
Article

Developing Efficient Discrete Simulations on
Multi-Core and GPU Architectures

Daniel Cagigas-Muñiz1 , Fernando Diaz-del-Rio1 , M.R. López-Torres1, F. Jiménez-Morales2

and J.L. Guisado1,∗

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 Department of Computer Architecture and Technology, University of Seville, Spain; e-mail@e-mail.com
2 Department of Condensed Matter Physics, University of Seville, Spain; e-mail@e-mail.com
* Correspondence: jlguisado@us.es

Abstract: In this paper we show how to efficiently implement parallel discrete simulations on
Multi-Core and GPU architectures through a real example of application: a cellular automata model
of laser dynamics. We describe the techniques employed to build and optimize the implementations
using OpenMP and CUDA frameworks. We have evaluated the performance on two different
hardware platforms that represent different target market segments: high-end platforms for scientific
computing, using an Intel Xeon Platinum 8259CL server with 48 cores and also an NVIDIA Tesla
V100 GPU, both running on Amazon Web Server (AWS) Cloud, and on a consumer-oriented platform,
using an Intel Core i9 9900k CPU and an NVIDIA GeForce GTX 1050 TI GPU. Performance results are
compared and analysed in detail. We show that excellent performance and scalability can be obtained
in both platforms, and we extract some important issues that imply a performance degradation for
them. We also found that current Multi-Core CPUs with large core numbers can bring a performance
very near to that of GPUs, even similar in some cases.

Keywords: laser dynamics; parallel computing; cellular automatas; GPUs and Multi-Core
processors performance

15

1. Introduction16

Discrete simulation methods encompass a family of modeling techniques which employ entities17

that inhabit discrete states and evolve in discrete time steps. Examples include models with an intrinsic18

discrete nature, such as cellular automata (CA) and related lattice automata, like lattice gas automata19

(LGA) or lattice Boltzmann method (LBM), and also discretization of continuos models like many20

stencil-based partial differential equation (PDE) solvers and particle methods based on fixed neighbor21

lists. They are a powerful tool that has been widely used to simulate complex systems of very different22

kinds (in which a global behaviour results from the collective action of many simple components that23

interact locally) and to solve systems of differential equations.24

To accurately simulate real systems, the quality of the computed results very often depends on the25

number of data points used for the computations and the complexity of the model. As a result, realistic26

simulations often involve too large runtime and memory requirements for a sequential computer.27

Therefore, efficient parallel implementation of this kind of discrete simulations is extremely important.28

But this type of discrete algorithms has a strong parallel nature, because they are composed of many29

individual components or cells that are simultaneously updated. They also have a local nature, since30

the evolution of cells is determined by strictly local rules, i.e. each cell only interacts with a number31

of neighboring cells. Thanks to this, they are very suitable to be implemented efficiently on parallel32

computers [1,2].33

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

http://www.mdpi.com
https://orcid.org/0000-0002-2792-2844
https://orcid.org/0000-0001-6184-1629
https://orcid.org/0000-0002-5209-9028
https://orcid.org/0000-0001-5480-7617
https://doi.org/10.20944/preprints201912.0223.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics9010189

In this paper, we study the efficient parallel implementation of a real application of this type, a CA34

model of laser dynamics, on Multi-Core and GPU architectures, employing the most commonly used35

software frameworks for these platforms today: OpenMP and CUDA, respectively. In both cases, we36

describe code optimizations that can speed-up the computation and reduce memory usage. In either37

case we have evaluated the performance on two different hardware platforms that represent different38

target market segments: on a high-end chip intended for scientific computing or for servers and on a39

consumer-oriented one. In the case of the Multi-Core architecture, the performance has been evaluated40

on a dual socket server with 2 high-end Intel Xeon Platinum 8259CL processors (completing 48 cores41

between them) running on Amazon Web Server (AWS) Cloud, and also on a PC market Intel Core i942

9900k processor. For the GPU architecture, we present performance evaluation results on a high-end43

GPGPU NVIDIA Tesla V100 GPU running on AWS Cloud and on a consumer-oriented NVIDIA44

GeForce GTX 1050 TI. In all cases, we reported speedups compared to a sequential implementation.45

The aim of this work is to extract lessons that may be helpful for practitioners trying to implement46

discrete simulations of real systems in parallel.47

The considered application uses cellular automata, a class of discrete, spatially-distributed48

dynamical systems with the following characteristics: spatial and temporal discrete character, local49

interaction and synchronous parallel dynamical evolution [3,4]. They can be described as a set50

of identical finite state machines (cells) arranged along a regular spatial grid, whose states are51

simultaneously updated by a uniformly applied state-transition function that refers to the states52

of their neighbors [5]. In the last decades, CA have been successfully applied to build simulations53

of complex systems in a wide range of fields, including physics (fluid dynamics, magnetization in54

solids, reaction-diffusion processes), bio-medicine (viral infections, epidemic spreading), engineering55

(communication networks, cryptography), environmental science (forest fires, population dynamics),56

economy (stock exchange markets), theoretical computer science, etc [6–8]. They are currently being57

very used, in particular, for simulations in geography (specially in urban development planning58

[9], future development of cities [10], and land use [11]) pedestrian or vehicular traffic [12,13], and59

bio-medicine (applied to physiological modeling, for example for cancer [14], or epidemic modeling60

[15]).61

The application considered in this study is a cellular automata model of laser dynamics introduced62

by Guisado et. al., capable of reproducing much of the phenomenology of laser systems [16–19].63

It captures the essence of laser as a complex system in which its macroscopic properties emerge64

spontaneously due to the self-organization of its basic components. This model is a useful alternative65

to the standard modeling approach of laser dynamics, based on differential equations, in situations66

for which the approximations considered for them are not valid, for instance for lasers ruled by stiff67

differential equations, lasers with difficult boundary conditions, or very small devices. The mesoscopic68

character of the model also allows to have results impossible to be obtained by the differential equations,69

such as studying the evolution of its spatio-temporal patterns.70

In order to reduce the runtime of laser simulations with this model by taking advantage of its71

parallel nature, a parallel implementation of it for computer clusters (distributed-memory parallel72

computers), using the message-passing programming paradigm, was introduced in [20,21]. It showed73

a good performance on dedicated computer clusters [22] and also on heterogeneous non-dedicated74

clusters with a dynamic load balancing mechanism [23].75

Due to the excellent ratio performance/price and performance/power of the Graphics Processing76

Units (GPUs), it is very interesting to implement the model on them. GPUs are massively parallel77

graphics processors originally designed for running interactive graphics applications, but that can also78

be used to accelerate arbitrary applications, what is known as GPGPU (General Purpose computation79

on GPU) [24]. They can run thousands of programming threads in parallel, providing speedups80

mainly from 10x to 200x compared to CPU (depending on the application and on the optimizations of81

its implementation), at very affordable prices. Therefore, GPUs have widespread use today in high82

performance scientific computing. Their architecture is formed by a number of multiprocessors, each83

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

of them with a number of cores. All cores of a multiprocessor share one memory unit called shared84

memory and all multiprocessors share a memory unit called global memory.85

A first version of a parallel implementation of the model for GPUs was presented in [25]. Even86

when that first implementation did not explore all the possible optimizations to boost the performance87

on that platform, it showed that the model could be successfully implemented on GPU. A speedup of88

14.5 on a NVIDIA GeForce GTX 285 (a consumer-oriented GPU intended for low-end users and gamers)89

compared to an Intel Core i5 750 with 4 cores at 2.67 GHz was obtained. The GPU implementation90

described in the present paper differs from that previous one in that this new version has been carefully91

optimized to extract all possible performance from the GPU and his performance has been evaluated92

not only on a consumer-oriented GPU, but also on a Tesla scientific high-end GPU.93

Another interesting parallel platform to implement discrete simulations today are Multi-Core94

processors. Since around 2005 all general-purpose CPUs implement more than one CPU (or "core") on95

the processor chip. For a decade, the number of cores in standard Intel x86 processors was modest96

(mainly from 2 to 8). But in the last years, there are high-end CPUs in the market including up to97

several dozen cores (now up to 18 cores for Intel Core i9 and up to 56 cores for Intel Xeon Platinum).98

Therefore, Multi-Core CPUs can start to be competitive with GPUs to implement parallel discrete99

simulations, specially taking into account that its parallelization with OpenMP is much easier than for100

GPUs. Therefore, we also present the first parallel implementation of the CA laser dynamics model for101

Multi-Core architectures and compare its performance on current high-end Multi-Core CPUs to the102

performance obtained on GPUs.103

The remainder of the paper is organized as follows: Section 2 reviews the related work in the field104

of discrete simulations via cellular automata and their parallel implementation on Multi-Core and105

GPU Architectures. Section 3 describes the methodology employed in this work, trying to give useful106

indications to researchers interested in parallelizing efficiently their own codes. Section 4 presents the107

results and discusses their interpretation and significance. Finally, Section 5 summarizes the contents108

of this paper, the conclusions and indicates interesting future work.109

2. Related work110

Most parallel implementations of CA models on Multi-Core processors or GPUs were presented111

after 2007. In the case of Multi-Core processors, they became generalised only from 2005 onwards, and112

started to be used for parallel simulations in the following years. As regards GPUs, before 2007 there113

were few works devoted to the parallel implementation of cellular automata models on GPUs, because114

they had to adapt somehow their application to a shading language (a special purpose programming115

language for graphics applications), such as OpenGL. An example is the paper from Gobron et. al.116

[26], that studies a CA model for a biological retina obtaining a 20x speedup as compared to the CPU117

implementation. After the introduction in 2007 of CUDA (Compute Unified Device Architecture), a118

general purpose programming language for GPUs of the NVIDIA manufacturer, followed soon by a119

multi-platform one called OpenCL, the usage of GPUs in scientific computing exploded.120

Let us review some relevant parallel implementations of CA models on Multi-Core CPUs and121

GPUs introduced from 2007 on.122

Rybacki et. al. [27] presented a study of the performance of seven different very simple cellular123

automata standard models running on a single core processor, a multi core processor and a GPU. They124

found that the performance results were strongly dependent on the model to be simulated.125

Bajzát et. al. [28] obtained an order of magnitude increase in the performance of the GPU126

implementation of a CA model for an ecological system, compared to a serial execution.127

Balasalle et. al. [29] studied how to improve the performance of the GPU implementation of one128

of the simplest two-dimensional CAs —the game of life— by optimizing the memory access patterns.129

They found that carefull optimizations of the implementation can produce a 65% improvement in130

runtime from a baseline implementation. However, they did not study other more realistic CA models.131

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

Special interest has been devoted to GPU implementations of Lattice Boltzmann methods, a132

particular class of CA. Some works have been able to obtain spectacular speedups for them. For133

instance, [30] reported speedups of up to 234x respect to single-core CPU execution without using SSE134

instructions or multithreading.135

Gibson et. al. [31] presents the first thorough study of the performance of cellular automata136

implementations on GPUs and multi-core CPUs with respect to different standard CA parameters such137

as lattice and neighbourhood sizes, number of states, complexity of the state transition rules, number138

of generations, etc. They have studied a "toy application", the "game of life" cellular automaton in two139

dimensions and two multi-state generalizations of it. They employed the OpenCL framework for the140

parallel implementation on GPUs and OpenMP for multi-core CPUs. That study is very useful for141

researchers to help them choose the right CA parameters, when that is possible, taking into account142

their impact in performance. Also to help to explain much of the variation found in reported speedup143

factors from literature. Our present work is different and complementary to that study in the sense144

that the game of life is a toy model very useful to study the dependence of performance on general145

CA parameters, but it is also very interesting to study the parallelization and performance of a real146

application instead of a toy model such as the game of life, as we do in this work.147

3. Materials and Methods148

3.1. Cellular automaton model for laser dynamics simulation149

We present parallel implementations for Multi-Core CPUs and for GPUs of the cellular automaton150

model of laser dynamics introduced by Guisado et. al. [16–18].151

A laser system is represented in this model by a two-dimensional CA which corresponds to a152

transverse section of the active medium in the laser cavity.153

Formally the CA model is made of:154

a) A regular lattice in a two-dimensional space of L × L cells. Each lattice position is labelled by155

the indices (i, j). Also to avoid boundary problems and to best simulate the properties of a macroscopic156

system we use periodic boundary conditions.157

b) The state variables associated with each node (i, j). In the case of a laser system we need two158

variables: one for the lasing medium aij(t) and the other for the number of laser photons cij(t). aij(t)159

is a boolean variable: 1 represents the excited state of the electron in the lasing medium in cell (i, j)160

and 0 is the ground state. For the photons cij(t) is an integer variable in the range [0, M] where M is161

an upper limit, that represent the number of laser photons in cell (i, j). The state variables aij(t) and162

cij(t) represent “bunches” of real photons and electron, the values of which are obviously smaller than163

the real number of photons and electrons in the system and are connected to them by a normalization164

constant.165

c) The neighborhood of a cell. In a cellular automata the state variables can change depending on166

the neighboring cells. In our model the Moore neighborhood is employed: the neighborhood of a cell167

consists of the cell itself and the eight cells around it at positions north, south, east, west, northeast,168

southeast, northwest and southwest.169

d) The evolution rules that specify the state variables at time t + 1 in function of their state at time170

t. From a microscopic point of view the physics of a laser can be described by five procesess:171

i) The pumping of the ground state of the laser medium to the excited state. In this way energy172

is supply to the lasing medium. This process is considered to be probabilistic: If aij(t) = 0 then173

aij(t + 1) = 1 with a probability λ.174

ii) The stimulated emission by which a new photon is created when an excited laser medium cell175

surrounded by one or more photons decays to the ground state: If aij(t) = 1 and the sum of the values176

of the laser photons states in its neighboring cells is greater than 1, then cij(t + 1) = cij(t) + 1 and177

aij(t + 1) = 0.178

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

iii) The non-radiative decaying of the excited state. After a finite time τa a excited laser medium179

cell will go to the ground state aij(t + 1) = 0 without the generation of any photon.180

iv) The photon decay. After a given time τc, photons will escape and its number will decrease by181

one unit cij(t + 1) = cij(t)− 1.182

v) Thermal noise. In a real laser system there is a thermal noise of photons produced by183

spontaneous emissions and they cause the initial start-up of the laser action. Therefore in our CA184

model a small number of photons less than 0.01% are added at random positions at each time step.185

1: Initialize system
2: Input data
3: for time step = 1 to maximum time step do

4: for each cell in the array do

5: Apply noise photons creation rule (Fig. 2)
6: Apply photon and electron decay and evolution of temporal variables

(Fig. 3)
7: Apply pumping and stimulated emission rules (Fig. 4)
8: end for
9: Refresh value of c matrix with contents of c′ matrix

10: Calculate populations after this time step
11: Optional additional calculations on intermediate results
12: end for
13: Final calculations
14: Output results

Figure 1. Pseudo code description of the main program for the CA laser model.

3.2. Sequential implementation of the model186

The algorithmic description of the model using pseudo code is shown in Figs. 1 to 4. The main187

program is described in Fig. 1. The structure of the algorithm is based on a time loop, inside of which188

there is a data loop to sweep all the CA cells. At each time step, first the state of all the cells of the189

lattice is updated by applying the transition rules, and then the total populations of laser photons and190

electrons in the upper state are calculated by summing up the values of the state variables aij and cij for191

all the lattice cells. Because we are emulating a time evolution, the order of the transition rules for each192

time step can be switched. Of course, different orders get to slightly different particle quantities, but193

on the whole, CA evolution is similar. Fig. 2 defines the implementation of the noise photons creation194

rule. The photon and electron decay rules and the evolution of temporal variables are described in Fig.195

3. Finally, Fig. 4 describes the implementation of the pumping and stimulated emission rules.196

In order to simulate a parallel evolution of all the CA cells, we use two copies of the cij matrix,197

called c and c′. En each time step, the new states of cij are written in c′ and the updated values of this198

matrix are only copied to c after finishing with all the CA cells. In the algorithmic description of the199

implementation of the model we have used two temporal variables, ãij and c̃k
ij as time counters, where200

k distinguishes between the different photons that can occupy the same cell. When a photon is created,201

c̃k
ij = τc. After that, 1 is subtracted to c̃k

ij for every time step and the photon will be destroyed when202

c̃k
ij = 0. When an electron is initially excited, ãij = τa. After that, 1 is subtracted to ãij for every time203

step and the electron will decay to the ground level again when ãij = 0.204

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

1: {Introduce nn number of photons in random positions}
2: for n = 0 to nn − 1 do

3: {Generate two random integers in (0, size− 1) interval}
4: i←− random_number(0, Lx − 1)
5: j←− random_number(0, Ly − 1)
6: {Look for first value of k for which c̃k

ij = 0}
7: while c̃k

ij 6= 0 and k ≤ M do

8: k←− k + 1
9: end while

10: if k ≤ M then

11: {Create new photon}
12: c′ij ←− c′ij + 1
13: c̃k

ij ←− τc
14: end if
15: end for

Figure 2. Pseudo code diagram for the implementation of the noise photons rule.

3.3. Parallel Frameworks for Efficient CA Laser Dynamics Simulation205

Algorithms described in previous Section 3.2 arise from a direct conversion of the systems of206

differential equations that represents the CA laser model. The efficient execution of these algorithms in207

parallel platforms to generate fast simulations of a bunch of different input parameters requires many208

specific considerations for each hardware platforms. To begin with, modern out-of-order execution209

superscalar processors achieves an almost optimal time execution of operations when operands reside210

in CPU registers. That is, they reach the so-called data− f low− limit of the algorithm, being the most211

patent bottlenecks that of the real dependences among operations and the difficult branch predictions.212

In fact, taking some simple assumptions around these bottlenecks, some authors have proposed simple213

processor performance models that predicts computing times with enough accuracy [32]. Above this,214

when many operations cannot be executed over CPU registers, memory model is the other crucial215

factor.216

In relation with our CA model, a simple inspection of the code and of the data evolution brings to217

light that memory usage is massive and that an elevated branch misprediction ratio is expected. First218

assertion is obvious: matrices that contains cij, c̃k
ij, aij, ãij supposes many megabytes for those lattice219

widths that emulates a correct behavior of the laser dynamics. Second assertion comes mainly from220

two code features: the use of random values in many decisions representing the particle evolution,221

and the chaotic values that particle states take along the life of the simulation. Whereas this paper222

concentrates in a laser dynamics model, it is obvious that these features may be present in many CA223

simulations, mostly when cooperative phenomena are expected. What is more relevant, the existence224

of many branches (some of them in the form of nested conditional structures) in the “hot spot” zones225

implies that GPU implementations would suffer from an important deceleration. This is due to the226

inherent so-called thread divergence [33] that GPU compilers introduce in these cases, which is one227

the main reasons why the performance on these platforms diminishes.228

Taking into account previous considerations, an accurate timing characterization of main229

sequential algorithm pieces was done. This analysis concludes that:230

- More than 80% of the mean execution time is spent in stimulated emission and pumping rules.231

What is more, their execution times have a considerable variance: minimum times are around five232

times lower than maximum times. This asserts the effect of random values and the chaotic evolution233

of different cell particles.234

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

1: for j = 0 to Ly − 1 do

2: for i = 0 to Lx − 1 do {CA lattice loop}

3: if cij > 0 then {Apply photon decay rule}

4: for k = 1 to M do

5: {Substract 1 to every photon’s lifetime}
6: if c̃k

ij > 0 then

7: c̃k
ij ←− c̃k

ij − 1
8: if c̃k

ij = 0 then {One photon decays}

9: cij ←− cij − 1
10: c′ij = cij
11: end if
12: end if
13: end for
14: end if
15: if aij = 1 then {Apply electron decay rule}

16: {Substract 1 to time of life of every excited electron}
17: ãij ←− ãij − 1
18: if ãij = 0 then

19: {One electron decays}
20: aij ←− 0
21: end if
22: end if
23: end for
24: end for

Figure 3. Pseudo code diagram for the implementation of the photon and electron decay and evolution
of temporal variables rules.

- Random number computation supposes around the 70% of the pumping rule time.235

- The rest of time resides mainly in photon and electron decay. The oscillatory behavior of particle236

evolution during the stationary phase implies also a considerable variance in these times. This is even237

more exaggerated during transient evolution.238

- Noise photon rule timing is negligible (in fact, its number of iterations is very much inferior than239

the rest of rules).240

Previous facts make necessary the introduction of at least the next changes in both OpenMP and241

GPU code implementations (see https://github.com/dcagigas/Laser-Cellular-Automata):242

- Of course, avoiding non re-entrant functions like simple random generators. Even more,243

although generating a seed for each thread should be enough to make random generation independent244

among threads, the deep inner real data dependences that random functions contain lasts in the mean245

longer than the rest of an iteration step. It is preferable an implementation similar to that of the246

cuRAND library, that is, a seed for each cell ij, which preserves a good random distribution while247

accelerates each step around a 40%.248

- As only one electron per cell is allowed, suppressing the aij matrix. Thus, it is considered that if249

ãij is zero the electron is not excited; and it is excited elsewhere.250

- Eliminating the refresh of c matrix (which supposes copying long matrices) with values of c̃ (line251

9 of Fig. 1), by using pointers to these two matrices and swapping these pointers at the end of each252

iteration step.253

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

1: for j = 0 to Ly − 1 do

2: for i = 0 to Lx − 1 do {CA lattice loop}

3: if aij = 0 then {Apply pumping rule}

4: {Generate random number in (0, 1) interval}
5: ξ ←− random_number(0, 1)
6: if ξ < λ then {λ: pumping probability}

7: {One electron is pumped}
8: aij ←− 1
9: ãij ←− τa

10: end if
11: else { (aij = 1)–>Apply stimulated emission rule}

12: if neighbours(i, j) > δ then

13: {Look for first value of k for which c̃k
ij = 0}

14: k←− 1
15: while c̃k

ij 6= 0 and k ≤ M do

16: k←− k + 1
17: end while
18: if k <= M then

19: aij ←− 0
20: ãij ←− 0
21: c′ij ←− c′ij + 1
22: c̃k

ij ←− τc
23: end if
24: end if
25: end if
26: end for
27: end for

Figure 4. Pseudo code diagram for the implementation of the pumping and stimulated emission rules.

The source code of the different implementations and results achieved are available in254

https://github.com/dcagigas/Laser-Cellular-Automata. The source code is under GPL v3 license.255

Researchers can download and modify the code freely to run their own particular laser dynamic256

simulations.257

3.3.1. OpenMP Framework258

Previous improvements are quite easy to detect and to implement. However, there are further259

enhancements that speedup even more a CA simulation when running an OpenMP implementation260

over multicore platforms. As a result, apart from the OPENMP_NOT_OPTIMIZED version, an261

optimized one (called simply OPENMP) can be downloaded from the previous github page. For the262

sake of clarity, these further enhancements are grouped and listed in the following points. Moreover,263

they have been marked in the github source code with the symbol @.264

- After a deeper examination of laser dynamics evolution, it was detected that very few cells265

contain more than one photon during the stationary evolution. Thus, the habitual matrix arrangement266

of variable c̃k
ij , that is, storing consecutively the M values for each cell ij is switched by the following267

one. All the cells ij are stored consecutively for each of the M possible photons. In terms of the C++268

code, this three-dimensional matrix is represented by: c̃[M][Lx][Ly] (see li f et_ f matrix in the code).269

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

The new arrangement implies that all elements of c̃[0][][] are continuously used and then cached, but270

the rest of elements c̃[1 : M− 1][Lx][Ly] are scarcely used, so they do not consume precious cache lines.271

On the contrary, if the habitual matrix arrangement had been used, it would have wasted many cache272

bytes (almost only 1 of each M elements would have been really utilized during the stationary period).273

The rest of code pieces where this matrix is manipulated are not decelerated by the new arrangement;274

e.g. very few cells generate a shifting from c̃[k][Lx][Ly] to c̃[k− 1][Lx][Ly] , (k > 0) , when a photon275

decays.276

- While previous improvement avoids cache line wasting, memory consumption is another277

fundamental issue. The analysis of real values of the big code matrices leads to the conclusion278

that maximum values are small for most physical variables. Thus, instead of 32 bits per element279

(unsignedint variables in C++), real sizes in the optimized version have been reduced to unsigned280

short int and unsigned char whenever possible. More exactly, this supposed reducing memory size281

from: 32× Lx × Ly × (M + 3) to 16× Lx × Ly × (M + 1) + 8× 2 (see e, f 1, f 2, li f et_ f matrices in the282

optimized code).283

- In order to promote loop vectorization, some conditional branches have been transformed284

into simple functions. For example, those conditional sentences that increment a counter q when a285

certain condition p is true have been written like q+ = p. This eases the task of the compiler when286

introducing SIMD instructions and predicative-like code and prevents many BTB (Branch Target287

Buffer) misprediction penalties because these conditions are difficult to predict (due to the random288

nature of particle state evolution).289

- Loop splitting is another classical technique that reduces execution time when memory290

consumption is huge, and the loop manages several disjointed data. This occurs in the case of291

photon and electron decay rules, which have been separated into two different loops in the optimized292

version. This way, caches are not struggled with several matrixes thus preventing many conflict misses293

on them.294

To sum up, previous optimizations achieve around a 2x speedup (see section 4) with respect to the295

basic one. It is worth to remark that both OpenMP versions give exactly the same particle evolution296

results.297

Despite that random number computing has been considerable accelerated by using a seed for298

each cell (i, j), it continues to be the most time-consuming piece. A final improvement draws to an299

approx. additional 3 times speedup of the OpenMP simulation time: instead of computing random300

numbers during the simulation, generating a list of them previously and using this same list for all the301

desired simulations (e.g. if different parameters want to be tested like pumping probability, maximum302

electron and photon lifetimes, etc.).303

Using a random list as an input for the model eases the checking of results for different platforms,304

because the output of the simulation must be exactly the same. More precisely, it is needed that a305

random number is stored in the list for each time step and for each cell.306

However, this list should be enormous for the pumping rule, even if only a random true/false307

bit were stored for each time step and for each cell. For example, considering a simulation of 1000308

steps, a lattice of 4096 × 4096 would occupy 2 GBytes. Because of this, this improvement has not309

been considered in the Result section. Nonetheless, the interested reader can test this optimization310

(note that big lattice sizes would overflow platform memory) simply by defining the constant311

RANDOM_VECT_ENABLE in the github OpenMP codes. Defining this constant would generate the312

random numbers in advance while suppressing its computation during the simulation time.313

3.3.2. CUDA Framework314

The CUDA framework has three main kernels (i.e. CUDA functions written in C style code), the315

same as those of the OpenMP implementation. They are called for each time step sequentially. First316

the PhotonNoiseKernel produces new photons randomly, then the DecayKernel performs the electron317

and photon decay, and last the PumpingKernel does the pumping and stimulated emission. This order318

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

can be altered but it must be the same as the one used in OpenMP. Otherwise, results could not be319

exactly the same.320

There is one last kernel needed: do_shannon_entropy_time_step. Most of the variables that are321

needed to calculate the Shannon Entropy are stored in GPU global memory. Data transfers between322

computer host memory and GPU memory must be minimized because of its big latency. Despite323

that the calculations are not parallel, it is more convenient to perform time step Shannon Entropy324

calculations in GPU memory. There is also a final kernel called finish_shannon_entropy_time_step after325

the time/step loop. However, this last kernel has a low performance impact because it is executed326

only once.327

Simulation parameters are defined in a header file; for example, the SIDE constant that determines328

the grid side of a simulation. In case of CUDA, and GPUs in general, memory size constraints329

are particularly important when comparing with computer workstations. The GPU global memory330

available is usually lower than that of a workstation. Thus, data structure types for electrons and331

photons are important for large grids. Matrix data structures grow by a factor of x4 for each SIDE332

increment, and x40 in case of the matrix that records photon energy values in each cell (GPU_tvf).333

For example, with a grid SIDE of 8192 (213) and 4 GB of GPU global memory it is only possible to334

run the simulation if cells of GPU_tvf matrix variable are set to char type in C. As mentioned before,335

this variable is in charge of recording photon life time values in each grid cell. The char type is 8 bit336

size, so only initial photon life time values between 0 and 255 are allowed. The same happens with337

electron life time values. By default this constant value is set to short int (i.e. 16 bits) to allow higher338

values.339

The CUDA programming environment and the latest NVIDIA architectures (Pascal, Turing340

and Volta) also have some restrictions related to integer atomic arithmetic operations. CUDA341

atomic arithmetic operations only allow the use of int data type but not the short int or char. In342

the PhotonNoiseKernel it is necessary to update new photons in the matrix data structures. Those343

updates are performed in a parallel way. To avoid race conditions, atomic arithmetic operations are344

needed when each GPU hardware thread updates a matrix photon cell (two hardware GPU threads345

could try to update the same cell at the same time). Therefore, it was necessary to use the int data type346

instead of short int or char, thus increasing the GPU memory size needed by these data structures.347

CUDA framework has also one extra feature that can be enabled in the source files: the electron348

evolution output video. A .avi video file showing the electron evolution through the time steps can be349

produced. This feature involves the transfer of a video frame for each time step from GPU memory350

to host or computer memory. When activated and for a moderate grid side (1024 or above), the total351

execution time could be significantly high because of the latency between GPU and host memory352

transfers. This feature could also be adapted or modified to show photon evolution (nonetheless,353

electron and photon behaviours are very similar).354

4. Results355

We present here the performance evaluation results for the two architectures: Multi-Core and356

GPU. For each architecture we evaluated the performance on two different hardware platforms that are357

representative of different target market segments: a high-end chip intended for scientific computing358

or for servers and a consumer-oriented one.359

We have tested that the simulation results of both parallel implementations reproduce the output360

of the original sequential one. As an example we show in Fig. 5 the time evolution of the total361

number of laser photons and the population inversion in the laser system for values of the parameter362

corresponding to a laser spiking regime. The results are the same as found in previous publications363

with a sequential implementation, as [21]. It is shown that when increasing the size of the CA lattice364

the results are smoother since the model reproduces better the macroscopic behavior of the system365

with a higher statistics.366

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 100 200 300 400 500 600 700 800 900 1000

P
o

p
u

la
ti
o

n

Time Steps

Lattice size = 400 x 400. OpenMP optimized version. Intel Xeon 48 cores.

Population Inversion
Laser Photons

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 0 100 200 300 400 500 600 700 800 900 1000

P
o

p
u

la
ti
o

n

Time Steps

Lattice size = 4096 x 4096. CUDA version. NVIDIA Tesla V100 GPU.

Population Inversion
Laser Photons

Figure 5. Output of the model for particular values of the system parameters corresponding to a laser
spiking behavior. Parameter values: λ = 0.0125, τc = 10, τa = 180. The results are smoother for larger
lattice sizes. (Left:) Sequential implementation with a lattice size of 400× 400 cells. (Right:) Sequential
implementation with a lattice size of 4096× 4096 cells.

4.1. Multi-Core architecture367

The Multi-Core architecture was executed and tested on the following two platforms.368

4.1.1. High-end Multi-Core CPUs (48 cores)369

We evaluated the performance on a high-performance server CPU running in the Cloud, using370

the Amazon Web Server(AWS) Infrastructure as a Service (IaaS) EC2 service. We run our performance371

test on a m5.24xlarge instance. It runs on a dual socket server with 2 Intel Xeon Platinum 8259CL372

processors with 24 physical cores each (completing 48 physical cores between them), running at a373

frequency of 2.50 GHz, with 35, 75 MiB of cache memory. The total RAM memory was 373 GiB. Both374

processor sockets are linked by Ultra Path Interconnect (UPI), a high speed point-to-point interconnect375

link delivering a transfer speed of up to 10.4 GT/s.376

4.1.2. Consumer-oriented Multi-Core CPU (8 cores)377

The performance was evaluated on a PC with a Core i9 9900k processor and a total RAM memory378

of 16 GiB. The processor frequency was 3.6 GHz and the RAM memory was on a single channel379

running at 2400 MHz. This processor has 8 physical cores and each core has 2 hardware threads380

(completing a total of 16 Threads).381

4.2. GPU architecture382

The following two GPU chips were used to run and test the GPU architecture.383

4.2.1. High-end GPU chip384

We evaluated the performance on a p3.2xlarge instance of the Amazon Web Server(AWS) IaaS385

EC2 Cloud Computing service. It used a NVIDIA Tesla V100 GPU (Volta architecture) with 5, 120386

CUDA cores and a GPU memory of 16 GiB. The server used an Intel Xeon E5-2686v4 CPU with 4387

physical cores running at 2.3 GHz. CPU and GPU were interconnected via PCI-Express Gen. 3, with a388

bandwidth of 32 GiB/s.389

4.2.2. Consumer-oriented GPU chip390

We used a consumer-oriented NVIDIA GeForce GTX 1050 Ti graphic card (Pascal architecture).391

This card has 768 CUDA cores running at 1290 MHz. The total memory is 4 GiB of GDDR5 type, with392

a maximum bandwidth of 1120 GiB/s.393

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

4.3. Performance and scalability results394

Fig. 6 shows the speedup of the parallel OpenMP implementation running on the Core i9 9900k395

PC (8 cores). In this case, speedups are fairly foreseeable. Firstly, for small lattice sizes most of matrices396

reside in CPU caches, thus achieving an excellent speedup versus the sequential (one thread) test until397

8 threads. Launching 9 threads implies that a physical CPU must manage two threads (whereas the398

rest of CPUs, only one), thus causing the speedup to decrease. However, this problem diminishes for399

more threads. Finally, Core i9 simultaneous multi-threading begins to play a role from 9 threads up,400

hence speedups above 8 are reached for some tests when launching many threads.401

On the other hand, for big lattices speedups are stuck according to the maximum RAM bandwidth,402

as predicted by the roof-line model [34]. In these cases, RAM memory bandwidth is the bottleneck403

that in fact determines program runtimes.404

In the case of the the high-end server with two 2 Intel Xeon Platinum 8259CL CPUs (see Fig. 7),405

our parallel implementation shows an excellent speedup for large lattice sizes. The OpenMP optimized406

version reaches a speedup around 30x for 48 threads. The behaviors are similar to those obtained in407

the consumer-oriented hardware: a peak on the speedups is reached when launching the same number408

of threads than physical CPUs; then accelerations begin to decrease for some more threads, and finally409

speedups are recovered when the number of threads doubles the number of physical cores.410

Nevertheless, for high number of threads, or more precisely, for small number of lattice rows411

per thread, the computation-to-communication scale begins to deteriorate speedups. Note that small412

lattices (Fig. 7 for lattice width = 512) exhibit patently this problem, whereas big lattice speedups413

are almost not deteriorated. This is a well-known effect when scientific applications are massively414

distributed [35]. Because the stimulated emission rule uses Moore neighborhood, the more threads in415

which we divide the lattice, the more communication between threads are needed, thus degrading the416

parallel performance.417

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

OpenMP Basic 8 cores

Linear Speedup
4096
2048
1024
512

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

OpenMP Optimized 8 cores

Linear Speedup
4096
2048
1024
512

Figure 6. Speedup of the parallel OpenMP implementation running on a consumer-oriented CPU
with 8 cores. (Left:) Basic implementation without in-depth optimization. (Right:) Fully optimized
implementation.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Threads

OpenMP Basic 48 cores

Linear Speedup
4096
2048
1024
512

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Threads

OpenMP Optimized 48 cores

Linear Speedup
4096
2048
1024
512

Figure 7. Speedup of the parallel OpenMP implementation running on a high-end dual-socket server
with a total of 48 cores. (Left:) Basic implementation without in-depth optimization. (Right:) Fully
optimized implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 512 1024 2048 4096

R
u

n
ti
m

e
 (

s
)

Lattice width (cells)

NVIDIA GTX 1050Ti vs. Intel Core i9 8 cores

OpenMP Basic
OpenMP Optimized

CUDA

Figure 8. Runtime comparison between NVIDIA GTX 1050 Ti GPU and Intel Core i9 (8 cores) for
different CA lattice sizes.

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

A
c
c
e

le
ra

ti
o

n
 T

O
p

e
n

M
P
/T

C
U

D
A

Number of Threads

OpenMP 8 cores (16 threads) vs NVIDIA GTX 1050 ti

4096
2048
1024

512

Figure 9. Comparison of OpenMP Optimized and CUDA times when using Intel Core i9 and NVIDIA
GeForce GTX 1050 Ti resp.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000 3500 4000

R
u

n
ti
m

e
 (

s
)

Lattice width (cells)

NVIDIA Tesla V100 GPU vs. Intel Xeon Platinum 48 cores

OpenMP Basic
OpenMP Optimized

CUDA

Figure 10. Runtime comparison between NVIDIA Tesla V100 GPU and Intel Xeon Platinum (dual
socket with 48 cores in total) for different CA lattice sizes.

In Figs. 8 to 10 we show a runtime comparison between both CPU/GPU pairs, for different sizes418

and number of Multi-Core Threads. It is interesting to note that for CPU/GPU comparisons shown419

in Figs. 8, 9 and Fig. 10) CUDA implementation is, at most, 2.5x faster than the OpenMP Optimized420

version. In truth, only for big lattice sizes GPU platforms beat clearly CPU ones: as shown in Fig. 10,421

that happens only for a number of threads much smaller than the number of available physical cores422

of the CPU and for large system sizes. However, when using the 48 available cores of the CPU, the423

CUDA implementation is again only around 2.5x faster than the CPU. Even for small system sizes the424

runtime of CPU and GPU is similar.425

An additional consideration plays in favor of classical CPU platforms. If a previously computed426

random list were used as an input for the model, (thus preventing the time spent in computing random427

numbers during simulation, see subsection 3.3.1), even OpenMP Optimized simulation times would428

be lower than that of CUDA versions. We recall here that, although this alternative is practical only for429

medium lattice widths, it speedups OpenMP around three times. This optimization does not favour so430

much GPU platforms.431

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

A
c
c
e

le
ra

ti
o

n
 T

O
p

e
n

M
P
/T

C
U

D
A

Number of Threads

OpenMP 48 cores (96 threads) vs NVIDIA v100

4096
2048
1024

512

Figure 11. Comparison of OpenMP Optimized and CUDA times: Detail from 10 threads up when
using Intel Xeon Platinum and NVIDIA Tesla V100 GPU, resp.

5. Conclusions and Future Lines432

In some previous studies cited in the introduction and section 2, it was pointed out that the433

speedups achieved with GPU when comparing to single-core CPUs where above 10X and sometimes434

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

above 100x. Even with these ratios, it is evident that a current multicore CPU may approach GPU435

performance. Moreover, this affirmation must be revised and carefully analyzed for Cellular Automata436

(CA) applications. In this paper, it is experimentally proved, using almost the same code for a laser437

dynamics CA (except for the necessary adaptation to each platform), that these distances have been438

significantly shortened. We conclude that nested conditional structures (in general, many branches in439

the “hot spot” zones) implies that GPU implementations would suffer from an important deceleration.440

Even for massive parallel data structures like CA, an approximately 3x speedup is achieved when441

using high performance computers and GPUs. The other factor that limits CPU and GPU performance442

for big lattice CAs is obviously the maximum RAM bandwidth, as predicted by the roofline model. If443

other variables were taken into account like price, TDP, source code maintenance, or easy and rapid444

software development, it is not clear that GPUs are always the best choice for an efficient parallelization445

of CA algorithms.446

Future lines, provided the important conclusions obtained in this paper for the specific case of laser447

dynamics, include the extension of this analysis to generic Cellular Automata. This will be necessary448

in order to extract a simple but realistic model that allows to predict the performance on CPU and449

GPU platforms mainly as a function of the form of its state transition rules, its neighboring relations,450

the amount of memory, etc. It will be also interesting to investigate the efficient implementation and451

speedup obtained by implementing this model on Multi-GPUs.452

Author Contributions: Conceptualization, D.C., F.D, and J.L.G.; methodology, D.C., F.D, M.R.L. and J.L.G.;453

software, D.C., F.D, M.R.L. and J.L.G.; validation, D.C., F.D, and J.L.G.; investigation, D.C., F.D, F.J. and J.L.G.;454

resources, D.C., F.D, and J.L.G.; writing–original draft preparation, D.C., F.D, F.J. and J.L.G.; writing–review and455

editing, D.C., F.D, and J.L.G..; visualization, D.C. and M.R.L.; supervision, J.L.G.; funding acquisition, D.C., F.J.456

and J.L.G.457

Funding: This research was funded by the following research project of Ministerio de Economía, Industria458

y Competitividad, Gobierno de España (MINECO) and the Agencia Estatal de Investigación (AEI) of Spain,459

cofinanced by FEDER funds (EU): MABICAP (Bio-inspired machines on High Performance Computing platforms:460

a multidisciplinary approach, TIN2017-89842P). The work was also partially supported by the computing facilities461

of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional462

Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.463

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the464

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to465

publish the results.466

References467

1. Talia, D.; Naumov, N., Parallel cellular programming for emergent computation. In Simulating Complex468

Systems by Cellular Automata; Springer, 2010; pp. 357–384.469

2. Bandini, S.; Mauri, G.; Serra, R. Cellular automata: From a theoretical parallel computational model to its470

application to complex systems. Parallel Computing 2001, 27, 539–553. doi:10.1016/S0167-8191(00)00076-4.471

3. Wolfram, S. Cellular automata and complexity; Addison-Wesley: Reading, MA, 1994.472

4. Ilachinski, A. Cellular Automata: A Discrete Universe; World Scientific: Singapore, 2001; p. 808.473

5. Sayama, H. Introduction to the Modeling and Analysis of Complex Systems; Open SUNY Textbooks. 14:474

Geneseo, NY, 2015.475

6. Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems; Cambridge University Press:476

Cambridge, MA, USA, 1998.477

7. Sloot, P.; Hoekstra, A. Modeling Dynamic Systems with Cellular Automata. In Handbook of dynamic system478

modeling; Fishwick, P., Ed.; Chapman & Hall/CRC, 2007; pp. (21) 1–6.479

8. A.G., H.; Kroc, J.; Sloot, P., Eds. Simulating Complex Systems by Cellular Automata; Springer: Berlin,480

Heidelberg, 2010.481

9. Gounaridis, D.; Chorianopoulos, I.; Koukoulas, S. Exploring prospective urban growth trends under482

different economic outlooks and land-use planning scenarios: The case of Athens. Applied Geography 2018,483

90, 134–144. doi:10.1016/J.APGEOG.2017.12.001.484

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.1016/S0167-8191(00)00076-4
https://doi.org/10.1016/J.APGEOG.2017.12.001
https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

10. Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The simulation and prediction of spatio-temporal485

urban growth trends using cellular automata models: A review. International Journal of Applied Earth486

Observation and Geoinformation 2016, 52, 380–389. doi:10.1016/J.JAG.2016.07.007.487

11. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model488

(FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and489

Urban Planning 2017, 168, 94–116. doi:10.1016/J.LANDURBPLAN.2017.09.019.490

12. Qiang, S.; Jia, B.; Huang, Q.; Jiang, R. Simulation of free boarding process using a cellular automaton491

model for passenger dynamics. Nonlinear Dynamics 2018. doi:10.1007/s11071-017-3867-5.492

13. Tang, T.Q.; Luo, X.F.; Zhang, J.; Chen, L. Modeling electric bicycle’s lane-changing and retrograde behaviors.493

Physica A: Statistical Mechanics and its Applications 2018, 490, 1377–1386. doi:10.1016/J.PHYSA.2017.08.107.494

14. Monteagudo, A.; Santos, J. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth495

Model Based on Cellular Automata. PLoS One 2015, 10, e0132306. doi:10.1371/journal.pone.0132306.496

15. Burkhead, E.; Hawkins, J. A cellular automata model of Ebola virus dynamics. Physica A: Statistical497

Mechanics and its Applications 2015, 438, 424–435. doi:10.1016/J.PHYSA.2015.06.049.498

16. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Cellular automaton model for the simulation of laser dynamics.499

Physical Review E 2003, 67, 66708.500

17. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Computational simulation of laser dynamics as a cooperative501

phenomenon. Physica Scripta 2005, T118, 148–152.502

18. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Simulation of the dynamics of pulsed pumped lasers based on503

cellular automata. Lecture Notes in Computer Science 2004, 3305, 278–285.504

19. Kroc, J.; Jimenez-Morales, F.; Guisado, J.L.; Lemos, M.C.; Tkac, J. Building Efficient Computational Cellular505

Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies.506

Advances in Complex Systems 2019, 22, 1950013.507

20. Guisado, J.; Fernández-de Vega, F.; Jiménez-Morales, F.; Iskra, K. Parallel implementation of a cellular508

automaton model for the simulation of laser dynamics. Lecture Notes in Computer Science 2006, 3993, 281–288.509

doi:10.1007/11758532_39.510

21. Guisado, J.; Jiménez-Morales, F.; Fernández-de Vega, F. Cellular automata and cluster computing: An511

application to the simulation of laser dynamics. Advances in Complex Systems 2007, 10, 167–190.512

22. Guisado, J.; Fernandez-de Vega, F.; Iskra, K. Performance analysis of a parallel discrete model for513

the simulation of laser dynamics. Proceedings of the International Conference on Parallel Processing514

Workshops. IEEE Computer Society, 2006, pp. 93–99. doi:10.1109/ICPPW.2006.62.515

23. Guisado, J.; Fernández de Vega, F.; Jiménez-Morales, F.; Iskra, K.; Sloot, P. Using cellular automata for516

parallel simulation of laser dynamics with dynamic load balancing. International Journal of High Performance517

Systems Architecture 2008, 1, 251–259.518

24. GPGPU. General-Purpose Computation on Graphics Hardware. http://gpgpu.org, as available on may519

2012., 2012.520

25. Lopez-Torres, M.; Guisado, J.; Jimenez-Morales, F.; Diaz-del Rio, F. GPU-based cellular automata521

simulations of laser dynamics. Proceedings of the XXIII Jornadas de Paralelismo; hgpu.org: Elche,522

2012; pp. 261–266.523

26. Gobron, S.; Devillard, F.; Heit, B. Retina simulation using cellular automata and GPU programming.524

Machine Vision and Applications Journal 2007, 18, 331–342.525

27. Rybacki, S.; Himmelspach, J.; Uhrmacher, A. Experiments With Single Core, Multi Core, and {GPU}-based526

Computation of Cellular Automata. Advances in System Simulation, 2009. {SIMUL}’09. First International527

Conference on, 2009.528

28. Bajzát, T.; Hajnal, E. Cell Automaton Modelling Algorithms: Implementation and Testing in {GPU} Systems.529

{INES} 2011, 15th International Conference on Intelligent Engineering Systems, 2011.530

29. Balasalle, J.; Lopez, M.; Rutherford, M., Optimizing Memory Access Patterns for Cellular Automata on531

{GPU}s. In GPU Computing Gems Jade Edition; Elsevier - Morgan Kaufmann - NVIDIA, 2011; pp. 67–75.532

30. Geist, R.; Westall, J., Lattice-Boltzmann Lighting Models. In GPU Computing Gems, Emerald Edition; Elsevier533

- Morgan Kaufmann - NVIDIA, 2011; pp. 381–399.534

31. Gibson, M.J.; Keedwell, E.C.; Savić, D.A. An investigation of the efficient implementation of cellular535

automata on multi-core CPU and GPU hardware. Journal of Parallel and Distributed Computing 2015,536

77, 11–25. doi:10.1016/j.jpdc.2014.10.011.537

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.1016/J.JAG.2016.07.007
https://doi.org/10.1016/J.LANDURBPLAN.2017.09.019
https://doi.org/10.1007/s11071-017-3867-5
https://doi.org/10.1016/J.PHYSA.2017.08.107
https://doi.org/10.1371/journal.pone.0132306
https://doi.org/10.1016/J.PHYSA.2015.06.049
https://doi.org/10.1007/11758532_39
https://doi.org/10.1109/ICPPW.2006.62
https://doi.org/10.1016/j.jpdc.2014.10.011
https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

32. Jongerius, R.; Anghel, A.; Dittmann, G. Analytic Multi-Core Processor Model for Fast Design-Space538

Exploration. IEEE TRANSACTIONS ON COMPUTERS 2018, 67.539

33. NVIDIA. CUDA C Best Practices Guide Version. Available in http://developer.nvidia.com/, Accessed in540

Dec. 2019.541

34. Williams, S.; Waterman, A.; Patterson, D. Roofline: an insightful visual performance model for multicore542

architectures. Commun. ACM 2009, 52, 65–76.543

35. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 6th Edition; Vol. 19,544

Elsevier-Morgan Kaufmann, 2017.545

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2019 doi:10.20944/preprints201912.0223.v1

Peer-reviewed version available at Electronics 2020, 9, 189; doi:10.3390/electronics9010189

https://doi.org/10.20944/preprints201912.0223.v1
https://doi.org/10.3390/electronics9010189

