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TRACE OPERATOR INEQUALITY FOR SUPERQUADRATIC FUNCTIONS

MOHAMMAD W. ALOMARI

ABSTRACT. In this work, some operator trace inequalities are proved. An extension of Klein’s inequality for
all Hermitian matrices is proved. A non-commutative version (or Hansen-Pedersen version) of the Jensen
trace inequality is provided as well. A generalization of the result for any positive Hilbert space operators
acts on a positive unital linear map is established.

1. INTRODUCTION

Let & () be the Banach algebra of all bounded linear operators defined on a complex Hilbert space
(A5 (-,-)) with the identity operator 1, in (). When 5 = C", we identify & () with the alge-
bra 9M,,», of n-by-n complex matrices. Then, M, is just the cone of n-by-n positive semidefinite matrices.

Let A € M, «n (C), the trace of a square matrix equals the sum of the eigenvalues counted with mul-
tiplicities. Moreover, the trace of a Hermitian matrix is real. If A is a linear operator represented by a

square matrix with real or complex entries and if A1, -, A, are the eigenvalues of A, then Tr (A) = > j Aj.
This follows from the fact that A is always similar to its Jordan form, an upper triangular matrix having
A1, , Ap on the main diagonal.

The inner product
(A,B) =Tr (A*B)

which is defined on the space of all complex (or real) m x n matrices, is called the Frobenius norm, which
satisfies submultiplicative property as matrix norm.

If A and B are real positive semi-definite matrices of the same size, using the Cauchy—Schwarz inequality,
we have

0 < Tr? (AB) < Tr (A%) Tr (B®) < Tv* (A) Tv* (B) .

The concept of trace of a matrix is generalized to the trace class of compact operators on Hilbert spaces,
and the analog of the Frobenius norm is called the Hilbert—Schmidt norm, which is can be defined as [19]:

(A,B) =Tr(A*B) =) _(Ae;, Be;)
over all orthonormal basis of 7, {e; : i € I}.
A Hilbert—Schmidt operator, is a bounded operator A on a Hilbert space 4 with finite Hilbert—Schmidt

norm
2 * 2
1Allgs = Tr(A"A) =) || A%,
iel
where || - || is the norm of J# and Tr is the trace of a nonnegative selfadjoint operator. This definition is

independent of the choice of the basis, and therefore

1Allgs = Y Iew Aes)” = | Al5 -

]
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A bounded linear operator A over a separable Hilbert space 2 is said to be in the trace class if for some
(and hence all) orthonormal bases {e;}; of .7, the sum of positive terms

Al = TrlA] =3 (Al ened = 3 (474 e,

? K2

is finite. In this case, the trace of A, which is given by the sum

Tr(A) =) (e, e;),
i
is absolutely convergent and is independent of the choice of the orthonormal basis. When 57 is finite-
dimensional, every operator is trace class and this definition of trace of A coincides with the definition of
the trace of a matrix.

A function f:J — R is called convex iff

(1.1) fla+(1=1)p) <tf(a)+ (1 —1)f(B),

for all points a, 8 € J and all t € [0,1]. If —f is convex then we say that f is concave. Moreover, if f is both
convex and concave, then f is said to be affine.

Geometrically, for two point (x, f (x)) and (y, f (y)) on the graph of f are on or below the chord joining
the endpoints for all z,y € I, x < y. In symbols, we write

r < LOTE oy p)
y—x
forany z <t <y and z,y € J.
Equivalently, given a function f : J — R, we say that f admits a support line at x € J if there exists a
A € R such that

(1.2) f@) = f(@)+A(t—x)
for all t € J.

The set of all such A is called the subdifferential of f at x, and it’s denoted by df. Indeed, the subdiffer-
ential gives us the slopes of the supporting lines for the graph of f. So that if f is convex then df(x) # 0 at
all interior points of its domain.

From this point of view Abramovich et al. [2] extend the above idea for what they called superquadratic
functions. Namely, a function f : [0,00) — R is called superquadratic provided that for all > 0 there exists
a constant C, € R such that

(1.3) f@&) 2 fa)+Co(t—x)+ f (|t — =)
for all ¢ > 0. We say that f is subquadratic if —f is superquadratic. Thus, for a superquadratic function
we require that f lie above its tangent line plus a translation of f itself. If f is differentiable and satisfies
f£(0) = f/(0) = 0, then one sees easily that the C,, appearing in the definition is necessarily f’(z), (see [1]).
Prima facie, superquadratic function looks to be stronger than convex function itself but if f takes negative
values then it may be considered as a weaker function. Therefore, if f is superquadratic and non-negative,
then f is convex and increasing [2] (see also [4]).
Moreover, the following result holds for superquadratic function.

Lemma 1. [2] Let f be superquadratic function. Then
(1) £(0)<0
(2) If f is differentiable and f(0) = f'(0) =0, then C, = f'(z) for all x > 0.
(8) If f(z) > 0 for all x > 0, then f is conver and f(0) = f'(0) = 0.

The next result gives a sufficient condition when convexity (concavity) implies super(sub)quaradicity.

Lemma 2. [2] If f' is convex (concave) and f(0) = f'(0) =0, then is super(sub)quadratic. The converse of
s not true.

Remark 1. In general, non-negative subquadratic functions does not imply concavity. In other words, there
exists a subquadratic function which is convex. For example, f(x) = aP, x > 0 and 1 < p < 2 is subquadratic
and convez.
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Among others, Abramovich et al. [2] proved that the inequality

(14) r(/ sodu> Jieen-1(jow - [ean)aue

holds for all probability measures p and all nonnegative, p-integrable functions ¢ if and only if f is su-
perquadratic. For more details, recent result and generalization the reader may refer to [4],[5] and [8].
Related operator inequalities can be found in [6], [7],[10] and [14]-[16].

2. JENSEN’S TRACE INEQUALITY

Let f : R — R be continuous, and let n be any integer. It’s well known that if ¢ — f(¢) is convex
(monotone increasing), then the trace function A — Tr (f (A)) is convex (monotone increasing) [13] (see also
[12]).

The next result shows that the trace function is real positive superquaratic function.

Lemma 3. Given f :[0,00) = R be a continuous function. If f is superquadratic, then the associated trace
function, A — Tr (f (A)) is superquadratic function, for all Hermitian n x n matrices. Moreover, we have

A+ B A-B T A T B
2 2 2
for all Hermitian n X n matrices.
Proof. Let A\i,--- , A, and pq,- -+ , up be the eigenvalues of A and B; respectively. Then, for 0 < a < 1, we
have

Tr(f (a0A+ (1 - ) B))
:Zf (o + (1= a) 1)

<Z [af (M) + (= a) f () —af (=) [Aj — p]) = (1= @) fafA; — p))]

:aZf(Aj)+(1fa)Zf(uj)faZf((1fa)|Aj*uj\)f(lfa)Zf(a A

=aTr(f(A)+ (1 -a)Tr(f(B) —aTe(f((1-a)[A=B[) - (1 —a)Tr(f (a|A - BJ)),

which proves that Tr (f (A)) is superquadratic function on the set of all positive definite Hermitian n x n

matrices. The inequality holds by setting o = . O

Remark 2. Another proof of Lemma 3 could be done using the Spectral Decomposition of A such that the
real function f is defined on the spectrum of A.

For all Hermitian n x n matrices A and B and all differentiable convex functions f : R — R with derivative
1, the well known Klein inequality reads that [18]:

(2.2) Tr[f (A) = f(B) - (A= B) f(B)] =0,
The equality holds if and only if A = B.

For the choice f(t) =tlogt (t > 0), we obtain [17]:

S(A,B)=TrA(logA—1logB) >Tr(A— B)

for B strictly positive and A nonnegative. The left-hand side is called relative entropy. If A and B are
density matrices, i.e., Tr (A) = Tr (B) = 1, then S (A4, B) > 0. This is a classical application of the Klein
inequality (cf. [18]).

Let R, F' be two Hermitian n x n matrices such that Tr (eR) = 1. Define g = Tr (FeR)7 then we obtain
the Peierl-Bogoliubov inequality [18]:

Tr (efef) > Tr (e HH) > Tr ().

The proof of this inequality follows from Klein inequality. Take f (t) =e®, A= R+ F and B = R+ gI.

Employing the concept of superquadricity, one may has the following refinement of Klein’s inequality
(2.2).
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Theorem 1. For all positive-definite Hermitian nxn matrices A and B, and all differentiable superquadratic
functions f: [0,00) — R, satisfy that f(0) = f'(0) = 0, the inequality

(2.3) Tr[f (A) — f(B) = (A—B) f'(B) = f(|A— B|)] = 0,
holds. The equality holds if and only if A = B.

Proof. Let f be superquadratic on [0,00). Since f is differentiable and satisfies f(0) = f’(0) = 0, then one
sees that the Cy in (1.3) is necessarily f'(x) ([1]). Therefore, we have

f@ = f @)+ f (x) (t—2)+ f (|t - =)

for all ¢,z > 0. Therefore, if A\; and p; (1 < j < n) are the eigenvalues of positive-definite Hermitian n x n
matrices A and B, respectively; thus we have

FOG) = F(g) + £ () N — i) + £ (NG — ) -

Taking the sum over j, we get
DL =D F )+ Y ) g =) + D (12— )
J J J J
which is equivalent to write

Tr(f(A)) = Tr(f (B) + Tr (A= B) f/(B)) + Tr (f (JA - B),
and this is exactly (2.2). O

For the choice of the superquadratic function f(t) = t?log(t) (¢t > 0), one could introduce a new refine-
ment of the relative entropy defined above; which it has important applications in statistical mechanics.
Similarly, one could refine the Peierl-Bogoliubov inequality using (2.3). For more details see [17], [18] and
the references therein. We left the details to the interested reader.

A generalization of Lemma 3 could be stated as follows:

n
Theorem 2. Let wy, > 0 (k= 1,---,n) be positive scalars such that Wy, = > wy. Let f be a real-valued
j=1
continuous function defined on an interval I and let m and n be natural numbers. If [ is superquadratic
function (in ordinary sense), then the inequality

(2.4) Tr <f <M1/ Zkak>>
" k=1
< WLZwkTr(f(Ak)) - WizwkTr (f (
" k=1 " k=1

holds for every n-tuple (A, , Ay) of positive m X m matrices with spectra contained in I.
In particular, we have

(25  m (f (;ZA,C» < IS T (A) - DT (f(
k=1 k=1

k=1

1 n
Ak — W;IUITI‘(A[)

n

)

3

1 n
Ap— = Tr(4)
=1

)

holds for every finite positive sequence of real numbers a, (k =1,--- ,n) and every positive scalars wy, such

that Wi, = >~ wy, (see [2]).
j=1

Proof. Since f is superquadratic then the inequality

(2.6) f (WI/ Zwkak> < Z %f(ak) - Z %f <
" k=1 k=1 "

ap —
l

n
wy
L
k=1 " =1 Wn
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Now, let )\gj ), e ,)\5,{) be the eigenvalues of A; (1 < j < n); respectively. Then, on utilizing the above

inequality we have

k=1 k=1 j=1
S (N0 ) Ntk (N30 S N )
S2gp I\ LN 2 | | gy N
k=1 Jj=1 k=1 j=1 =1 Jj=1
n wy n Wy n w,
=T —f(A —T — A —Tr A
1 « 1 « 1 «
:szkTr(f(Ak))*WZwkTr f Ak*WZWZTr(Al)
" k=1 " k=1 =1
which gives the required result. The particular case follows by setting wy = 1 for all k = 1,--- ,n so that
W, =n. O

n
Corollary 1. Let wy > 0 (k = 1,--- ,n) be positive scalars such that W,, = > wy. For every n-tuple
j=1

)

(A1,---, An) of positive m x m matrices with spectra contained in [0,00). Then the inequality

n p n n
1 1 1
(2.7) Tr (( E kak> > < — E ’LU/CTF(Az) - — E wy Tr (
Wy — W, = W, P

holds for all p > 2. In particular, we have

(2.8) Tr<<;k§n:—1Ak>p> ZTI" APy — %Z (

1 n
Ak — Wn;wlTr(Al)

p)
In 2003, Hansen & Pedersen [11], proved the following non-commutative trace version of Jensen’s inequality

Tr (f <Z C;Ak0k>> <Tr (Z Crf (Ag) Ck)
k=1 k=1

for every n-tuple (Ay,---,A,) of positive m x m matrices with spectra contained in I and every n-tuple
(Cy,-++,Cy) of m x m matrices with >_;'_, C;Cj, = 1, where f is assumed to convex on 1.

3

1 n
Ak — Wn;Tr(Al)

Using the concept of supequdratic functions, one could give the following refinement of Hansen—Pedersen
trace inequality.

Theorem 3. Let f be a real-valued continuous function defined on an interval I and let m and n be natural
numbers. If f is superquadratic function (in ordinary sense), then the inequality

(2.9 Tr (f (i C;;Aka> )
k=1

<Tr<ZCk f(AC ) ch Ap = Tr Zn:c;Ajcj Ch
j=1

k=1

holds for every n-tuple (A1, --- , Ay) of positive m x m matrices with spectra contained in I and every n-tuple
(C1,-+,Cp) of m x m matrices with y_,_, CxCr = 1. Conversely, if the inequality (2.9) is satisfied for
some n and m, where n > 1, then f is superquadratic function. If f is subquadratic, then the inequality (2.9)
is reversed.
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Proof. Our proof is motivated by [11]. Let Ay = Y. AEj()\) denote the spectral resolution of Ay for
sp(Ax)

1 < k < n. Thus, Ei ()\) is the spectral projection of Ay on the eigenspace corresponding to A; if A is an

eigenvalue for Ay, otherwise Ej (A\) = 0. For each unit vector £ in C™. Define the probability measure

n

e (5) = <Z CLEL (S) ckag> = 3 (B (S) Cut. Crt)
k=1

k=1

for any (Borel) set S in R. Note that if y = Y C;AxCy, then
k=1

<Z CZAka€,§>
=1

<z”: D AEL (M) G, Ck€>

k=1 sp(ax)

(W&, 6)

= [ e (3.

If a unit vector £ is an eigenvector for y, then the corresponding eigenvalue is (y¢, &), and ¢ is also an
eigenvector for f (y) with corresponding eigenvalue (f (y) &, &) = f ((y&€,€)). In this case we have

<f (Z c;sAkck> 5,5> = (f(1)&9)

- — ()
—f ( [ ru (A))
< [ro=s(|r= [oadue o)) | e (by 1.9
- <S§k)f<x) —f (‘)\—/)\d,ug (A)D Ei (\) Ckf,Ck€>

([Chf (Ak) Cr = Cp f (| Ak — (W€, ) Ckl €, 6)

M= 1= 1M —

<O,:f<Ak)ck—c,:f Ak—<zc;fAjcj§,§> Cr £,§>.
j=1

B
Il

1

Summing over an orthonormal basis of eigenvectors for y we get the desired result in (2.9). O

Corollary 2. Let f be a real-valued continuous function defined on an interval I and let m and n be natural
numbers. If f is superquadratic function (in the ordinary sense), then the inequality

(2.10) Tr(f(C*AC)) <Tr(C*f(A)C) —Tr (C*f (JA—Tr (C*AC)|) C),

holds for every positive m X m matrix A with spectrum contained in I and every m x m matriz C' with
C*C = 1. If f is subquadratic, then the inequality (2.10) is reversed. Furthermore, we have

Tr ((C*AC)?) < Tr (C*APC) — Tr (C* |A — Tr (C*AC)|P O)
for every p > 2, and

Tr ((C*AC)?) > Tr (C*APC) — Tr (C* |A — Tr (C*AC)|P C)
for every p € (0,2].

Proof. The result follows by setting n = 1 in Theorem 3. The second inequality follows by applying the
superquadratic function f(t) = t?, p > 2. Similarly, the last inequality follows by applying the subquardtic
function f(t) =t*, p € (0,2]. 0
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The inequality (2.10) could be extended for general positive Hilbert space operators mapped under positive
unital linear map, as follows:

Theorem 4. Let f be a real-valued continuous function defined on [0,00). Let A € B () be a positive
operator and ® : B (H) — B () be a positive unital linear map. If [ is superquadratic, then we have

(2.11) Tr (@ (f (A))) = Tr (f (@ (A))) + Tr (@ (f (|A - Tr (2 (A)])))-
In particular case, for the choice ® (A) = C*AC, where C € B (H) such that C*C = 1z, we get the
inequality (2.10).

Proof. Let A € # () be positive. Assume that A is the C*-subalgebra of B () generated by A and 1.
Without loss of generality, we may assume that ® is defined on A. Since every unital positive linear map on
a commutative C*-algebra is completely positive. It follows that ® is completely positive. So there exists
(by Stinespring’s theorem [20]), some isometry V : 5 — J¢’; and a unital *-homomorphism p from A into
the C*-algebra # () such that ®(A) = V*p(A)V. Clearly, f(p(A)) = p(f(A)), for all continuous function

1.

Now, let {e; : i € I'} be a set of an orthonormal basis of a Hilbert space .. On utilizing the continuous
functional calculus for the operator A > 0 Thus,

Tr(f(®(A)) = Tr (f(VIp(A)V))
STV (p(ANV) =Tr (VEf(lp(A=VTp(AV))V)  (by (2.10))
=Te(Vip(f(A)V) =T (Vip(f(JA=-2(A)])V)
=Tr (@ (f(4) = Tr (@ (f(|A—=2(A))))-

which proves the required inequality. O

Corollary 3. Let A € B () be a positive operator and ® : B (H) — B (H) be a positive unital linear
map. Then we have

Tr (@ (A7) > Tr (27 (A)) + Tr (2 (JA = Tr (2 (4))]")).
for all p > 2. The inequality is reversed for p € (0,2].
One can easily generalized (2.11) by using Theorem 4, as follows:

Corollary 4. Let f be a real-valued continuous function defined on [0,00). Let A; € B(H) (j=1,---,n)
be positive operators. Let ®; : B(H) — B(H) (j = 1,---,n) be a positive linear map, such that

> @ (1) = 1. If f is superquadratic function, then

=1
SN, (F A | =Tl F{ A | |+ e (£ ]4 - [ D4y
j=1 j=1 j=1 i=1
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