that any I'V F'S-point
Zp is not IV FS-closet set in X, i.e, fp = 2%. Then fE #* C’le and there exists
ngéleE such that Zg # ¢g. First consider that £r and g be two distinct IV F'S-
points with different supports « and y and e-lower values and e-upper values \_, v,
and A1, v, respectively, suppose that e-lower value A\J < 0.5 and e-upper value
AT < 0.5. Since gp€CI fg, by Theorem 4.1 for any fg is QIVFSN of jg and ZpqfE.
Then there exists IV FS-open set hg such that §Ghp<fg. Hence h; (y) + 5 > 1
Next,let g and gg be two IV FS-points with the same supports z = y and e-value
A < . and e-value A\ < 7, since yp€CIzp, by Theorem 4.1 for each fg is
QIVFSN of IVFS-point §g, TrGfp. This is contradiction.
O

Definition 5.5. Let (X, E,7) be an IVFST and T and yg be two IV FS-points,
if there exists IVFS open sets fg and gg such that:

(a.) when g and yg be two distinct IV F'S-points with different supports x and y
and e-lower values and e-upper values N\, and NI, vt , respectively, fg is
IVFSN of the IVFS-point g, gg is IVFSN of the IVFS-point yg, such
that fE—qgE.

(b.) when Tg and yg be two IV FS-points with the same supports x =y and e-value
Ao <. and e-value \f < ~F, fg is a IVFSN of the IVFS-point g, gg is
a QIVFSN of the IVFS-point §g.

Then (X, E,T) be interval-valued fuzzy soft quasi-Ty space (IVFS ¢-Ty space).

Example 5.2. Suppose that X = [0,1] and E be any proper(E C X) Consider
IVFS sets fp and gg over X defined as below: f : E — IZVF([0,1]) and g : E —

17
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IV F([0,1]), such that for any e € E,x € X

row={ 4 JZI5

and
0 0Lz<e
g(e)(x) = {1 S

Let 7 = {0g, XE, fE,9r}. Then clearly T is an IVEFST over X. Therefore for any
two absolute distinct IV F'S-points Tg,yr in X defined by

1 z==x

00 ={y 5.

and

_ _JO0 =y
y()()—{1 if 2%y

fE is IVFSN of the T and gg is IVFSN of yg, such that fp—ggg. Then X is
IVFS ¢-Ts space

Theorem 5.3. The IVFST(X,E,7) is an IVFSq¢-Ty space if and only if for any
z € X, we have

ip = /\{csz . fp € IVFSN of #).

Proof. Let (X, E,7) be acrisp IV FSq-T; space and Zg be IV F'S-point with support
x, e-lower value A\ and e-upper value v} . For any yg be a crisp IV F'S-point with
support y, e-lower value v, and e-upper value \. If  and gz be two IV FS-points
with different supports x and y and e-lower values and e-upper values \_,~. and
A5, yF, respectively, then there exist two IV FS-open sets fg and ggp containing
IV FS-points g and Tp respectively, such that fg—Ggr. Then gg is IVFSN of
IV FS-point zg and fg is QIVFSN of g such that fp—qgr. Hence gp ¢ Clgg. If
Zg and g be two IV FS-points with the same supports x = y, then 7, > AJand
7. > Af and hence there are QIVFSN fg of IV FS-point g and IVFSN gg such
that fg—Ggp. Then yp ¢ Clgg.

Conversely, let 2 and yg be two distinct IV F'S-points with different sup-
ports x and y and e-lower values and e-upper values A_, A and ., ,respec-
tively. Since 2 = N{Clfr : fr € IVFSNof Zg}, then A{CI([fo . fF])() : f& €
IVFSN oftg} = 0 then, yg—gA\{Clfg : fp € IVFSN mboxofig}. Therefore,
there exists fg is IVFSN of  and §g—q¢Cl fg. Take two 7-IV F S-open sets fr and
(Clfg)°. So fpis IVFSN of IV FS-point g and (Clfg)¢is IVFSN of IV FS-point
Ug, and fp=q(Clfr)°.

O
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Definition 5.6. Let (X, E,7) be an IVFST. If for any IV FS-point g with sup-
port x, e-lower values N\, and e-upper values A} and any IV FS-closed set fr in X
such that Tg—{fg, there exists two IV FS-open sets hg and kg such that TpEhg
and fp<kp,hp—dkg. Then (X, E,T) is called interval-valued fuzzy soft quasi reqular
space( IVFS g-regular space).

(X, E,7) is called an interval-valued fuzzy soft quasi T3 space, if it is IVFS
g-regular space and IV FS q-T; space.

Theorem 5.4. The IVFST (X, E,7) is an IVFS ¢T3 space if and only if for any
IVFSN gg of IVFS-point &g there exists an IV FS-open set fg in X such that
Tp€fp<cfe<gs.

Proof. Let gg be an IV F'S set in X and £ be I'V F'S-point with support x, e-lower
value A and e-upper value A} such that Zp€gp, then clearly, ¢, is IV F'S-closed set.
Since X is an IV F'S g-T5 space, there exists two IV F'S-open sets fg, hg such that
ip€fp, 95<hp,hg and fp—ghg. So, f&<h$,. Then Clfz<hS, implies Clfp<gp.
Hance 7€ fe<Clfp<gp.

Conversely, let g be an I'V F'S-point with different support « and e-lower value
M. and e-upper value A\ and let gg be an IV FS-closed set such that #g—Ggr. Then
g% is an IV F'S-open set containing the IV F'S-point Zg, i.e, Zg€g$,. Therefore, there
exists an IV F'S-open set fr containing Z g such that iEéfEéleEégE ggé(leE)c.
Then clearly, (Clfg)¢is an IV F S-open set containing g and fg—G(Clfg)°¢. Hance
X is IVFS g-T5 space. O

Definition 5.7. Let (X, E,7) be an IVFST.If for any two IVFS-closed sets fg
and gg such that fp—q4gg, there exists two IV FS-open sets hg and kg such that
fEéhE and gEékE. Then (X, E, 1) is called interval-valued fuzzy soft quasi normal
space( IVFES g-normal space).

(X, E,7) is called an interval-valued fuzzy soft quasi Ty space, if it is IVFS
g-normal space and IV FSq-T} space.

Theorem 5.5. The IVFST (X, E,7) is an IVFS ¢-Ty space if and only if for any
IV ES-closed set fr and of IVEFS-open set containing fg, there exists an IV EFS-
open set hg in X such that fr<hp<clhg<gg.

Proof. Let fg be an IV F'S-closed set in X and gg be an IV F'S-open set in X con-
taining fg, i.e, fe<gg. So, 9% is an I'V F'S-closed set such that fr—gg%. Since X is an
IV FS q-Ty space, there exists two IV F'S-open sets hg, kg such that fr<hg, g%ékE,
and hg—g¢kg. Thus, hEéka, but Clhp<ClkS, = kg. Also g%ékE implies k°<gg.
IV F'S-closed set over X. So C’lhEik%. Hence we have fEihEiClhEigE.
Conversely, let fz and gg be any IV FS-closed sets such that fg—ggg. So fEég%
There exists an IV F'S-open set hg such that fEéhEiClhEégE. Thus there are two
IV FS-open sets hg and (Clhg)¢ such that fe<hg, ge<(Clhg)°. This shows that
X is an IVFS q-Ty space. O
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Theorem 5.6. If ¢ : (X1, E1,71) — (X2, E2,72) is a IVFSC and IVFSO map
where ®, X1 — Xo and ®,Fy — FEy are two ordinary bijections, then Xy is an
IV FSq-T; space if and only if Xo is an IV FSq-T; space for i =0,1,2,3,4.

Proof. We just prove when ¢ = 2. The other parts similarly.
Suppose that we have two IV F'S-points kg, and 5g, with different supports &
and s and e-lowers value and e-upper values A\_, AT and ., 'y; , respectively. for any

e € 5. The inverse lower and upper image of IV F'S-point kg, under the IVFSO
map ® is an IV FS-point in X; with different support ®~!(k) as below:

O (k) (e) (@) = k™ (Pp(e))(Pu()) and @71 (kT)(e)(x) = k¥ (@p(e))(Pulx)).

And also the inverse lower and upper image of IV F'S-point 5g, under the IV FSO
map ® is an IV FS-point in X7 with different support ®~!(s) as below:

7 (37)(e)(x) = 5 (@p(e))(Ru(x)) and D7H(5F)(e)(2) = 57 (Py(e))(Pu(2)).

Since (X1, F1,71) is an IV FSq-Ts space, there exist two IV F'S-open sets fr and gg
in X, such that ® ! (kg,)Efg, ® 1(35,)€9r, and fr—Ggr. So kg,&fr and 55,E9x,
while ®(fr)—=¢®(gr). Then (Xs, Eo,72) is an IV FSq-T, space.

Conversely, Suppose that we have two IV F'S-points g and gr with different
supports x,y € X1 and e-lower value and e-upper value A\, , A\ and ~_,~v], respec-

tively. The lower and upper image of an I'V F'S-point g under the IV FSC map ¢
is an IV F'S-point in Xy with different support ®,(z) as below:

PENEKR) = suprcs1(suP,co1o)(E)(O)()
{ A, if k= d,(x)
0 otherwis,
BENEK) = sup.co gy lsup,cp1 0@ )E)()
_ { AL it k= @y (2)
- 0 otherwis,

and The lower and upper image of an IV F'S-point §r under the IV FSC map
® is an [V FS-point in X9 with different support ®,(y) as below:

SEEK) = supsco iy suP,eq 1o (T)()2)
_ { Ve if k= q)u(y)
0 otherwis,
DI = supaco g lsup e 1o T)(E)(E)
_ { v if k= 0y(y)
0 otherwis.

Since (X2, B2, m2) is an IV F'Sq-T; space, there exist two IV F'S-open sets fg, and gg,
in X5 such that ®(%)€ fg,, ®(§)€gk,, and fr,~4gE,. Clearly, i €@ (fg,), J€EP (9E,)
and ®~1(fg,)-G® (g9g,). Then (X1, F1,71) is an IV FSq-Ty space. O

20


https://doi.org/10.20944/preprints201912.0360.v1
https://doi.org/10.3390/math8020178

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 December 2019 d0i:10.20944/preprints201912.0360.v1

6 Conclusion

In this paper, we have introduced a new definition of interval-valued fuzzy soft
point and then consider some properties of it, and different types of neighbourhoods
of IV FS-point were studied in interval-valued fuzzy soft topological space. The
separation axioms of interval-valued fuzzy soft topological is presented and of its
basic properties are also studied.
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