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Abstract: Computational simulation using mathematical models is a useful method for 

understanding the complex behavior of a living system. The majority of studies using mathematical 

models to reveal biological mechanisms uses one of the two main approaches: the bottom-up or the 

top-down approach. When we aim to analyze a large-scale network, such as a comprehensive 

knowledge-integrated model of a target phenomenon, for example a whole-cell model, the variation 

of analyses is limited to particular kind of analysis because of the size and complexity of the model. 

To analyze a large-scale regulatory network of neural differentiation, we developed a hybrid 

method that combines both approaches. To construct a mathematical model, we extracted network 

motifs, subgraph structures that recur more often in a metabolic network or gene regulatory 

network than in a random network, from a large-scale regulatory network, detected regulatory 

motifs among them, and combined these motifs. We confirmed that the model reproduced the 

known dynamics of HES1 and ASCL1 before and after differentiation, including oscillation and 

equilibrium of their concentrations. The model also reproduced the effects of overexpression and 

knockdown of the Id2 gene. Our model suggests that the characteristic change in HES1 and ASCL1 

expression in the large-scale regulatory network is controlled by a combination of four feedback 

loops, including a large loop which has not been focused on. The model extracted by our hybrid 

method has the potential to reveal the critical mechanisms of neural differentiation. The hybrid 

method is applicable to other biological events. 

Keywords: neural differentiation; regulatory motif; feedback regulation; signaling pathway; 

mathematical models 

 

1. Introduction 

Computational simulation using mathematical models is useful for understanding complex 

systems. Mathematical models of biological mechanisms use either the bottom-up or top-down 

approach [1]. Both approaches have their own challenges. The bottom-up approach has problems in 

acquiring regulatory relationships, whereas the top-down approach has problems in parameter 

determination. In the bottom-up approach, a few molecules of interest may be the pivot of an 

extended molecular network underlying the target biological event. For example, a mathematical 

model of the budding yeast cell cycle has been constructed using the bottom-up approach by 

combining known biochemical reactions [2]. This approach could yield a widely applicable model to 

simulate each specific analysis subject, but it is difficult to apply to the analysis of comprehensive 

biochemical networks because of limited information on the regulatory interactions of molecules and 

the parameters of mathematical models. The top-down approach is used to determine the intrinsic 

control mechanisms of target biological events. A simple model that simulates characteristic local 

dynamics is constructed using pathway databases or in a data-driven manner based on omics data 

by excluding non-essential factors from a comprehensive network. In the absence of a comprehensive 
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pathway map, a statistical model is one of the first choices to construct a comprehensive network [3–

5]. Yet, analysis of a large-scale network is still challenging, given that many parameters need to be 

determined in advance. Estimation of all the parameters of a whole-cell model has not yet been 

appropriately resolved [6]. To analyze the dynamics of a large-scale network, it is often divided into 

feasible-size modules, which are defined as small networks of functional units amenable to 

simulation and analysis [7]. Overall, the bottom-up approach can be used to analyze part of a 

biological event around a source molecule, but it is not applicable to a large-scale network; the top-

down approach cannot be applied to analyze the dynamics because of the problem of parameter 

estimation. A whole-cell mathematical model of the bacterium Mycoplasma genitalium, which 

contains 525 genes, was built on the basis of enormous experimental data [8]; however, the use of a 

life-cycle model is not a simple way to analyze the mechanisms of dynamic control and requires a lot 

of information about the particular species. 

To comprehensively analyze the dynamics of regulatory mechanisms, we developed a hybrid 

method that combines the bottom-up and top-down approaches. We aimed to decrease the number 

of modeled elements without losing the characteristic dynamics; therefore, we focused on network 

motifs that are important for the dynamics. Network motifs are subgraph structures that recur more 

often in a metabolic network or gene regulation network than in a random network. They are 

important for determining intrinsic regulation mechanisms derived from network characteristics [9]. 

In the current method, we extracted motifs from a large-scale regulatory network and used them to 

reconstruct a simple network, which reflects the original dynamics of the entire network because it 

contains these important motifs. We especially focused on a cascade motif and a feed-back loop motif. 

A cascade motif is a sequence of unidirectional edges, and a feed-back loop is a circuit structure that 

feeds back some of the output to the input. 

We then modeled the differentiation of neural stem cells (NSCs) and analyzed the characteristic 

changes of dynamics during differentiation. NSCs replicate and differentiate into neurons, astrocytes, 

or oligodendrocytes [10]. Some models simulate early differentiation or functional neurons [11, 12], 

but no model enables us to simulate and analyze the dynamics of the large-scale regulatory network 

of neuronal differentiation. The basic helix-loop-helix type transcription factors HES1, ASCL1, and 

OLIG2 show characteristic differences in their dynamics before and after differentiation [13]. They 

also maintain oscillatory dynamics during cell replication. If the concentration of ASCL1 is higher 

than that of HES1 during the non-oscillatory state, the NSCs differentiate into neurons. If the 

concentration of HES1 or OLIG2 is higher than that of ASCL1, the NSCs differentiate into astrocytes 

or oligodendrocytes, respectively [13]. In the current study, we constructed a comprehensive 

molecular-interaction network of NSC differentiation into neurons using the available data; we then 

developed a mathematical model that maintained the original dynamics of the network by 

integrating network motifs. The model could simulate the characteristic dynamic changes before and 

after differentiation. The model also reproduced the effect of overexpression or knockdown of the 

Id2 gene, which encodes an inhibitor of HES1 dimerization [14]. We suggest that stabilization of 

oscillations and characteristic dynamic changes are regulated by the combination of multiple 

feedback loops. 

Figure 1 illustrates the analysis processes in this study. Our method allows the analysis of a 

comprehensive regulatory network by collecting information exhaustively and scaling down the 

network according to the rationality of dynamics without arbitrariness. On the basis of the analysis 

of the dynamics of neuronal differentiation, we here propose that a combination of multiple motifs 

is important to define the major dynamics of an entire network. 
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Figure 1. Flow diagram of the analysis processes in this study. 

2. Materials and Methods  

2.1. Construction of a neuronal differentiation network 

To construct the complete signaling network, relations among molecules involved in neuronal 

differentiation were collected from the literature and pathway databases [15–22], mainly the NCI 

Pathway Interaction Database [23] and WikiPathways [24]. Molecular interactions related to glial 

differentiation were excluded to focus on the differentiation of NSCs into neurons. The signaling 

networks were constructed using CellDesigner v4.3 [25] by merging binary relations from each data 

source and were saved in Systems Biology Markup Language (SBML) format. The complete signaling 

network was constructed by manually merging all the SBML files. Then, every molecule was color-

coded according to its type (receptor, enzyme, transcription factor, or other). Finally, the enzymes 

and other molecules were divided into active and inactive forms. The graphical representation 

conformed to the proposed set of symbols in CellDesigner [26]. 

2.2. Contraction of the network 

To simplify the network without losing the essential loop structures that are important to the 

original dynamics, the sequences of unidirectional edges (cascade motifs) were converted to a single 

edge between two molecules. The rate of a cascade reaction depends on the rate-limiting reaction; 

therefore, each cascade was represented as a single rate-limiting reaction. The contraction was 

continued manually until a network contained hub nodes only (or nearly so). After cascade 

contraction, feedback loop structures were extracted as a core network. At this time, a transcription–

translation self-feedback loop, which was initially constructed from one or two molecules, was 

reconstructed to include three molecules by adding a transcription or translation event, because such 

events require much more time than signal transduction events, and this investment of time is related 

to nonlinear dynamics. Finally, to minimize the network size, feedback loops in the core network 

were contracted again until at least three nodes. After this contraction, the nodes of contracted 

cascade were named on the basis of the node name of the original cascade. 

 2.3. Mathematical model construction 

The contracted network was converted into a mathematical model (digested model), in which 

the dynamics of the original network were maintained. The model was constructed using 
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CellDesigner. The contracted network was drawn and kinetics with parameters were assigned to 

every edge using the SBMLsqueezer [27] plug-in in CellDesigner. In SBMLsqueezer, the 

‘Reversibility’ option was set to ‘Use information from SBML’. Every type of enzyme kinetics was set 

to the Michaelis–Menten equation, which is one of the best-known models of enzyme kinetics. That 

of transcriptional or translational reactions was set to the Hill equation, which is the simplest way to 

describe sigmoidal responses. The parameters were estimated in the range of physiologically relevant 

values which could simulate the experimental results reported by Imayoshi et al. [13]. The range was 

determined from records in BioNumbers [28, 29]. The initial concentration of each protein was set to 

1.0 µM because the typical concentration range of a signaling protein is 10 nM–1 µM [30]. For 

enzymes and other molecules, the concentration of the active and inactive form was set to 0.5 µM 

each. 

2.4. Simulation and analysis 

The dynamics of the digested model were validated by steady-state simulation and parameter 

analysis. Simulation was performed using CellDesigner, and the analysis was conducted using 

COPASI 4.14 (Build 89) [31]. The simulation was calculated using SOSlib [32] with the error tolerance 

set to −6. To simulate the change in dynamics due to the induction of differentiation, an event that 

perturbs the concentration of NOTCH (differentiation control factor) at an arbitrary time point was 

configured. The parameter search and bifurcation analysis were conducted using the Parameter Scan 

function in COPASI, which records the time course of an arbitrary molecule for 500-h while changing 

an arbitrary parameter or concentration within the defined range. The time course was calculated 

using LSODA [33] with the following parameters: Integrate Reduced Model, 0; Relative Tolerance, 

1e–06; Absolute Tolerance, 1e–12; Max Internal Steps, 10,000. The scope of a parameter scan was set 

to 0.001–1000, and the range of NOTCH concentrations as a differentiation control factor was set to 

0–2.8µM. 

3. Results 

3.1. Signaling network of neuronal differentiation 

To construct a signaling network of NSC differentiation into a mature neuron, we collected publicly 

available information about the switch from NOTCH, a molecular marker of differentiation, to 

neuronal markers such as Tau. The network was constructed by using 54 molecules and contained 

five modules (Figure 2A). The first module was the differentiation switch from NOTCH. The 

second module was the expression of transcription factors that are early neural markers [15–19]. 

The third module was the transition from an immature neuron to a mature neuron. The fourth 

module was regulation to gain mature neuron functions [20, 21]. Finally, beta-catenin, a molecule 

related to the function of mature neurons, controls a bHLH-type transcription factor to adjust 

differentiation [22]. Converting this entire signaling network into a mathematical model can be 

challenging because multiple parameters need to be taken into account. Because the network 

dynamics are controlled by the dynamics of individual network motifs [34], we focused on 

feedback loop motifs that are important to nonlinear dynamics. For example, a feedback loop may 

confer the ability of homeostasis, ultra-sensitivity, hysteresis, and bistability [35]. A positive 

feedback loop is defined as a loop structure containing zero or an even number of negative 

regulations, and a negative feedback loop is defined as a loop structure containing an odd number 

of negative regulations (Figure 3A). Although some tools could find a loop structure [36, 37], it was 

difficult to find a large loop structure whose size is over 15 nodes. Therefore, to find a large loop, 

we need to extract a loop structure from complicated and large network manually. To facilitate 

manual extraction, we contracted the entire network by cascade contraction until a network 

contained hub nodes only, and extracted feedback loop motifs.  (Figure 3B, Additional file 1: Figure 

S1 and Table S1). After contraction, feedback loop structures were extracted to obtain the core 

network of marker genes, which contained 14 molecules (Figure 2B). Although there were also 
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feed-forward loops in the entire network, they located on downstream of the network and had no 

connection to marker genes. So the feed-forward loop were omitted from core network. The core 

network included four feedback loop motifs: (1) a negative-feedback loop formed by HES1 

dimerization, (2) a positive-feedback loop between PI3K and aPKC_PAR3_PAR6, (3) a negative-

feedback loop between PTEN and GSK3B, and (4) a negative-feedback loop between beta-catenin 

and HES1. The first three loops have been previously investigated [16, 20] (the first one has been 

especially well analyzed [38, 39]), but the negative-feedback loop between beta-catenin and HES1, 

which was the largest in our model, has not been focused on. The core network retained the 

feedback loop motifs of the original entire network, and therefore was expected to maintain the 

original dynamics of marker molecules, HES1 and ASCL1. To analyze the dynamics of the core 

network, we constructed a mathematical model. 

 
Figure 2. Signaling network of neural stem cell differentiation based on publicly available data. (A) 

The entire signaling network. (B) Core signaling network: feedback loops extracted from the entire 

network. Rectangle nodes are generic proteins. Oval nodes are small molecules. Arrowhead node is 

receptor. Dashed-line nodes are active forms. Bold-line nodes are neuronal markers. Node color 

codes: yellow, receptor; red, transcription factor; orange, enzyme; blue, molecule related to a 

function of mature neuron; green, other. 
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Figure 3. Feedback loops and contraction. (A) Examples of positive and negative feedback loops. (B) 

Example of contraction. 

3.2. Mathematical model of the core network 

Because the core network was still too complex to convert into a mathematical model, we 

contracted it to the minimum nodes but maintained the feedback loop structures, including the 

differentiation switch NOTCH and the indicators of characteristic dynamics before and after 

differentiation (Figure 4, Additional file 3). The self-negative-feedback loop formed by HES1 

dimerization was reconstructed as a three-molecule loop by adding mRNA of HES1 (mHES1) as a 

transcriptional process, because the self-negative feedback loop represented by transcriptional and 

translational processes was actually composed of the generation of mRNA and translation of the 

mRNA (see Methods for details). Although previous studies introduced a delay into the model [11, 

12], we convolved the delay with the parameters of the HES1 translation and dimerization steps. 

The non-delay model of the HES1 self-loop generated oscillations (Additional file 1: Figures S2, S3, 

and Table S2). To minimize the network, most feedback loops were converted to three-molecule 

loops by cascade contraction. The contracted cascades were represented with the nodes in our 

digested model. The names of the nodes were determined based on the name of the first or the last 

node of the original cascade with the addition of the suffix _ca or _ci. The suffix _ca denoted the 

active form of a cascade, and _ci denoted the inactive form. The positive-feedback loop between 

PI3K and aPKC_PAR3_PAR6 was reconstructed as a three-molecule loop, and the contracted nodes 

were named PIP_ca (PIP_ci), aPKC_ca (aPKC_ci), and PI3K_ca (PI3K_ci) (Additional file 1: Figure 

S4). The negative-feedback loop between PTEN and GSK3B was reconstructed as a four-molecule 

loop, and the contracted nodes were named PTEN_ca (PTEN_ci) and GSK3B_ca (GSK3B_ci) 

(Additional file 1: Figure S5). The negative-feedback loop between beta-catenin and HES1 was 

reconstructed as a six-molecule loop (Additional file 1: Figure S6). This network translated into a 

deterministic mathematical digestedmodel governed by the Hill equation and Michaelis–Menten 

kinetics (Table 1). The final digestedmodel was constructed using 9 molecules (16 nodes) and 20 

reactions, which reduced the network size by 84.3% in comparison with the entire signaling 
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network. Thereafter, the dynamics of neuronal differentiation were analyzed by using the 

digestedmodel. 

 
Figure 4. Diagram of the toy model. The model consists of multiple feedback loops extracted from 

the core signaling network. Red edge is a component of a positive feedback loop. Blue edges are 

components of negative feedback loops. Node color codes: yellow, receptor; red, transcription 

factor; white, contracted node. 

Table 1. Differential equations of the toy model. 

Equation No. Equation 

1 
 

2 

 

3 
 

4 

 

5 
 

6 
 

7 
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8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

 

3.3. Simulation of the oscillatory dynamics 

To simulate the oscillatory state of HES1 and ASCL1 in undifferentiated NSCs as a basal condition 

(as reported by Imayoshi et al. [13]), the digestedmodel was investigated using an oscillatory 

parameter set. The ranges of 40 parameters (Table 2) allowed the model to maintain oscillations. To 

check whether these parameter values were physiologically relevant, we compared them to the 

general parameter values of Michaelis–Menten kinetics based on the BioNumbers database [28]. 

The minimal values of the parameters in Hill equation that allowed to reconstruct the expected 

behaviors of the model were chosen. Almost all parameters of enzymes, except kM_re2_s24 and 

kM_re2_s9, exhibit KM values above 0.1 µM [29], and almost all of the KM values in the model 

were above 0.1 µM in the oscillatory range. The maximum (37,596,000 h−1) and minimum (264 h−1) 

Kcat values were acquired from 27 records for mammals in BioNumbers (Additional File 2); all 

Kcat values in the model were within this range. These data indicated that the oscillatory state 

could be established under physiologically relevant conditions. The model could simulate the HES1 

and ASCL1 oscillation within the 2.5-h period reported by Imayoshi et al. [13] in the 

undifferentiated state as the basal condition (Figure 5A, Additional file 1: Figure S7). 
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Table 2. Oscillation parameter ranges. 

Parameter (unit) 2.5-h period Minimum Maximum Parameter description 

 (h-1) 0.99 0.69 2.45 Degradation rate constant of 

reaction 3 for substrate s3 

 (h-1) 1.29 1.03 2.28 Degradation rate constant of 

reaction 4 for substrate s2 

 (µM∙h-1) 0.4074 0.37 0.65 Dimerization rate constant 

of reaction 5 

 (h-1) 2.3 0.61 2.49 Dissociation rate constant of 

reaction 6 

 (h-1) 31.2 <0.001 >100 Degradation rate constant of 

reaction 8 for substrate s5 

 (h-1) 141.6 108 146 Turnover number of 

reaction 11 

 (h-1) 132.6 130 174 Turnover number of 

reaction 12 

 (h-1) 209.4 162 216 Turnover number of 

reaction 13 

 (h-1) 132 128 173 Turnover number of 

reaction 14 

 (h-1) 132 128 173 Turnover number of 

reaction 15 

 (h-1) 174 171 238 Turnover number of 

reaction 16 

 (h-1) 132 95 183 Turnover number of 

reaction 19 

 (µM∙h-1) 361.2 183 526 Maximal transcription rate 

of reaction 2 

 (µM∙h-1) 25.74 13.1 31.6 Mass action constant of 

reaction 1 

 (µM∙h-1) 10.86 <0.001 >100 Maximal transcription rate 

of reaction 7 
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 (µM) 50.0 48.9 65.5 Michaelis–Menten constant 

of reaction 11 for substrate 

s15 

 (µM) 1.62 1.26 1.66 Michaelis–Menten constant 

of reaction 12 for substrate 

s22 

 (µM) 0.21 0.21 0.29 Michaelis–Menten constant 

of reaction 13 for substrate 

s16 

 (µM) 28.4 21.6 28.9 Michaelis–Menten constant 

of reaction 14 for substrate 

s17 

 (µM) 12.7 9.4 13.1 Michaelis–Menten constant 

of reaction 15 for substrate 

s21 

 (µM) 0.45 0.22 0.49 Michaelis–Menten constant 

of reaction 16 for substrate 

s19 

 (µM) 1.2 1.18 1.61 Michaelis–Menten constant 

of reaction 17 for substrate 

s20 

 (µM) 0.91 0.89 1.52 Michaelis–Menten constant 

of reaction 18 for substrate 

s18 

 (µM) 9.0 6.2 12.8 Michaelis–Menten constant 

of reaction 19 for substrate 

s24 

 (µM) 0.62 0.38 0.88 Michaelis–Menten constant 

of reaction 20 for substrate 

s23 

 (µM) 0.04 0.029 0.048 Half-maximal inhibitory 

concentration of substrate 

s24 in reaction 2  

 (µM) 0.0023 <0.001 0.0025 Half-maximal inhibitory 

concentration of substrate s9 

in reaction 2  

 (µM) 0.116 <0.001 >100 Half-maximal inhibitory 

concentration of substrate s3 

in reaction 7  
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 (µM) 2.5 2.18 3.17 Half-maximal effective 

concentration of substrate 

s24 in reaction 2  

 (µM∙h-1) 88.2 67.9 90.9 Maximal reaction rate 

constant of reaction 17 

 (µM∙h-1) 14.52 10.7 14.9 Maximal reaction rate 

constant of reaction 18 

 (µM∙h-1) 24.0 17.9 33.3 Maximal reaction rate 

constant of reaction 20 

  2 2 2 Inhibition coefficient of 

reaction 2 for substrate s24 

  5 5 >10 Inhibition coefficient of 

reaction 2 for substrate s9 

  2 1 >10 Inhibition coefficient of 

reaction 7 for substrate s3 

  3 2 3 Hill coefficient of reaction 2 

for substrate s11 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2019                   

Peer-reviewed version available at Processes 2020, 8, 166; doi:10.3390/pr8020166

https://doi.org/10.3390/pr8020166


 

 
Figure 5. Simulation of the toy model. (A) Basic condition with a 2.5-h period. (B) Negative and (C) 

positive perturbation of NOTCH concentration at 50 h. (D) Bifurcation analysis of HES1 and ASCL1 

concentrations dependence on NOTCH concentration. Background colors show cell differentiation 

state; green, neuron; yellow, astrocyte. 

3.4. Model validation 

During neural differentiation, the characteristic dynamics of the transition from the oscillatory to 

the non-oscillatory state of HES1 and ASCL1 are controlled by the concentration of NOTCH [13]. In 

the non-oscillatory state after differentiation, the concentration of ASCL1 was higher than that of 

HES1 in a neuron, whereas the concentration of HES1 was higher than that of ASCL1 in an 

astrocyte. To simulate the physiological condition at the initiation of neuronal differentiation, we 

set a low concentration of NOTCH during simulation. As a result, ASCL1 became dominant in a 

non-oscillatory state. At the same time, the concentration of GSK3B_ca, which included GSK3B (a 

negative regulator [20]), decreased and the concentrations of aPKC_ca, which included 

aPKC_PAR3_PAR6, and PI3K_ca, which included PI3K (positive regulators [20]), increased (Figure 

5B). These results agreed with the previously reported experimental results during neuronal 

differentiation [13, 20]. Conversely, we set a high concentration of NOTCH and executed 

simulation. The oscillation of the concentrations of HES1 and ASCL1 disappeared and the 

equilibrium concentration of HES1 became higher than that of ASCL1 (Figure 5C). This result 

agrees with the previously reported initiation of glial differentiation [13]. Both ASCL1 and HES1 

maintained oscillations at physiologically relevant NOTCH concentrations in an NSC (Figure 5D) 

[30]. This NOTCH-dependent dynamic transition was consistent with the experimental results of 

Imayoshi et al. [13]. 

We also simulated the overexpression and knockdown of the Id2 gene, which encodes an inhibitor 

of HES1 dimerization [14]. The knockdown of Id2 promotes neuronal differentiation by 

suppressing HES1 and enhancing ASCL1 expression, and the overexpression of Id2 inhibits 

neuronal differentiation by enhancing HES1 and suppressing ASCL1 expression [14]. To simulate 

the inhibition of HES1 dimerization by Id2, an inhibition parameter, kSm_Id (an indicator of the 
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amount of Id2), was introduced into equations 1 and 3 (Table 1) to obtain equations 1′ and 3′ (Table 

3), respectively. When Id2 knockdown was simulated by setting kSm_Id to 0.1, oscillations 

disappeared, and a neuronal differentiation state with ASCL1 domination was observed at each 

NOTCH concentration (Figure 6A). When Id2 overexpression was simulated by setting kSm_Id to 

10, oscillations also disappeared, and a non-neuronal differentiation state with HES1 domination 

was observed at NOTCH concentrations over 0.7 µM (Figure 6B). Thus, the digestedmodel 

maintained the original dynamics of the entire network. 

 
Figure 6. Simulation of HES1 and ASCL1 concentrations under the Id2 gene knockdown or 

overexpression conditions. (A) Id2 gene knockdown with kSm_Id = 0.1. (B) Id2 gene overexpression 

with kSm_Id = 10. Background colors show cell differentiation state; green, neuron; yellow, 

astrocyte. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2019                   

Peer-reviewed version available at Processes 2020, 8, 166; doi:10.3390/pr8020166

https://doi.org/10.3390/pr8020166


 

 

Table 3. Differential equations of a model with incorporated inhibition of HES1 dimerization by 

Id2. 

Equation No. Equation 

1’ 
 

3’ 
 

 

3.5. Network motif analysis 

We analyzed the contribution of each motif to the results of simulation of NOTCH responsiveness 

by bifurcation analysis. To simulate a loss-of-function mutation that inhibits the self-feedback 

regulation of HES1, we collapsed the self-feedback loop of HES1 in our model and executed 

simulation. When the loop was collapsed by changing equation 2 to equation 2’ (Table 4), the 

oscillatory state, which is important for maintaining the undifferentiated state, disappeared (Figure 

7A). This result was consistent with the reported importance of the HES1 self-feedback loop in 

neuronal differentiation [38, 39]. To simulate the specific inhibition of the effect of GSK3B on PTEN, 

we collapsed the negative feedback loop between GSK3B and PTEN by changing equations 5 and 6 

to equations 5’ and 6’, respectively (Table 4). The oscillatory state shifted to higher NOTCH 

concentrations (Figure 7B), which means that this loop was involved in the sensitivity of oscillations 

to NOTCH concentration. GSK3B may promote or inhibit NOTCH signaling under different 

conditions depending on the loops involved [40-43]. The dichotomic characteristics of GSK3B may 

enable it to arbitrate the response to NOTCH, given that our simulation suggested that the 

GSK3B−PTEN loop regulated the sensitivity of oscillations to NOTCH. To simulate the specific 

inhibition of the effect of PI3K to PIP2, we collapsed the positive feedback loop between 

aPKC_PAR3_PAR6 and PI3K by changing equations 7 and 8 to equations 7’ and 8’, respectively 

(Table 4). The relative changes in HES1 and ASCL1 concentrations with NOTCH concentration 

were maintained, but the oscillatory state disappeared (Figure 7C); therefore, the 

aPKC_PAR3_PAR6−PI3K loop is required to maintain the oscillatory state. We estimated the effect 

of the collapse of this loop by inhibiting PI3K. A PI3K inhibitor, LY294002, inhibits proliferation of 

neural progenitor cells [22, 43]; our result agreed with the published data. To simulate the specific 

inhibition of the effect of beta-catenin on HES1, we collapsed the negative feedback loop between 

beta-catenin and HES1 by changing equation 2 to equation 2’’ (Table 4). The oscillations 

disappeared, and the ASCL1-dominant state became narrower (Figure 7D), indicating that this loop 

is required for maintaining oscillations and upregulating ASCL1 at low concentrations of NOTCH. 

The collapse of this loop equals beta-catenin inhibition, which represses proliferation of neural 

progenitor cells and accelerates glial differentiation [44, 45]. Glial differentiation is induced without 

oscillation under ASCL1 repression [13]. Our result that the collapse of this loop leads to ASCL1 

repression is consistent with the reported acceleration of glial differentiation by beta-catenin 

inhibition. These results suggest that multiple feedback loops are essential for the characteristic 

dynamics of neural differentiation. 
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Figure 7. Bifurcation analysis of HES1 and ASCL1 concentration dependence on NOTCH 

concentration when each feedback loop is collapsed. (A) Collapsed HES1 self-feedback loop. (B) 

Collapsed negative-feedback loop between GSK3B and PTEN. (C) Collapsed positive-feedback loop 

between aPKC_PAR3_PAR6 and PI3K. (D) Collapsed negative-feedback loop between beta-catenin 

and HES1. Background colors show cell differentiation state; green, neuron; yellow, astrocyte. 

Table 4. Differential equations of models with feedback loop removed. 

Equation No. Equation 

2’ 

 

2’’ 

 

5’ 
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6’ 
 

7’ 
 

8’ 
 

 

4. Discussion 

We generated an NSC differentiation network containing four feedback loops on the basis of 

publicly available data. Our digested model was constructed through cascade contraction of the 

comprehensive regulatory network with preservation of feedback loops. Three types of HES1 and 

ASCL1 states regulated by NOTCH concentration were consistent with NOTCH-dependent neural 

differentiation suggested by Imayoshi et al. [13]. Although experimental data show complex 

waveforms of HES1 and ASCL1, we simulated the main-frequency waves, which have a period of 2 

to 3 h [13], and analyzed the dynamics of the transition from the oscillatory to the non-oscillatory 

state qualitatively using a digested model. The results of the simulation of GSK3B, 

aPKC_PAR3_PAR6, and PI3K, represented as GSK3B_ca, aPKC_ca, and PI3K_ca in the digested 

model respectively, are consistent with previous experimental results [20] (Figure 5B, C). The 

results of the simulation of Id2 knockdown or overexpression are also consistent with experimental 

results [14]. Therefore, our digested model could adequately simulate the dynamics not only of 

HES1 and ASCL1 but also of other molecules. Our model suggests that three loops (HES1 negative 

self-feedback, positive feedback between aPKC_PAR3_PAR6 and PI3K, and negative feedback 

between GSK3B and HES1) are important to maintain undifferentiated state oscillations. We 

suggest that the negative-feedback loop between beta-catenin and HES1 in the comprehensive 

regulatory network is most important because of its greatest contribution to the characteristic 

dynamics (Figure 7D). A relation between beta-catenin and HES1 plays a role in tumorigenesis [46]. 

As HES1 controls cancer stem cells [47], the negative feedback loop that has not been focused on 

may be related to proliferation and differentiation of cancer stem cells. It is expected that a further 

experimental study such as making perturbation to the loop by knock down will reveal detail 

mechanism of neural differentiation. These findings could only be made by using the analysis 

based on a large-scale regulatory network, thus highlighting the effectiveness of our approach. 

We demonstrated that focusing on feedback loop motifs instead of the whole network when 

constructing a model was sufficient for agreement with experimental results. Our approach could 

be applied to analysis of various biochemical networks by simulation. By streamlining large-scale 

regulatory network construction, our approach could help to analyze various biological 

phenomena, such as cell differentiation, cell division, or pathogenesis. However, the large-scale 

regulatory network will be probably insufficient and heterogeneous when it is constructed using 

the available data alone. To overcome this false-negative problem (the relations that exist but 

cannot be detected), many data-driven network reconstruction methods have been developed. 

These statistical approaches are mainly classified under two categories, expression based [48] and 

sequence based [49]. Although the methods of both categories could reveal undiscovered relations 

that could not be inferred manually, the reconstructed network includes many false-positive 

regulations. A nonlinear model intrinsically causes a complex behavior. With an increase in the 

number of false-positive regulations, an increase in the number of nonlinearities becomes 

avoidable. Based on this mathematical background, a model with a high number of false-positive 
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regulations seemingly generates the real behavior, but is different from the real system; therefore, it 

is desirable to build a mathematical model only from reliable elements. Addition of false-positive 

regulation to the model could have a considerable effect and complicate the conversion of a data-

driven network into a mathematical model. Currently, the manual methods are better than the 

data-driven methods for construction of a mathematical model. 

Our large-scale regulatory network of neuronal differentiation may lack some components and thus 

may not completely represent neuronal differentiation. In our network, ASCL1 is directly affected 

by HES1; ASCL1 oscillation controls proliferation and differentiation [13] and affects NOTCH 

receptors of adjacent cells via activation of DLL [50]. Neural differentiation is also affected by 

adjacent cells [51]. We excluded this information because we focused on the dynamics of a single 

cell. To reveal the entire mechanism of neural differentiation, adding a path to adjacent cells, for 

instance via DLL, might be required. The analysis of multiple cells might provide a model that can 

simulate dynamics other than state transitions. The concentrations of both HES1 and ASCL1 

decrease in a non-oscillatory state when an NSC differentiates into an oligodendrocyte [13]. To 

simulate this transition, we need to add a signaling pathway focusing on the oligodendrocyte 

marker OLIG2, which oscillates with a period of 400 min in NSCs [13]. This period is much longer 

than that of HES1 or ASCL1, and the dispersion of the oscillation is very high; therefore, OLIG2 

regulation might involve a delay mechanism to elongate the period and a mechanism to amplify 

dispersion. Recently, a similar method was used to analyze oligodendrocyte differentiation [52]. 

Similar to our study, the authors used a manual method to construct a network; however, they also 

introduced publicly available interaction data from omics databases. In comparison with our 

method, this approach may reduce the number of false-negative interactions. On the other hand, 

the study [52] focused only on two- to four-node feedback loops. Our contraction method may 

detect a larger regulatory system of oligodendrocyte differentiation. The complete mechanism of 

neural differentiation may be simulated by integrating this information and methods. 

Our model can simulate the dynamics of the NSC-to-neuron transition and exemplify the reverse 

transition by increasing the concentration of NOTCH, but differentiation is mostly irreversible. 

Therefore, it is difficult to validate the results of reversing from a neuron to an NSC. Some 

hypotheses suggest the core factors of differentiation that also inhibit reprogramming [53] or 

control the mechanisms generated by neurogenic niches [54]. Specific network structure such as 

positive feedbacks or micro-environmental factors may be important for hysteresis in 

differentiation, and a more detailed, larger network needs to be analyzed. Although we focused on 

NOTCH signaling in this study, our network also includes FGF as another input signal. Analysis of 

the behavior of the network stimulated with FGF may show variate responses and as a result may 

reveal other mechanisms of neural differentiation. A feed-forward loop accelerates response time of 

a system and achive cell state transition rapidly. Because the cellular state transition by NOTCH 

signaling is also known to be accelerated by feed-forward loop [55], a feed-forward loop may exist 

on upstream of our analyzing network. Our method can be used to analyze the dynamics of a new 

large-scale regulatory network when new information becomes available. 

5. Conclusions 

The construction of a large-scale regulatory regulatory network of neuronal differentiation based on 

publicly available data led to identification of a new feedback loop motif, which we expect to 

regulate differentiation. The large-scale regulatory regulatory network was modeled 

mathematically after network contraction, and the extracted digested model simulated the 

characteristic dynamics of HES1 and ASCL1, which were suggested to be regulated by multiple 

loops. More information about neural differentiation and further motif analyses will deepen our 

understanding of the mechanism of neural differentiation. Our approach is applicable to other 

biological models for which detailed mechanisms are unknown. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table 

S1: title, Video S1: title.  
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