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KLEIN’S TRACE INEQUALITY AND SUPERQUADRATIC TRACE
FUNCTIONS

MOHSEN KIAN and MOHAMMAD W. ALOMARI

ABSTRACT. We show that if f is a non-negative superquadratic function, then A —

Trf(A) is a superquadratic function on the matrix algebra. In particular,

Trf(A+B)+Trf(A—B ) STrf(A)—gTrf(B)

2 2

holds for all positive matrices A, B. In addition, we present a Klein’s inequality for

superquadratic functions as
Te[f(A) — f(B) — (A= B)f'(B)] > Tr[f(|A - B)]

for all positive matrices A, B. It gives in particular an improvement of the Klein’s
inequality for non-negative convex function. As a consequence, some variants of the

Jensen trace inequality for superquadratic functions have been presented.

1. INTRODUCTION AND PRELIMINARIES

In study of quantum mechanical systems, there are many famous concepts which are
related to the trace function A — Tr(A). The well-known relative entropy of a density
matrix p (a positive matrix of trace one) with respect of another density matrix o is
defined by

S(plo) = Tr(plog p) — Tr(plog o).

More generally, for a proper (continuous) real function f, the study of the mapping A —
Tr(f(A)) is important.

The main subject of this paper, is to study this mapping for a class of real functions, the
superquadrtic functions. It is known that if f : R — R is a continuous convex (monotone
increasing) function, then the trace function A — Tr (f(A)) is a convex (monotone
increasing) function, see [14, 17]. In Section 2, we present this result for superquadratic
functions.

For all Hermitian n x n matrices A and B and all differentiable convex functions f :

R — R with derivative f’, the well known Klein inequality reads as

Tr [f(4)— f(B)— (A= B) f'(B)] > 0. (L1)
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With f(¢) = tlogt (t > 0), this gives
S(A|B)=Tr A(logA—1logB) > Tr (A— B)

for positive matrices A, B. If A and B are density matrices, then S (A, B) > 0. This is
a classical application of the Klein inequality. See [7, 18]. To see a collection of trace
inequalities the reader can refer to [8, 9, 10, 13, 19, 20] and references therein.

In Section 3, we present a Klein trace inequality for superquadrtic functions. We show
that our result improves previous results in the case of non-negative functions. In-addition,
some applications of our results present counterpart to some known trace inequalities. We

give some examples to clarify our results.

Let % () be the C*-algebra of all bounded linear operators defined on a complex
Hilbert space (. (-,-)) with the identity operator I. When dim .7 = n, we identify
P () with the algebra M, of n-by-n complex matrices. We denote by H,, the real
subspace of Hermitian matrices and by M} the cone of positive (semidefinite) matrices.
The identity matrix of any size will be denoted by I

Every Hermitian matrix A € H,, enjoys the spectral decomposition A = Z?:l A Pj,
where \;’s are eigenvalues of A and P;’s are projection matrices with Z?:l P=11f fis
a continuous real function which is defined on the set of eigenvalues of A, then f(A) is the
matrix defined using the spectral decomposition by f(A) = Z?Zl f(Aj)Pj. The eigenvalues
of f(A) are just f(\;). Moreover, If U is a unitary matrix, then f(U*AU) = U*f(A)U.

For A = [a;;] € M, the canonical trace of A is denoted by TrA and is defined to be
Z?Zl a;i- The canonical trace is a unitary invariant mapping, say TrUAU* = TrA for
every unitary matrix U. So, when Ay, --- , A, are eigenvalues of A and {uy,--- ,u,} is an

orthonormal set of corresponding eigenvectors in C", then

TrA = Z/\j( Z (Auj,u;) and Trf(A Zf = Zf((Auj,uj>)
j=1 j=1 J=1

If 57 is a separable Hilbert space with an orthonormal basis {e;};, an operator A €
P (A) is said to be a trace class operator if

4l = D244 erer),

)

is finite. In this case, the trace of A is defined by Tr (A) = > (Ae;, e;) and is independent

(2
of the choice of the orthonormal basis. When 57 is finite-dimensional, every operator is
trace class and this definition of trace of A coincides with the definition of the trace of a

matrix.

For a vector x = (z1,...,x,) in R", let x* and x! denotes the vectors obtained by

rearranging entries of x in decreasing and increasing order, respectively, i.e. x% >
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and x{ < ... < ah. A vector x € R" is said to be weakly majorised by y € R" and
denoted by x <, y if Z?:l xj < Z§:1 yj- holds for every k = 1,...,n. If in addition
> :ci = yj, then x is said to be majorised by y and is denoted by x < y. The
trace of a vector x € R” is defined to be the sum of its entries and is denoted using a same
notation as a matrix by Tr x.

A matrix P = [p;;] € M, is said to be doubly stochastic if all of its entries are non-

negative and

n n
Zpij =1 forally and Zpij =1 for all .
=1 j=1

For all x,y € R" it is well-known that x < y if and only if there exists a doubly stochastic
matrix P such that x = Py, see [6, Theorem I1.1.10]. More results concerning majorization
can be found in [6, 14].

A function f:J CR — R is called convex if

Flat+(1—a)s)<af(B)+1—a)f(s), (1.2)

for all points s,t € J and all a € [0,1]. If —f is convex then we say that f is concave.
Moreover, if f is both convex and concave, then f is said to be affine.

Geometrically, for all z,y € J with x <t < y, the two points (z, f (z)) and (y, f (y))
on the graph of f are on or below the chord joining the endpoints. In symbols, we write
f) - f @)

Fiy< 0=

(t—=z)+ f(z)

forany r <t <yand z,y € J.
Equivalently, given a function f: J — R, we say that f admits a support line at s € J
if there exists a A € R such that

fE) = f(s)+A(t—s) (1.3)

for all t € J. The set of all such A is called the subdifferential of f at s and it is denoted
by df. Indeed, the subdifferential gives us the slopes of the supporting lines for the graph
of f so that if f is convex, then df(s) # () at all interior points of its domain.

From this point of view, Abramovich et al. [3] extended the above idea for what they
called superquadratic functions. Namely, a function f : [0, 00) — R is called superquadratic

provided that for all s > 0 there exists a constant Cs € R such that

F#) = f(s)+Cs(t—s)+ f (|t —s]) (1.4)

for all £ > 0. A function f is called subquadratic if —f is superquadratic. Thus, for a
superquadratic function we require that f is above its tangent line plus a translation of f
itself. If f is differentiable and satisfies f(0) = f/(0) = 0, then one can easily see that the

constant C; in the definition is necessarily f’(s), see [2].
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Prima facie, superquadraticity looks to be stronger than convexity, but if f takes neg-
ative values then it may be considered weaker. On the other hand, non-negative sub-
quadratic functions does not need to be concave. In other words, there exist subquadratic
function which are convex. This fact helps us first to improve some results for convex
functions and second to present some counterpart results concerning convex functions.
Some known examples of superquadratic functions are power functions. For every p > 2,
the function f(t) = t? is superquadratic as well as convex. If 1 < p < 2, then f(t) = —tP
is superquadratic and concave. To see more examples of superquadratic and subquadratic
functions and their properties, the reader can refer to [2, 3, 1, 4, 5]. Among others,

Abramovich et al. [3] proved that the inequality

r([omn) < [ 1o -1 (lo - [ean)ane (15)

holds for all probability measures p and all nonnegative, p-integrable functions ¢ if and
only if f is superquadratic.
As a matrix extension of (1.5), Kian [15] showed that if f : [0,00) — R is a continuous

superquadratic function, then

f((Au,w)) < (f(A)u,u) — (f(|A - (Au,u)|)u, u) (1.6)

holds for every positive matrix A € M} and every unit vector u € C". More generally, it

has been shown in [16] that if ® : M,, — M, is a unital positive linear map, then

f(@(A)u,w)) < (2(f(A))u, u) — (2(f(|A = (2(A)u, u)|))u, w) (1.7)

holds for every positive matrix A € Ml and every unit vector u € C™.

2. SUPERQUADRATIC TRACE FUNCTIONS

It is known that if f : R — R is a continuous convex function, then the trace function

A — Tr [f(A)] is a convex function on M,. In this section, we present this fact for

superquadratic functions. We need some lemmas. Note that if x = (21, -+ ,2,) € R" is
a vector and f : R — R is a real function, we denote the vector (f (z1),- -, f(x,)) by
f(x).

Lemma 2.1. [6] For x,y € R”
(1) If x < Yy, then |X| = ‘Y‘7 where |X‘ = (|‘T1’ y T 7“,1:71‘)
(ii) x <y if and only if Trf(x) < Trf(y) for every convex function f.

Lemma 2.2. Assume that x,y € R} and f :[0,00) = R is a superquadratic function. If
X <y, then there exists a doubly stochastic matriz P such that Trf(x) < Trf(y) — TrPF,
where F = [f (|z; — y;])]-
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Proof. For x,y € R, if x <y, then there exists a doubly stochastic matrix P = [p;;] such
that x = Py. Therefore, x; = 37, pijy; for every i = 1,--- ,nand 3°7_ p;; = 1. If f is

a superquadratic function, then from (1.5) we conclude that the inequality

n n n n
> vy | <D vl i) =Y pisf | v — D iy (2.1)
j=1 j=1 =1 j=1

holds for every ¢ = 1,--- ,n. Summing over i, we obtain

Trf(x) < Trf(y prf |Z/J z4]) -

3,j=1

If we put F' = [f (lzi —y;|)], then >3V pijf (lyj — 2i]) = TrPF. This completes the
proof. O

Lemma 2.3. [3] Let f:[0,00) = R be a superquadratic function. Then
(i) f(0) <0;
(i) If f is differentiable and f(0) = f(0) =0, then Cs = f'(s) in (1.4) for all s > 0;
(iii) If f is non-negative, then f(0) = f'(0) =0 and f is convex and increasing.

Theorem 2.4. Let f : [0,00) — R be a continuous superquadratic function. If f is non-
negative, then the mapping A — Tr[f(A)] is a superquadratic function on M. More
generally, the inequality

Trf<A;B) +Trf<‘A;BD < Trf(A);Trf(B) — Tr[PG + QF] (2.2)

holds for some doubly stochastic matrices P = [p;;] and Q = [qi;], in which

6= [r (3 =tm—wsll)] ana £ =|r (Gl m-ul)].

where A\;, &, wi and v; are eigenvalues of A— B, A+ B, A and B, respectively.

Proof. For a Hermitian matrix X, assume that A (X) and AT(X) are eigenvalues of X
arranged in decreasing order and increasing order, respectively. Recall that [0] if A, B are

Hermitian matrices, then

M(A) = M(B) < M(A - B) < AHA) — AT(B) (2.3)
and

A(A) +X(B) < XA+ B) < M(A) + \Y(B). (2.4)
From (2.3) we have

M(B — A) < M(B) — A (A) (2.5)
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and noting Lemma 2.1 this gives
‘)&(A—B)‘ ~< ‘Ai(B) - MA)‘. (2.6)

We assume that p; and v; (j =1,--- ,n) are eigenvalues of A and B respectively, arranged

in decreasing order. If f is superquadratic, then it follows from (2.6) and Lemma 2.2 that

f( A~ BI) Zf (A= B))) =T f (|AA - B))
<Trf (‘Ai(B) - MA)D ~TPG  (by Lemma 2.2)

= f(uj —vl) - T PG,

for some doubly stochastic matrix P = [p;;], in which G = [f (||\i| — |1; — v5]])] and A’s
are eigenvalues of A — B. This implies that for every o > 0, the inequality

n

Trf(a|A - B|) < Z alpj —vi]) — TrPaGy (2.7)

holds for some doubly stochastic matrix P,, in which Go = [f (a ||| — |1t — v4]])] and
A;’s are eigenvalues of (A — B). Now suppose that o € [0,1]. Another use of Lemma 2.2
together with (2.4) gives

Tr f (Ai(aA +(1- a)B)) <Tr f (av(A) +(1- a)Ai(B)) “TQF  (28)

for some doubly stochastic matrix @, where F' = [f (|§; — — (1 —a)y;])] and &’s are
eigenvalues of «A 4 (1 — o) B. Therefore

Trf(aA+ (1 —a)B)

=37 (M(@a+(1-a)B))
< flap + (1= a)y;) — TrQF (by (2.8))
j=1

< Z {af () + (1= a)f(vj) —af (1= a) [y —v) = (1 = a)f (e |p; — vs])} = TrQF
(since f is superquadratic)

=aTrf(A)+ (1 —a)Trf(B —aZf (1—a)lp;—vi]) —(1—a) Zf ln; —vi]) — TrQF
Jj=1

<aTrf(A)+ (1 —a)Trf(B)
—aTrf(1-—a)|[A=B|)—(1—a)Trf (a|A = B|) = Tr[(1 — @) P,Go + aP1_oG1_o + QF],
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where the last inequality follows from (2.7). In particular, with o = 1/2 this gives

Trf<A—gB>+Trf< <Trf(A)+Trf(B)—Tr

A—B
- PG F
) < . PG+ QF
for some doubly stochastic matrices P = [p;;] and @ = [g;5], in which

6= |7 (5IM =ty =) | ana P =1 (Gl6 -},

where \; and &; are eigenvalues of A — B and A 4+ B, respectively. Equivalently

Trf(A;B)+Trf(A;B)

< ﬂf(A);Trf(B) -y (pijf <;||>\i|—|ﬂj—Vj||> + qij f (; |§i—Mj_’/j|>>7

4,J=1

from which we conclude that if f is non-negative, then A — Tr f (A) is a superquadratic

function. This completes the proof. O

In 2003, Hansen & Pedersen [12] proved a trace version of then Jensen inequality. They

showed that if f:J C R — R is a continuous convex function, then

k
Tr [f <Z c;Az-ci>
=1

for every k-tuple of Hermitian matrices (A, -, Ax) in M, with spectra contained in J
and every k-tuple (Cy,--- ,C)) of matrices with Zle CiCi=1

In the rest of this section, using the concept of superquadratic functions and Theorem

k
<Tr ZCZ‘*f(Ai)Ci (2.9)
i=1

2.4, we present variants of (2.9) for superquadratic functions, which give in particular

some refinements of the Hansen—Pedersen trace inequality (2.9) in the case of non-negative

)e

(2.10)

functions. Beside our results concerning (2.9), we give a conjuncture as follows.

Conjuncture. If f:[0,00) — R is a continuous superquadratic function, then

k k k
=1 =1

i=1

Tr <Tr —Tr A; —Tr

k
S Crf(A)C
=1

for every k-tuple of positive matrices (A1, -, A) in M} and every k-tuple (Cy,-- -, Ck)
of matrices with Zle CiCi=1.
We now use Theorem 2.4 to present the first variant of (2.9) for superquadratic func-

tions.

Corollary 2.5. Assume that f : [0,00) — [0,00) is a continuous function. If f is su-

perquadratic, then

Trf (C*AC) + Trf (D*AD) < Tr [C*f(A)C + D*f(A)D] — Tr [f (| DAC|) + f (|C*AD*))]
(2.11)

for every positive matriz A € M} and every isometry C, where D = /1 — CC*.
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Proof. To prove (2.11), we apply Theorem 2.4 and then employ a similar argument as in
[11, Theorem 1.9]. Assume that A, B € Ml. If C € M,, and C*C = I, then the block

C Cc -D
matrices U = . ] and V = 0 . ] are unitary matrices in My, provided
that D = (I — CC*)'/2. With A = 0 we compute
vAv JQF VIAV _ (" AC) @ (DAD + CBC) (2.12)
and
*AU — V*A
orAv . VEAV _ \pac|a |c*AD). (2.13)
Now we use Theorem 2.4 to write
Trf (C*AC) + Trf (DAD + CBC™)
U*AU + V*AV
—Tvf ( : ) (by (2.12))
f(U*AU) + [ (V*AV * 17 U* A
< Tr ( ) 5 ( ) —Tr f vAu 5 VrAV (by Theorem 2.4)
U f(A)U—;V FAV _Trf< U AU;V Av )

=Tr[C"f(A)C + Df(A)D + Cf(B)C™] = Tr [f (IDAC]) + f (IC*ADI)],

where the last equality follows from (2.12) and (2.13). Putting B = 0 and noting that
£(0) <0, this gives the desired inequality. O

We remark that a non-negative superquadratic function f is convex and satisfies f(0) =
0. If C*C = I, then with D = /I — CC* we have D*D = I — CC* < I. It follows from
(2.9) that

Trf (C*AC) + Trf (D*AD) < Tr C*f(A)C + TrD* f(A)D.
Therefore Corollary 2.5 gives a refinement of (2.9), when f is a non-negative superquadratic

function.

To present the second variant of (2.9), we give the following version of (1.6) and (1.7).
The proof is similar to those of [15, Theorem 2.1] and [16, Theorem 2.3]. We include the

proof for the sake of completeness.

d0i:10.20944/preprints201912.0192.v2
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Lemma 2.6. Let f:[0,00) — R be a continuous superquadratic function and ® : M,, —

M, be a unital positive linear map. If T is an state on M, then

f(r(@(A))) < 7(2(f(A))) = 7(2(f(|A = 7(2(A))]))

for every positive matriz A.

Proof. If A is a positive matrix, then applying the functional calculus to (1.4) with t = A

and then applying the positive linear functional 7 gives the inequality
T(f(A) = f(s)+ Cs(r(A) —s) +7(f (A= s])
for every s > 0. Put s = 7(A) to obtain
T(f(A)) = f (7(A) +7(f (|A = 7(A)])). (2.14)

Now assume that ® : M, — M, is a unital positive liner map. If 7 is an state on M,,,
then the mapping ¢, : M, — C defined by ¢ (X) = 7(®(X)) is an state on M,,. Applying
(2.14) to 1, gives the desired inequality. O

The canonical trace is a positive linear functional on M,,. If 7(A) = 1/nTr (A), then

Lemma 2.6 concludes the following result.

Proposition 2.7. Let f : [0,00) — R be a continuous superquadratic function. If @ :

M,, — M, is a unital positive linear map, then
1 1 1
/ <Tr <I>(A)> <ln [cm F(4)) - @ (f <’A g @(A)Dﬂ
n n n
for every positive matriz A € M.

In the next result, we present another variant of the Hansen-Pedersen trace inequality

(2.9) for superquadratic functions. We need a well-known fact from matrix analysis.

Lemma 2.8. [6] If A € H,, is a Hermitian matriz, then

k k
D Aj(A) =maxy (Aujug), (k=10 ) (2.15)
j=1 j=1
where the maximum is taken over all choices of orthonormal set of vectors {uy,--- ,uy}.

Proposition 2.9. Let f : [0,00) — R be a continuous superquadratic function. If ® :

M,, = M,, is a unital positive linear map, then

n

Trf (2(4)) < Tr 2(f(4)) —min ¢ > (@ (f (|4~ (@(A)uy, uy)]) wj,u5) o,

J=1

for every positive matriz A € M

-, where the minimum is taken over all choices of or-

thonormal system of vectors {uy,--- ,uy}.

d0i:10.20944/preprints201912.0192.v2
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Proof. Assume that Aj,..., \, are eigenvalues of ®(A4) and {uy,--- ,u,} is orthonormal

system of corresponding eigenvectors of ®(A). Then

Tef (D(4) = Y (X(2(4)))

j=1

= F((®(A)uy,uy))
j=1

<Y @A) ;) — (@ (f (JA— (@(A)wy,u)))uy,u)]  (by (1.7))
j=1

<Tr &(f(A) = Y (@ (f (|4 = (@A), w))]) uj, w)

j=1
in which the last inequality follows from Lemma 2.8. This completes the proof. O

3. KLEIN INEQUALITY

In this section, we present a Klein trace inequality for superquadratic functions. In
particular, we show that if f is non-negative, a refinement of the Klein inequality (1.1)

holds. The next lemma can be found in [6].
Lemma 3.1. [6] If X, Y € M, are Hermitian matrices, then the inequality

TrXY < (AHX),M(Y)) (3.1)
holds.

The main result of this section is the following Klein inequality for superquadratic

functions.

Theorem 3.2 (Klein’s Inequality for superquadratic functions). Assume that f : [0,00) —
R is a differentiable superquadratic function with f(0) = f'(0) = 0. Then

Jj=1

Tr[f(A) = f(B) = (A= B)f'(B)] = min {Z [z —yl);zeo(A), ye U(B)} (3-2)

for all A,B € M} in which o(A) is the set of eigenvalues of A. In particular, if f is

non-negative, then
Tr[f(A) — f(B) — (A= B)f(B)] = Trf(|A - Bl) (3-3)
for all A,B € M}

Proof. First we prove (3.3). Suppose that A\; and p; (j = 1,---,n) are eigenvalues of

A and B, respectively, arranged in decreasing order. If f is non-negative, then f’ is a

d0i:10.20944/preprints201912.0192.v2
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monotone increasing function by Lemma 2.3 and so f'(u;) (j =1,--- ,n) are eigenvalues

of f(B) arranged in decreasing order. Hence

Tr(A - B)f'(B) = Tr Af/(B) — Tr Bf'(B)

=Tr Af'(B Z,U/J (1)

<> N () - Zujf’(uj) by (3.1)
j=1 j=1

=> (N = ) f ().
j=1

Moreover, it follows from proof of Theorem 2.4 that

n

Trf(|A—B|) < Z (1A = 50) (34)

Note that if a superquadratic function f is differentiable on (0,00) and f(0) = f/(0) =
then Lemma 2.3 implies that

F@&) = f(s) + f/(s)(t = ) + f(Jt — s])

for all s,¢ > 0. This gives

FOG) = fpg) + £ ()N = mg) + FOX =) (G=1--+,m)

and so

n

> F() + D F ) O — ) + Y PN = w0), (3.5)
=1 =1

j=1 J=1

which proves (3.3). In general case, when f is not assumed to be non-negative, we suppose

that \; (j = 1,---,n) are eigenvalues of A arranged in decreasing order and p; (j =

1,---,n) are eigenvalues of B, arranged in such a way that f'(u1) > -+ > f'(un). By

a same argument as in the first part of the proof, this guarantees the inequality Tr(A —
B)f'(B) <3701 (Nj — py) ' (15)- Tt follows from (3.5) that

n

Trf(A) > Trf(B) + Te(A— B)f'(B) + > f(IA — i),

j=1
from which we get (3.2). O

When the superquadratic function f is non-negative, then Theorem 3.2 gives a refine-

ment of the Klein’s inequality (1.1) for convex functions. Indeed, if f > 0, then

0 < Tr[f(A) - f(B) = (A= B)f(B) = f(IA - B|)] < Tr[f(A) — f(B) — (A= B)f'(B)].
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Example 3.3. The function f(t) = t? is superquadratic for every p > 2. Theorem 3.2

gives
0 < Tr[AP — B? — p(A— B)BP™! — |A — B|P] < Tr[A? — B? — p(A — B)BP™!]

for all A, B € M} and every p > 2.

As a simple example, assume that p = 3 and consider the positive matrices
2 1 2 0
A= and B = .
2 00

1
Tr[AP — BP — p(A— B)BP"'1 =20 and Tr|A — B[P ~ 14.15.

Then

On the other hand, if f > 0 is a convex function and —f is a superquadratic function,
then Theorem 3.2 provides an upper bound for the Klein’s Inequality. Applying Theorem

3.2 to the superquadratic function —f we obtain

Te(f(A) - f(B) — (A= B)f'(B)] <max{ > f(lz —y|);z € 9(A), y€a(B) 3 (3.6)

j=1
for all A, B € M, while the left side is positive due to the Klein’s Inequality for the

convex function f.

Example 3.4. If 1 < p < 2, then the function f(t) = ¥ is convex and —f(t) = —tP is
superquadratic. It follows from (3.6) that

n
Tr[AP — BP — p(A — B)BP7!] < max Z |l —y|P;x € 0(A), yeo(B) p,
j=1

for all A, B € Ml and every 1 < p < 2.
To see a simple example, let p = 3/2 and consider the two matrices in Example 3.3.
Then

Tr[AP — B — p(A — B)BP7!] ~3.36 and max Z |z —ylP;x € 0(A), y € o(B) p ~6.19.
j=1

If f is a continuous convex function, then f({Au,u)) < (f(A)u,u) for every unit vector

u € C", see [11]. If {uy,--- ,u,} is an orthonormal basis of C", then

D F((Augu)) <Y (F(A)uy, )
=1 =1

<Y N(f(A) by (2.15)
j=1

=Trf(A).
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In other words,
n
> F((Auj,uy)) < Trf(A). (3.7)
j=1
for every orthonormal basis {uy, - ,u,} of C". Inequality (3.7) is known as the Peierls

inequality. The equality holds in (3.7) when wu;’s are eigenvectors of A.
We present a variant of the Peierls inequality in the case when f is a superquadratic

function. It gives in particular a refinement of the Peierls inequality if f is non-negative.

Proposition 3.5. Assume that f is a superquadratic function. If A € ML\, then

> F((Ag ) + > (1A = (Auwj, ) g, uy) < Trf(A) (3.8)
j=1 j=1
for every orthonormal basis {uy,--- ,u,} of C". Equality holds if f is non-negative and

u;’s are eigenvectors of A.

Proof. Let f be a superquadratic function. We apply the Jensen’s operator inequality
(1.6) and then we use (2.15). This gives (3.8).

If f is non-negative, then

n
S (A, w)) < Z F((Auju) + Y (F(1A — (Auj ) )uy,u;) < Tef(A).
j=1 j=1 j=1
Hence, choosing u;’s to be the eigenvectors of A, gives the equality in (3.7) and so in
(3.8) O
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