Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

Article
Developing Efficient Discrete Simulations on
Multi-Core and GPU Architectures

10, Fernando Diaz-del-Rio'?, M.R. Lépez-Torres', F. Jiménez-Morales>

Daniel Cagigas-Muiiiz
and J.L. Guisado'*
1

2

Department of Computer Architecture and Technology, University of Seville, Spain; e-mail@e-mail.com
Department of Condensed Matter Physics, University of Seville, Spain; e-mail@e-mail.com
* Correspondence: jlguisado@us.es

Abstract: In this paper we show how to efficiently implement parallel discrete simulations on
Multi-Core and GPU architectures through a real example of application: a cellular automata model
of laser dynamics. We describe the techniques employed to build and optimize the implementations
using OpenMP and CUDA frameworks. We have evaluated the performance on two different
hardware platforms that represent different target market segments: high-end platforms for scientific
computing, using an Intel Xeon Platinum 8259CL server with 48 cores and also an NVIDIA Tesla
V100 GPU, both running on Amazon Web Server (AWS) Cloud, and on a consumer-oriented platform,
° using an Intel Core i9 9900k CPU and an NVIDIA GeForce GTX 1050 TI GPU. Performance results are
compared and analysed in detail. We show that excellent performance and scalability can be obtained
in both platforms, and we extract some important issues that imply a performance degradation for
them. We also found that current Multi-Core CPUs with large core numbers can bring a performance

10 . . .
very near to that of GPUs, even similar in some cases.

11

*? Keywords: laser dynamics; parallel computing; cellular automatas; GPUs and Multi-Core

processors performance
13

14

15

¢ 1. Introduction

"

17 Discrete simulation methods encompass a family of modeling techniques which employ entities
1= that inhabit discrete states and evolve in discrete time steps. Examples include models with an intrinsic
1o discrete nature, such as cellular automata (CA) and related lattice automata, like lattice gas automata
20 (LGA) or lattice Boltzmann method (LBM), and also discretization of continuos models like many
z stencil-based partial differential equation (PDE) solvers and particle methods based on fixed neighbor
22 lists. They are a powerful tool that has been widely used to simulate complex systems of very different
= kinds (in which a global behaviour results from the collective action of many simple components that
2« interact locally) and to solve systems of differential equations.

25 To accurately simulate real systems, the quality of the computed results very often depends on the
2 number of data points used for the computations and the complexity of the model. As a result, realistic
2z simulations often involve too large runtime and memory requirements for a sequential computer.
2e Therefore, efficient parallel implementation of this kind of discrete simulations is extremely important.
20 But this type of discrete algorithms has a strong parallel nature, because they are composed of many
30 individual components or cells that are simultaneously updated. They also have a local nature, since
a1 the evolution of cells is determined by strictly local rules, i.e. each cell only interacts with a number
2 of neighboring cells. Thanks to this, they are very suitable to be implemented efficiently on parallel
s computers [1,2].

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com
https://orcid.org/0000-0002-2792-2844
https://orcid.org/0000-0001-6184-1629
https://orcid.org/0000-0002-5209-9028
https://orcid.org/0000-0001-5480-7617
https://doi.org/10.20944/preprints201912.0223.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

3a In this paper, we study the efficient parallel implementation of a real application of this type, a CA
s model of laser dynamics, on Multi-Core and GPU architectures, employing the most commonly used
ss software frameworks for these platforms today: OpenMP and CUDA, respectively. In both cases, we
sz describe code optimizations that can speed-up the computation and reduce memory usage. In either
ss case we have evaluated the performance on two different hardware platforms that represent different
3o target market segments: on a high-end chip intended for scientific computing or for servers and on a
s consumer-oriented one. In the case of the Multi-Core architecture, the performance has been evaluated
a1 on a dual socket server with 2 high-end Intel Xeon Platinum 8259CL processors (completing 48 cores
2 between them) running on Amazon Web Server (AWS) Cloud, and also on a PC market Intel Core i9
a3 9900k processor. For the GPU architecture, we present performance evaluation results on a high-end
s« GPGPU NVIDIA Tesla V100 GPU running on AWS Cloud and on a consumer-oriented NVIDIA
a5 GeForce GTX 1050 TL In all cases, we reported speedups compared to a sequential implementation.
s The aim of this work is to extract lessons that may be helpful for practitioners trying to implement
4«7 discrete simulations of real systems in parallel.

a8 The considered application uses cellular automata, a class of discrete, spatially-distributed
2 dynamical systems with the following characteristics: spatial and temporal discrete character, local
so interaction and synchronous parallel dynamical evolution [3,4]. They can be described as a set
s1 of identical finite state machines (cells) arranged along a regular spatial grid, whose states are
s2 simultaneously updated by a uniformly applied state-transition function that refers to the states
ss of their neighbors [5]. In the last decades, CA have been successfully applied to build simulations
s« of complex systems in a wide range of fields, including physics (fluid dynamics, magnetization in
ss solids, reaction-diffusion processes), bio-medicine (viral infections, epidemic spreading), engineering
ss (communication networks, cryptography), environmental science (forest fires, population dynamics),
s7 economy (stock exchange markets), theoretical computer science, etc [6-8]. They are currently being
s« very used, in particular, for simulations in geography (specially in urban development planning
so [9], future development of cities [10], and land use [11]) pedestrian or vehicular traffic [12,13], and
e bio-medicine (applied to physiological modeling, for example for cancer [14], or epidemic modeling
e [15]).

62 The application considered in this study is a cellular automata model of laser dynamics introduced
es by Guisado et. al.,, capable of reproducing much of the phenomenology of laser systems [16-19].
es It captures the essence of laser as a complex system in which its macroscopic properties emerge
es spontaneously due to the self-organization of its basic components. This model is a useful alternative
es to the standard modeling approach of laser dynamics, based on differential equations, in situations
ez for which the approximations considered for them are not valid, for instance for lasers ruled by stiff
es differential equations, lasers with difficult boundary conditions, or very small devices. The mesoscopic
es character of the model also allows to have results impossible to be obtained by the differential equations,
70 such as studying the evolution of its spatio-temporal patterns.

7 In order to reduce the runtime of laser simulations with this model by taking advantage of its
72 parallel nature, a parallel implementation of it for computer clusters (distributed-memory parallel
zs computers), using the message-passing programming paradigm, was introduced in [20,21]. It showed
7a a good performance on dedicated computer clusters [22] and also on heterogeneous non-dedicated
7 clusters with a dynamic load balancing mechanism [23].

76 Due to the excellent ratio performance/price and performance/power of the Graphics Processing
7z Units (GPUs), it is very interesting to implement the model on them. GPUs are massively parallel
ze graphics processors originally designed for running interactive graphics applications, but that can also
7o be used to accelerate arbitrary applications, what is known as GPGPU (General Purpose computation
so on GPU) [24]. They can run thousands of programming threads in parallel, providing speedups
e mainly from 10x to 200x compared to CPU (depending on the application and on the optimizations of
sz its implementation), at very affordable prices. Therefore, GPUs have widespread use today in high
es performance scientific computing. Their architecture is formed by a number of multiprocessors, each

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

s« Of them with a number of cores. All cores of a multiprocessor share one memory unit called shared
es memory and all multiprocessors share a memory unit called global memory.
a6 A first version of a parallel implementation of the model for GPUs was presented in [25]. Even
ez when that first implementation did not explore all the possible optimizations to boost the performance
ss on that platform, it showed that the model could be successfully implemented on GPU. A speedup of
e 14.5 on a NVIDIA GeForce GTX 285 (a consumer-oriented GPU intended for low-end users and gamers)
%o compared to an Intel Core i5 750 with 4 cores at 2.67 GHz was obtained. The GPU implementation
o1 described in the present paper differs from that previous one in that this new version has been carefully
»2 optimized to extract all possible performance from the GPU and his performance has been evaluated
oz not only on a consumer-oriented GPU, but also on a Tesla scientific high-end GPU.
0 Another interesting parallel platform to implement discrete simulations today are Multi-Core
s processors. Since around 2005 all general-purpose CPUs implement more than one CPU (or "core") on
o6 the processor chip. For a decade, the number of cores in standard Intel x86 processors was modest
oz (mainly from 2 to 8). But in the last years, there are high-end CPUs in the market including up to
s several dozen cores (now up to 18 cores for Intel Core i9 and up to 56 cores for Intel Xeon Platinum).
oo Therefore, Multi-Core CPUs can start to be competitive with GPUs to implement parallel discrete
100 simulations, specially taking into account that its parallelization with OpenMP is much easier than for
11 GPUs. Therefore, we also present the first parallel implementation of the CA laser dynamics model for
102 Multi-Core architectures and compare its performance on current high-end Multi-Core CPUs to the
103 performance obtained on GPUs.
108 The remainder of the paper is organized as follows: Section 2 reviews the related work in the field
15 of discrete simulations via cellular automata and their parallel implementation on Multi-Core and
1s GPU Architectures. Section 3 describes the methodology employed in this work, trying to give useful
107 indications to researchers interested in parallelizing efficiently their own codes. Section 4 presents the
10s results and discusses their interpretation and significance. Finally, Section 5 summarizes the contents
10s Of this paper, the conclusions and indicates interesting future work.

110 2. Related work

111 Most parallel implementations of CA models on Multi-Core processors or GPUs were presented
12 after 2007. In the case of Multi-Core processors, they became generalised only from 2005 onwards, and
us started to be used for parallel simulations in the following years. As regards GPUs, before 2007 there
us were few works devoted to the parallel implementation of cellular automata models on GPUs, because
us they had to adapt somehow their application to a shading language (a special purpose programming
ue language for graphics applications), such as OpenGL. An example is the paper from Gobron et. al.
ur [26], that studies a CA model for a biological retina obtaining a 20x speedup as compared to the CPU
us implementation. After the introduction in 2007 of CUDA (Compute Unified Device Architecture), a
e general purpose programming language for GPUs of the NVIDIA manufacturer, followed soon by a
120 multi-platform one called OpenCL, the usage of GPUs in scientific computing exploded.

121 Let us review some relevant parallel implementations of CA models on Multi-Core CPUs and
122 GPUs introduced from 2007 on.
123 Rybacki et. al. [27] presented a study of the performance of seven different very simple cellular

124 automata standard models running on a single core processor, a multi core processor and a GPU. They
125 found that the performance results were strongly dependent on the model to be simulated.

126 Bajzat et. al. [28] obtained an order of magnitude increase in the performance of the GPU
127 implementation of a CA model for an ecological system, compared to a serial execution.
128 Balasalle et. al. [29] studied how to improve the performance of the GPU implementation of one

120 Of the simplest two-dimensional CAs —the game of life— by optimizing the memory access patterns.
130 They found that carefull optimizations of the implementation can produce a 65% improvement in
131 runtime from a baseline implementation. However, they did not study other more realistic CA models.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

132 Special interest has been devoted to GPU implementations of Lattice Boltzmann methods, a
133 particular class of CA. Some works have been able to obtain spectacular speedups for them. For
134 instance, [30] reported speedups of up to 234x respect to single-core CPU execution without using SSE
135 instructions or multithreading.

136 Gibson et. al. [31] presents the first thorough study of the performance of cellular automata
137 implementations on GPUs and multi-core CPUs with respect to different standard CA parameters such
13¢ as lattice and neighbourhood sizes, number of states, complexity of the state transition rules, number
130 of generations, etc. They have studied a "toy application”, the "game of life" cellular automaton in two
140 dimensions and two multi-state generalizations of it. They employed the OpenCL framework for the
11 parallel implementation on GPUs and OpenMP for multi-core CPUs. That study is very useful for
12 researchers to help them choose the right CA parameters, when that is possible, taking into account
a3 their impact in performance. Also to help to explain much of the variation found in reported speedup
1as factors from literature. Our present work is different and complementary to that study in the sense
s that the game of life is a toy model very useful to study the dependence of performance on general
s CA parameters, but it is also very interesting to study the parallelization and performance of a real
1z application instead of a toy model such as the game of life, as we do in this work.

s 3. Materials and Methods

1o 3.1. Cellular automaton model for laser dynamics simulation

150 We present parallel implementations for Multi-Core CPUs and for GPUs of the cellular automaton
151 model of laser dynamics introduced by Guisado et. al. [16-18].

152 A laser system is represented in this model by a two-dimensional CA which corresponds to a
153 transverse section of the active medium in the laser cavity.

154 Formally the CA model is made of:

185 a) A regular lattice in a two-dimensional space of L x L cells. Each lattice position is labelled by

s the indices (i, j). Also to avoid boundary problems and to best simulate the properties of a macroscopic
157 system we use periodic boundary conditions.

158 b) The state variables associated with each node (i, j). In the case of a laser system we need two
10 variables: one for the lasing medium 4;;(f) and the other for the number of laser photons c;;(t). a;;(t)
10 1S a boolean variable: 1 represents the excited state of the electron in the lasing medium in cell (i, j)
12 and 0 is the ground state. For the photons c;;(#) is an integer variable in the range [0, M] where M is
12 an upper limit, that represent the number of laser photons in cell (i, j). The state variables a;;(t) and
163 cjj(t) represent “bunches” of real photons and electron, the values of which are obviously smaller than
1es the real number of photons and electrons in the system and are connected to them by a normalization
165 constant.

166 c) The neighborhood of a cell. In a cellular automata the state variables can change depending on
167 the neighboring cells. In our model the Moore neighborhood is employed: the neighborhood of a cell
16s consists of the cell itself and the eight cells around it at positions north, south, east, west, northeast,
160 southeast, northwest and southwest.

170 d) The evolution rules that specify the state variables at time ¢ + 1 in function of their state at time
i t. From a microscopic point of view the physics of a laser can be described by five procesess:
172 i) The pumping of the ground state of the laser medium to the excited state. In this way energy

s is supply to the lasing medium. This process is considered to be probabilistic: If a;;(f) = 0 then
wa a;i(t+1) = 1 with a probability A.

175 ii) The stimulated emission by which a new photon is created when an excited laser medium cell
e surrounded by one or more photons decays to the ground state: If 2;(t) = 1 and the sum of the values
w7z of the laser photons states in its neighboring cells is greater than 1, then ¢;;(t + 1) = ¢;j(t) + 1 and
178 aij(t—l-l) =0.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

179 iii) The non-radiative decaying of the excited state. After a finite time 1; a excited laser medium
10 cell will go to the ground state a;;(f + 1) = 0 without the generation of any photon.

161 iv) The photon decay. After a given time 1., photons will escape and its number will decrease by
12 one unit ¢;;(t +1) = ¢;(t) — 1.

183 v) Thermal noise. In a real laser system there is a thermal noise of photons produced by

18 Spontaneous emissions and they cause the initial start-up of the laser action. Therefore in our CA
s model a small number of photons less than 0.01% are added at random positions at each time step.

1: Initialize system
: Input data
: for time step =1 to maximum time step do

W N

4: for each cell in the array do

5: Apply noise photons creation rule (Fig. 2)
6: Apply photon and electron decay and evolution of temporal variables
(Fig. 3)
7: Apply pumping and stimulated emission rules (Fig. 4)
: end for

. Refresh value of ¢ matrix with contents of ¢’ matrix
10: Calculate populations after this time step
11: Optional additional calculations on intermediate results
12: end for
13: Final calculations
14: Output results

Figure 1. Pseudo code description of the main program for the CA laser model.

s 3.2. Sequential implementation of the model

167 The algorithmic description of the model using pseudo code is shown in Figs. 1 to 4. The main
1ee program is described in Fig. 1. The structure of the algorithm is based on a time loop, inside of which
10 there is a data loop to sweep all the CA cells. At each time step, first the state of all the cells of the
190 lattice is updated by applying the transition rules, and then the total populations of laser photons and
11 electrons in the upper state are calculated by summing up the values of the state variables 4;; and ¢;; for
102 all the lattice cells. Because we are emulating a time evolution, the order of the transition rules for each
103 time step can be switched. Of course, different orders get to slightly different particle quantities, but
10s on the whole, CA evolution is similar. Fig. 2 defines the implementation of the noise photons creation
15 rule. The photon and electron decay rules and the evolution of temporal variables are described in Fig.
16 3. Finally, Fig. 4 describes the implementation of the pumping and stimulated emission rules.

107 In order to simulate a parallel evolution of all the CA cells, we use two copies of the cij matrix,
ws called c and ¢’. En each time step, the new states of c;; are written in ¢’ and the updated values of this
190 Matrix are only copied to c after finishing with all the CA cells. In the algorithmic description of the
200 implementation of the model we have used two temporal variables, ﬁi]- and Ei.‘. as time counters, where
201k distinguishes between the different photons that can occupy the same cell. When a photon is created,

202 c”i«‘]. = T.. After that, 1 is subtracted to 55'(]‘ for every time step and the photon will be destroyed when

203 E;‘j = 0. When an electron is initially excited, djj = T. After that, 1 is subtracted to ajj for every time
20 step and the electron will decay to the ground level again when 4;; = 0.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

1: {Introduce 1, number of photons in random positions}
2: forn=0ton, —1do

{Generate two random integers in (0, size — 1) interval}
i «— random_number(0,Ly — 1)

j ¢— random_number(0, Ly — 1)

{Look for first value of k for which 5{-‘]- = 0}

while 51.‘]. #0and k<M do

8: k+—k+1
9: end while
10: if k < M then

11: {Create new photon}
. / /

12: Cjj < Cjj +1

13: Eﬁfj — T

14: end if

15: end for

Figure 2. Pseudo code diagram for the implementation of the noise photons rule.

20 3.3. Parallel Frameworks for Efficient CA Laser Dynamics Simulation

206 Algorithms described in previous Section 3.2 arise from a direct conversion of the systems of
207 differential equations that represents the CA laser model. The efficient execution of these algorithms in
20s parallel platforms to generate fast simulations of a bunch of different input parameters requires many
200 specific considerations for each hardware platforms. To begin with, modern out-of-order execution
20 superscalar processors achieves an almost optimal time execution of operations when operands reside
2 in CPU registers. That is, they reach the so-called data — flow — limit of the algorithm, being the most
212 patent bottlenecks that of the real dependences among operations and the difficult branch predictions.
23 In fact, taking some simple assumptions around these bottlenecks, some authors have proposed simple
za processor performance models that predicts computing times with enough accuracy [32]. Above this,
s when many operations cannot be executed over CPU registers, memory model is the other crucial
26 factor.

217 In relation with our CA model, a simple inspection of the code and of the data evolution brings to
22 light that memory usage is massive and that an elevated branch misprediction ratio is expected. First
210 assertion is obvious: matrices that contains c;;, Ei.‘j, ajj, ;; supposes many megabytes for those lattice
220 widths that emulates a correct behavior of the laser dynamics. Second assertion comes mainly from
2z two code features: the use of random values in many decisions representing the particle evolution,
222 and the chaotic values that particle states take along the life of the simulation. Whereas this paper
223 concentrates in a laser dynamics model, it is obvious that these features may be present in many CA
224 simulations, mostly when cooperative phenomena are expected. What is more relevant, the existence
225 of many branches (some of them in the form of nested conditional structures) in the “hot spot” zones
22 implies that GPU implementations would suffer from an important deceleration. This is due to the
227 inherent so-called thread divergence [33] that GPU compilers introduce in these cases, which is one
222 the main reasons why the performance on these platforms diminishes.

220 Taking into account previous considerations, an accurate timing characterization of main
230 sequential algorithm pieces was done. This analysis concludes that:
231 - More than 80% of the mean execution time is spent in stimulated emission and pumping rules.

232 What is more, their execution times have a considerable variance: minimum times are around five
233 times lower than maximum times. This asserts the effect of random values and the chaotic evolution
23a of different cell particles.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

1: forj=0to Ly —1do

2: fori=0to Ly —1 do {CA lattice loop}

3: if ¢;; > 0 then {Apply photon decay rule}
4: fork =1to M do

{Substract 1 to every photon’s lifetime}
if 51-‘]- > 0 then

ek — ¢k —1

if 5;‘]. = 0 then {One photon decays}

9: Cij — Cij — 1
10: C;]- = Cjj
11: end if
12: end if
13: end for
14: end if
15: if a;; = 1 then {Apply electron decay rule}
16: {Substract 1 to time of life of every excited electron}
17: ﬁij — ﬁij -1
18: if dij = 0 then
19: {One electron decays}
20: aij <—0
21: end if
22: end if
23: end for
24: end for

Figure 3. Pseudo code diagram for the implementation of the photon and electron decay and evolution
of temporal variables rules.

235 - Random number computation supposes around the 70% of the pumping rule time.

236 - The rest of time resides mainly in photon and electron decay. The oscillatory behavior of particle
237 evolution during the stationary phase implies also a considerable variance in these times. This is even
23¢ more exaggerated during transient evolution.

239 - Noise photon rule timing is negligible (in fact, its number of iterations is very much inferior than
2a0 the rest of rules).

241 Previous facts make necessary the introduction of at least the next changes in both OpenMP and
22 GPU code implementations (see https://github.com/dcagigas/Laser-Cellular-Automata):

243 - Of course, avoiding non re-entrant functions like simple random generators. Even more,

2as although generating a seed for each thread should be enough to make random generation independent
2¢s among threads, the deep inner real data dependences that random functions contain lasts in the mean
2e6 longer than the rest of an iteration step. It is preferable an implementation similar to that of the
2a7 CURAND library, that is, a seed for each cell ij, which preserves a good random distribution while
2es accelerates each step around a 40%.

240 - As only one electron per cell is allowed, suppressing the a;; matrix. Thus, it is considered that if
250 {;j is zero the electron is not excited; and it is excited elsewhere.
251 - Eliminating the refresh of ¢ matrix (which supposes copying long matrices) with values of ¢ (line

=2 9 of Fig. 1), by using pointers to these two matrices and swapping these pointers at the end of each
253 iteration step.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

1: forj=0to Ly —1do
2: fori=0to Ly —1 do {CA lattice loop}
3: if a;; = 0 then {Apply pumping rule}
{Generate random number in (0, 1) interval}
& «— random_number(0,1)
if { < A then {A: pumping probability}
{One electron is pumped}
Lll']' —1
: ﬁij — Ta
10: end if
11: else { (a;; = 1)->Apply stimulated emission rule}
12: if neighbours(i, j) > 6 then
13: {Look for first value of k for which 5;‘]. =0}
14: k<+—1
15: while 5;‘]» #0 and k<M do
16: k+—k+1
17: end while
18: if k <= M then
19: ajj +—0
20: ﬁl’]' +—0
21: ¢« o +1
22: Eﬁfj — T
23: end if
24: end if
25: end if
26: end for
27: end for

Figure 4. Pseudo code diagram for the implementation of the pumping and stimulated emission rules.

254 The source code of the different implementations and results achieved are available in
25 https://github.com/dcagigas/Laser-Cellular-Automata. The source code is under GPL v3 license.
26 Researchers can download and modify the code freely to run their own particular laser dynamic
=7 simulations.

25 3.3.1. OpenMP Framework

250 Previous improvements are quite easy to detect and to implement. However, there are further
260 enhancements that speedup even more a CA simulation when running an OpenMP implementation
201 Over multicore platforms. As a result, apart from the OPENMP_NOT_OPTIMIZED version, an
262 Optimized one (called simply OPENMP) can be downloaded from the previous github page. For the
263 sake of clarity, these further enhancements are grouped and listed in the following points. Moreover,
2es they have been marked in the github source code with the symbol @.

265 - After a deeper examination of laser dynamics evolution, it was detected that very few cells
266 contain more than one photon during the stationary evolution. Thus, the habitual matrix arrangement
267 Of variable 5?» , that is, storing consecutively the M values for each cell ij is switched by the following
2ee one. All the cells ij are stored consecutively for each of the M possible photons. In terms of the C++
260 code, this three-dimensional matrix is represented by: ¢[M][Ly][Ly] (see lifet_f matrix in the code).

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

270 The new arrangement implies that all elements of ¢[0][][] are continuously used and then cached, but
ann the rest of elements ¢[1 : M — 1][L,][L,] are scarcely used, so they do not consume precious cache lines.
22 On the contrary, if the habitual matrix arrangement had been used, it would have wasted many cache
273 bytes (almost only 1 of each M elements would have been really utilized during the stationary period).
2ra The rest of code pieces where this matrix is manipulated are not decelerated by the new arrangement;
275 e.g. very few cells generate a shifting from ¢[k|[Ly|[Ly] to ¢[k — 1][Ly][L,] , (k > 0) , when a photon
276 decays.

277 - While previous improvement avoids cache line wasting, memory consumption is another
2z fundamental issue. The analysis of real values of the big code matrices leads to the conclusion
270 that maximum values are small for most physical variables. Thus, instead of 32 bits per element
200 (unsignedint variables in C++), real sizes in the optimized version have been reduced to unsigned
ze1 short int and unsigned char whenever possible. More exactly, this supposed reducing memory size
22 from: 32 X Ly x Ly x (M +3) to16 x Ly x Ly x (M +1) +8 x 2 (see e, f1, f2,lifet_f matrices in the
203 Optimized code).

284 - In order to promote loop vectorization, some conditional branches have been transformed
=2es into simple functions. For example, those conditional sentences that increment a counter 4 when a
20 certain condition p is true have been written like g+ = p. This eases the task of the compiler when
2e7 introducing SIMD instructions and predicative-like code and prevents many BTB (Branch Target
2es Buffer) misprediction penalties because these conditions are difficult to predict (due to the random
2e0 Nature of particle state evolution).

200 - Loop splitting is another classical technique that reduces execution time when memory
21 consumption is huge, and the loop manages several disjointed data. This occurs in the case of
202 photon and electron decay rules, which have been separated into two different loops in the optimized
203 version. This way, caches are not struggled with several matrixes thus preventing many conflict misses
20s on them.

205 To sum up, previous optimizations achieve around a 2x speedup (see section 4) with respect to the
206 basic one. It is worth to remark that both OpenMP versions give exactly the same particle evolution
207 results.

208 Despite that random number computing has been considerable accelerated by using a seed for
200 each cell (i,), it continues to be the most time-consuming piece. A final improvement draws to an
30 approx. additional 3 times speedup of the OpenMP simulation time: instead of computing random
;1 numbers during the simulation, generating a list of them previously and using this same list for all the
302 desired simulations (e.g. if different parameters want to be tested like pumping probability, maximum
303 electron and photon lifetimes, etc.).

308 Using a random list as an input for the model eases the checking of results for different platforms,
s0s because the output of the simulation must be exactly the same. More precisely, it is needed that a
s0s random number is stored in the list for each time step and for each cell.

307 However, this list should be enormous for the pumping rule, even if only a random true/false
s bit were stored for each time step and for each cell. For example, considering a simulation of 1000
a0 steps, a lattice of 4096 x 4096 would occupy 2 GBytes. Because of this, this improvement has not
310 been considered in the Result section. Nonetheless, the interested reader can test this optimization
su (note that big lattice sizes would overflow platform memory) simply by defining the constant
sz RANDOM_VECT_ENABLE in the github OpenMP codes. Defining this constant would generate the
a1z random numbers in advance while suppressing its computation during the simulation time.

s1e 3.3.2. CUDA Framework

315 The CUDA framework has three main kernels (i.e. CUDA functions written in C style code), the
s same as those of the OpenMP implementation. They are called for each time step sequentially. First
a1z the PhotonNoiseKernel produces new photons randomly, then the DecayKernel performs the electron
a1 and photon decay, and last the PumpingKernel does the pumping and stimulated emission. This order

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

;10 can be altered but it must be the same as the one used in OpenMP. Otherwise, results could not be
s20 exactly the same.

321 There is one last kernel needed: do_shannon_entropy_time_step. Most of the variables that are
sz needed to calculate the Shannon Entropy are stored in GPU global memory. Data transfers between
;22 computer host memory and GPU memory must be minimized because of its big latency. Despite
224 that the calculations are not parallel, it is more convenient to perform time step Shannon Entropy
s2s calculations in GPU memory. There is also a final kernel called finish_shannon_entropy_time_step after
226 the time/step loop. However, this last kernel has a low performance impact because it is executed
;27 only once.

328 Simulation parameters are defined in a header file; for example, the SIDE constant that determines
s20 the grid side of a simulation. In case of CUDA, and GPUs in general, memory size constraints
330 are particularly important when comparing with computer workstations. The GPU global memory
a1 available is usually lower than that of a workstation. Thus, data structure types for electrons and
sz photons are important for large grids. Matrix data structures grow by a factor of x4 for each SIDE
;33 increment, and x40 in case of the matrix that records photon energy values in each cell (GPU_tvf).

33s For example, with a grid SIDE of 8192 (2!3) and 4 GB of GPU global memory it is only possible to
a5 run the simulation if cells of GPU_tvf matrix variable are set to char type in C. As mentioned before,
s36 this variable is in charge of recording photon life time values in each grid cell. The char type is 8 bit
sz size, so only initial photon life time values between 0 and 255 are allowed. The same happens with
a3s electron life time values. By default this constant value is set to short int (i.e. 16 bits) to allow higher
330 values.

340 The CUDA programming environment and the latest NVIDIA architectures (Pascal, Turing
s and Volta) also have some restrictions related to integer atomic arithmetic operations. CUDA
sz atomic arithmetic operations only allow the use of int data type but not the short int or char. In
:as the PhotonNoiseKernel it is necessary to update new photons in the matrix data structures. Those
sas updates are performed in a parallel way. To avoid race conditions, atomic arithmetic operations are
a5 needed when each GPU hardware thread updates a matrix photon cell (two hardware GPU threads
ss could try to update the same cell at the same time). Therefore, it was necessary to use the int data type
sz instead of short int or char, thus increasing the GPU memory size needed by these data structures.

248 CUDA framework has also one extra feature that can be enabled in the source files: the electron
a0 evolution output video. A .avi video file showing the electron evolution through the time steps can be
30 produced. This feature involves the transfer of a video frame for each time step from GPU memory
351 to host or computer memory. When activated and for a moderate grid side (1024 or above), the total
2 execution time could be significantly high because of the latency between GPU and host memory
ss3 transfers. This feature could also be adapted or modified to show photon evolution (nonetheless,
ssa electron and photon behaviours are very similar).

sss 4. Results

356 We present here the performance evaluation results for the two architectures: Multi-Core and
ss7 - GPU. For each architecture we evaluated the performance on two different hardware platforms that are
e representative of different target market segments: a high-end chip intended for scientific computing
0 Or for servers and a consumer-oriented one.

360 We have tested that the simulation results of both parallel implementations reproduce the output
s Of the original sequential one. As an example we show in Fig. 5 the time evolution of the total
2 number of laser photons and the population inversion in the laser system for values of the parameter
363 corresponding to a laser spiking regime. The results are the same as found in previous publications
;e With a sequential implementation, as [21]. It is shown that when increasing the size of the CA lattice
ses the results are smoother since the model reproduces better the macroscopic behavior of the system
ses with a higher statistics.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

Lattice size = 400 x 400. OpenMP optimized version. Intel Xeon 48 cores. Lattice size = 4096 x 4096. CUDA version. NVIDIA Tesla V100 GPU.
100000 — - : 1.2x107 — — ;
Population Inversion Population Inversion
90000 Laser Photons x| Laser Photons
an
80000 f 1x10
70000 o
8x10° [
< 60000 - c
Qo S
< 50000 | < ex10®t
Q Q
o o
40000 a
6 |
30000 410
20000 F 6 |f
i 2x10
10000 | £
0 . f h 0 . d h
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time Steps Time Steps

Figure 5. Output of the model for particular values of the system parameters corresponding to a laser
spiking behavior. Parameter values: A = 0.0125, 7. = 10, 7; = 180. The results are smoother for larger
lattice sizes. (Left:) Sequential implementation with a lattice size of 400 x 400 cells. (Right:) Sequential
implementation with a lattice size of 4096 x 4096 cells.

sez 4.1. Multi-Core architecture

368 The Multi-Core architecture was executed and tested on the following two platforms.

seo 4.1.1. High-end Multi-Core CPUs (48 cores)

370 We evaluated the performance on a high-performance server CPU running in the Cloud, using
sn the Amazon Web Server(AWS) Infrastructure as a Service (IaaS) EC2 service. We run our performance
sz test on a mb.24xlarge instance. It runs on a dual socket server with 2 Intel Xeon Platinum 8259CL
a3 processors with 24 physical cores each (completing 48 physical cores between them), running at a
s7a frequency of 2.50 GHz, with 35,75 MiB of cache memory. The total RAM memory was 373 GiB. Both
s7s processor sockets are linked by Ultra Path Interconnect (UPI), a high speed point-to-point interconnect
a6 link delivering a transfer speed of up to 10.4 GT/s.

s77 4.1.2. Consumer-oriented Multi-Core CPU (8 cores)

378 The performance was evaluated on a PC with a Core i9 9900k processor and a total RAM memory
srs of 16 GiB. The processor frequency was 3.6 GHz and the RAM memory was on a single channel
;0 running at 2400 MHz. This processor has 8 physical cores and each core has 2 hardware threads
s (completing a total of 16 Threads).

ss2 4.2. GPU architecture

383 The following two GPU chips were used to run and test the GPU architecture.

s 4.2.1. High-end GPU chip

385 We evaluated the performance on a p3.2xlarge instance of the Amazon Web Server(AWS) laaS
;s EC2 Cloud Computing service. It used a NVIDIA Tesla V100 GPU (Volta architecture) with 5,120
sz CUDA cores and a GPU memory of 16 GiB. The server used an Intel Xeon E5-2686v4 CPU with 4
ses physical cores running at 2.3 GHz. CPU and GPU were interconnected via PCI-Express Gen. 3, with a
s bandwidth of 32 GiB/s.

300 4.2.2. Consumer-oriented GPU chip

301 We used a consumer-oriented NVIDIA GeForce GTX 1050 Ti graphic card (Pascal architecture).
302 This card has 768 CUDA cores running at 1290 MHz. The total memory is 4 GiB of GDDR5 type, with
303 a maximum bandwidth of 1120 GiB/s.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

s0a 4.3. Performance and scalability results

395 Fig. 6 shows the speedup of the parallel OpenMP implementation running on the Core i9 9900k
s0s PC (8 cores). In this case, speedups are fairly foreseeable. Firstly, for small lattice sizes most of matrices
307 reside in CPU caches, thus achieving an excellent speedup versus the sequential (one thread) test until
ss 8 threads. Launching 9 threads implies that a physical CPU must manage two threads (whereas the
a0 rest of CPUs, only one), thus causing the speedup to decrease. However, this problem diminishes for
a0 more threads. Finally, Core i9 simultaneous multi-threading begins to play a role from 9 threads up,
a1 hence speedups above 8 are reached for some tests when launching many threads.

a02 On the other hand, for big lattices speedups are stuck according to the maximum RAM bandwidth,
a3 as predicted by the roof-line model [34]. In these cases, RAM memory bandwidth is the bottleneck
a4 thatin fact determines program runtimes.

a05 In the case of the the high-end server with two 2 Intel Xeon Platinum 8259CL CPUs (see Fig. 7),
s0s our parallel implementation shows an excellent speedup for large lattice sizes. The OpenMP optimized
207 version reaches a speedup around 30x for 48 threads. The behaviors are similar to those obtained in
a0s the consumer-oriented hardware: a peak on the speedups is reached when launching the same number
as of threads than physical CPUs; then accelerations begin to decrease for some more threads, and finally
a0 speedups are recovered when the number of threads doubles the number of physical cores.

a1 Nevertheless, for high number of threads, or more precisely, for small number of lattice rows
a1z per thread, the computation-to-communication scale begins to deteriorate speedups. Note that small
a3 lattices (Fig. 7 for lattice width = 512) exhibit patently this problem, whereas big lattice speedups
a1« are almost not deteriorated. This is a well-known effect when scientific applications are massively
as distributed [35]. Because the stimulated emission rule uses Moore neighborhood, the more threads in
a1e which we divide the lattice, the more communication between threads are needed, thus degrading the
a7 parallel performance.

OpenMP Basic 8 cores OpenMP Optimized 8 cores
16 . — . . 16 . . — . .
Linear Speedup Linear Speedup
4096 4096
14 - 20 1 14 - 20
24 24
12 F 512] 12 512
10 - 10 -
Q Q
3 3
g 8 e 8r
joR joR
@ 6 @ 6 ~
=
4t - 4 4t -
ol R %R W oL AR e
AR A
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Number of Threads Number of Threads

Figure 6. Speedup of the parallel OpenMP implementation running on a consumer-oriented CPU
with 8 cores. (Left:) Basic implementation without in-depth optimization. (Right:) Fully optimized

implementation.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

OpenMP Basic 48 cores OpenMP Optimized 48 cores
100 T T T T T T 100 T T T T T

"Linear Speedup
4096

Speedup
(4]
o
Speedup

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Number of Threads Number of Threads

Figure 7. Speedup of the parallel OpenMP implementation running on a high-end dual-socket server
with a total of 48 cores. (Left:) Basic implementation without in-depth optimization. (Right:) Fully
optimized implementation.

NVIDIA GTX 1050Ti vs. Intel Core i9 8 cores
90

OpeHMP Basic ——
80 | OpenMP Optimized —<—
CUDA

70

50 -

40 -

Runtime (s)

20

512 1024 2048 4096
Lattice width (cells)

Figure 8. Runtime comparison between NVIDIA GTX 1050 Ti GPU and Intel Core i9 (8 cores) for
different CA lattice sizes.

OpenMP 8 cores (16 threads) vs NVIDIA GTX 1050 ti

4096 (1
iy 2048
< 8h 1024 1
g 512
2 \
£ ST 1
o
z
g 4 1
O
'_
5 s x ;
® -
© g
° 27 F—K k%% K F——K—k——F—F
g
1
0 L L L L L L L
2 4 6 8 10 12 14 16

Number of Threads

Figure 9. Comparison of OpenMP Optimized and CUDA times when using Intel Core i9 and NVIDIA
GeForce GTX 1050 Ti resp.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

NVIDIA Tesla V100 GPU vs. Intel Xeon Platinum 48 cores

OpenMP Basic ——
OpenMP Optimized —<—
CUDA

o L i | | | | | |
500 1000 1500 2000 2500 3000 3500 4000

Lattice width (cells)
Figure 10. Runtime comparison between NVIDIA Tesla V100 GPU and Intel Xeon Platinum (dual
socket with 48 cores in total) for different CA lattice sizes.

418 In Figs. 8 to 10 we show a runtime comparison between both CPU/GPU pairs, for different sizes
a0 and number of Multi-Core Threads. It is interesting to note that for CPU/GPU comparisons shown
«20 in Figs. 8, 9 and Fig. 10) CUDA implementation is, at most, 2.5x faster than the OpenMP Optimized
a2 version. In truth, only for big lattice sizes GPU platforms beat clearly CPU ones: as shown in Fig. 10,
«22 that happens only for a number of threads much smaller than the number of available physical cores
a3 of the CPU and for large system sizes. However, when using the 48 available cores of the CPU, the
a2a CUDA implementation is again only around 2.5x faster than the CPU. Even for small system sizes the
a2s runtime of CPU and GPU is similar.

a26 An additional consideration plays in favor of classical CPU platforms. If a previously computed
a2z random list were used as an input for the model, (thus preventing the time spent in computing random
s2s numbers during simulation, see subsection 3.3.1), even OpenMP Optimized simulation times would
420 be lower than that of CUDA versions. We recall here that, although this alternative is practical only for
a0 medium lattice widths, it speedups OpenMP around three times. This optimization does not favour so
aan much GPU platforms.

OpenMP 48 cores (96 threads) vs NVIDIA v100

9 ; ;
il 4096 ———
i

5‘7% 512

o}

o L

] Y

2 5t 1 1

[e)

'_

c 4 F i

9o

©

s 37)

[0}

8 2+ E

<
1 4
0 L L L L L L L L

10 20 30 40 50 60 70 80 90 100
Number of Threads

Figure 11. Comparison of OpenMP Optimized and CUDA times: Detail from 10 threads up when
using Intel Xeon Platinum and NVIDIA Tesla V100 GPU, resp.

a2 5. Conclusions and Future Lines

433 In some previous studies cited in the introduction and section 2, it was pointed out that the
as speedups achieved with GPU when comparing to single-core CPUs where above 10X and sometimes

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

a3s above 100x. Even with these ratios, it is evident that a current multicore CPU may approach GPU
a3s performance. Moreover, this affirmation must be revised and carefully analyzed for Cellular Automata
a7 (CA) applications. In this paper, it is experimentally proved, using almost the same code for a laser
a3s dynamics CA (except for the necessary adaptation to each platform), that these distances have been
a3 significantly shortened. We conclude that nested conditional structures (in general, many branches in
a0 the “hot spot” zones) implies that GPU implementations would suffer from an important deceleration.
«x Even for massive parallel data structures like CA, an approximately 3x speedup is achieved when
a2 using high performance computers and GPUs. The other factor that limits CPU and GPU performance
a3 for big lattice CAs is obviously the maximum RAM bandwidth, as predicted by the roofline model. If
aaa other variables were taken into account like price, TDP, source code maintenance, or easy and rapid
w5 software development, it is not clear that GPUs are always the best choice for an efficient parallelization
ass of CA algorithms.

247 Future lines, provided the important conclusions obtained in this paper for the specific case of laser
«s dynamics, include the extension of this analysis to generic Cellular Automata. This will be necessary
a0 in order to extract a simple but realistic model that allows to predict the performance on CPU and
a0 GPU platforms mainly as a function of the form of its state transition rules, its neighboring relations,
«s1 the amount of memory, etc. It will be also interesting to investigate the efficient implementation and
sz speedup obtained by implementing this model on Multi-GPUs.

453 Author Contributions: Conceptualization, D.C., ED, and J.L.G.; methodology, D.C., ED, M.R.L. and J.L.G.;
ssa software, D.C., ED, M.R.L. and J.L.G.; validation, D.C., ED, and J.L.G.; investigation, D.C., ED, EJ. and J.L.G.;
a5 resources, D.C., ED, and].L.G.; writing-original draft preparation, D.C., ED, E]J. and J.L.G.; writing-review and
w6 editing, D.C., ED, and J.L.G.,; visualization, D.C. and M.R.L.; supervision,].L.G.; funding acquisition, D.C., EJ.
457 and]‘L.G‘

sss Funding: This research was funded by the following research project of Ministerio de Economia, Industria
450y Competitividad, Gobierno de Espafia (MINECO) and the Agencia Estatal de Investigacion (AEI) of Spain,
460 cofinanced by FEDER funds (EU): MABICAP (Bio-inspired machines on High Performance Computing platforms:
461 a multidisciplinary approach, TIN2017-89842P). The work was also partially supported by the computing facilities
a2 of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional
43 Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

ssa Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
465 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
a6 publish the results.

sz References

a8 1. Talia, D.; Naumov, N., Parallel cellular programming for emergent computation. In Simulating Complex
469 Systems by Cellular Automata; Springer, 2010; pp. 357-384.

a0 2. Bandini, S.; Mauri, G.; Serra, R. Cellular automata: From a theoretical parallel computational model to its
a1 application to complex systems. Parallel Computing 2001, 27, 539-553. d0i:10.1016/S0167-8191(00)00076-4.

a2 3. Wolfram, S. Cellular automata and complexity; Addison-Wesley: Reading, MA, 1994.
arz 4. Hachinski, A. Cellular Automata: A Discrete Universe; World Scientific: Singapore, 2001; p. 808.
a7a 5. Sayama, H. Introduction to the Modeling and Analysis of Complex Systems; Open SUNY Textbooks. 14:

a7s Geneseo, NY, 2015.

are 0. Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems; Cambridge University Press:
477 Cambridge, MA, USA, 1998.

ars 7. Sloot, P.; Hoekstra, A. Modeling Dynamic Systems with Cellular Automata. In Handbook of dynamic system
479 modeling; Fishwick, P., Ed.; Chapman & Hall/CRC, 2007; pp. (21) 1-6.

a0 8. A.G.,, H; Kroc, J.; Sloot, P, Eds. Simulating Complex Systems by Cellular Automata; Springer: Berlin,
481 Heidelberg, 2010.

a2 9. Gounaridis, D.; Chorianopoulos, I.; Koukoulas, S. Exploring prospective urban growth trends under
483 different economic outlooks and land-use planning scenarios: The case of Athens. Applied Geography 2018,

484 90, 134-144. doi:10.1016/].APGEOG.2017.12.001.

https://doi.org/10.1016/S0167-8191(00)00076-4
https://doi.org/10.1016/J.APGEOG.2017.12.001
https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

ass 10. Aburas, M.M.; Ho, YM.; Ramli, M.F,; Ash’aari, Z.H. The simulation and prediction of spatio-temporal

486 urban growth trends using cellular automata models: A review. International Journal of Applied Earth
487 Observation and Geoinformation 2016, 52, 380-389. do0i:10.1016/].JAG.2016.07.007.

ass 11, Liu, X,; Liang, X,; Li, X.; Xu, X.; Ou, J.; Chen, Y,; Li, S.; Wang, S.; Pei, F. A future land use simulation model
480 (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and
490 Urban Planning 2017, 168, 94-116. doi:10.1016/J.LANDURBPLAN.2017.09.019.

a01 12. Qiang, S.; Jia, B.; Huang, Q.; Jiang, R. Simulation of free boarding process using a cellular automaton
492 model for passenger dynamics. Nonlinear Dynamics 2018. doi:10.1007/s11071-017-3867-5.

a3 13, Tang, T.Q.; Luo, X.F; Zhang, J.; Chen, L. Modeling electric bicycle’s lane-changing and retrograde behaviors.
494 Physica A: Statistical Mechanics and its Applications 2018, 490, 1377-1386. d0i:10.1016/].PHYSA.2017.08.107.
a0 14. Monteagudo, A.; Santos, J. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth
496 Model Based on Cellular Automata. PLoS One 2015, 10, e0132306. doi:10.1371/journal.pone.0132306.

a07 15, Burkhead, E.; Hawkins, J. A cellular automata model of Ebola virus dynamics. Physica A: Statistical
408 Mechanics and its Applications 2015, 438, 424-435. doi:10.1016/].PHYSA.2015.06.049.

200 16. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Cellular automaton model for the simulation of laser dynamics.
500 Physical Review E 2003, 67, 66708.

so1 17. Guisado, J.; Jiménez-Morales, F; Guerra,]. Computational simulation of laser dynamics as a cooperative
502 phenomenon. Physica Scripta 2005, T118, 148-152.

so3 18. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Simulation of the dynamics of pulsed pumped lasers based on
504 cellular automata. Lecture Notes in Computer Science 2004, 3305, 278-285.

sos 19. Kroc, J.; Jimenez-Morales, F; Guisado, J.L.; Lemos, M.C.; Tkac, J. Building Efficient Computational Cellular
506 Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies.
507 Advances in Complex Systems 2019, 22, 1950013.

sos 20. Guisado, J.; Fernandez-de Vega, F,; Jiménez-Morales, F; Iskra, K. Parallel implementation of a cellular
500 automaton model for the simulation of laser dynamics. Lecture Notes in Computer Science 2006, 3993, 281-288.
510 doi:10.1007/11758532_39.

si1 21, Guisado, J.; Jiménez-Morales, F.; Fernandez-de Vega, F. Cellular automata and cluster computing: An
512 application to the simulation of laser dynamics. Advances in Complex Systems 2007, 10, 167-190.

513 22. Guisado, J.; Fernandez-de Vega, F,; Iskra, K. Performance analysis of a parallel discrete model for
514 the simulation of laser dynamics. Proceedings of the International Conference on Parallel Processing
515 Workshops. IEEE Computer Society, 2006, pp. 93-99. doi:10.1109/ICPPW.2006.62.

s16 23. Guisado, J.; Fernandez de Vega, F.; Jiménez-Morales, F.; Iskra, K.; Sloot, P. Using cellular automata for
517 parallel simulation of laser dynamics with dynamic load balancing. International Journal of High Performance
518 Systems Architecture 2008, 1, 251-259.

si9 24, GPGPU. General-Purpose Computation on Graphics Hardware. http://gpgpu.org, as available on may
520 2012.,2012.

s21 25. Lopez-Torres, M.; Guisado, J.; Jimenez-Morales, F.; Diaz-del Rio, F. GPU-based cellular automata
522 simulations of laser dynamics. Proceedings of the XXIII Jornadas de Paralelismo; hgpu.org: Elche,
523 2012; pp. 261-266.

524 26. Gobron, S.; Devillard, F.; Heit, B. Retina simulation using cellular automata and GPU programming.
525 Machine Vision and Applications Journal 2007, 18, 331-342.

s26 27. Rybacki, S.; Himmelspach, J.; Uhrmacher, A. Experiments With Single Core, Multi Core, and {GPU}-based
527 Computation of Cellular Automata. Advances in System Simulation, 2009. {SIMUL}'09. First International
528 Conference on, 2009.

s20 28, Bajzét, T.; Hajnal, E. Cell Automaton Modelling Algorithms: Implementation and Testing in {GPU} Systems.
530 {INES} 2011, 15th International Conference on Intelligent Engineering Systems, 2011.

s31 29. Balasalle, J.; Lopez, M.; Rutherford, M., Optimizing Memory Access Patterns for Cellular Automata on
532 {GPU}s. In GPU Computing Gems Jade Edition; Elsevier - Morgan Kaufmann - NVIDIA, 2011; pp. 67-75.
533 30. Geist, R.; Westall, J., Lattice-Boltzmann Lighting Models. In GPU Computing Gems, Emerald Edition; Elsevier
534 - Morgan Kaufmann - NVIDIA, 2011; pp. 381-399.

s3s 31. Gibson, M]J.; Keedwell, E.C.; Savi¢, D.A. An investigation of the efficient implementation of cellular
536 automata on multi-core CPU and GPU hardware. Journal of Parallel and Distributed Computing 2015,

537 77,11-25. d0i:10.1016/j.jpdc.2014.10.011.

https://doi.org/10.1016/J.JAG.2016.07.007
https://doi.org/10.1016/J.LANDURBPLAN.2017.09.019
https://doi.org/10.1007/s11071-017-3867-5
https://doi.org/10.1016/J.PHYSA.2017.08.107
https://doi.org/10.1371/journal.pone.0132306
https://doi.org/10.1016/J.PHYSA.2015.06.049
https://doi.org/10.1007/11758532_39
https://doi.org/10.1109/ICPPW.2006.62
https://doi.org/10.1016/j.jpdc.2014.10.011
https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 d0i:10.20944/preprints201912.0223.v1

538

539

540

32.

33.

34.

35.

Jongerius, R.; Anghel, A.; Dittmann, G. Analytic Multi-Core Processor Model for Fast Design-Space
Exploration. JEEE TRANSACTIONS ON COMPUTERS 2018, 67.

NVIDIA. CUDA C Best Practices Guide Version. Available in http://developer.nvidia.com/, Accessed in
Dec. 2019.

Williams, S.; Waterman, A.; Patterson, D. Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 2009, 52, 65-76.

Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 6th Edition; Vol. 19,
Elsevier-Morgan Kaufmann, 2017.

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

