Is reduced Planck’s constant- an outcome of electroweak gravity?

U.V.S. Seshavatharam1 and S. Lakshminarayana2

1Honorary faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84, Telangana, INDIA
2Dept. of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, INDIA
Emails: seshavatharam.uvs@gmail.com (and) lnsrirama@gmail.com
Orcid numbers: 0000-0002-1695-6037 (and) 0000-0002-8923-772X

Abstract: To understand the mystery of final unification, in our earlier publications, we proposed that there exist three atomic gravitational constants associated with electroweak, strong and electromagnetic interactions. During cosmic evolution, if one is willing to give equal importance to Higgs boson and Planck mass in understanding the massive origin of elementary particles, then it seems quite logical to expect a common relation in between Planck scale and Electroweak scale. Based on these two points, we noticed that, electroweak field seems to be operated by a primordial massive fermion of rest energy 585 GeV. It can be considered as the zygote of all elementary particles and galactic dark matter. H-bar seems to be a characteristic outcome of unified electroweak gravity. Electron rest mass seems to be a characteristic outcome of electroweak and strong gravity. Proton rest mass seems to be a characteristic outcome of electroweak, strong and electromagnetic gravity. Recently observed 3.5 keV photon seems to be an outcome of annihilation of charged baby lepton of rest energy 1.75 keV. Interesting point to be noted is that, Schwarzschild radius of electron is 0.48 nanometer and it needs further investigation with respect to emerging nano-science and technology.

Key words: Four gravitational constants; Electroweak fermion; Reduced Planck’s constant; Stellar mass limits; 3.5 keV photon;

Nomenclature

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Newtonian gravitational constant =G_s</td>
<td>17) Schwarzschild radius of $m_e = R_s$</td>
</tr>
<tr>
<td>2) Electromagnetic gravitational constant =G_e</td>
<td>18) Nuclear charge radius =$R_{(+,\alpha)}$</td>
</tr>
<tr>
<td>3) Nuclear gravitational constant =G_s</td>
<td>19) Schwarzschild radius of $M_e = R_s$</td>
</tr>
<tr>
<td>4) Weak gravitational constant =G_s</td>
<td>20) Schwarzschild radius of $m_e = R_s$</td>
</tr>
<tr>
<td>5) Fermi’s weak coupling constant =G_s</td>
<td>21) Schwarzschild radius of atom =R_{atom}</td>
</tr>
<tr>
<td>6) Electroweak fermion =M_e</td>
<td>22) Mean stable mass number =A_e</td>
</tr>
<tr>
<td>7) Reduced Planck’s constant =\hbar</td>
<td>23) Nuclear binding energy =$B_{(+,\alpha)}$</td>
</tr>
<tr>
<td>8) Speed of light =c</td>
<td>24) Nuclear binding energy coefficient=B_e</td>
</tr>
<tr>
<td>9) Strong coupling constant =α_s</td>
<td>25) Mass limit of stellar object =M_\odot</td>
</tr>
<tr>
<td>10) Elementary charge =e</td>
<td>26) Characteristic ratio associated with charged lepton=$\frac{4\pi\varepsilon_0 G_s m_e^3}{e^2}$ (\approx) γ</td>
</tr>
<tr>
<td>11) Mass of proton =m_p</td>
<td>27) Mass of charged baby lepton=$\left(m_\odot\right)^\pm$</td>
</tr>
<tr>
<td>12) Mass of neutron =m_n</td>
<td></td>
</tr>
<tr>
<td>13) Mass of electron =m_e</td>
<td></td>
</tr>
<tr>
<td>14) Mass of Up quark =m_u</td>
<td></td>
</tr>
<tr>
<td>15) Mass of Down quark =m_d</td>
<td></td>
</tr>
<tr>
<td>16) Bohr Radius =a_0</td>
<td></td>
</tr>
</tbody>
</table>

1. Introduction

Even though celestial objects that show gravity are confirmed to be made up of so many atoms, so far scientists could not find any relation in between gravity and the atomic interactions at quantum gravity level [1,2]. Black hole temperature point of view [3], strong interaction point of view [4-7] and electroweak interaction point of view [8], scientists found very interesting similarities in between gravity
and quantum phenomena. Quantum cosmology point of view [9] and nuclear quantum gravity point of view [10-20], authors could develop workable ideas, concepts and relations. On a whole, workability is still lagging. It clearly indicates that, there is something wrong in our notion of understanding or there is something missing in developing the unified physical concepts and needs a critical review at fundamental level. In this context, we hope that, electroweak scale [21,22,23] can certainly yield useful stuff.

2. Motivating concepts

To develop new and workable ideas, we wish to highlight the following points.

1) During cosmic evolution, if one is willing to give equal importance to Higgs boson and Planck mass in understanding the massive origin of elementary particles and observed matter [24,25], then it seems quite logical to expect a common relation in between Planck scale and Electroweak scale.

2) Whether particle’s massive nature is due to electromagnetism or gravity or weak interaction or strong interaction or cosmic dust or dark matter [26] or something else, is unclear.

3) Without understanding the massive nature, it is not reasonable to classify the field created by any elementary particle.

4) All the four interactions seem to be associated with \hbar .

5) Nobody knows the mystery of (\hbar) which seems to be a basic measure of angular momentum [27,28,29,30].

6) Nobody knows the mystery of existence, stability and behavior of ‘proton’ or ‘electron’.

7) ‘Mass’ is a basic property of space-time curvature and basic ingredient of angular momentum.

8) Atoms are mainly characterized by protons and electrons.

9) ‘Free neutron’ is an unstable particle.

3. Basic assumptions

1) There exists a characteristic electroweak fermion of rest energy [18], $M_e c^2 \approx 584.725$ GeV.

2) M_e can be considered as the zygote of all elementary particles.

3) Fermi’s weak coupling constant (G_f) [29,30,31] can be considered as the basic unified coupling constant.

4) Each atomic interaction is associated with a characteristic gravitational coupling constant.

$$G_e \approx 2.374335 \times 10^{37} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}$$

$$G_s \approx 3.329561 \times 10^{28} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}$$

$$G_w \approx 2.907945 \times 10^{22} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}$$

$$G_N \approx 6.679855 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2}$$

4. Characteristic unified relations

Based on the above points, we propose the following new and workable relations.

$$\hbar c \approx G_e M_e \approx \sqrt{G_s \left(\frac{c^2}{4G_e} \right)}$$

$$\Rightarrow \hbar \approx \frac{G_e M_e^2}{c} \approx \frac{G_s c^2}{4G_e}$$

where $\left(\frac{c^2}{4G_s} \right) \approx 6.9401 \times 10^9$ N is the characteristic force associated with electroweak interaction.

$$m \approx \left(\frac{G_e}{G_s} \right) M_e$$

$$m_p \approx \left(\frac{G_e}{G_s} \right) M_e \approx \left(\frac{G_s}{G_s G_e} \right) M_e$$

5. Specific unified relations connected with G_N

With reference to Newtonian gravitational constant [32-39],

$$\left(\frac{m_e}{m} \right)^n \approx \left(\frac{G_e}{G_s} \right)$$

$$\exp \left(\frac{1}{\alpha_s} \right) \approx \left(\frac{G_e}{G_s} \right)$$

where α_s = Strong coupling constant [29,30]
\[\frac{m_p}{m_e} \approx \left(\frac{G_s}{G_e G_N^{1/3}} \right)^{1/3} \]

(7)

6. Specific unified relations connected with nuclear radius and Bohr radius

Characteristic Schwarzschild radius of proton and Schwarzschild radius of atom can be addressed with the following relations.

\[R_c \approx \frac{2Gm_p}{c^2} \approx 1.2393 \text{ fm} \]

(8)

= Characteristic nuclear charge radius \[40,41]\]

\[R(Z,A) \approx \left(\frac{Z^{1/3} + (\sqrt{Z(A-Z)})^{1/3}}{G_m} \right) \left(\frac{G m_p}{c^2} \right) \]

(9)

= Nuclear charge radius \[42]\]

\[a_e \approx \left(\frac{4\pi\varepsilon_G m_e^3}{e^2} \right) \left(\frac{G m_p}{c^2} \right) \approx 5.2918 \times 10^{-11} \text{ m} \]

(10)

= Bohr radius of Hydrogen atom \[28]\]

7. Specific unified relations connected with proton-electron mass ratio

With reference to electroweak interaction,

\[R_e \approx \frac{2G M_e}{c^2} \approx 6.7494 \times 10^{-11} \text{ m} \]

(11)

= Schwarzschild radius of \(M_e \)

\[\frac{R_e}{R_c} \approx \left(\frac{2G m_e}{c^2} \right) \left(\frac{2G m_e}{c^2} \right) \approx \frac{G m_p}{G_e M_e} \approx \left(\frac{m_e}{m_p} \right) \]

(12)

With reference to \(R_e \approx 6.7494 \times 10^{-11} \text{ m} \) and considering \(\left(\frac{m_p}{m_e} \right) \) as a geometric ratio, nuclear radius and atomic radius can be estimated in the following way.

\[R_e \approx \left(\frac{m_p}{m_e} \right) \left(\frac{2G M_e}{c^2} \right) \approx 1.2393 \text{ fm} \]

(13)

\[R_e \approx \left(\frac{m_p}{m_e} \right) \left(\frac{2G M_e}{c^2} \right) \approx 2.275 \text{ pm} \]

(14)

With reference to electromagnetic gravitational constant, Schwarzschild radius of electron can be addressed with,

\[R_e \approx \left(\frac{2G m_e}{c^2} \right) \approx 0.48 \text{ nm} \]

(15)

Based on relations (14) and (15), identifying \(R_e \) and \(R_c \) as characteristic length scales associated with characteristic atomic radius, we noticed that,

\[\sqrt{R_e R_c} \approx \left(\frac{2\sqrt{G G m_e}}{c^2} \right) \approx 33.1 \text{ pm} \]

(16)

\[\approx R_{e \text{min}} \approx \text{Schwarzschild radius of atom} [43] \]

8. Specific unified relations connected with nuclear stability and binding energy

Nuclear mean stability and binding energy \[44,45\] can be understood with the following two relations.

Nuclear mean stability can be understood with,

\[\left(A_s \right)_{\text{mean}} \approx A_u = 2Z + k_t Z^2 \]

(17)

where \[k_t \approx 4 \left(\frac{G_s}{G_e G_N} \right) \approx 4 \left(\frac{m_p}{M_w} \right) \]

\[\approx 0.006418 \]

Nuclear binding energy can be understood with,

\[B(A,Z) \approx \left(1 - k_z \sqrt{Z^2 N} \right) (A - A_t^{1/3}) \left(\frac{(A_u - A)^2}{A_n} \right) \left(B_0 \approx 10.1 \text{ MeV} \right) \]

(18)

where, \(k_z \approx 2 \left(\frac{G_w}{G_s} \right) \approx 2 \left(\frac{m_c}{M_w} \right) \approx 0.00189 \)

\[B_0 \approx \left(\frac{1}{\alpha_s} \right) \frac{e^2}{4\pi\varepsilon_G R_0} \left(2 \frac{m_c}{M_w} \right) \]

\[\approx \left(\frac{2m_u + m_d}{c^2} \right) \frac{c^2}{2} \left(m_u + 2m_d \right) \frac{c^2}{2} \approx 10.275 \text{ MeV} \]

9. Specific unified relations connected with stellar mass limits
With reference to strong nuclear gravitational constant and astro-physics point of view \[14, 16\], by considering nucleon as a characteristic building block, stellar mass limit \[46,47\] can be understood with a relation of the form,

\[\frac{G_s M_s}{G m_s} \approx \frac{G_s}{G_c} \] \hspace{1cm} (19)

Thus, characteristic stellar mass limit can be estimated with a very simple relation of the form,

\[M_s \approx \left(\frac{G_s}{G_c} \right)^{\frac{3}{2}} (m_s) \approx 9.37 \text{ solar masses} \] \hspace{1cm} (20)

Another interesting relation is,

\[\frac{G_s M_s}{G_s \sqrt{m_s M_s}} \approx \frac{G_s}{G_c} \] \hspace{1cm} (21)

\[M_s \approx \left(\frac{G_s}{G_c} \right)^{\frac{3}{2}} \sqrt{m_s M_s} \approx 234 \text{ solar masses} \] \hspace{1cm} (22)

With reference to electromagnetic gravitational constant, mass limits of super massive stellar objects can be understood.

10. Applications of \(G_s \) in elementary particle physics and astrophysics

A) Understanding the recently observed 3.5 keV galactic photon

Recent galactic X-ray \[48,49\] studies strongly confirm the existence of a new photon of energy 3.5 keV. So far, its origin is unknown and unclear. In this context, we propose the following alternative mechanism for understanding the origin of 3.5 keV photon.

1) There exists a characteristic charged baby lepton of rest mass,

\[(m_n)^{\gamma} \approx \frac{e^2}{\sqrt{4\pi\varepsilon_0 G_s}} \approx 1.75 \text{ keV} \] \hspace{1cm} (23)

2) With pair annihilation mechanism, \((m_n) \)
generates a photon of rest energy 3.5keV

3) With current and future particle accelerators, \((m_n)^{\gamma} \approx 1.75 \text{ keV} \) can be generated.

B) Fitting Muon and Tau rest masses

Experimentally observed \[29\] Muon and Tau rest masses can be fitted in the following way.

\[m_{(\mu, \tau)} e^2 \approx \left[\gamma^3 + \left(n^2 \gamma \right)^{\frac{1}{4}} \left(\frac{G_s}{G_c} \right)^{\frac{3}{4}} \right] 1.75 \text{ keV} \] \hspace{1cm} (24)

where, \(\gamma \approx \sqrt{\frac{4\pi\varepsilon_0 G_s m^2}{e^2}} \approx 292.187 \) and \(n = 1 \) and 2

For \(n = 1 \), obtained \(m_c e^2 \approx 106.5 \text{ MeV} \)

\(n = 2 \), obtained \(m_c e^2 \approx 1781.5 \text{ MeV} \).

At \(n = 3 \), a new heavy charged lepton of rest energy 42.2 GeV can be predicted.

11. Discussion

We appeal that,

(1) Success of any unified model depends on its ability to involve gravity in microscopic models.

(2) Full-fledged implementation of gravity in microscopic physics must be able to:
 a) Estimate the ground state elementary particle rest masses of the three atomic interactions.
 b) Estimate the coupling constants of the three atomic interactions.
 c) Estimate the range of all interactions.
 d) Estimate the Newtonian gravitational constant.

(3) As the root/path is unclear and unknown, to make it success or to have a full-fledged implementation, one may be forced to consider a new path that may be out-of-scope of the currently believed string theory models\[50\].

(4) In our approach,
 a) We assign a different gravitational constant for each basic interaction.
 b) Considering 585 GeV fermion as the characteristic building block of all elementary particles, an attempt is made to fit proton and electron masses.
 c) During this journey, without considering arbitrary numbers or coefficients, we come across many strange and interesting relations for estimating other atomic and nuclear coupling constants.
d) With the following relation, magnitudes of (G_s, G_v, G_n) can be estimated.

\[
\frac{m_e}{m_e} \approx 2 \pi \sqrt{\frac{4 \pi \varepsilon_0 G_s m_e^2}{e^2}} \approx \left(\frac{G_s m_e^2}{\hbar c} \right) \left(\frac{G_v m_e^2}{\hbar c} \right) \approx \left(\frac{G_n m_e^2}{\hbar c} \right) \left(\frac{G_s^4}{G_s^4 G_n^2} \right)^{1/7}
\] (25)

e) Based on relations (5) and (6), magnitudes of (G_s, α) can be estimated.

12. Conclusion

With further study, research and confirming the existence of $M_c \varepsilon^2 \approx 584.725$ GeV, actual essence of final unification can be understood.

Acknowledgements

Author Seshavatharam is indebted to professors shri M. Nagaphani Sarma, Chairman, shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject.

References

[34] Li, Qing et al. Precise measurements of the gravitational constant using two independent methods. Nature 560, 582–588 (2018)

[44] Seshavatharam UVS and Lakshminarayana S. Hypothetical Role of Large Nuclear Gravity in Understanding the Significance and Applications of the Strong Coupling Constant in the Light of Up and Down Quark Clusters. Preprints 2019, 2019110134 (To be appeared in QJIS).

[45] Seshavatharam UVS and Lakshminarayana S. Implications and Applications of Fermi Scale Quantum Gravity. Preprints 2019, 2019110134 (To be appeared in AJMPA)
