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Abstract: Soft-matter systems when driven out-of-equilibrium often give rise to structures that 
usually lie in-between the macroscopic scale of the material and microscopic scale of its constituents. 
In this paper we review three such systems, the two-dimensional square-lattice Ising model, the 
Kuramoto model and the Rayeligh-Bénard convection system which when driven out-of-equilibrium 
give rise to emergent spatio-temporal order through self-organization. A common feature of these 
systems is that the entities that self-assemble are coupled to one another in some way, either through 
local interactions or through a continuous media. Therefore, the general nature of non-equilibrium 
fluctuations of the intrinsic variables in these systems are found to follow similar trends as order 
emerges. Through this paper, we attempt to look for connections between among these systems and 
systems in general which give rise to emergent order when driven out-of-equilibrium.

Keywords: Non-equilibrium thermodynamics; Ising model; Kuramoto model; Rayleigh-Bénard 
convection; Pattern formation12

1. Introduction13

A system at equilibrium is indistinguishable from its surroundings. The same system when driven14

out-of-equilibrium gives rise to flows that forces the system to relax back into its equilibrium state.15

The rate of relaxation is governed by how far the system has been driven out-of-equilibrium [1–3].16

Soft-matter systems in this respect are especially fascinating as they give often rise to order as long as the17

driving field maintains it out-of-equilibrium [1,4,5]. Some prominent examples where self-organization18

or self-assembly gives rise to emergent order include, liquid crystals, granular material, polymers,19

gels, and a wide spectrum of biological phenomena/materials [6–13]. This emergent order can vary20

across several length and time scales, and since they are very sensitive to fluctuations (thermal) they21

are usually difficult to predict.22

In this paper, we discuss how coupling can play a role in driven systems as they self-assemble to23

give rise to emergent order. We start with the simplest statistical model that shows phase-transition24

- the two-dimensional square lattice Ising model. Following which, we model the phenomena of25

synchronization of a large set of coupled oscillators or the Kuramoto model. Both of these systems are26

numerically modelled and the effect of coupling on the emergence of order is discussed. The results27

are then compared with an experimental system, the Rayleigh-Bénard convection for different fluid28

mixtures at varying Rayleigh numbers (103 − 106). Our study indicates that the nature of emergent29

order, and the second statistical moment of the respective intrinsic variables follow similar trends30

across the three systems [14–16].31
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1.1. Ising Model32

One of the earliest physical models that studied the emergence of order as a consequence of
interaction between the agents is the Ising model [17,18]. Traditionally the Ising system was used
to model ferromagnetism in statistical physics, where magnetic dipoles could either have a spin
‘up’ or ‘down’. Since then it has become a prototype for many two-state model systems examples
include, protein folding, ligand-receptor interactions, spin glasses, firing of neurons etc [19–22]. The
Hamiltonian for an Ising system in the presence of an external field ‘h’ is given by,

H = ∑
ij

Jijσiσj −∑
j

hjσj (1)

The spins are denoted by σ and the indices represent neighboring lattice sites. The signature of Jij tells
us the nature of interaction between the pair (i, j). While the simplest case of the Ising system is the
one-dimensional case, interesting features emerge when it is studied on a two-dimensional square
lattice. The two-dimensional square-lattice Ising model is one of the simplest statistical models that
allows for phase-transition [17,18,23]. In order to numerically solve the problem a two-dimensional
partition function is defined,

Z(m, n) = ∑
σ

exp
(

m ∑
i,j

σiσj + n ∑
i,j

σiσj

)
(2)

Here, σ assigns a value of either +1 (up) or −1 (down) for each lattice site and the variables ‘m’ and ‘n’
denote the rows and columns of the lattice (the special case being m = n = N) with periodic boundary
conditions. For the case of isotropic coupling one achieves a phase transition when,

βc =
ln(1 +

√
2)

2
≈ 0.4 (3)

The dynamics of the model was simulated using a Monte-Carlo algorithm to randomly assign spin33

values at every lattice site. One can encounter a practical problem if the spins are to randomly flip34

at every lattice site with each simulation step, and end up eventually with a checkerboard pattern.35

Therefore, one needs to create a Markovian decision model where the spin state at a site is the most36

probable outcome based on spin probabilities in a set of randomly chosen sites within the lattice. While37

better prediction based on larger regions for decision making makes the simulation faster, this was38

not really the aim of the model. Macroscopically, the system’s dynamics is ‘equilibrium-like’, but39

microscopically spin outcomes at each lattice site is inherently stochastic. The emergence of order40

was further analyzed when the system was externally perturbed under conditions: h = constant and41

h(t) = A sin ωt (refer Equation 1).42

1.2. Kuramoto Model43

Similar to the Ising system one can model collective synchronization in a large population of
oscillating elements. The Kuramoto model is a mathematical model that treats a system as an ensemble
of limit-cycle oscillators described only by their phases [24–26]. In the simplest version of the model,
each oscillator in the Kuramoto system has its own intrinsic natural frequency ωi and is coupled to
every other oscillator in the system. The intrinsic natural frequencies of the oscillators are drawn from a
predefined distribution, usually a normal distribution with well-defined mean and standard deviation.
As the system collectively synchronizes, the different frequencies spontaneously locks to a common
frequency, Ω. The Kuramoto model has found several successful applications in condensed matter
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physics specially in the study of biological phenomena and active matter [25,27,28]. The governing
equation for the system is given by,

dθi
dt

= ωi +
κ

N

N−1

∑
j=1

sin(θj − θi), j 6= i (4)

Here, the phase of an oscillator is given by θi and the coupling strength by κ. Through the following
transformation one can solve this nonlinear differential equation for the mean-field case, N → ∞:

Reiφ =
1
N

N

∑
j=1

eiθj (5)

With R as the order parameter and φ the average phase, one can transform Equation 4 and rewrite it as,

dθi
dt

= ωi + κR sin(φ− θi) (6)

Since the oscillators are randomly oriented, the sum over all oscillator phases average to zero. Hence,
Equation 6 becomes,

dθi
dt

= ωi − κR sin(θi) (7)

For sufficiently strong coupling one achieves a fully synchronized state (R → 1). At a fully44

synchronized state all the oscillators share a common frequency while their phases may differ.45

Under steady-state condition (dθi/dt = 0), the fully synchronized solution for Equation 7 reduces to46

ωi → Ω = κ sin(θi) where Ω is the common frequency of the oscillators. In this study, the mean-field47

Kuramoto model was simulated on a two-dimensional square lattice. The effect of coupling strength48

was observed on the time evolution of the order parameter and simultaneously on the second statistical49

moment of the angular frequencies of the oscillators. The effect of several other types of coupling50

mechanisms were also studied (like distance-dependent inverse square), but are not presented in this51

paper. Interested readers are referred to [29].52

1.3. Rayleigh-Bénard Convection53

Finally, we discuss one of the simplest experimental setup to study pattern formation and
self-organization. As a thin layer of viscous fluid is heated and convection sets in, one can observe
thermal gradients on the surface of the fluid film which are stable in time. The regular pattern of
convection cells are known as Bénard cells and the phenomena, Rayleigh-Bénard convection [4,30–32].
To date, it remains one of the most actively and extensively studied physical system. Due to its
conceptual richness, the dynamics of a Rayleigh-Bénard convection phenomena connects fundamental
ideas from both non-equilibrium thermodynamics and fluid mechanics [33–35]. The beauty of this
system lies in its simplicity, wherein a dimensionless quantity, the Rayleigh number (Ra), determines
the onset of convection which is defined by,

Ra =
gβ∆Tl3

να
(8)

Here, the physical quantities g stands for acceleration due to gravity, β for thermal expansion54

coefficient, ∆T for the thermal gradient across the system, l for fluid film thickness, ν for kinematic55

viscosity and α for thermal diffusivity. A simple setup for the Rayleigh-Bénard consists of a top cover56

and a bottom base on which a copper pan is placed. The top cover is made up of wood and has ducts57

for forced convective heat transfer. The thermocouples attached to the ducts measure the temperature58

of the incoming and outgoing gas. The bottom rest, also made up of wood has a cavity with a recess on59

which the copper pan sits snugly. The wooden base rests on top of a block of foam. A thermocouple60
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and a heater is attached to the base of the copper pan which measures the bottom temperature of the61

pan. An infra-red camera is placed at a height above the copper pan which captures the real-time62

thermal images of the convection cells. The temperature scale of the camera is calibrated by heating the63

empty copper pan. The data obtained in this study are grey-scale thermal images that can be converted64

into a temperature matrix. The temperature of the top layer of the fluid film is obtained by averaging65

over the entire exposed area. With this setup in place, two types of studies are performed: spatial and66

temporal. In the temporal study, thermal statistics are recorded from a room temperature equilibrium67

to a non-equilibrium steady-state as the system is thermally driven by regulating the power input68

through the heater. Whereas, in the spatial study thermal statistics are obtained once the system has69

reached a non-equilibrium steady-state. While the temporal study allows us to envision the evolution70

of order in the system, the spatial study lets us visualize how order is spatially distributed through71

emergent length-scales. One can find more details on the study: the experiments and the analyses72

here [15,16].73

2. Results74

Figure 1. a) Figure shows phase transition in a two-dimensional square lattice Ising model. The
magnetization in the system (S/S̄) is plotted as a function of the inverse temperature (β). Vertical
dotted line denotes βc ≈ 0.44 on the abscissa. b) Figure shows magnetization as a function of time
for three cases: h = 0 (dashed), h = A sin ωt (solid) and h = constant (dotted). c) Figure shows
magnetization as a function of inverse temperature for the previous three cases. d) Figure shows
magnetization (in black) and standard deviation of magnetization (σS/S̄, in red) as a function of time.

In this section we discuss the results from our numerical simulations and the experimental study.75

We are essentially looking at the possibility that these systems which are distinctly different from one76

another exhibit characteristics that are similar when driven out-of-equilibrium. In Figure 1, we report77

our results from the simulation of the two-dimensional square lattice Ising model. Figure 1a plots78

magnetization as a function of inverse temperature (β = 1/kBT). The magnetization (S/S̄) acts as79

the order parameter for the system. The ferromagnetic transition happens around β ≈ 0.44 which80

corresponds to the Curie temperature (see Equation 3) [18]. The Ising system is then perturbed by an81

external field, and the evolution of the order parameter is plotted as a function of time in Figure 1b82
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and as a function of inverse temperature in Figure 1c. In the case of no external field one can see that83

the spins eventually lock into a mixed state with some of the lattice sites with, say ‘up’ spin and the84

remaining with ‘down’ spin. Therefore, the system does not reach a fully spin ‘up’ or spin‘down’ state85

as seen from Figure 1b. This however is not the case when there is an external perturbation as the86

system eventually directs itself to the direction of the external perturbation as that is energetically87

more favorable. In case of a sinusoidal time varying field, some oscillations are observed because of88

periodic aligning and re-aligning. The smaller the temperature, the larger the β and as theory predicts89

we see phase transitions at sufficiently low enough temperature in Figure 1c. Therefore, for no external90

perturbation, the transition temperature seems to be the lowest at β ≈ 0.4. In Figure 1d, we plot the91

standard deviation of the spin as a function of time for the case of no external perturbation at β = 0.2.92

The standard deviation being a measure of fluctuation steadily decreases as order emerges in the93

system. This observation although being intuitive yet non-trivial makes us think whether this is a94

general feature in systems where order emerges as they are driven out-of-equilibrium.95

Figure 2. a) Figure shows the scaled standard deviation (σ/σmax) of the angular frequency as a function
of time (log-scale) in a two-dimensional Kuramoto system on a lattice for different coupling strengths
(κ). b) - d) Figures show scaled standard deviation of the temperature as a function of time (log-scale)
for different fluid samples in a Rayleigh-Bénard convection system. Note that the Rayleigh number
(Ra) changes from non-turbulent to turbulent. e) - h) Figures show the evolution of the order parameter
(R) as a function of time (log-scale) for the four systems.

In Figure 2, we plot the scaled standard deviation of the intrinsic variable and emergent order
as a function of time for the Kuramoto system and the Rayleigh-Bénard convection. The intrinsic
variable in the Kuramoto system is the angular frequency of the oscillators (ωi) which collapses to
a common frequency (Ω) as the system achieves synchronization. Similarly, in the Rayleigh-Bénard
system spatially-averaged temperature (〈T(t)〉) plays the same role. As the system approaches a
steady-state, 〈T(t)〉 → 〈T∞〉, where 〈T∞〉 is the spatially-averaged steady-state temperature of the
system. In Figure 2a, we plot the scaled standard deviation for the Kuramoto model as a function of
time for two values of the coupling strength, κ = 1.5 and κ = 2. It is evident from the theory and the
plot in Figure 2e that order (R, defined in Equation 5) emerges faster in the case of higher coupling
strength. At time-step, t = 100 one can observe that atleast more than half of the oscillators present in
the system are synchronized (from Figure 2e) and therefore one observes a sharp decline in the scaled
standard deviation plot in Figure 2a. Later one can notice that as t ≥ 110 there is a sudden spike in the
standard deviation as order increases further. The reason for this could be attributed to a mixture of
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synchronized and unsynchronized oscillators as R < 1. As time progresses, the natural frequencies of
all the oscillators approach closer to mean-field common frequency. However, due to their equally
random phase orientations, some of the oscillators reach the common frequency and lock themselves
in that state earlier than the other. A situation like this although reduces the standard deviation when
compared to the randomized initial state it however increases the standard deviation at an instant
when these two groups of oscillators start oscillating simultaneously, one with low fluctuations and
the other with higher fluctuations. As one would expect, this scenario appears to last longer in the
case of lower coupling strength among the oscillators because of more unsynchronized oscillators than
synchronized ones at any given instant in time. Following our results from the Kuramoto system we
look at the Rayleigh-Bénard convection in the remaining panels of Figure 2. In our experiments we use
three fluid samples: silicone oil, glycerol and glycerol-water mixture (1 : 4 and 1 : 2 by volume). The
three fluid samples allow us to explore a wide range of Rayleigh numbers. There is no well-defined
order parameter in a Rayleigh-Bénard system, therefore we define one based on the thermal profile at
steady-state as,

R =
〈T(t)〉 − 〈T0〉
〈T∞〉 − 〈T0〉

, such that 0 ≤ R ≤ 1, when 〈T0〉 ≤ 〈T(t)〉 ≤ 〈T∞〉 (9)

Here, 〈T(t)〉 represents spatially-averaged temperature at any instant in time, 〈T0〉 represents96

spatially-averaged temperature at initial equilibrium state (room temperature) and 〈T∞〉 represents97

spatially-averaged temperature at a non-equilibrium steady-state. For each of the fluid samples we98

look at the scaled standard deviation plots as order emerges. In the case of silicone oil sample, the fluid99

being more stable due to its high viscosity, ν = 150 cSt and low Rayleigh numbers we see a decline100

in the fluctuations in Figure 2b. This decline can be mapped to the first instance when convection101

cells start to appear in the system. The fluctuation reaches a minima when a number of cells have102

fully formed and nucleated at the center of the copper pan. As the system has not yet reached a103

steady-state for atleast another ∼ 103 time-steps (see Figure 2f) the temperature keeps on rising and104

hence, the standard-deviation. With Rayleigh numbers being almost in a similar range, we see a105

different characteristic with glycerol as our working fluid. Glycerol being a much lighter fluid with106

viscosity atleast a magnitude lower than silicone oil first nucleates into convection cells which remain107

stable for sometime, but quickly divides into smaller cells. This two-step nucleation results into two108

regions of decline in the standard deviation plot as shown in Figure 2c. In Figure 2d, we look at thermal109

fluctuations in glycerol-water mixtures. The standard-deviation appears to decline much faster and110

earlier than the earlier plots (at around time-step, t = 102), but it lasts for a much shorter duration.111

The reason for this appears to be lower viscosities (∼ 10−2 cSt) and higher Rayleigh numbers for the112

glycerol-water mixtures. Therefore, nucleation not only happens early but also spreads at a faster113

rate throughout the pan. Following which, they break down into smaller and smaller domains which114

dissipate heat rather chaotically as the system enters a turbulent regime. One can observe this from the115

amount of noise in the standard deviation plots, the magnitude of which keeps on increasing with time.116

Moreover, the system also does not reach a steady-state (temperature graph not shown) as one can117

see in Figure 2h, where the order as a function of time seems to be monotonic near R = 1 rather than118

being asymptotic. The similarities between the Kuramoto model and the Rayleigh-Bénard convection119

are striking. If the extent of synchronization in the Kuramoto model is considered as a measure of120

order then the Rayleigh-Bénard convection also shows similar trends as it reaches a non-equilibrium121

steady-state. Since, matter does not leave the system, the continuity equation is preserved. At room122

temperature equilibrium state, the velocity vectors are randomly oriented, therefore the net directional123

component of the velocity field cancels itself out. While, a steady-state leads to a well-defined (and124

directed) velocity field which transports heat from the bottom of the copper pan (hot) to the top layer125

of the fluid film (cold). Therefore, emergent order in the Rayleigh-Bénard system corresponds to126

synchronization of the frequencies of individual convection cells as the system reaches a steady-state127
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temperature. Thus, ω = dθ/dt = 2u∞/l where l/2 is the half thickness of the fluid film and the128

steady-state velocity, ~u∞ ∝ ∇T where ∇T is the thermal gradient across the fluid film thickness.129

Figure 3. a) Figure shows the probability density functions (log-scale) for the scaled angular frequency
fluctuation (δω?). The initial randomized state data is fit with a Gaussian (in black) and the final state
data is fit with a Lorentzian (in red). b) Figure shows the probability density functions (log-scale) for
the scaled thermal fluctuation (δT?) for two different fluid samples at room temperature along with
respective Gaussian fits. c) Figure shows the probability density functions (log-scale) for the scaled
thermal fluctuation for two different fluid samples at steady-state along with kernel density estimates
(KDE). Note that in the final state the two samples correspond to two separate Rayleigh numbers. d)
Figure shows the probability density functions (log-scale) for the scaled thermal fluctuation for two
different fluid samples at steady-state along with respective Gaussian (in black) and Lorentzian (in red)
tails. The absence of sufficient data points prevent us from fitting the final state data of the Ra = 1790
sample with a Lorentzian function.

In Figure 3, we plot the probability densities of the scaled fluctuation of the intensive variables for
the initial randomized state and compare them with the final synchronized state for the Kuramoto
model and the Rayleigh-Bénard system. Fluctuation in the Kuramoto system is measured by the
deviation of the natural frequency of an oscillator from the mean frequency of the system, δω =

ω(t)− 〈ω〉. This deviation in the natural frequencies of the oscillator is scaled by the mean frequency
of the system, which we define as scaled fluctuation for the Kuramoto system, δω? = δω/〈ω〉. Once
the oscillators are fully synchronized, 〈ω〉 → Ω. Similarly, in the Rayleigh-Bénard convection we define
thermal fluctuation as δT = T(t)− 〈T〉, and δT? = δT/〈T〉. At room-temperature equilibrium, 〈T〉 →
T0 and at steady-state, 〈T〉 → T∞. As an equilibrium state corresponds to symmetry conservation,
one expects to obtain normal fluctuations in the initial state. In Figure 3a and 3b, we plot the scaled
fluctuation distribution for the Kuramoto oscillators and the Rayleigh-Bénard convection respectively
in their initial state. We can clearly see that the data obeys very well with the Gaussian fits centered
around the origin. For the final fully synchronized state of the oscillators one would expect that a
probability density function which would take the form of a delta function sharply centered at the
origin such that,

δ(x) =

{
0 x 6= 0

∞ x = 0
and

∫ +ε

−ε
dxδ(x) = 1 if 0 ∈ [−ε,+ε] (10)

Note that in the above equation, x = δω?. A realistic approximation to such a distribution when there
are tails in the data is a Lorentzian function,

δ(x) = lim
ε→0

1
π

ε

x2 + ε2 (11)

Therefore, a Lorentzian function of the form as shown in Equation 11 when fitted to the Kuramoto130

data for the final synchronized state, and we get a very good agreement between the fit and the data as131

seen from Figure 3a. The tail present in the data is captured by the functional part which decays as,132
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1/x2 in the neighborhood of 0 ∈ [−ε,+ε]. In the case of the Rayleigh-Bénard convection we cannot133

expect to see a single sharply peaked distribution centered around the origin for the scaled thermal134

fluctuations. As we can see from Figure 3c and 3d, the data shows the presence of two peaks (or135

bimodality). The bimodal distribution in the thermal fluctuations originates from the fact that there136

are upward and downward drafts as the fluid element completes a convection cycle between the137

bottom hot and the top cold surface. In Figure 3c, we plot the kernel density estimates to determine138

the shape of the probability density function for the two experimental trials with different Rayleigh139

numbers. In Figure 3d, we proceed to fit the data piece-wise. We choose individual tails and fit them140

with a pair of Gaussian fit functions (in black) and then with a pair of Lorentzian fit functions (in red).141

As we can see from our plots in Figure 3d, both Gaussian and Lorentzian fits superimpose over one142

another. The difference between the center of the two peaks is about 0.04 units with one peaking in the143

positive domain and the other in the negative. Therefore, one peak signifies the contribution of the144

upward plumes and the other of the the downward plumes. We are still unsure of the fact that how145

the fit functions from the two tails merge into one another. In some of our recent works we discuss the146

presence of a mixture of local equilibrium regions in the Rayleigh-Bénard convection which describes147

the bimodal nature of the thermal fluctuations [14–16]. To conclude, in the mean-field Kuramoto148

model the final synchronous state being unique allows for the existence of a sharply peaked delta-type149

distribution, which in reality is best illustrated by a Lorentizian fit. In the case of a non-turbulent150

Rayleigh-Bénard convection at steady-state we find that there exist two possible states due to the151

existence of spatial thermal gradients which are stable in time. These stable spatial gradients lead to152

the emergence of two local equilibrium-like regions, fluctuations within which can be best represented153

by respective Gaussian distributions [16].154

Figure 4. Figure shows scaled standard deviation (σ/σmax) of the angular frequency and lattice entropy
(S/Smax) as a function of time in a two-dimensional Kuramoto system on a lattice.

In Figure 4, we plot the lattice entropy as a function of time for a two-dimensional Kuramoto
model with high coupling strength. We have previously seen that evolution of order in the system
is inversely related to the fluctuations of the intrinsic variables. By calculating the Shannon entropy
summed over every lattice site at every instant in time, we look at the relationship between entropy
reduction and fluctuation decay as order emerges in the system.

S(ρ) = −∑
j

ρ(ωj) ln ρ(ωj) (12)

Therefore, to make sure that the Kuramoto system reaches a fully synchronized state, a high enough155

coupling between the oscillators is chosen and the simulation is run for a very long duration. It is156

not surprising that at κ = 5, the model achieves complete synchronization after just 500 time-steps.157
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The Shannon entropy is calculated from Equation 12 and is scaled by its maximum value, such that158

0 < S/S̄ ≤ 1 [21,36]. As order emerges, one can clearly see from Figure 4 that a reduction in system’s159

entropy is accompanied by a reduction in the fluctuation of the intrinsic variable.160

3. Conclusions161

In this paper, we consider three systems that can be externally perturbed and driven162

out-of-equilibrium. While the Ising model and the Kuramoto oscillators are numerically solved,163

the Rayleigh-Bénard convection on the other hand was experimentally probed. The common feature164

of all the three systems is the emergence of order as they are driven out-of-equilibrium. The Ising165

and the Kuramoto models self-organize by synchronizing their spins and their natural frequencies,166

respectively. On the other hand, spatio-temporal order that emerges in the case of a Rayleigh-Bénard167

convection is a result of the competing forces between viscosity and buoyancy which give rise to168

convective instabilities. A common observation across the three systems was that fluctuations of the169

intensive variables decay as order emerges, which may seem counter intuitive given that the system is170

out-of-equilibrium. By virtue of being in a non-equilibrium state the fluctuations in the system should171

dominate and drive the system further away from equilibrium. However, that is not observed across172

the three systems that we study in this paper. This brings us to a more pertinent question as to how far173

away are these systems from equilibrium? Although we do not yet have a metric to define that but we174

can anticipate that these systems even when are driven out-of-equilibrium are in a quasi-equilibrium175

state, where the local equilibrium hypothesis is held true [37,38].176

We believe this is an important observation for any physical system to show stable emergent177

patterns. We saw in our experimental results that for high Rayleigh numbers, we enter the turbulent178

regime which though give rise to structures but at the same those structures are found to be not stable179

in time. We imagine that a system can only give rise to stable patterns when it is not driven too far180

away. Therefore, existing statistical physics models for synchronization can probably hold the key to181

explain more complicated systems that give rise to stable structures, like the Rayleigh-Bénard system.182

Therefore, through this paper we attempt to draw similarities by exploring different systems that show183

emergent structures through detailed quantitative analysis while asking the reader to find ways to184

understand complex emergent phenomena through simpler models from statistical physics.185
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