
 1

Genetic Algorithm Design of MOF-based Gas Sensor Arrays

for CO2-in-Air Sensing

Brian A. Day & Christopher E. Wilmer*

Department of Chemical and Petroleum Engineering, University of Pittsburgh,
3700 O’Hara St, Pittsburgh, Pennsylvania 15261

Department of Electrical and Computer Engineering, University of Pittsburgh,
3700 O’Hara St, Pittsburgh, Pennsylvania 15261

*Correspondence: wilmer@pitt.edu

Supplementary Information

Table of Contents

1. RASPA Simulation Details
2. Simulating Sensor Measurements

2.1. Element Probabiity Values
2.2. Array Probability Values
2.3. Component-wise Probability
2.4. Kullbeck-Leibler Divergence

3. Screening Arrays
3.1. Brute Force Analysis
3.2. Genetic Algorithm Analysis

4. References

mailto:wilmer@pitt.edu

 2

1. RASPA Simulation Details: Forcefield, LJ Params, MOF cif Files Source, Initialization/Run Cycles

Adsroption data was generated using RASPA, a grand canonical Monte Carlo simulation

software designed by Duddledam et al.1 To model CO2 in air, we studied a set of ternary gas

mixtures containing CO2, O2, and N2. The compositions of CO2 and O2 ranged from 0% to 30%,

and the composition of N2 ranged from 40% to 100%, each in increments of 1%. This resulted in

961 unique gas mixtures. We then ran GCMC simulations to calculate the adsorption of each gas

mixture in a set of 50 MOFs from the CoRe MOF database2 at a temperature of 298 K and a

pressure of 1 bar, reflecting ambient conditions. Simulations were conducted using 1000

initialization cycles and 2000 priduction cycles. A single cycle consists of n Monte Carlo steps,

where n is equivalent to the number of molecules in the simulation. Note that this value

fluctuates during a GCMC simulation. The simulations include the following moves: insertion,

deletion, translation, regrowth (configuration is changed), and swapping.

To model electrostatic interactions, which are important for accurately predicting CO2 and, to

a lesser extent, N2 adsorption, we assigned partial charges to the atoms of the MOF frameworks

via the EQeq method.3 Similarly, the molecule parameters of the gases also included partial

charges, and the forcefield which we used, TrAPPE4, has been shown to accurately simulate these

effects.

Rigid MOF structures, as well as rigid molecule strucutures, were assumed, and Lennard-

Jones (LJ) potentials with a cutoff of 12 Å were used along with Ewald charge interactions to

determine the overall energy of the structure and adsorbed gases. The equations for LJ potential

is are given below, where 𝜀 is potential well-depth and 𝜎 is radius of interaction.

𝑉𝑖𝑗 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

The equation for Ewald coulombic potential in a periodic system is given as:

𝑈𝑠𝑦𝑠 = 𝑈𝑟𝑒𝑎𝑙 + 𝑈𝑟𝑒𝑐

𝑈𝑟𝑒𝑎𝑙 = ∑ 𝑞𝑖𝑞𝑗

𝑖<𝑗

𝑒𝑟𝑓𝑐(𝛼𝑟𝑖𝑗)

𝑟𝑖𝑗

𝑈𝑟𝑒𝑐 =
2𝜋

𝑉
∑

1

𝑘2
𝑒

−
𝑘2

4𝛼2

𝑘

(|∑ 𝑞𝑖

𝑁

𝑖=1

cos(𝒌 ∙ 𝒓𝑖)|

2

+ |∑ 𝑞𝑖

𝑁

𝑖=1

sin(𝒌 ∙ 𝒓𝑖)|

2

) − ∑
𝛼

√𝜋
𝑞𝑖

2

𝑖

 3

where 𝑞𝑖 and 𝑞𝑗 are the charges of particle 𝑖 and 𝑗, respectively, 𝒓𝒊 is the position of atom 𝑖, 𝑉 is

the volume of the cell, 𝛼 is a damping factor, 𝑘 is the wavelength, and erfc is the error function

complement.

The information about each framework, including minimum number of unit cells, density,

volumetric surface area, void fraction, and pore size (largest cavity diameter) are listed below in

Table S1. Forcefield parameters (excluding partial charges, which are framework specific and can

be found in the cif files) for each framework atom are given in Table S2.

 4

Table S1. Physical Properties of MOF Structures

MOF Unit Cells
[a, b, c]

Density
[g/cm3]

Surface Area
[m2/cm3]

Void Fraction
[---]

Pore Size
[Å]

IRMOF-1 1, 1, 1 0.590375 2198.21 0.8108 15.08377

HKUST-1 1, 1, 1 0.879099 2114.54 0.7206 13.18983

NU-125 1, 1, 1 0.57834 2196.18 0.79 19.37323

UIO-66 2, 2, 2 1.22494 1762.62 0.6128 8.88

ZIF-8 2, 2, 2 0.924676 1442.14 0.6416 11.51766

MgMOF-74 1, 1, 4 0.91487 1549.21 0.6396 11.63962

MOF-177 1, 1, 1 0.426775 2035.73 0.8318 11.67849

NU-100 2, 2, 2 0.2843005 1620.675 0.8777 27.190265

MOF-801 1, 1. 1 1.74184 1303.21 0.5322 7.65165

ALUKIC 2, 2, 1 0.56692 2883.21 0.7934 8.54387

AMIMAL 2, 1, 1 0.988926 1269.07 0.6132 11.07211

AXUHEH 2, 2, 1 1.06453 1024.66 0.4958 7.21454

BAZGAM 1, 1, 1 0.126526 810.47 0.9392 42.79818

BIWSEG 1, 1, 1 0.466941 1434.98 0.843 29.73511

EDUVOO 2, 2, 2 0.373403 1788.47 0.862 20.93415

FIDRIV 2, 2, 2 0.698397 1517.46 0.7102 15.99327

GAGZEV 1, 1, 1 0.279149 1594.77 0.8816 28.66522

GUPBEZ 2, 2, 2 2.5399 489.614 0.4518 7.29165

HABQUY 1, 1, 1 0.289452 1646.58 0.8738 25.71531

HIFTOG 2, 2, 2 1.16582 1897.92 0.6126 7.95891

JEWCAP 2, 2. 1 1.11472 880.16 0.5446 6.52252

KICXAX 2, 2, 2 3.58491 368.423 0.3658 5.16268

KIFJUF 3, 2. 2 0.821526 2412.21 0.648 5.86033

KINKAV 3, 2, 2 1.21016 462.625 0.4526 4.49986

LODPUQ 2, 2, 2 1.07351 1496.3 0.5402 6.04771

LOFVUY 2, 1, 1 1.07811 1889.15 0.626 8.04365

MUDTEL 1, 1, 1 0.559282 2154.91 0.789 19.09514

 5

NAYZOE 2, 2, 2 0.498918 2302.42 0.813 15.82314

NIBHOW 1, 1, 1 0.279595 1425.71 0.8844 27.51057

NIBJAK 1, 1, 1 0.223433 1188.94 0.9102 32.00355

OFEREX 3, 3, 2 1.56791 1544.85 0.5694 6.99117

RAVXET 4, 1, 1 0.326773 945.437 0.8304 38.22812

RAVXIX 4, 1, 1 0.23463 734.576 0.8668 53.57674

RAVXOD 4, 1, 1 0.179103 619.991 0.8986 71.64119

RUTNOK 1, 1, 1 0.240823 1468.58 0.9018 24.61263

SADLEQ 3, 3, 2 1.50504 1508.7 0.5702 7.11187

SAPBIW 1, 1, 1 0.305675 915.118 0.889 28.19349

SICZOV 2, 2, 2 0.419881 1773.06 0.8408 18.76086

TOHSAL 2, 2, 1 0.576207 2737.54 0.7668 9.79069

UKUPUL 2, 2, 2 1.43379 1465.65 0.5222 6.90717

VETTIZ 1, 1, 1 0.537597 1117.38 0.7638 21.62456

WIYMOG 2, 2, 1 0.408102 2874.44 0.8306 12.0545

WUNSEE01 2, 2, 2 1.20903 749.985 0.4842 5.00556

XAFFAN 2, 2, 2 0.365184 1896.05 0.8544 14.91316

XAFXOT 6, 3, 2 1.88819 647.785 0.3646 5.91185

XAHQAA 1, 1, 1 0.170429 1040.62 0.9292 23.03533

XALTIP 2, 2, 2 0.551216 1809.24 0.7988 18.68299

XUKYEI 2, 2, 2 0.287208 1805.38 0.8682 13.17229

XUWVUG 7, 2, 2 3.19434 197.336 0.287 3.95338

YEQRIV 3, 2, 2 0.74227 3172.25 0.734 5.99633

 6

Table S2. Parameters of Framework Atoms

Atom Type 𝜀/kB [K] 𝜎 [Å]

H 22.1417 2.886

Be 42.7736 2.44552

B 47.8058 3.58141

C 52.8381 3.851

N 34.7222 3.66

O 30.1932 3.5

F 36.4834 3.092

Na 15.09 2.66

Mg 55.8574 2.69141

Al 155.998 3.91105

Si 155.998 3.80414

P 161.03 3.69723

S 173.107 3.59032

Cl 142.562 3.51932

K 17.61 3.4

Sc 9.56117 2.93551

Ti 8.55473 2.8286

V 8.05151 2.80099

Cr 7.54829 2.69319

Mn 6.54185 2.63795

Fe 6.54185 2.5943

Atom Type 𝜀/kB [K] 𝜎 [Å]

Co 7.04507 2.55866

Ni 7.54829 2.52481

Cu 2.5161 3.495

Zn 62.3992 2.46155

Ga 208.836 3.90481

As 155.47 3.77

Br 186.191 3.51905

Zr 34.7221 3.124

Ag 18.1159 2.80455

Cd 114.734 2.53728

In 301.428 3.97608

Sb 225.946 3.93777

Te 200.281 3.98232

I 170.57 4.01

La 8.55 3.14

Ce 6.54 3.17

Nd 5.03 3.18

Eu 4.03 3.11

Tb 3.52 3.07

Dy 3.52 3.05

W 33.71 2.73

 7

Table S3. Parameters of Gas Molecule Bodies

 Atom Type X [Å] Y [Å] Z [Å] 𝜀/kB [K] 𝜎 [Å] Charge [e]
(0) O_CO2 0.0 0.0 1.16 79.0 3.05 -0.35

(1) C_CO2 0.0 0.0 0.0 27.0 2.80 0.70

(2) O_CO2 0.0 0.0 -1.16 79.0 3.05 -0.35

(0) N_N2 0.0 0.0 0.55 36.0 3.31 -0.482

(1) N_COM* 0.0 0.0 0.0 --- --- 0.964

(2) N_N2 0.0 0.0 -0.55 36.0 3.31 -0.482

(0) O_O2 0.0 0.0 0.605 49.000 3.02 -0.113

(1) O_COM* 0.0 0.0 0.0 --- --- 0.226

(2) O_O2 0.0 0.0 -0.605 49.000 3.02 -0.113

*COM = Center of Mass

The Peng-Robinson equation of state, shown below, was used to calculate the fugacities

necessary to run the GCMC simulation. The critical parameters for each molecule type are listed

below in table S4.

𝑝 =
𝑅𝑇

𝑉𝑚−𝑏
−

𝑎𝛼

𝑉𝑚
2 +2𝑏𝑉𝑚−𝑏2 where 𝑎 =

0.457235𝑅2𝑇𝑐
2

𝑝𝑐
 & 𝑏 =

0.077796𝑅𝑇𝑐

𝑝𝑐

𝛼 = (1 + 𝑘(1 − 𝑇𝑟
0.5)) where 𝑘 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 & 𝑇𝑟 = 𝑇/𝑇𝑐

Table S4. Critical Parameters of Gas Molecules

Molecule Type TC [K] PC [MPa] 𝜔 Bond Stretch

CO2 304.1282 7.377300 0.22394 Rigid

N2 126.192 3.395800 0.0372 Rigid

O2 154.581 5.043000 0.0222 Rigid

 8

2. Simulating Sensor Measurements

2.1. Element Probability Values

The following section is intended to give an overview of the of the calculations involved in

designing arrays and predicting compositions. Specific information about formatting the results

and controlling certain parameters of the code is available on the GitHub which hosts this project

(https://github.com/WilmerLab/sensor_array_mof_adsorption). This work is a continuation of

previous work done by Gustafson et al.5–7

For the work presented in this paper, we first needed to perform calculations for gas mixtures

of CO2, O2, and N2. The compositions of CO2 and O2 ranged from 0% to 30%, and the composition

of N2 ranged from 40% to 100%, all in increments of 1%, yielding a total of 961 gas mixtures, and

for 50 MOFs, a total of 40,850 distinct simulations. Once these calculations were complete, we

would accumulate all of the adsorbed mass values, and create two distinct sets of data; the

simulated masses, which included the adsorbed mass values for all MOFs and all compositions,

and the experimental mass values, which is a subset of the simulated mass values and includes

data for all MOFs, but for only a sinlge composition. With these two data sets, we could begin

the analysis.

After loading the data, the first step is to calculate the probability of each composition for

each MOF. One MOF at a time, we take the experimental value associated with that MOF and

create a truncated normal probability curve centered about the experimental mass, with a

standard deviation 5% of the experimental mass. The intention of using a truncated probability

distribution rather than a true normal distribution is to account for the fact that adsorption will

always result in an increase in mass. Consequently, the lower bound is set at 0, and the upper

bound is set far beyond the highest simulated mass present in the data set.

The equations which govern the truncated normal distribution are as follows:

𝜓(𝜇̅, 𝜎̅, 𝑎, 𝑏; 𝑥) = {

0
𝜙(𝜇̅, 𝜎̅2; 𝑥)

Φ(𝜇̅, 𝜎̅2; 𝑏) − Φ(𝜇̅, 𝜎̅2; 𝑎)

0

𝑖𝑓 𝑥 ≤ 𝑎
𝑖𝑓 𝑎 < 𝑥 < 𝑏
𝑖𝑓 𝑏 ≤ 𝑥

𝜙(𝜇̅, 𝜎̅2; 𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2

https://github.com/WilmerLab/sensor_array_mof_adsorption

 9

Φ(𝜇̅, 𝜎̅2; 𝑥) = ∫
1

𝜎√2𝜋
𝑒

−
(𝑡−𝜇)2

2𝜎2 𝑑𝑡
𝑥

−∞

where 𝜙(𝜇̅, 𝜎̅2) is the standard normal distribution over the interval (−∞, +∞), and Φ(𝜇̅, 𝜎̅2) is

the cumulative distribution function over the interval (−∞, +∞). The variables 𝜇̅ and 𝜎̅ is the

mean and variance of the parent normal distribution, and the variables 𝑎 and 𝑏 are the

truncation interval.8

For each composition, we assign a probability based on where simulated mass sits on the

truncated probability curve, as given by:

𝑃𝑠𝑖𝑚,𝑖 = 𝜓(𝜇̅, 𝜎̅, 𝑎, 𝑏; 𝑚𝑠𝑖𝑚,𝑖)

where 𝜇̅ = 𝑚𝑒𝑥𝑝 , 𝜎̅ = 0.05 ∙ 𝑚𝑒𝑥𝑝, 𝑎 = 0, and 𝑏 = 1.05 ∙ 𝑚𝑠𝑖𝑚,𝑚𝑎𝑥 . Since each mass is assigned

a probability independently of each other, the sum of all probabilities does not necessarily equal

1. However, since the intention of this process is to determine which simulated composition we

have exposed the array to, we normalize the assigned probabilities so that now their sum equals

1.

𝐹 = ∑ 𝑃𝑠𝑖𝑚,𝑖

𝑁

𝑖=1

𝑃𝑠𝑖𝑚,𝑖
𝑛𝑜𝑟𝑚 =

1

𝐹
∙ 𝑃𝑠𝑖𝑚,𝑖

This process is repeated for each MOF until we have one normalized probability value for each

composition for each MOF.

 10

Figure S1. Mapping of Mass uptake to probability as a 1-element sensor of Mg-MOF-74, the top

performing 1-element sensor.

2.2. Array Probability Values

Now that we have the probabilities for each MOF, we need to determine the probabilities for

arrays. Fortunately, this process is very straightforward. For each composition, we simply

multiply all of the normalized probabilities for each MOF with each other, resulting in a non-

normalized array probability for each composition. As before, we normalize these probabilities

so that they sum to 1. With this information, we can now say which of the simulates gases the

array is most likely exposed to.

2.3. Component-wise Probability

In addition to calculating the probability for each of the simulated compositions, it is often

convenient to be able to predict the mole fraction of each component individually. To this end,

we developed a simple approach leveraging the previously calculated probabilities. For

whichever component we are trying to predict, we establish a set of bins, typically with the same

spacing as the simulated compositions, though this stipulation is not required. Then, for each of

the simulated compositions, we assign it to its corresponding component bin. For example, if our

bin boundaries for a given CO2 bin were 29.5 and 30.5, all compositions where the mole fraction

of CO2 was 30% would be placed in that bin. Next, we sum all of the probabilities in that bin to

determine the total probability for that bin. Note that since this method uses the already

normalized probabilities, the sum of the probabilities for each bin already equals one, and thus

no additional normalization is needed.

We can repeat this process for each component in the mixture, until the mole fraction for

each component has been predicted individually, though this is not necessary, and may often be

undesirable. Nevertheless, it is important to note that if we were to use this approach to

individually predict the mole fraction of all components, we are not guaranteed to predict the

same composition as we had predicted the when considering the mixture as a whole.

 11

Furthermore, the sum of each of the mole fractions is not guaranteed to equal one, however

both of these scenarios become less likely as the quality of the array improves.

It seems worthwhile to mention the advantages of this approach, as the previously

mentioned scenarios would seem to demotivate using it. Notably, one could conceive developing

an array which is uniquely sensitive to one primary component (or a set of primary components),

and less sensitive to the remaining gases of a typical mixture. It is then conceivable that the array

would continue to predict the primary (set of) component(s) reliably, regardless of how the mole

fractions of the remaining components fluctuate. It is additionally possible that the array would

continue predicting reliably in the presence of other gases which were not accounted for in the

simulations. Conversely, by trying to predict the mixture as a whole, it is foreseeable that in either

of these cases, the prediction of the component(s) of interested in negatively impacted by the

less important components. Although none of the above situations are guaranteed to hold for all

mixtures or arrays, hopefully they demonstrate at least the advantage of having this method

available.

Figure S2. Component-wise probability for MgMOF-74, the top-performing single-element

sensor.

2.4. Kullbeck-Liebler Divergence (KLD)

Although the set of probabilities for an array enables us to predict the composition of the

mixture, it does not lend itself conveniently to comparing the quality of different arrays.

 12

Consequently, we wanted a way of quantifying the prediction capabilities of an array, and for this

purpose we introduced the Kullbeck-Liebler divergence (KLD).

Rigorously, the KLD quantifies the difference between two probabilities of any form and can

be represented mathematically as follows:

𝐾𝐿𝐷(𝑃||𝑄) = ∑ 𝑃𝑖 ∙ log2 (
𝑃𝑖

𝑄𝑖
)

𝑁

𝑖=1

where P and Q are the system and reference probability respectively. When the reference

probability is simply a uniform distribution (i.e. random chance), 𝑄𝑖 =
1

𝑁
 for all I, so this simplifies

to:

𝐾𝐿𝐷 = ∑ 𝑃𝑖 ∙ log2(𝑃𝑖 ∙ 𝑁)

𝑁

𝑖=1

Note that we also drop the (𝑃||𝑄) notation, since our reference probability is never anything

other than a uniform distribution. This form of the equation can be used both when trying to

predict the mixture as a whole and when trying to predict the mixture component-wise, the only

difference is that the number of points, N, changes. We have taken to calling the these the

absolute KLD and component KLD respectively. We also calculate what we have been calling the

joint KLD, which is simply the product of all of the component KLDs, though there does not seem

to be any advantage to using this in place of the absolute KLD.

3. Screening Arrays

3.1. Brute Force Array Analysis

In order to determine all possible arrays of a given size, we simply iterate overall available

MOFs, repeating this up to the number of elements in the array, and add a MOF only when it has

not previously appeared in the array. Once all arrays have been determined, the compound

probability, and subsequently the KLD, is evaluated as described above. We can then rank all

arrays on the basis of KLD (or component KLD, or any other numerical property of interest), to

find the best and/or worst arrays.

3.2. Genetic Algorithm – Explain mutation strategy

 13

With 50 MOFs to choose from, there are over 2.1x106 possible 5-element arrays. With an

array size of 25 elements, there are over 1.25x1014 possible arrays, thus motivating the need for

an intelligent screening approach to study these larger arrays. To this end, we developed a

genetic algorithm which works in the following way.

Before explaining the details of our genetic algorithm approach, let us first cover some basic

terminology. The ‘genetic’ in genetic algorithm refers to the fact that we are using distinct pieces

of information about an array to modify it. Here the ‘genes’ correspond to the individual

elements in the array. A generation refers to a distinct set of arrays, with a subset of each

generation, the parents, being used in creating the following one. In our particular approach, all

of the selected parents are also part of the next generation which they are used to create. This

strategy, known as elitism, guarantees that quality of the solution does not decrease between

generations. Finally, the individual arrays of the following generation, created from the parent

arrays, are known as children.

To begin the algorithmic search, an initial generation of arrays is first created at random

(checking to make sure there are no duplicate elements in a single array, and no duplicate arrays

in a single generation). Once created, their compound probability, and subsequently KLD, is

evaluated as described above. The arrays are then ranked based on the property of interest,

typically the KLD or one of the component-KLDs.

In order to create the next generation of arrays, we take a fixed number of the top performing

arrays (or bottom two, if seeking the worst performing arrays), along with a fixed number of the

remaining arrays at random. These arrays are both part of and parents for the next generation.

There are two approaches which we can use in creating children; crossover and mutation.

With crossover, we choose two parents and generate a child from the elements contained in

each. With mutation, we choose a single parent and go through each element one at a time. For

each element, we generate a random number between 0 and 1. If the number we generate is

less than our chosen mutation rate (another number between 0 and 1), than we replace that

element with one of the MOFs not currently in the array. If the number we generate is greater

than the mutation rate, the element remains in the array. Either one or both of these strategies

can be used in creating children for the next generation, however we found that mutation

 14

strategies worked best for this application, and thus all of the results presented in the paper use

only mutation.

Figure S3. Example decision process for the mutation strategy employed in the genetic

algorithm.

This entire process is repeated for the desired number of generations, and typically the

genetic algorithm is run multiple times. For the results presented in this paper, the parameters

were as follows: 20 arrays per generation, top 2 arrays were used as parents, along with 2 at

random, and 200 generations per run. We used a variable mutation rate throughout the process.

For the first 25 generations, the mutation rate was 50%, for the next 25 generations it was 25%,

the next 50 generations used 10%, followed by another 50 generation at 5%, and lastly 50

generations at 2%. For each array size, the genetic algorithm was run no less than 3 times for

seeking both the best and worst arrays, for a minimum of 6 runs.

A flowchart overviewing this process is given below:

 15

Figure S4. Flowchart overview of the genetic algorithm.

4. References

(1) Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular Simulation Software
for Adsorption and Diffusion in Flexible Nanoporous Materials. Mol. Simul. 2016, 42 (2),
81–101. https://doi.org/10.1080/08927022.2015.1010082.

(2) Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.;
Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Computation-Ready, Experimental Metal–Organic
Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals. Chem.
Mater. 2014, 26 (21), 6185–6192. https://doi.org/10.1021/cm502594j.

(3) Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. An Extended Charge Equilibration Method. J. Phys.
Chem. Lett. 2012, 3 (17), 2506–2511. https://doi.org/10.1021/jz3008485.

(4) Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase Equilibria. 1. United-Atom
Description of n-Alkanes. J. Phys. Chem. B 1998, 102 (14), 2569–2577.
https://doi.org/10.1021/jp972543+.

(5) Gustafson, J. A.; Wilmer, C. E. Computational Design of Metal–Organic Framework Arrays
for Gas Sensing: Influence of Array Size and Composition on Sensor Performance. J. Phys.
Chem. C 2017, 121 (11), 6033–6038. https://doi.org/10.1021/acs.jpcc.6b09740.

(6) Gustafson, J. A.; Wilmer, C. E. Optimizing Information Content in MOF Sensor Arrays for
Analyzing Methane-Air Mixtures. Sens. Actuators B Chem. 2018, 267, 483–493.
https://doi.org/10.1016/j.snb.2018.04.049.

 16

(7) Gustafson, J. A.; Wilmer, C. E. Intelligent Selection of Metal–Organic Framework Arrays for
Methane Sensing via Genetic Algorithms. ACS Sens. 2019, 4 (6), 1586–1593.
https://doi.org/10.1021/acssensors.9b00268.

(8) Burkardt, J. The Truncated Normal Distribution. 35.

