

Supplementary Table 1. ZINB regression analyses predicting past-month overeating frequency (N = 102)

EDE-Q Overeating				
	Logistic Model		Count Model	
Step 1.	<u>B</u> (SE)	<u>IRR</u>	<u>B</u> (SE)	<u>IRR</u>
Sex	0.56 (1.28)	1.75	0.53 (0.56)	1.69
Orientation	0.71 (1.00)	2.03	0.66 (0.59)	1.93
Race	0.28 (0.66)	1.32	-0.50 (0.34)	0.61
NSSI History	-0.23 (0.98)	0.79	0.10 (0.50)	1.10
ESST Accuracy	-0.05 (0.03)	0.95	-0.06 (0.21)**	0.95
Step 1:	$\chi^2(10, 89) = 16.47$, Log-likelihood: -195.49			
Step 2.	<u>B</u> (SE)	<u>IRR</u>	<u>B</u> (SE)	<u>IRR</u>
Negative Urgency	-0.09 (0.04)*	0.92	0.05 (0.02)**	1.06
NEAT^a	0.00 (0.03)	1.00	0.03 (0.01)*	1.03
Step 2:	$\chi^2(2, 87) = 19.44^{***}$, Log-likelihood: -186.08			
Step 2 model comparison:	$\chi^2(0, 15) = 11.36^{***}$, Log-likelihood: -191.76 ^a			
Step 3.	<u>B</u> (SE)	<u>IRR</u>	<u>B</u> (SE)	<u>IRR</u>
Negative Urgency	-0.08 (0.04)*	0.92*	0.05 (0.02)**	1.05
NEAT	0.00 (0.03)	1.00	0.02 (0.01)*	1.02
Step 3:	$\chi^2(2, 85) = 5.28$, Log-likelihood: -183.52			
Full Model:	$\chi^2(14, 85) = 45.78^{***}$, AIC: 401.04			

Note. IRR = Incident Risk Ratio; AIC = Akaike's Information Criterion. ^aModel statistics with NEAT entered at Step 2 (prior to negative urgency); model comparison evaluated using likelihood ratio testing. All other chi-square values obtained at each step via Wald tests; full model chi-square derived from comparison against null (constant-only) model. * $p < .05$; ** $p < .01$; *** $p < .001$.

Supplementary Table 2. ZINB regression analyses predicting past-month loss-of-control (LOC) eating frequency (N=102)

EDE-Q LOC Eating				
	Logistic Model		Count Model	
<u>Step 1.</u>	B (SE)	<u>IRR</u>	B (SE)	<u>IRR</u>
Sex	0.54 (1.13)	1.71	1.44 (0.69)*	4.24
Orientation	0.96 (1.02)	2.62	1.43 (0.69)*	4.17
Race	1.30 (0.70)	3.66	0.28 (0.49)	1.33
NSSI History	-1.23 (0.94)	0.29	-0.51 (0.56)	0.60
ESST Accuracy	0.08 (0.06)	1.08	0.03 (0.02)	1.03
Step 1:		$\chi^2(10, 89) = 22.74^*$, Log-likelihood: -139.26		
<u>Step 2.</u>	B (SE)	<u>IRR</u>	B (SE)	<u>IRR</u>
Negative Urgency	-0.12 (0.07)	0.89	0.06 (0.03)*	1.06
NEAT ^a	-0.05 (0.03)	0.95	0.03 (0.02)*	1.03
Step 2:		$\chi^2(2, 87) = 12.06^{**}$, Log-likelihood: -131.65		
Step 2 model comparison:		$\chi^2(0, 15) = 4.54^{***}$, Log-likelihood: -133.92^a		
<u>Step 3.</u>	B (SE)	<u>IRR</u>	B (SE)	<u>IRR</u>
Negative Urgency	-0.05 (0.04)	0.96	0.06 (0.02)**	1.07
NEAT	-0.03 (0.02)	0.98	0.03 (0.01)*	1.03
Step 3:		$\chi^2(2, 85) = 9.86^{**}$, Log-likelihood: -129.62		
Full Model:		$\chi^2(14, 85) = 47.51^{***}$, AIC: 293.25		

Note. IRR = Incident Risk Ratio; AIC = Akaike's Information Criterion. ^aModel statistics with NEAT entered at Step 2 (prior to negative urgency); model comparison evaluated using likelihood ratio testing. All other chi-square values obtained at each step via Wald tests; full model chi-square derived from comparison against null (constant-only) model. * $p < .05$; ** $p < .01$; *** $p < .001$.

Supplementary Table 3. ZINB regression analyses predicting binge eating frequency (N = 102)

EDE-Q Binge Eating Days				
	Logistic Model		Count Model	
<u>Step 1.</u>	<u>B (SE)</u>	<u>IRR</u>	<u>B (SE)</u>	<u>IRR</u>
Sex	1.59 (1.50)	5.10	1.44 (0.58)*	4.22
Orientation	0.75 (0.84)	1.88	0.99 (0.54)	2.51
Race/Ethnicity	0.99 (0.72)	2.57	-0.77 (0.51)	0.46
NSSI History	-0.99 (0.79)	0.43	-0.34 (0.50)	0.71
ESST Accuracy	0.12 (0.07)	1.13	0.05 (0.02)*	1.06
Step 1: $\chi^2(10, 89) = 21.34^*$, Log-likelihood: -131.74				
<u>Step 2.</u>	<u>B (SE)</u>	<u>IRR</u>	<u>B (SE)</u>	<u>IRR</u>
Negative Urgency	-0.12 (0.05)*	0.89	0.07 (0.02)**	1.07
NEAT ^a	-0.08 (0.03)	0.92	0.05 (0.02)**	1.05
Step 2: $\chi^2(2, 87) = 18.93^{***}$, Log-likelihood: -121.60				
Step 2 model comparison: $\chi^2(0, 15) = 1.36^{***}$, Log-likelihood: -122.28 ^a				
<u>Step 3.</u>	<u>B (SE)</u>	<u>IRR</u>	<u>B (SE)</u>	<u>IRR</u>
Negative Urgency	-2.55 (2.44)	0.08	0.07 (0.02)***	1.08
NEAT	-6.38 (6.07)	0.00	0.02 (0.02)	1.02
Step 3: $\chi^2(2, 85) = 2.46$, Log-likelihood: -106.11				
Full Model: $\chi^2(14, 85) = 41.93^{***}$, AIC: 246.22				

Note. IRR = Incident Risk Ratio; AIC = Akaike's Information Criterion. ^aModel statistics with NEAT entered at Step 2 (prior to negative urgency); model comparison evaluated using likelihood ratio testing. All other chi-square values obtained at each step via Wald tests; full model chi-square derived from comparison against null (constant-only) model. *p < .05; **p < .01; ***p < .001.

Supplementary Table 4. ZINB regression analyses predicting frequency of past-month compensatory behaviors (N = 102)

EDE-Q Compensatory Behaviors				
	Logistic Model		Count Model	
Step 1.	B (SE)	IRR	B (SE)	IRR
Sex	14.27 (223.19)	158.15 ^{e4}	2.64 (0.43)***	13.96
Orientation	1.75 (1.04)	5.75	2.31 (0.41)***	10.09
Race	0.01 (0.57)	1.00	0.67 (0.32)*	1.96
NSSI History	-1.86 (0.97)	0.16	-1.14 (0.36)**	0.32
ESST Accuracy	0.05 (0.04)	1.05	0.02 (0.01)	1.02
Step 1:	$\chi^2(10, 89) = 54.29***$, Log-likelihood: -153.51			
Step 2.	B (SE)	IRR	B (SE)	IRR
Negative Urgency	-0.05 (0.04)	0.95	0.00 (0.02)	1.00
NEAT ^a	-0.08 (0.04)*	0.92	-0.02 (0.01)	0.98
Step 2:	$\chi^2(2, 87) = 1.54$, Log-likelihood: -152.70			
Step 2 model comparison:	$\chi^2(0, 15) = 8.97***$, Log-likelihood: -148.22 ^a			
Step 3.	B (SE)	IRR	B (SE)	IRR
Negative Urgency	-0.06 (0.05)	0.94	0.01 (0.02)	1.00
NEAT	-0.09 (0.04)*	0.92	-0.03 (0.02)	0.98
Step 3:	$\chi^2(2, 85) = 7.98*$, Log-likelihood: -147.33			
Full Model:	$\chi^2(14, 85) = 57.65***$, AIC: 328.65			

Note. IRR = Incident Risk Ratio; AIC = Akaike's Information Criterion. ^aModel statistics with NEAT entered at Step 2 (prior to negative urgency); model comparison evaluated using likelihood ratio testing. All other chi-square values obtained at each step via Wald tests; full model chi-square derived from comparison against null (constant-only) model. *p < .05; **p < .01; ***p < .001.

Supplementary Results

Alternative model for EDE-Q Weight Concerns (see Footnote 2 in the main text)

We ran an exploratory alternative model for EDE-Q Weight Scores, in which we entered NEAT on Step 2 ahead of Negative Urgency (entered on Step 3). In this model, NEAT had a main effect on EDE-Q Weight Concerns, $B = 0.02$, $SE = 0.01$, $F_{change}(1, 95) = 4.95$, $p = 0.28$, $R^2_{change} = .04$. NEAT's effect on this subscale ($B = 0.02$, $SE = 0.01$, $\beta = 0.17$, $p = 0.64$) was no longer evident when Negative Urgency was included in the final step ($B = 0.06$, $SE = 0.00$, $\beta = 0.30$, $p = 0.003$), confirming that Negative Urgency had additional predictive utility beyond the effect of NEAT.