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Abstract: Geodetic networks are essential for most geodetic, geodynamics and civil projects, such as 
monitoring the position and deformation of man-made structures, monitoring the crustal deformation 
of the Earth, establishing and maintaining a geospatial reference frame, mapping, civil engineering 
projects and so on. Before the installation of geodetic marks and gathering of survey data, geodetic 
networks need to be designed according to the pre-established quality criteria. In this study, we 
present a method for designing geodetic networks based on the concept of reliability. We highlight 
that the method discards the use of the observation vector of Gauss-Markov model. In fact, the only 
needs are the geometrical network configuration and the uncertainties of the observations. The aim 
of the proposed method is to find the optimum configuration of the geodetic control points so that the 
maximum influence of an outlier on the coordinates of the network is minimum. Here, the concept of 
Minimal Detectable Bias defines the size of the outlier and its propagation on the parameters is used 
to describe the external reliability. The proposed method is demonstrated by practical application of 
one simulated levelling network. We highlight that the method can be applied not only for geodetic 
network problems, but also in any branch of modern science.

Keywords: geodetic network; outlier; reliability; reference points; surveying; quality control15

1. Introduction16

A geodetic network consists of a set of points located on the Earth’s surface or near it. Their spatial17

positions are related to a reference system. The coordinates are derived from angles, distances and18

height differences between points and/or space-based geodetic techniques, such as Global Navigation19

Satellite Systems (GNSS). The geodetic networks provide the basic positional reference structure for20

mapping and civil engineering projects, such as deformations analysis of physical and man-made21

objects on the Earth surface, implementation of an urban and rural land register, establishment and22

maintenance of geospatial reference frame, etc.23
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Before the data acquisition, the geodetic network needs to be designed. The design problem have24

been widely developed and investigated since the pioneering work of [1]. Thenceforth, a series of25

papers have been published on the development of the new algorithms by simulated examples and26

real applications (see e.g. [2–13]). Although the design of geodetic networks is a widely investigated27

topic, there are open issues requiring further research.28

A design of geodetic network depends on the pre-established quality criteria, such as precision,29

reliability and costs. The precision is related to the covariance matrix of the coordinates of the network30

points. The ability of the measurements scheme to detect outliers in the observations as well as to31

describe their effects on estimated parameters are associated with the measures of reliability. Finally,32

the cost is related to the effort required to implement the design and related expenses. In this study,33

we purpose a method based on the theory of reliability to design a geodetic network.34

The reliability theory becomes a fundamental part of measurement analysis [13–17]. This is due35

to [18,19]. He proposed a procedure based on hypothesis testing for the detection of a single error36

in linear(ised) models, which he called data snooping. Most of conventional geodetic studies have a37

chapter on Baarda’s data snooping procedure, e.g. [20,21]. Furthermore, this procedure has become38

very popular and is routinely used in adjustment computations [22]. Although data snooping was39

introduced as a testing procedure for use in geodetic networks, it is a generally applicable method [23].40

Baarda’s data snooping consists of screening each individual observation for a possible error.41

Baarda’s w-test statistic for his data snooping is given by a normalised least-squares residual. This test,42

which is based on a linear mean-shift model, can also be derived as a particular case of the generalised43

likelihood ratio test [24]. Baarda’s w-test makes a decision between the nullH0 and a single alternative44

hypothesis HA In that case, rejection of H0 automatically implies acceptance of HA, and vice-versa45

[15,16,25].46

Based on the probability of rejecting a true null hypothesisH0 (type I error - ‘false alarm’, denoted47

by "α") and the probability of rejecting a true alternative hypothesis HA (type II error - ‘missed48

detection’, denoted by "β"), Baarda [18,19] also derived the concept of the Minimal Detectable Bias49

(MDB) – the term given by [26]. The MDB is the additional bias (or are the additional biases) in the50

parameters vector that can be detected by the w-test with a certain probability of 1− β. The MDB can51

be computed before actual measurements have been carried out, using only a functional model and52

the expected stochastic properties of the data [21]. In addition, it is possible to describe the influences53

of the MDBs on the geodetic network coordinates (i.e. on the parameters). The set of MDBs describes54

the internal reliability, whereas their propagation on the parameters is said to describe the external55

reliability [27]. The measures of internal and external reliability, therefore, are very useful tool to56

assess the magnitude of possible errors that can be detected during the pre-processing of the data.57

For this reason the concept of the internal (quantified by MDB) and external reliability can be applied58

during the design stage of geodetic network. In this context, the aim of this study is to apply the59

concept of reliability for designing geodetic network. The quality criterion considered here is based60

on the external reliability. The position of the control point of geodetic network is selected so that the61

maximum influence of an MDB on the coordinates of the network points is minimum. A simulated62

levelling network is used as an example of application of the proposed method. Here, we consider a63

scenario where the observations of the network have the same uncertainties and another with different64

uncertainties. We also consider the case of minimally constrained and over-constrained network.65

2. Conventional Reliability Theory66

The null hypothesis (denoted byH0), which is also called the working hypothesis, corresponds67

to a supposedly full specification model. This model is used to estimate the unknown parameters,68

typically in a least-squares approach. Thus, the null hypothesis of the standard Gauss–Markov model69

in linear or linearised form is given by [20]:70

H0 : E{y} = Ax + e, (1)
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where E{.} is the expectation operator, y ∈ Rn the vector of measurements, A ∈ Rn×u the Jacobian71

matrix (also called design matrix) of full rank u, x ∈ Ru the unknown parameter vector, and e ∈ Rn the72

unknown vector of measurement errors.73

Typically, it is assumed that the errors of the good measurements are normally distributed with74

expectation zero, i.e.:75

e ∼ N(0, Qe), (2)

with a known positive definite symmetric covariance matrix Qe ∈ Rn×n. Here, we confine ourselves to76

the case that A and Qe have full column rank.77

The redundancy (or degrees of freedom) of the model in Equation 1 is r = n− u. However, any78

model is only an approximation to the truth. This implies that we inevitably encounter misspecified79

models. In contrast to theH0, Baarda [19] introduced a mean shift model that defines the alternative80

hypothesisHA, also referred to as model misspecification, as follows:81

HA : E{y} = Ax + ci∇i + e =
(

A ci

)
+

(
x
∇i

)
+ e, ∀i = 1, · · · , n (3)

with ci a canonical unit vector, which consists exclusively of elements with values of 0 and 1, where82

1 means that an ith bias parameter of magnitude ∇i affects an ith measurement and 0 otherwise.83

We have, for instance, ci=
(

0 0 0 · · · 1ith 0 · · · 0
)T

. In other words, ci specifies the type of84

model error and ∇i the size of the model error, or outlier.85

The likelihood ratio test to testH0 againstHA is given by:86

Accept H0 i f |wi| ≤ k = Φ−1(1− α

2
), reject otherwise in f avour o f HA (4)

and the test statistic (known as w-test) is given by a normalised least-squares residual as follows [19]:87

wi =
ci

TQ−1
e ê√

ciTQ−1
e QêQ−1

e ci

(5)

According to 4 and 5, we have:88

• k is the critical value. The critical value k is the the tabular value from the cumulative distribution89

function (cdf) of the standard normal N(0, 1) based on the chosen of a significance level α.90

Because we perform a two-sided test of the form |wi| ≤ k we have α/2. For example, for91

α = 0.01, we obtain k = 2.576. In this case, if |wi| > 2.576 for some yi one may rejectH0.92

• Φ−1 denotes the inverse of the normal cumulative distribution function.93

• ê is the least-squares residuals vector underH0 and Qê the covariance matrix of the best linear94

unbiased estimator of ê underH0.95

The decision rule in 4 says that if the test statistic |wi| in 5 is larger than some critical value k,96

i.e. a percentile of its probability distribution, then we reject the null hypothesisH0 in favour of the97

alternative hypothesisHA.98

Because w-test in its essence is based on binary hypothesis testing, in which one decides between99

the null hypothesisH0 and a unique alternative hypothesisHA, it may lead to type I decision error (α)100

and type II decision error (β). The probability level α is the probability of rejecting the null hypothesis101

when it is true, whereas β is the probability of failing to reject the null hypothesis when it is false.102

Instead of α and β, there is the confidence level (CL) and power of the test (γ). The first deals with the103

probability of accepting a true null hypothesis; the second, with the probability of correctly accepting104

the alternative hypothesis. The power of the test is a complement of type II decision error β, i.e.105

= 1− β. Similarly, the confidence level (CL) is given by CL = 1− α.106
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The normalised least-squares residual wi follows a standard normal distribution with the107

expectation that µ = 0 if H0 holds true. On the other hand, if the system is contaminated with108

a single error at the ith position of the dataset, there is an outlier that causes the expectation of wi to109

become µ > 0. The effect can be best understood using the non-central chi-squared distribution with110

one degree of freedom (i.e. for one single outlier). Under the alternative hypothesisHA, the expectation111

of wi is the square-root of the non-centrality parameter λq=1 from the chi-square distribution with one112

degree of freedom (q=1), which is given by:113

E{wi} = λq=1 = ci
TQ−1

e QêQ−1
e ci∇2

i (6)

where λq=1 is the non-centrality parameter for one degree of freedom q = 1. Note that there is an114

outlier that causes the expectation of wi to become λq=1.115

The non-centrality parameter λq=1 in Equation 6 represents the expected mean shift of a specific116

w-test. In such case, the term ci
TQ−1

e QêQ−1
e ci in Equation 6 is a scalar and therefore it can be rewritten117

as follows [26]:118

|∇i| = MDB(i) =

√
λq=1

ciTQ−1
e QêQ−1

e ci
, ∀i = 1, · · · , n (7)

where |∇i| is the minimal detectable bias MDB(i), which can be computed for each of the n alternative119

hypotheses according to Equation 3.120

For a single outlier, the variance of estimated outlier, denoted by σ2
∇i

, is:121

σ2
∇i

=
(

ci
TQ−1

e QêQ−1
e ci

)−1
, ∀i = 1, · · · , n (8)

Thus, the MDB can also be written as:122

MDB(i) = σ∇i

√
λq=1, ∀i = 1, · · · , n (9)

where σ∇i =
√

σ2
∇i

is the standard-deviation of estimated outlier ∇i.123

The MDB in Equation 7 or 9 of an alternative hypothesis is the smallest magnitude outlier that124

can lead to rejection of a null hypothesis for a given α and β. Thus, for each model of the alternative125

hypothesisHA, the corresponding MDB can be computed. The key point of MDB is that it can work as126

a tool for designing systems capable of withstanding outlier with a certain degree of probability.127

The non-centrality parameter λq=1 can be computed as a function of type 1 decision error α, type128

2 decision error β and the degrees of freedom of the test q. Here, we use the recursive algorithm based129

on the work by [28], namely bisection algorithm, in order to obtain the non-centrality parameter λq=1.130

With the non-centrality parameter, and knowing the uncertainty of the sensor and the architecture131

of the model, it is possible to compute the MDB according to Equation 7 or 9. The MDB was further132

investigated for a single outlier in a singular Gauss–Markov model [29]. There are also studies covering133

either independent or correlated measurements [30–34]. For the case of one assumes that more than134

one outlier is present in the dataset. In other words, it is possible to set up for the case of multiple135

outliers. The readers who are interested in multiple outliers issue can refer to [35–38]. For more details136

about alternative models, refer to [39,40].137

In order to quantify the external reliability, one should propagate each MDB on the parameters. In138

other words, the external reliability measures the influence of an undetected outlier on the estimation139

of coordinates of the geodetic network, and it is given by:140

∇X = (ATW A)−1(ATWci|∇i|) (10)
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where ∇X ∈ Ru is the influence of an undetectable outlier ∇i located at a given position according to141

the vector ci in 3 and W ∈ Rn×n the known matrix of weights, taken as W = σ0
2Q−1

e , where σ2
0 is the142

variance factor.143

Here, we compute the maximum external reliability (max (∇X)) as follows:144

max {∇X} = max {(ATW A)−1(ATWci MDB)} (11)

Important to mention that the maximum external reliability max {∇X} can be a positive or a145

negative value. According to Equation 1, we consider the maximum influence of an undetectable146

outlier ∇i = MDB on the parameters.147

In the next section, we present an automatic method for geodetic network design that was148

computationally developed based on reliability theory. Specifically, we apply reliability theory to149

automatically define the best location of control points. We apply the proposed method in order to150

design a levelling geodetic network. Although the method was applied in a specific network, it is a151

generally applicable method. For example, the reliability theory has been used to measure the integrity152

of the receivers for civil aviation, which is a main tool for safety-of-life applications, see e.g. [41].153

3. Automatic Procedure to Design the Location of Control Points in the Geodetic Network154

For the establishment of a geodetic network, we must define which points of the network will155

have their coordinates previously determined in the desired reference system. These points are called156

control points, or constraint points. These points that allow the other points of the geodetic network to157

be linked to a reference system. Therefore, it is essential to define the location of these control points at158

the design stage of a geodetic network. The proposed automatic method here focuses on designing of159

the geodetic networks in terms of high reliability. Under the present proposal, the quality criterion to160

be considered during the design stage is based on the lowest value of the maximum influence of an161

outlier on the coordinates of the network (i.e., maximum external reliability). The method does not162

depend on the real measurements values but only on the model design, i.e. the network geometry and163

covariance matrix. The computations can be performed as follows:164

1. Defining a significance level α and the type II error β in order to compute the non-centrality165

parameter. Here, we use the recursive algorithm based on the work by Aydin and Demirel [28],166

namely bisection algorithm, in order to obtain the non-centrality parameter for one degree of167

freedom,i.e. λq=1. Typically a value of the level alpha = 0.001 and β = 0.2 is adopted (see, e.g.168

[19]).169

170

2. Defining a geodetic network configuration as well as the uncertainties of the observations,171

i.e. the design matrix A and the covariance matrix of the observations Qe, respectively. The172

covariance matrix of the observations Qe may consist of random effects and the uncertainties173

associated with the correction of systematic effects. The latter follows from the instrument174

precision, measurement techniques and field condition. In this step, the design matrix and175

covariance matrix are conditioned to the position of the control point (or by the combination of176

control points) in the network. It is important to mention that the design matrix defined must177

have a minimum configuration to avoid rank deficiency [42].178

179

3. Computing the MDB for each observation according to Equation 7 or 9.180

181

4. Computing the external reliability according to Equation 10.182

183

5. Computing and store the maximum external reliability according to Equation 11.184

185

6. Checking whether all the points (or all combination of points) of the network were configured as186

control point. If not, select a new control point (or new combination of control points) and return187
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to step 3. Otherwise, the algorithm selects the configuration of the network that has the lowest188

value of the maximum external reliability. Important to mention that matrix A is modified when189

a new point (or a new combination of points) is selected as the control.190

The proposed method is summarised as a flowchart in Figure 1.191

-Significance  level  (α)

-Type II decision error (β)

- Matrices A and Qe

Inputs: 

Compute MDBs: |∇i|= MDB(i) 

Compute the external reliability: ∇X 

Compute & store: max {∇X} 

Have all possible  
combinations  

of control points  
been performed? 

Select a new point  as “control “  
 (or new combination of points)   

& 
Redefine A matrix 

Compute smallest max {∇X}  

Define the network configuration 
based on smallest maximum external 

reliability (max {∇X})  

End of Design Stage 

NO YES 

Figure 1. Flowchart of the automatic method proposed to design the location of control points in the
geodetic network.

4. Results and Discussion192

In order to demonstrate the design method in practice, in this section we apply it to a simulated193

closed levelling network. The network is displayed in Figure 2. The goal is to illustrate the design194

method; further considerations about levelling networks are outside the scope of this study. The results195

of this paper are presented for γ = 0.8 and α = 0.001, which gives λq=1 = 17.075.196

Figure 2. Simulated levelling geodetic network.

The results of the internal reliability are shown based on the relationship between MDB and the197

standard-deviation of the observation. As an example of that relationship, for MDB = 5mm and198

σ = 2.5mm, the ratio is MDB
σ = 5mm

2.5mm = 2σ.199
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Two typical cases were considered here: (a) a minimally constrained and (b) a over-constrained200

least squares adjustment. The variances of the height difference (denoted by σ2
∆hi

) are assumed normally201

distributed and uncorrelated. The variances were based on the relation between the differential202

levelling lines and their lengths. In other words, the variances of differential levelling lines are203

proportional to their lengths, i.e. the larger the lengths, the larger the variances of differential levelling204

lines.205

We consider that the equipment used here is a spirit level with nominal standard deviation of206

±1mm/km for a double run levelling. In each scenario two variants are considered here:207

1. all lengths of the differential levelling with 1 km, and therefore the variances equal to 1mm2; and208

2. lines with diversified lengths, and therefore levelling lines with different variances, whose values209

are given in Table 1.210

Table 1. Levelling lines with different lengths and variances for the case 2.

Observation Length of line (km) σ2
∆hi

(mm2)

∆h1 1.000 1.00
∆h3 1.000 1.00
∆h4 1.000 1.00
∆h6 1.000 1.00
∆h2 1.414 2.00
∆h5 1.414 2.00
∆h8 1.732 3.00
∆h9 1.732 3.00
∆h10 1.732 3.00
∆h11 1.732 3.00
∆h7 2.000 4.00
∆h12 2.000 4.00

In the first scenario (a), we consider the closed levelling network in Figure 2 with availability of211

one control station, and 6 points with unknown heights, totalling six minimally constrained points and212

7 possible cases of control point configuration. In that case, there are n = 12 observations and u = 6213

unknowns, which lead to n− u = 6 degrees of freedom.214

Moreover, the design matrix A has dimension 12× 6 and the covariance matrix of observations215

Qe has dimension 12× 12. The stations C, D, E, F and G are involved in 4 height differences, so there216

are three redundant observations for the determination of these heights. On the other hand, there is217

one redundant observation for the determination of heights of the stations A and B.218

The MDBs computed for each observation of the network and for each case of variances219

configuration are displayed in Figure 3. Important to mention that MDBs were invariant with regard220

to the position of a single control point in the network. It can be noted that the observations ∆h7 and221

∆h12 are more resistant to outlier than others, because theirs MDBs were the smallest on the network.222

Table 2 shows the maximum external reliability of the network. It can be noted that the smallest223

value of the maximum influence of an MDB on the heights occurred when the station G was taken as224

control point, i.e. when the control point was set to the centre of the network (3.28 mm, marked in225

bold). The ± sign in Table 2 means that the maximum influence of an outlier on the network occurs in226

two directions (up and down). The best network configuration obtained based on the optimal position227

of the control point is shown in Figure 4.228
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Figure 3. MDB (σ) for a single control point - minimally constrained scenario (a) - for the cases of
observations with same variances and different variances.

Table 2. Maximum external reliability for a single control point for both observations with equal
variances and with different variances.

Maximum External Reliability (mm) Maximum External Reliability (mm)
Control Point Observations with same variance Observations with different variances

A ±3.97 ±5.70
B ±3.97 ±5.70
C −3.97 −5.70
D 3.97 5.70
E −3.97 −5.70
F 3.97 5.70
G ±3.28 ±3.94

Figure 4. Optimum Configuration of the network for a single control point - minimally constrained
scenario (a).

In the second case, we consider the closed levelling network in Figure 2 over-constrained with229

two control station, totalling 21 possible combinations of control points. For example, taking A and B230

fixed, we have u = 5 unknown heights (C, D, E, F, G), n = 12 observations and n− u = 7 redundant231

observations. In that case, the design matrix A has dimension 12× 5 and the covariance matrix of232

observations Qe has dimension 12× 12. On the other hand, we have u = 5 unknown heights (B, D,233

E, F, G), n = 11 observations and n− u = 16 redundant observations in the case of selecting control234

points A and C. In that case, when the control points are adjacent, the respective levelling line are235
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not observed and, therefore, the design matrix A has dimension 11× 5 and the covariance matrix236

of observations Qe has dimension 11× 11. Figure 5 shows an example when the control points are237

adjacent.238

Figure 5. Example of the network configuration for adjacent control points A and C.

For the second case, we produce and analyse 21 graphs showing the MDB values. Due to the239

large number of graphs, we chose to show here a table with the summary of the results. Table 3 shows240

the overall statistics of the MDBs (average, maximum, minimum and standard-deviation) for each241

possible combination, two by two, of control points and for each scenario of variance. For the case of242

same variances, it can be noted that when the points A and B were taken as control points (AB), the243

observations presented a good level of homogeneity (homogeneous redundancy), i.e. all of them had244

the same internal reliability. It means that, in the presence of an outlier, all observations have the same245

ability to detect it. The search for homogeneous redundancy in all the observations has already been246

investigated in [7,8].247

Table 3. Statistics of MDB for two control points − over-constrained scenario (b).

MDB (in σ unit)
Observations with same variances Observations with different variances

Control point Average Max. Min. Std. Dev. Average Max. Min. Std. Dev.

AB 5.41 5.41 5.41 0.00 5.52 6.39 4.69 0.67
AC, AF, DB or BE 5.64 6.56 5.1 0.50 5.86 7.83 4.49 1.16

CD or EF 5.69 6.45 4.98 0.63 5.93 7.5 4.6 1.28
CG, DG, EG or FG 5.69 6.56 5.00 0.65 5.97 7.85 4.57 1.35
AD, AE, CB or BF 5.46 6.47 4.99 0.50 5.61 7.43 4.59 1.00

AG or BG 5.48 6.57 4.95 0.57 5.69 7.87 4.57 1.19
DE or CF 5.65 6.53 5.06 0.50 5.8 7.73 4.66 1.03
CE or DF 5.51 6.36 4.90 0.66 5.68 7.16 4.53 1.12

Figure 6 shows the maximum external reliability for the over-constrained network. The maximum248

external reliability of the network for combinations of control points AB, AG, BG, CD, CF, DE and EF249

had positive and negative signals. This is represented by the ± sign on the Figure 6. It means that the250

maximum influence of an outlier on the network occurs in two directions. It can be noted that both251

cases of observations with same variances and different variances, the smallest value of the maximum252

influence of an MDB on the heights occurred when the stations A and B were fixed as control, with253

max (∇X) = 2.3mm. In general, the inflation of the variances in the network inflated the maximum254

external reliability, i.e. it increased the maximum influence of a possible outlier on the network. The255

best configuration of the network according to our algorithm is showed in the Figure 7.256
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Figure 6. Maximum external reliability max (∇X) [mm] for two control points in the network.

Figure 7. Optimum configuration of the network for two control points.

5. Conclusions257

Within the context of applied sciences, we present an automatic procedure based on the concepts258

of reliability for designing geodetic networks for the definition of the best control point position. The259

conclusions are highlighted as follows:260

1. The proposed method to design a geodetic network is based on the lowest value of the maximum261

external reliability. The size of the outlier is defined according to MDB for a given type I and type262

II errors probabilities. We highlight that the method discards the use of the observation vector of263

Gauss-Markov model. In fact, the only needs are the geometrical network configuration (given264

by Jacobian matrix) and the uncertainties of the observations (given by instrument precision,265

measurement techniques and/or field condition). The aim of the proposed method is to find266

the optimum configuration of the geodetic control points so that the maximum influence of an267

outlier on the coordinates of the network is minimum. Therefore, it can be applied for any kind268

of geodetic network.269

270

2. Here, the proposed method was applied to a closed levelling network. The MDB was computed271

based on a power of the test of data snooping of 0.80 (80%) and the significance level of 0.001272

(0.1%). In order to apply the concepts in practice, two scenarios were presented for a simulated273

levelling geodetic network: a minimally constrained network one and a over-constrained274

network. The observations were assumed normally distributed and uncorrelated, which usually275

happens in the practice of levelling network adjustment. In each scenario two variants were also276

considered: one in which the variances of the measurements were assumed equal and another277

in which the variances were different. In the case of minimally constrained, we highlight that278
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the centre of the simulated network was the optimum position to set the control point. In the279

over-constrained network, we highlight that among the 21 possibilities of configuring the control280

points, the stations with less line connections (i.e. with less redundant observations) provided281

the best configuration of geodetic network.282

In future studies the idea will be to integrate reliability with precision. Therefore, it will be283

possible to make an analysis that considers not only the bias (given by the external reliability), but also284

the precision of the coordinates in the network (given by the covariance matrix of the parameters).285
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34. Prószyński, W. Another approach to reliability measures for systems with correlated observations. Journal361

of Geodesy 2010, 84, 547–556. doi:10.1007/s00190-010-0394-2.362

35. Ding, X.; Coleman, R. Multiple outlier detection by evaluating redundancy contributions of observations.363

Journal of Geodesy 1996, 70, 489–498. doi:10.1007/BF00863621.364

36. Gui, Q.; Li, X.; Gong, Y.; Li, B.; Li, G. A Bayesian unmasking method for locating multiple365

gross errors based on posterior probabilities of classification variables. J. Geod. 2011, 85, 191–203.366

doi:10.1007/s00190-010-0429-8.367

37. Gökalp, E.; Güngör, O.; Boz, Y. Evaluation of Different Outlier Detection Methods for GPS Networks.368

Sensors 2008, 8, 7344–7358. doi:10.3390/s8117344.369

38. Baselga, S. Nonexistence of Rigorous Tests for Multiple Outlier Detection in Least-Squares Adjustment.370

Journal of Surveying Engineering 2011, 137, 109–112. doi:10.1061/(ASCE)SU.1943-5428.0000048.371

39. Lehmann, R. On the formulation of the alternative hypothesis for geodetic outlier detection. J. Geod. 2013,372

87, 373–386. doi:10.1007/s00190-012-0607-y.373

40. Lehmann, R.; Lösler, M. Multiple Outlier Detection: Hypothesis Tests versus Model Selection by374

Information Criteria. J. Surv. Eng. 2016, 142, 04016017,375

41. Fu, L.; Zhang, J.; Li, R.; Cao, X.; Wang, J. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring376

in Approach and Landing Phase. Sensors 2015, 15, 22854–22873. doi:10.3390/s150922854.377

42. Xu, P. Sign-constrained robust least squares, subjective breakdown point and the effect of weights of378

observations on robustness. Journal of Geodesy 2005, 79, 146–159. doi:10.1007/s00190-005-0454-1.379

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2019                   doi:10.20944/preprints201912.0232.v1

Peer-reviewed version available at Appl. Sci. 2020, 10, 687; doi:10.3390/app10020687

http://xxx.lanl.gov/abs/https://doi.org/10.1080/00396265.2018.1548118
https://doi.org/10.1080/00396265.2018.1548118
https://doi.org/10.14808/sci.plena.2019.095401
https://doi.org/10.1007/s00190-012-0569-0
https://doi.org/10.1007/s00190-013-0629-0
https://doi.org/10.1007/s00190-004-0406-1
https://doi.org/10.1007/BF00808289
https://doi.org/10.1061/(ASCE)0733-9453(1997)123:3(126)
https://doi.org/10.1007/s001900050163
https://doi.org/10.1007/s00190-010-0394-2
https://doi.org/10.1007/BF00863621
https://doi.org/10.1007/s00190-010-0429-8
https://doi.org/10.3390/s8117344
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000048
https://doi.org/10.1007/s00190-012-0607-y
https://doi.org/10.3390/s150922854
https://doi.org/10.1007/s00190-005-0454-1
https://doi.org/10.20944/preprints201912.0232.v1
https://doi.org/10.3390/app10020687


Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 December 2019                   doi:10.20944/preprints201912.0232.v1

Peer-reviewed version available at Appl. Sci. 2020, 10, 687; doi:10.3390/app10020687

https://doi.org/10.20944/preprints201912.0232.v1
https://doi.org/10.3390/app10020687

