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1. RASPA Simulation Details: Forcefield, LJ Params, MOF cif Files Source, Initialization/Run Cycles 

Adsroption data was generated using RASPA, a grand canonical Monte Carlo simulation 

software designed by Duddledam et al.1 To model CO2 in air, we studied a set of ternary gas 

mixtures containing CO2, O2, and N2. The compositions of CO2 and O2 ranged from 0% to 30%, 

and the composition of N2 ranged from 40% to 100%, each in increments of 1%. This resulted in 

961 unique gas mixtures. We then ran GCMC simulations to calculate the adsorption of each gas 

mixture in a set of 50 MOFs from the CoRe MOF database2 at a temperature of 298 K and a 

pressure of 1 bar, reflecting ambient conditions. Simulations were conducted using 1000 

initialization cycles and 2000 priduction cycles. A single cycle consists of n Monte Carlo steps, 

where n is equivalent to the number of molecules in the simulation. Note that this value 

fluctuates during a GCMC simulation. The simulations include the following moves: insertion, 

deletion, translation, regrowth (configuration is changed), and swapping.  

To model electrostatic interactions, which are important for accurately predicting CO2 and, to 

a lesser extent, N2 adsorption, we assigned partial charges to the atoms of the MOF frameworks 

via the EQeq method.3 Similarly, the molecule parameters of the gases also included partial 

charges, and the forcefield which we used, TrAPPE4, has been shown to accurately simulate these 

effects. 

Rigid MOF structures, as well as rigid molecule strucutures, were assumed, and Lennard-

Jones (LJ) potentials with a cutoff of 12 Å were used along with Ewald charge interactions to 

determine the overall energy of the structure and adsorbed gases. The equations for LJ potential 

is are given below, where 𝜀 is potential well-depth and 𝜎 is radius of interaction. 

𝑉𝑖𝑗 = 4𝜀𝑖𝑗 [(
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The equation for Ewald coulombic potential in a periodic system is given as: 

𝑈𝑠𝑦𝑠 = 𝑈𝑟𝑒𝑎𝑙 + 𝑈𝑟𝑒𝑐 

𝑈𝑟𝑒𝑎𝑙 = ∑ 𝑞𝑖𝑞𝑗
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where 𝑞𝑖  and 𝑞𝑗  are the charges of particle 𝑖 and 𝑗, respectively, 𝒓𝒊 is the position of atom 𝑖, 𝑉 is 

the volume of the cell, 𝛼 is a damping factor, 𝑘 is the wavelength, and erfc is the error function 

complement. 

The information about each framework, including minimum number of unit cells, density, 

volumetric surface area, void fraction, and pore size (largest cavity diameter) are listed below in 

Table S1. Forcefield parameters (excluding partial charges, which are framework specific and can 

be found in the cif files) for each framework atom are given in Table S2. 
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Table S1. Physical Properties of MOF Structures 

MOF Unit Cells 
[a, b, c] 

Density 
[g/cm3] 

Surface Area 
[m2/cm3] 

Void Fraction 
[---] 

Pore Size 
[Å] 

IRMOF-1 1, 1, 1 0.590375 2198.21 0.8108 15.08377 

HKUST-1 1, 1, 1 0.879099 2114.54 0.7206 13.18983 

NU-125 1, 1, 1 0.57834 2196.18 0.79 19.37323 

UIO-66 2, 2, 2 1.22494 1762.62 0.6128 8.88 

ZIF-8 2, 2, 2 0.924676 1442.14 0.6416 11.51766 

MgMOF-74 1, 1, 4 0.91487 1549.21 0.6396 11.63962 

MOF-177 1, 1, 1 0.426775 2035.73 0.8318 11.67849 

NU-100 2, 2, 2 0.2843005 1620.675 0.8777 27.190265 

MOF-801 1, 1. 1 1.74184 1303.21 0.5322 7.65165 

ALUKIC 2, 2, 1 0.56692 2883.21 0.7934 8.54387 

AMIMAL 2, 1, 1 0.988926 1269.07 0.6132 11.07211 

AXUHEH 2, 2, 1 1.06453 1024.66 0.4958 7.21454 

BAZGAM 1, 1, 1 0.126526 810.47 0.9392 42.79818 

BIWSEG 1, 1, 1 0.466941 1434.98 0.843 29.73511 

EDUVOO 2, 2, 2 0.373403 1788.47 0.862 20.93415 

FIDRIV 2, 2, 2 0.698397 1517.46 0.7102 15.99327 

GAGZEV 1, 1, 1 0.279149 1594.77 0.8816 28.66522 

GUPBEZ 2, 2, 2 2.5399 489.614 0.4518 7.29165 

HABQUY 1, 1, 1 0.289452 1646.58 0.8738 25.71531 

HIFTOG 2, 2, 2 1.16582 1897.92 0.6126 7.95891 

JEWCAP 2, 2. 1 1.11472 880.16 0.5446 6.52252 

KICXAX 2, 2, 2 3.58491 368.423 0.3658 5.16268 

KIFJUF 3, 2. 2 0.821526 2412.21 0.648 5.86033 

KINKAV 3, 2, 2 1.21016 462.625 0.4526 4.49986 

LODPUQ 2, 2, 2 1.07351 1496.3 0.5402 6.04771 

LOFVUY 2, 1, 1 1.07811 1889.15 0.626 8.04365 

MUDTEL 1, 1, 1 0.559282 2154.91 0.789 19.09514 
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NAYZOE 2, 2, 2 0.498918 2302.42 0.813 15.82314 

NIBHOW 1, 1, 1 0.279595 1425.71 0.8844 27.51057 

NIBJAK 1, 1, 1 0.223433 1188.94 0.9102 32.00355 

OFEREX 3, 3, 2 1.56791 1544.85 0.5694 6.99117 

RAVXET 4, 1, 1 0.326773 945.437 0.8304 38.22812 

RAVXIX 4, 1, 1 0.23463 734.576 0.8668 53.57674 

RAVXOD 4, 1, 1 0.179103 619.991 0.8986 71.64119 

RUTNOK 1, 1, 1 0.240823 1468.58 0.9018 24.61263 

SADLEQ 3, 3, 2 1.50504 1508.7 0.5702 7.11187 

SAPBIW 1, 1, 1 0.305675 915.118 0.889 28.19349 

SICZOV 2, 2, 2 0.419881 1773.06 0.8408 18.76086 

TOHSAL 2, 2, 1 0.576207 2737.54 0.7668 9.79069 

UKUPUL 2, 2, 2 1.43379 1465.65 0.5222 6.90717 

VETTIZ 1, 1, 1 0.537597 1117.38 0.7638 21.62456 

WIYMOG 2, 2, 1 0.408102 2874.44 0.8306 12.0545 

WUNSEE01 2, 2, 2 1.20903 749.985 0.4842 5.00556 

XAFFAN 2, 2, 2 0.365184 1896.05 0.8544 14.91316 

XAFXOT 6, 3, 2 1.88819 647.785 0.3646 5.91185 

XAHQAA 1, 1, 1 0.170429 1040.62 0.9292 23.03533 

XALTIP 2, 2, 2 0.551216 1809.24 0.7988 18.68299 

XUKYEI 2, 2, 2 0.287208 1805.38 0.8682 13.17229 

XUWVUG 7, 2, 2 3.19434 197.336 0.287 3.95338 

YEQRIV 3, 2, 2 0.74227 3172.25 0.734 5.99633 
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Table S2. Parameters of Framework Atoms 

Atom Type 𝜀/kB [K] 𝜎 [Å] 

H 22.1417 2.886 

Be 42.7736 2.44552 

B 47.8058 3.58141 

C 52.8381 3.851 

N 34.7222 3.66 

O 30.1932 3.5 

F 36.4834 3.092 

Na 15.09 2.66 

Mg 55.8574 2.69141 

Al 155.998 3.91105 

Si 155.998 3.80414 

P 161.03 3.69723 

S 173.107 3.59032 

Cl 142.562 3.51932 

K 17.61 3.4 

Sc 9.56117 2.93551 

Ti 8.55473 2.8286 

V 8.05151 2.80099 

Cr 7.54829 2.69319 

Mn 6.54185 2.63795 

Fe 6.54185 2.5943 

Atom Type 𝜀/kB [K] 𝜎 [Å] 

Co 7.04507 2.55866 

Ni 7.54829 2.52481 

Cu 2.5161 3.495 

Zn 62.3992 2.46155 

Ga 208.836 3.90481 

As 155.47 3.77 

Br 186.191 3.51905 

Zr 34.7221 3.124 

Ag 18.1159 2.80455 

Cd 114.734 2.53728 

In 301.428 3.97608 

Sb 225.946 3.93777 

Te 200.281 3.98232 

I 170.57 4.01 

La 8.55 3.14 

Ce 6.54 3.17 

Nd 5.03 3.18 

Eu 4.03 3.11 

Tb 3.52 3.07 

Dy 3.52 3.05 

W 33.71 2.73 
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Table S3. Parameters of Gas Molecule Bodies 

 Atom Type X [Å] Y [Å] Z [Å] 𝜀/kB [K] 𝜎 [Å] Charge [e] 
(0) O_CO2 0.0 0.0 1.16 79.0 3.05 -0.35 

(1) C_CO2 0.0 0.0 0.0 27.0 2.80 0.70 

(2) O_CO2 0.0 0.0 -1.16 79.0 3.05 -0.35 

(0) N_N2 0.0 0.0 0.55 36.0 3.31 -0.482 

(1) N_COM* 0.0 0.0 0.0 --- --- 0.964 

(2) N_N2 0.0 0.0 -0.55 36.0 3.31 -0.482 

(0) O_O2 0.0 0.0 0.605 49.000 3.02 -0.113 

(1) O_COM* 0.0 0.0 0.0 --- --- 0.226 

(2) O_O2 0.0 0.0 -0.605 49.000 3.02 -0.113 

*COM = Center of Mass 

 

The Peng-Robinson equation of state, shown below, was used to calculate the fugacities 

necessary to run the GCMC simulation. The critical parameters for each molecule type are listed 

below in table S4. 

𝑝 =
𝑅𝑇

𝑉𝑚−𝑏
−

𝑎𝛼

𝑉𝑚
2 +2𝑏𝑉𝑚−𝑏2  where  𝑎 =

0.457235𝑅2𝑇𝑐
2

𝑝𝑐
   &  𝑏 =

0.077796𝑅𝑇𝑐

𝑝𝑐
 

𝛼 = (1 + 𝑘(1 − 𝑇𝑟
0.5)) where 𝑘 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2  &  𝑇𝑟 = 𝑇/𝑇𝑐 

 

Table S4. Critical Parameters of Gas Molecules 

Molecule Type TC [K] PC [MPa] 𝜔 Bond Stretch 

CO2 304.1282 7.377300 0.22394 Rigid 

N2 126.192 3.395800 0.0372 Rigid 

O2 154.581 5.043000 0.0222 Rigid 
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2. Simulating Sensor Measurements 

2.1. Element Probability Values 

The following section is intended to give an overview of the of the calculations involved in 

designing arrays and predicting compositions. Specific information about formatting the results 

and controlling certain parameters of the code is available on the GitHub which hosts this project 

(https://github.com/WilmerLab/sensor_array_mof_adsorption). This work is a continuation of 

previous work done by Gustafson et al.5–7 

For the work presented in this paper, we first needed to perform calculations for gas mixtures 

of CO2, O2, and N2. The compositions of CO2 and O2 ranged from 0% to 30%, and the composition 

of N2 ranged from 40% to 100%, all in increments of 1%, yielding a total of 961 gas mixtures, and 

for 50 MOFs, a total of 40,850 distinct simulations. Once these calculations were complete, we 

would accumulate all of the adsorbed mass values, and create two distinct sets of data; the 

simulated masses, which included the adsorbed mass values for all MOFs and all compositions, 

and the experimental mass values, which is a subset of the simulated mass values and includes 

data for all MOFs, but for only a sinlge composition. With these two data sets, we could begin 

the analysis. 

After loading the data, the first step is to calculate the probability of each composition for 

each MOF. One MOF at a time, we take the experimental value associated with that MOF and 

create a truncated normal probability curve centered about the experimental mass, with a 

standard deviation 5% of the experimental mass. The intention of using a truncated probability 

distribution rather than a true normal distribution is to account for the fact that adsorption will 

always result in an increase in mass. Consequently, the lower bound is set at 0, and the upper 

bound is set far beyond the highest simulated mass present in the data set.  

The equations which govern the truncated normal distribution are as follows: 

𝜓(𝜇̅, 𝜎̅, 𝑎, 𝑏; 𝑥) = {

0
𝜙(𝜇̅, 𝜎̅2; 𝑥)

Φ(𝜇̅, 𝜎̅2; 𝑏) − Φ(𝜇̅, 𝜎̅2; 𝑎)

0

     

𝑖𝑓 𝑥 ≤ 𝑎
𝑖𝑓 𝑎 < 𝑥 < 𝑏
𝑖𝑓 𝑏 ≤ 𝑥

 

𝜙(𝜇̅, 𝜎̅2; 𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  

https://github.com/WilmerLab/sensor_array_mof_adsorption
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Φ(𝜇̅, 𝜎̅2; 𝑥) = ∫
1

𝜎√2𝜋
𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞

 

where 𝜙(𝜇̅, 𝜎̅2) is the standard normal distribution over the interval (−∞, +∞), and Φ(𝜇̅, 𝜎̅2) is 

the cumulative distribution function over the interval (−∞, +∞). The variables 𝜇̅ and 𝜎̅ is the 

mean and variance of the parent normal distribution, and the variables 𝑎  and 𝑏  are the 

truncation interval.8  

For each composition, we assign a probability based on where simulated mass sits on the 

truncated probability curve, as given by: 

𝑃𝑠𝑖𝑚,𝑖 =  𝜓(𝜇̅, 𝜎̅, 𝑎, 𝑏; 𝑚𝑠𝑖𝑚,𝑖) 

where 𝜇̅ = 𝑚𝑒𝑥𝑝 , 𝜎̅ = 0.05 ∙ 𝑚𝑒𝑥𝑝, 𝑎 = 0, and 𝑏 = 1.05 ∙ 𝑚𝑠𝑖𝑚,𝑚𝑎𝑥 . Since each mass is assigned 

a probability independently of each other, the sum of all probabilities does not necessarily equal 

1. However, since the intention of this process is to determine which simulated composition we 

have exposed the array to, we normalize the assigned probabilities so that now their sum equals 

1. 

𝐹 = ∑ 𝑃𝑠𝑖𝑚,𝑖

𝑁

𝑖=1

 

𝑃𝑠𝑖𝑚,𝑖
𝑛𝑜𝑟𝑚 =  

1

𝐹
∙ 𝑃𝑠𝑖𝑚,𝑖  

This process is repeated for each MOF until we have one normalized probability value for each 

composition for each MOF.  
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Figure S1. Mapping of Mass uptake to probability as a 1-element sensor of Mg-MOF-74, the top 

performing 1-element sensor. 

 

2.2. Array Probability Values 

Now that we have the probabilities for each MOF, we need to determine the probabilities for 

arrays. Fortunately, this process is very straightforward. For each composition, we simply 

multiply all of the normalized probabilities for each MOF with each other, resulting in a non-

normalized array probability for each composition. As before, we normalize these probabilities 

so that they sum to 1. With this information, we can now say which of the simulates gases the 

array is most likely exposed to.  

 

2.3. Component-wise Probability 

In addition to calculating the probability for each of the simulated compositions, it is often 

convenient to be able to predict the mole fraction of each component individually. To this end, 

we developed a simple approach leveraging the previously calculated probabilities. For 

whichever component we are trying to predict, we establish a set of bins, typically with the same 

spacing as the simulated compositions, though this stipulation is not required. Then, for each of 

the simulated compositions, we assign it to its corresponding component bin. For example, if our 

bin boundaries for a given CO2 bin were 29.5 and 30.5, all compositions where the mole fraction 

of CO2 was 30% would be placed in that bin. Next, we sum all of the probabilities in that bin to 

determine the total probability for that bin. Note that since this method uses the already 

normalized probabilities, the sum of the probabilities for each bin already equals one, and thus 

no additional normalization is needed.  

We can repeat this process for each component in the mixture, until the mole fraction for 

each component has been predicted individually, though this is not necessary, and may often be 

undesirable. Nevertheless, it is important to note that if we were to use this approach to 

individually predict the mole fraction of all components, we are not guaranteed to predict the 

same composition as we had predicted the when considering the mixture as a whole. 
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Furthermore, the sum of each of the mole fractions is not guaranteed to equal one, however 

both of these scenarios become less likely as the quality of the array improves.  

It seems worthwhile to mention the advantages of this approach, as the previously 

mentioned scenarios would seem to demotivate using it. Notably, one could conceive developing 

an array which is uniquely sensitive to one primary component (or a set of primary components), 

and less sensitive to the remaining gases of a typical mixture. It is then conceivable that the array 

would continue to predict the primary (set of) component(s) reliably, regardless of how the mole 

fractions of the remaining components fluctuate. It is additionally possible that the array would 

continue predicting reliably in the presence of other gases which were not accounted for in the 

simulations. Conversely, by trying to predict the mixture as a whole, it is foreseeable that in either 

of these cases, the prediction of the component(s) of interested in negatively impacted by the 

less important components. Although none of the above situations are guaranteed to hold for all 

mixtures or arrays, hopefully they demonstrate at least the advantage of having this method 

available.  

 

Figure S2. Component-wise probability for MgMOF-74, the top-performing single-element 

sensor. 

 

2.4. Kullbeck-Liebler Divergence (KLD) 

Although the set of probabilities for an array enables us to predict the composition of the 

mixture, it does not lend itself conveniently to comparing the quality of different arrays. 
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Consequently, we wanted a way of quantifying the prediction capabilities of an array, and for this 

purpose we introduced the Kullbeck-Liebler divergence (KLD).  

Rigorously, the KLD quantifies the difference between two probabilities of any form and can 

be represented mathematically as follows: 

𝐾𝐿𝐷(𝑃||𝑄) = ∑ 𝑃𝑖 ∙ log2 (
𝑃𝑖

𝑄𝑖
)

𝑁

𝑖=1

 

where P and Q are the system and reference probability respectively. When the reference 

probability is simply a uniform distribution (i.e. random chance), 𝑄𝑖 =
1

𝑁
 for all I, so this simplifies 

to: 

𝐾𝐿𝐷 = ∑ 𝑃𝑖 ∙ log2(𝑃𝑖 ∙ 𝑁)

𝑁

𝑖=1

 

Note that we also drop the (𝑃||𝑄) notation, since our reference probability is never anything 

other than a uniform distribution. This form of the equation can be used both when trying to 

predict the mixture as a whole and when trying to predict the mixture component-wise, the only 

difference is that the number of points, N, changes. We have taken to calling the these the 

absolute KLD and component KLD respectively. We also calculate what we have been calling the 

joint KLD, which is simply the product of all of the component KLDs, though there does not seem 

to be any advantage to using this in place of the absolute KLD.  

 

3. Screening Arrays 

3.1. Brute Force Array Analysis 

In order to determine all possible arrays of a given size, we simply iterate overall available 

MOFs, repeating this up to the number of elements in the array, and add a MOF only when it has 

not previously appeared in the array. Once all arrays have been determined, the compound 

probability, and subsequently the KLD, is evaluated as described above. We can then rank all 

arrays on the basis of KLD (or component KLD, or any other numerical property of interest), to 

find the best and/or worst arrays.  

 

3.2. Genetic Algorithm – Explain mutation strategy 
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With 50 MOFs to choose from, there are over 2.1x106 possible 5-element arrays. With an 

array size of 25 elements, there are over 1.25x1014 possible arrays, thus motivating the need for 

an intelligent screening approach to study these larger arrays. To this end, we developed a 

genetic algorithm which works in the following way. 

Before explaining the details of our genetic algorithm approach, let us first cover some basic 

terminology. The ‘genetic’ in genetic algorithm refers to the fact that we are using distinct pieces 

of information about an array to modify it. Here the ‘genes’ correspond to the individual 

elements in the array. A generation refers to a distinct set of arrays, with a subset of each 

generation, the parents, being used in creating the following one. In our particular approach, all 

of the selected parents are also part of the next generation which they are used to create. This 

strategy, known as elitism, guarantees that quality of the solution does not decrease between 

generations. Finally, the individual arrays of the following generation, created from the parent 

arrays, are known as children. 

To begin the algorithmic search, an initial generation of arrays is first created at random 

(checking to make sure there are no duplicate elements in a single array, and no duplicate arrays 

in a single generation). Once created, their compound probability, and subsequently KLD, is 

evaluated as described above. The arrays are then ranked based on the property of interest, 

typically the KLD or one of the component-KLDs.  

In order to create the next generation of arrays, we take a fixed number of the top performing 

arrays (or bottom two, if seeking the worst performing arrays), along with a fixed number of the 

remaining arrays at random. These arrays are both part of and parents for the next generation. 

There are two approaches which we can use in creating children; crossover and mutation. 

With crossover, we choose two parents and generate a child from the elements contained in 

each. With mutation, we choose a single parent and go through each element one at a time. For 

each element, we generate a random number between 0 and 1. If the number we generate is 

less than our chosen mutation rate (another number between 0 and 1), than we replace that 

element with one of the MOFs not currently in the array. If the number we generate is greater 

than the mutation rate, the element remains in the array. Either one or both of these strategies 

can be used in creating children for the next generation, however we found that mutation 
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strategies worked best for this application, and thus all of the results presented in the paper use 

only mutation. 

 

Figure S3. Example decision process for the mutation strategy employed in the genetic 

algorithm. 

 

This entire process is repeated for the desired number of generations, and typically the 

genetic algorithm is run multiple times. For the results presented in this paper, the parameters 

were as follows: 20 arrays per generation, top 2 arrays were used as parents, along with 2 at 

random, and 200 generations per run. We used a variable mutation rate throughout the process. 

For the first 25 generations, the mutation rate was 50%, for the next 25 generations it was 25%, 

the next 50 generations used 10%, followed by another 50 generation at 5%, and lastly 50 

generations at 2%. For each array size, the genetic algorithm was run no less than 3 times for 

seeking both the best and worst arrays, for a minimum of 6 runs.  

A flowchart overviewing this process is given below: 
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Figure S4. Flowchart overview of the genetic algorithm. 
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