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Abstract: Osteosarcoma is the most common subtype of primary bone cancers, affecting mostly 

adolescents. In recent years, several studies have focused on elucidating the molecular mechanisms 

of this sarcoma; however, its molecular etiology has still not been determined with precision. 

Therefore, we applied a consensus strategy with the use of several bioinformatics tools to prioritize 

genes involved in its pathogenesis. Subsequently, we assessed the physical interactions of the 

previously selected genes and applied a communality analysis to this protein-protein interaction 

network. The consensus strategy prioritized a total list of 553 genes. Our enrichment analysis 

validates several studies that describe the signaling pathways PI3K/AKT and MAPK/ERK as 

pathogenic. The gene ontology described TP53 as a principal signal transducer that chiefly mediates 

processes associated with cell cycle and DNA damage response It is interesting to note that the 

communality analysis clusters several members involved in metastasis events such as MMP2 and 

MMP9 and genes associated with DNA repair complexes, like ATM, ATR, CHEK1, and RAD51. In 

this study, we could identify well-known pathogenic genes for osteosarcoma and prioritized genes 

that need to be further explored. 

Keywords: gene prioritization; osteosarcoma; communality analysis; pathogenesis; early 

recognition 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2019                   

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 1053; doi:10.3390/ijms21031053

mailto:raul.cabrera@udla.edu.ec
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms21031053


 2 of 20 

 

1. Introduction 

In recent years, high-throughput technologies have focused on studying the molecular etiology 

of osteosarcoma (OS) worldwide [1-5]. Valuable information has been gained about whole genetic 

groups that describe cellular and molecular changes in OS [6, 7]. Despite this, there has not been an 

agreement about specific driver genes for OS etiology, nor have new biomarkers been proposed to 

be used as therapeutic targets.  

OS tumors are characterized by being heterogeneous and showing high rates of somatic 

structural variations. Their heterogeneity is closely related to their high rates of mutations, which are 

comparable to breast tumors and leukemia [8-10]. Moreover, cytogenetic abnormalities in OS tumors, 

including chromosomal segment loss, rearrangement, and amplification with karyotypic complexity 

in the absence of recurrent clonal translocations have been described [11, 12]. This acute chromosomal 

instability and widespread deregulation in cell signaling pathways could be the main limitations for 

the description of specific gene drivers associated with OS. It is therefore necessary to develop an 

integrative study focused on the biology of systems described for this tumor. 

The use of prioritization strategies, through computational tools that use multiple 

heterogeneous data sources, allows for the improvement in gene detection related to complex traits 

or specific clinical phenotypes [13, 14]. In addition, applying the functional enrichment analysis has 

proven to be a very efficient approach in gene prioritization, because it describes important metabolic 

interactions which aid in explaining the pathogenesis of a given disease [15, 16]. Thus, we used 

several bioinformatics tools in order to prioritize genes that describe oncological signaling pathways 

for OS and also applied a consensus strategy with the aim to specify and postulate new pathogenic 

mechanisms that explain the onset and development of this sarcoma. 

2. Results 

2.1. Consensus prioritization 

We chose nine bioinformatics methods that fulfilled two main criteria: full availability in web 

service platform and only requiring the disease name (or OMIN code, 259500 for OS) for gene 

prioritization. In total, the combination of all methodologies resulted in 15,809 genes. 

The validation strategy for gene prioritization was performed from the identification of specific 

genes involved in the OS pathogenesis. For this, we took into consideration pathogenic OS genes 

defined by a literature review of two types of studies: meta-analysis, based on publications and case 

reports for OS patients (named as G1 genes), and gene description in animal models and in OS cell 

lines (named as G2 genes). Thereby, we identified 75 pathogenic OS genes from the available 

literature, of which 47 were classified as G1, and 41 as G2 (Supplementary Table S1). 

The number of pathogenic genes detected by the nine prioritization tools was lower than our 

consensus strategy (Table 1). By comparing the number of pathogenic genes detected by all 

methodologies, our consensus list identifies the highest percentage of those defined as G1 and G2. 

Specifically, in the top 1% of our consensus method (the first 158 positions), 60% of pathogenic genes 

(45 of 75) were detected, followed by Genie (35.29%) and Phenolizer (30.14%) methodologies. 

Furthermore, in the top 20%, the consensus method remains the best at detecting pathogenic genes 

(88%), followed by Genie, Phenolizer and SNPs3D with percentages of 80.88%, 72.60% and 71.88%, 

respectively. 
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Table 1. Identification (in %) of pathogenic genes in each OS approach. 

Methods 
1%   5% 

  
10%   20% 

G1 G2 G1-2   G1 G2 G1-2 G1 G2 G1-2   G1 G2 G1-2 

BioGraph 0 0 0  0 18.2 12.5  40 45.5 37.5  60 54.6 50 

CIPHER 7.7 6.7 8.7  7.7 6.7 8.7  23.1 20 17.4  30.8 26.7 26.1 

DisGeNET 9.5 16.7 10.8  21.4 30.6 21.5  42.9 58.3 46.2  57.1 77.8 64.6 

Genie 37.8 36.1 35.3  62.2 61.1 57.4  75.6 69.4 70.6  86.7 75 80.9 

GLAD4U 0 0 3.6  19.1 33.3 25  42.9 50 46.4  57.1 66.7 64.3 

GUILDify 10.9 7.5 8.2  13 7.5 9.6  21.7 17.5 19.2  34.8 25 30.1 

Phenolizer 33.3 36.6 30.1  57.8 61 53.4  62.2 61 56.2  77.8 75.6 72.6 

PolySearch 0 0 0  11.1 14.3 7.1  11.1 28.6 14.3  11.1 28.6 14.3 

SNPs3D 10 10.5 6.3  10 42.1 25  40 57.9 50  75 73.7 71.9 

Consensus 66 61 60   87.2 80.5 81.3   89.4 82.9 84   93.6 85.4 88 

 

On the other hand, the mean ranking of the pathogenic genes detected in the top 1% of the list 

is 49.3 (Table 2), which means that 45 G1-G2 genes are located in the top 50 positions. This mean is 

higher than that calculated for the other prioritization methodologies given that the number of 

pathogenic genes detected is greater. However, it is interesting to note that the number of genes and 

the ranking average are similar, which indicates that the majority of these pathogenic genes are found 

in the top positions. 

Table 2. Rank of pathogenic genes in each OS approach. 

Methods 
1%   5%   10%   20% 

G1 G2 G1-2   G1 G2 G1-2   G1 G2 G1-2   G1 G2 G1-2 

BioGraph - - -  - 3.5 3.5  7 6 6.3  9.5 7.3 8 

CIPHER 2 7 4.5  2 7 4.5  41.3 43 32.8  58 59 57.7 

DisGeNET 5.3 4.2 4.7  12.1 10 11.1  23.9 23.6 25.2  31.6 31.4 33.7 

Genie 17 14.6 16.5  44 41.6 42.6  88.2 75 91.3  148.5 113.2 151.9 

GLAD4U - 1 1  4 4.2 4  8.6 6.6 8.2  13.3 10.2 13 

GUILDify 15.8 8.3 16.7  42.6 8.3 43.3  366.5 536.4 491.2  873.8 973.9 972.1 

Phenolizer 44.3 28 36.4  150.4 120.9 148  200.9 120.9 182.5  477.5 429.2 513.2 

PolySearch - - -  2 2 2  2 2.5 2.5  2 2.5 2.5 

SNPs3D 1.5 1.5 1.5  1.5 6.4 4  17.8 10.9 14.4  27.1 16.2 21.6 

Consensus 54.5 41.6 49.3   126.1 108.2 128   152.9 131.2 157.7   241.4 174.7 239.3 

 

This initial prioritization generated an initial amount of 15,809 genes, so a rational cut-off was 

applied. The maximum variation between Ii and the gene ranking was 0.7609, corresponding with a 

ranking value of 553. Therefore, this cut-off reduces a list of 15,809 members to a consensus of 553 

genes (Supplementary Table S2), which corresponds to 3.5% of the total. The rate of pathogenic 

detection of the consensus was 87.2 % for G1 (41 out of 47), 80.5 % for G2 (33 out of 41) and 81.3 % for 

G1 and G2 (61 out of 75), higher than the other methods in the top 5% onwards. 

2.2. Enrichment analysis of OS related genes and the protein-protein interaction network 

A gene ontology (GO) analysis and pathway enrichment analysis were applied in order to 

describe biological functions from the consensus genes, by using David Bioinformatics Resource [17, 

18]. The GO analysis of these 553 consensus genes resulted in 263 terms related to biological processes 

(Supplementary Table S3), adjusted to an FDR p-value < 0.01. Using Revigo [19] and only considering 

terms with a frequency lower than 0.01%, we narrowed our list down to 92 (Supplementary Table 

S4). Some of these specific biological processes are listed in Table 3.  
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Table 3. Some biological processes by enrichment analysis in OS consensus genes. 

BP ID Name Frequency 
Log10 p-

value 

GO:1901796 
regulation of signal transduction by p53 class 

mediator 
0.01% -22.8416 

GO:0006977 
DNA damage response, signal transduction by p53 

class mediator resulting in cell cycle arrest 
0.00% -20.1656 

GO:0048661 
positive regulation of smooth muscle cell 

proliferation 
0.01% -16.5544 

GO:0048146 positive regulation of fibroblast proliferation 0.01% -16.5031 

GO:0045740 positive regulation of DNA replication 0.01% -15.1965 

GO:1902895 
positive regulation of pri-miRNA transcription from 

RNA polymerase II promoter 
0.00% -14.983 

GO:0043525 positive regulation of neuron apoptotic process 0.01% -14.9393 

GO:0071260 cellular response to mechanical stimulus 0.01% -13.3507 

GO:0032355 response to estradiol 0.01% -11.7258 

GO:0045669 positive regulation of osteoblast differentiation 0.01% -11.5058 

GO:0060395 SMAD protein signal transduction 0.01% -11.1904 

GO:0042771 
intrinsic apoptotic signaling pathway in response to 

DNA damage by p53 class mediator 
0.01% -10.8356 

GO:0097192 
extrinsic apoptotic signaling pathway in absence of 

ligand 
0.01% -10.0846 

GO:0035019 somatic stem cell population maintenance 0.01% -9.6162 

GO:0010332 response to gamma radiation 0.01% -9.4056 

GO:0002053 
positive regulation of mesenchymal cell 

proliferation 
0.01% -9.2628 

GO:0002076 osteoblast development 0.00% -9.1046 

GO:0048538 thymus development 0.01% -8.2907 

GO:0048010 
vascular endothelial growth factor receptor 

signaling pathway 
0.01% -7.6946 

GO:0010718 
positive regulation of epithelial to mesenchymal 

transition 
0.01% -7.6126 

 

Likewise, the enriched metabolic pathways considered KEGG and Reactome databases are 

shown in Supplementary Tables S5 and S6. A partial list of the prioritized metabolic pathways with 

an FDR p < 0.01 are presented in Table 4. 
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Table 4. Pathways enrichment analysis using KEGG and Reactome databases in OS consensus genes. 

Pathway ID Pathway name % Genes FDR 

KEGG database 

hsa05200 Pathways in cancer 26.22 1.33E-80 

hsa04110 Cell cycle 11.93 3.96E-45 

hsa04068 FoxO signaling pathway 10.85 4.50E-35 

hsa04151 PI3K-Akt signaling pathway 15.55 1.98E-29 

hsa05206 MicroRNAs in cancer 14.1 3.07E-29 

hsa04115 p53 signaling pathway 7.23 2.38E-28 

hsa05205 Proteoglycans in cancer 11.57 1.63E-27 

hsa04210 Apoptosis 6.69 6.13E-26 

hsa04668 TNF signaling pathway 8.32 2.89E-25 

hsa04510 Focal adhesion 10.85 4.08E-23 

hsa04380 Osteoclast differentiation 8.68 1.21E-22 

hsa04010 MAPK signaling pathway 11.75 8.86E-22 

hsa04722 Neurotrophin signaling pathway 7.78 1.68E-19 

hsa04012 ErbB signaling pathway 6.69 2.67E-19 

hsa04917 Prolactin signaling pathway 5.79 3.57E-17 

hsa04914 Progesterone-mediated oocyte maturation 6.33 3.70E-17 

hsa04014 Ras signaling pathway 9.76 3.87E-16 

hsa04550 
Signaling pathways regulating pluripotency of 

stem cells 
7.41 7.26E-15 

hsa04919 Thyroid hormone signaling pathway 6.69 9.79E-15 

hsa04350 TGF-beta signaling pathway 5.79 1.28E-14 

REACTOME database  

R-HSA-69231 Cyclin D associated events in G1 4.7 5.00E-21 

R-HSA-1538133 G0 and Early G1 3.44 1.13E-15 

R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 2.35 1.10E-10 

R-HSA-69273 
Cyclin A/B1 associated events during G2/M 

transition 
2.71 1.42E-10 

R-HSA-2173796 
SMAD2/SMAD3:SMAD4 heterotrimer regulates 

transcription 
3.07 4.22E-10 

R-HSA-1257604 PIP3 activates AKT signaling 4.34 5.16E-09 

R-HSA-5674400 Constitutive Signaling by AKT1 E17K in cancer 2.53 4.01E-08 

R-HSA-2219530 
Constitutive Signaling by Aberrant PI3K in 

cancer 
3.62 6.77E-08 

R-HSA-69202 Cyclin E associated events during G1/S transition  1.99 9.93E-08 

R-HSA-1912408 Pre-NOTCH Transcription and Translation 2.53 4.36E-07 

 

The enriched biological processes of the 553 genes describe terms associated with positive DNA 

replication, cellular proliferation and apoptotic events, in which TP53 is one of the most relevant 

signal transducers. In addition, more specific sarcoma–related terms are listed, such as smooth 

muscle cell and fibroblast proliferation, osteoblast differentiation and development, and positive 

regulation of mesenchymal cell proliferation. 

The pathway enrichment analysis showed pathways in cancer and the cell cycle in general. The 

enrichment from the KEGG database showed widely described signaling pathways in cancer in the 
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top positions, for instance FOXO, PI3K/AKT, TP53, MAPK, Neurotrophin and cell cycle. Moreover, 

the REACTOME database lists events mainly related to cell cycle regulation such as Cyclin D-

associated events in G1, G0 and Early G1, Cyclin A: Cdk2-associated events at S phase entry and 

Cyclin A/B1 associated events during G2/M transition. 

2.3. Protein-protein interaction analysis 

We evaluated the physical interactions of the members of the consensus list by including the 

protein interactions described for Homo sapiens from the STRING database [20]. The protein-protein 

interaction (PPI) generated an osteosarcoma-PPI network (OS-PPI) of 505 nodes from the 553 

consensus genes (91.3 %). The node degrees of the 58 pathogenic genes (named as G1 and G2) 

detected in this network were higher than the non-pathogenic ones (39.05 and 19.25 respectively), 

showing statistical differences when applying the non-parametric Mann-Whitney U Test (p < 0.001). 

Therefore, a higher node degree given by this interaction signifies a greater probability of association 

to pathogenesis within the prioritized genes. 

2.4. Communality analysis and pathway enrichment 

The communality analysis was carried out using the clique percolation method. The clustering 

data through communality analysis was obtained with Cfinder [21], which defined “k-cliques” based 

on the interaction degree of each node from the OS-PPI network and the extent to which different 

communities overlapped in said network. The clique percolation method allowed us to detect 14 k-

cliques and 86 possible communities with a composition of between 17 and 465 genes. The early 

minimum in Sk variation with respect to k-parameters (Figure 1) revealed that k=8 and k=9 have 

similar gene distributions within communities (Sk index 0.719 and 0.609, respectively). Both k-cliques 

are suitable for further analysis, however we chose k=9 because it had a better Mean_rank (218.89) 

than k=8 (243.95). Moreover, k=9 is composed of 13 communities and 245 genes (44.3% of the 553 OS 

genes). 

 

Figure 1. Sk  scoring with respect to each k-clique cutoff value. Communality analysis by clique 

percolation method. Values of Sk (black points) and Mean Rankings (green points) with respect to 

each k-clique cutoff value. 

In order to weigh the metabolic pathways obtained in the enrichment analysis, we ranked these 

terms within each k-clique by means of a pathway enrichment analysis. The pathway enrichment 

analysis of genes in the 13 communities for k=9 (Supplementary Table S7) is consistent with the 

results obtained in the enrichment analysis (Table 4). As shown in Table 5, P53, Cell cycle and FOXO 

continue to hold the top positions and ErbB, TGFB and VEGF improved their statistical significance 

within this k-clique. 
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Table 5. Pathways enrichment analysis of k=9 communities and their associated weights. 

 

Pathway name PathScorem Community 

p53 signaling pathway 0.603 2, 4, 9, 10 

Cell cycle 0.595 2, 4, 7, 8, 9, 13 

FoxO signaling pathway 0.578 2, 7, 8, 10, 11, 12, 13 

Prolactin signaling pathway 0.574 2, 8, 10, 12 

ErbB signaling pathway 0.565 2, 10, 11, 12, 13 

Central carbon metabolism in cancer 0.564 2, 10, 11, 12, 13 

TGF-beta signaling pathway 0.553 2, 6, 7, 8 

Pathways in cancer 0.546 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

VEGF signaling pathway 0.536 2, 10, 11, 12 

Adherens junction 0.534 2, 3, 6, 7, 8, 10, 11, 12 

Proteoglycans in cancer 0.534 2, 10, 11, 12, 13 

HIF-1 signaling pathway 0.532 2, 5, 6, 7, 8, 10, 11, 12, 13 

Choline metabolism in cancer 0.526 2, 10, 11, 12 

Thyroid hormone signaling pathway 0.524 1, 2, 3, 5, 6, 7, 10, 13 

TNF signaling pathway 0.523 2, 5, 8, 13 

NOD-like receptor signaling pathway 0.522 2, 8, 13 

Osteoclast differentiation 0.52 2, 8, 11, 12, 13 

Focal adhesion 0.518 2, 10, 11, 12, 13 

Progesterone-mediated oocyte 

maturation 
0.518 2 

Apoptosis 0.515 2, 4, 5, 8, 9, 10, 13 

Neurotrophin signaling pathway 0.515 2, 5, 10, 11, 12, 13 

Fc epsilon RI signaling pathway 0.514 2, 10, 11, 12 

MicroRNAs in cancer 0.508 2, 4, 8, 9, 10, 12, 13 

mTOR signaling pathway 0.504 2, 10 

B cell receptor signaling pathway 0.502 2, 5, 8, 10, 11, 12, 13 

 

To be more selective about which communities would be most relevant within these 13, we used 

a clustering analysis. The K-means clustering analysis revealed 4 main community groups (Figure 2). 

Cluster 1 (communities 4, 9 and 13) had the highest average values of ConsenScorei, Degreei  and 

PathScorem , followed by cluster 2 (communities 5, 8 and 10) with regards to ConsenScorei  and  

Degree
i
. Therefore, these 6 communities were chosen for further analysis. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2019                   

Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 1053; doi:10.3390/ijms21031053

https://doi.org/10.3390/ijms21031053


 8 of 20 

 

 

Figure 2. Clustering analysis for the k=9 communities. Blue circles represent cluster 1, purple circles 

cluster 2, yellow circles cluster 3 and purple circles represent cluster 3 

Communities 4, 5, 8, 9, 10 and 13 have groups from 9 to 13 genes and in total contain 47 

prioritized genes. The genetic distribution among the communities is almost specific and only 

communities 4 and 9 present a high similarity (77%) regarding gene composition (Table 6). Only TP53 

is shared in 5 of the 6 communities, which denotes its centrality in this prioritization. 

Table 6. Gene distribution in the most relevant communities in k=9-clique 

Comms Genes 
Mean 

ConsenScorei 

Mean 

Degree 

Mean 

PathScorem 

Pathogenic 

genes/ genes 

9 

TP53, ATM, BRCA1, CHEK1, 

CDK2, ATR, BRCA2, RAD51, 

BLM 

0.802 57.78 0.656 0.333 

13 

TP53, JUN, VEGFA, MYC, 

MMP2, BCL2, MMP9, NFKB1, 

IL6, FGF2, AKT1, TGFB1, CDH1 

0.776 81.85 0.598 0.692 

4 

TP53, CDK4, ATM, BRCA1, 

CDK2, BRCA2, RAD51, MLH1, 

BLM 

0.751 59.33 0.656 0.444 

5 

TP53, JUN, ATF2, CREBBP, 

SMARCB1, HMGB1, KAT2B, 

RELA, ARID1A, NR3C1, 

SMARCE1 

0.68 64 0.594 0.182 

8 

NFKB1, SP1, CREBBP, CEBPB, 

CEBPD, STAT3, KLF4, EP300, 

RELA, PPARG, TGFB1 

0.675 62 0.612 0.273 

10 

TP53, VEGFA, EGFR, PTK2, 

ERBB2, SHC1, PTEN, PIK3CA, 

HRAS, KRAS 

0.673 67.4 0.599 
0.6 

 

 

Genes in communities 8, 10 and 13 are highly relevant for the signaling pathways PI3K/AKT and 

ERBB/MAPK (PIK3CA, PTK2, HRAS, KRAS, SCH1, AKT). In community 13, the matrix 

metalloproteases MMP2 and MMP2 are prioritized, which together with FGF2, reflects processes 

related to cell migration. Since AKT is a central protein in cellular signaling, several downstream 
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effectors are described in communities 5 and 8. The genes ARID1A, SMARCE1 and SMARCB1, 

specific to community 5, are mainly associated with chromatin remodeling.  

Given the close metabolic relationship between communities 5, 8, 10 and 13, it is not surprising 

that JUN, NFKB1, VEGFA, TGFB1, CREBBP and RELA are shared among them. However, 

communities 4 and 9 are isolated from the rest of clusters and only have TP53 in common. The genetic 

composition of both communities is specific with one biological process: DNA repair. ATM, CHEK1, 

ATR, BRCA1, BRCA2, RAD51, BLM and MLH1 belong to DNA repair complexes associated with 

cellular response to DNA damage stimuli, DNA repair and double-strand break repair via 

homologous recombination. Altogether, the genetic distribution of these communities is in 

accordance with the GO analysis obtained from our consensus list (Table 3).  

The 47 genes grouped into the 6 communities defined above represent the most important 

prioritized members within this study, so we developed a sub-network based on these results (OS-

comms network). The centrality index calculated in this sub-network was significantly correlated 

with the node degree (Degree
i
) of the same genes in the original OS-PPI network (r = 0.317, p = 0.03). 

2.5. Gene validation 

As a validation strategy, we compare our consensus list with the DRIVE project (deep RNAi 

interrogation of visibility effects in cancer) [22] and with cancer-focused protein-protein interaction 

network (OncoPPI) [23] data. The data generated by the DRIVE project described 83.5% of our 553 

consensus genes (Supplementary Table S8). Of these 461 genes, 20 were determined as essential, 70 

as active and 371 as inert. On the other hand, the OncoPPI network recognized 92 of our prioritized 

genes (16.6%) and its centrality index showed a significant correlation with the same gene in our OS-

PPI network (r = 0.445, p < 0.001) (Supplementary Table S9).  

As shown in Figure 3a, both DRIVE and OncoPPI genes are present in the OS-comms network 

(Figure 3b). From the DRIVE analysis, BRCA1 and RAD51 were identified as essential and ATR, 

CDK2, CDK4, CHEK1, SMARCB1, SMARCE1, RELA, AKT1, MYC, HRAS as active. On the other 

hand, 17 OncoPPI genes (36.18% of 47 in OS-comms network) were present in this network. Upon 

correlating the centrality indices between the OncoPPI network and the OS-comms network, we 

obtained a statistical correlation (r = 0.512, p = 0.036). 
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Figure 3. Gene validation and network analysis of the k=9-clique. (a) Comparison of prioritized genes 

from STRING (OS-PPI), DRIVE Project, OncoPPi network and Cfinder analysis; (b) Network analysis 

from communities 9, 13, 4, 5 8 and 10 (OS-comms network). Red and green painted nodes are defined 

as essential and active genes, respectively, based on the results from the DRIVE project. Nodes 

enclosed in rectangles belong to the analyzed OncoPPI network. 
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3. Discussion 

As shown in Table 1, the detection rate of our consensus prioritization strategy was higher than 

all the bioinformatics tools employed in this analysis. Moreover, the mean rank of the pathogenic 

genes detected in the top 1% of the list was 49.3. Table 2 indicates that, in average, the 45 G1-G2 genes 

were located in the top 50 positions. These results confirm that this methodology does indeed 

improve the detection and prioritization of pathogenic genes as had been previously described in 

other pathologies [24, 25]. 

As a first approach, the prioritization strategy resulted in a consensus list of 553 genes and the 

10 top ranked genes were TP53, RB1, CHEK2, RUNX2, E2F1, MDM2, CDKN1A, JUN, CCNA2 and 

CDKN2A. TP53, RB1, CHEK2 and MDM2 were ranked in 1st, 2nd, 3rd and 6th positions, respectively 

and also the arrangement of the pathogenic genes in this list show a distribution in the top positions. 

So far, the gene ranking along this prioritization reflects a proper gene weighting based mainly on 

this consensus strategy. These genes had been previously described in OS pathogenesis. Early studies 

focused on the molecular biology of OS were carried out in individuals with familial syndromes, 

which predisposed them to this tumor. Germline inactivation of RB1 and TP53 were initially 

described in patients with hereditary retinoblastoma and Li-Fraumeni syndrome, respectively [26, 

27], and subsequently in sporadic sarcomas [28, 29]. Given that these two suppressors are central 

proteins in controlling the cell cycle, later studies briefly described many others that interacted with 

them. Mouse double minute 2 (MDM2), for example, is a protein that binds to RB1 and inactivates 

TP53 [30]. Its amplification is an event that occurs in primary OS (3-25%) and it is overexpressed in 

metastases and recurrences [31, 32]. CHEK2 is another protein that is part of a DNA damage check-

point, works as a stabilizer of TP53 and shows a 7% frequency of mutations in OS patients [33, 34].  

The biological processes derived from the GO analysis of the 553 genes described TP53 as a 

principal signal transducer that mediates processes associated with cell cycle, DNA damage 

response, DNA replication and intrinsic/extrinsic apoptotic signaling regulation. Additionally, more 

specific biological processes were described, for instance fibroblast proliferation, osteoblast 

differentiation and development, and mesenchymal cell proliferation and transition. In accordance 

with our results, previous studies have identified similar biological processes related to OS, where 

the following are considered OS-associated terms: cell cycle regulation (mainly mediated by RB1 and 

TP53), osteoblast differentiation (mediated by RUNX2), DNA damage, stress response, epigenetic 

processes, mitosis, cell motility functions and members involved in OS cell proliferation (weighting 

NFKB signaling, NFKBIE and RELA members) [3, 35-37]. Taken together, these processes suggest 

that the consensus list evidences genes associated with osteogenesis, cell differentiation and 

transition to bone cell types. In addition, the terms derived from the pathway enrichment analysis 

(Table 4) are in accordance with these biological processes.  

The information used by STRING allowed us to define the degree of physical interaction of the 

consensus list members and calculate their centrality index. This centrality index was used as a 

variable to evidence the contribution rate of the pathogenic genes to a common biological purpose. 

Thus, the greater the centrality for a node within the OS-PPI network, the greater the probability of 

its contributing to pathogenesis. This association was validated by analyzing the genes defined as 

pathogenic (G1-G2), in which significant differences were observed in comparison with the rest of 

the consensus genes (p <0.0001). The centrality index calculated from the 503 nodes included in the 

protein-protein interaction network determined TP53 as the most central node, followed by AKT1, 

MYC, JUN, EP300, CREBBP, CCND1, CDKN1A, STAT3 and RB1. Furthermore, this degree allowed 

for the defining of more specific clusters and prioritizing gene communities associated with OS 

pathogenesis. Thus, k-9 was determined as the clique with the best gene distribution among all the 

resulting communities (𝑆𝑘 index 0.719) and communities 4, 5, 8, 9, 10 and 13 as the most important 

groups of genes within our study. 

The pathway enrichment analysis for the k=9-clique results, almost in its entirety, in the same 

terms obtained from the initial consensus list. This confirms that the gene filtered through 

communality analysis comprised almost the same biological processes. Considering the PathScorem 

(Table 5), the P53 signaling pathway and cell cycle are in the top positions. FOXO also increases its 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2019                   

Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 1053; doi:10.3390/ijms21031053

https://doi.org/10.3390/ijms21031053


 12 of 20 

 

significance in this enrichment analysis. In different cancer types, PI3K/AKT, Ras-MEK-ERK, IKK 

and AMPK are the most important signaling pathways interacting with FOXO [38]. Gain of function 

of P13K and RAS, or PTEN disruption, are oncogenic events which promote a loss of function in the 

Forkhead Box transcription factors (FOXO) [39]. Interestingly, loss of its expression promotes 

impaired osteogenic differentiation, suggesting that FOXO1 is involved in osteoblastogenesis and 

osteoclastogenesis [40-42]. Moreover, FOXO members have an important role in cell fate decision, via 

triggering the expression of death receptor ligands like FASLG, TNF apoptosis ligand and some BCL-

2 family members (BCL2L1, BNIP3, BCL2L11) [43-46]. FOXO expression in OS tumors is low or even 

lacking altogether, leading to tumor progression and cell cycle arrest [47]. The fact that FOXO 

enhances its weight within our enrichment analysis demonstrates its importance as a signaling 

pathway in the pathogenesis of OS. Furthermore, the close relationship between the FOXO signaling 

pathway and cell cycle, events of osteoclast differentiation and apoptosis via TNF signaling pathway 

is evidenced in the pathway enrichment analysis applied to the consensus list and to the k=9 clique. 

Our consensus strategy seeks to specify a group of genes that describe the molecular etiology of 

OS. In this sense, the use of all the strategies previously described prioritizes to a great extent the 47 

genes arranged in the communities 4, 5, 8, 9, 10 and 13. From these six communities, BRCA1, AKT1, 

ATR, CDK4, HRAS, MYC, PIK3CA, RELA, STAT3 are genes validated by DRIVE and Onco-PPI 

(19.1%), RAD51, CDK2, CHEK1, SMARCB1, SMARCE1 are validated only by DRIVE (10.6 %), and 

ATM, CDH1, EGFR, EP300, ERBB2, JUN, NFKB1, SHC1, TP53, SP1 by Onco-PPI (21.3%). The sub-

network generated from these communities (OS-comms network) reflects closely interrelated genes 

at cellular interaction level (Figure 3b) and also groups of genes immersed in important oncological 

processes. Tamborero et al. [48] from exome sequencing data of 3,205 tumors in the Cancer Genome 

Atlas (TCGA) research network proposed 291 high-confidence cancer driver genes acting on 12 

different cancer types. Although in this study, data from samples of bone tumors were not taken into 

account, their results show members of the PI3K signaling pathway as central onco-drivers, ATR-

BRCA1 as regulatory nodes of repair processes associated with TP53, CHEK1 and AKT as the main 

regulators of cell cycle in function of CDK1A, CDK1B and activators for downstream pathways such 

as FOXO. This experimental data supports our findings, where PIK3CA, AKT1, PTEN, HRAS and 

SHC1 were nodes highly connected within our OS-comms network. Nodes that connect to 

communities 10 and 13 describe genes representative of our weighted tumorigenic pathways 

PI3K/AKT and MAPK/ERK. 

The findings reported here suggest that PI3K/AKT and MAPK/ERK are the main signaling 

pathways deregulated for OS. Several reports have shown that these pathways are responsible for 

controlling cellular processes related to proliferation, growth, differentiation and apoptosis [49, 50]. 

In fact, the Ras/Raf/MEK/ERK pathway is hyperactivated in 30% of human cancers [51] and nearly 

67% of OS shows aberrant ERK activation [52]. The extra cellular-signal-regulated kinases (ERK) 

promote cell proliferation, cell survival and metastasis particularly by its upstream activation from 

EGFR and the G protein-coupled receptor Ras [53]. The presence of SHC1, EGFR, HRAS, PIK3CA, 

ERBB2 within community 10 support this scenario for OS. In addition, the high connectivity of the 

matrix metalloproteases MMP2 and MMP9 in community 13 suggest a metastasis event in function 

of these signaling pathways. 

Although invasion of tumor cells is a general characteristic in carcinogenesis, metastasis to the 

lung is one of the main characteristics in patients with OS and one of the major causes of mortality 

[54, 55], so this event is a hallmark for this sarcoma. Pathogenic events including cellular detachment 

from primary tumors, matrix remodeling and invasion from tumor cells, angiogenesis, vascular 

dissemination and proliferation at new sites are involved in tumor metastasis [56, 57]. Upstream 

regulators of MAP/ERK signaling such as IL6, VEGFA and FGFR1 demonstrate an important role in 

this process [58-62] and are prioritized in our results. In addition, community 13 shows the MMP2 

and MMP9 genes with a high centrality index. A high expression of MMP9 was observed in 

metastatic OS samples [63, 64], leading to speculation that this metalloproteinase can promote cell 

migration and invasion in OS by degradation components of the extracellular matrix. This evidence 

suggests that MMP2 and MMP9 together with upstream regulators of MAP/ERK signaling, such as 
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IL6, FGF2, VEGFA, EGFR and ERBB2, are pathogenic nodes dependent on the centrality of PI3K/AKT 

and MAPK/ERK. This finding could be related to aspects of invasiveness and prognosis, mainly in 

tumors that present deregulation in these two signaling pathways. 

In addition to evidencing the previous findings, communities 4, 5 and 9 include genes widely 

described in processes of homologous recombination (HR), base excision repair and chromatin 

modification. Cells’ DNA damage response principally involves maintaining chromosome integrity 

and genome stability, and implies recognition of DNA lesions, followed by an activation of 

checkpoints in the cell cycle that promotes cellular signaling cascades related to DNA repair. While 

the ATM-CHEK2 pathway is responsible for the initiation of cellular responses to double-strand 

breaks [65, 66], ATR-CHEK1 responds to DNA replication stress by means of the phosphorylation of 

several substrates in response to agents such as UV and X-ray among others [67]. ATM, ATR and 

CHEK1 show a high centrality index in the OS-comms network, interacting in addition with BRCA1 

and RAD51, described as essential genes, and with the cyclin dependent kinases CDK2 and CDK4, 

described as active ones according to the DRIVE validation. Checkpoint activation by ATM mainly 

controls G1/S, whereas ATM and ATR contribute to establishing and maintaining the S and G2/M 

checkpoints [68]. Either by activation of ATR-CHEK1 or ATM-CHEK2, DNA damage signaling 

promotes inhibition of CDK activity and therefore activation of G1/S, intra-S, and G2/M checkpoints 

[69]. Consequently, it is  likely that such nodes associated with DNA repair, such as ATM, ATR, 

CHEK1, BLM, RAD51 and MLH1 (as shown in our pathway enrichment analysis), together with those 

previously described (BRCA1 and BRCA2) from exome sequencing [70] have important implications 

regarding the deregulation of the cell cycle evidenced in OS.  

While it is true that the nodes described for communities 4 and 9 are mainly related to repair 

and cell cycle control events, the HR repair complex is involved in a hallmark event for sarcomas 

such as alternative telomere maintenance (ALT). Several molecular details of this mechanism still 

remain unknown; however, two distinctive telomere phenotypes are described for ALT in human 

telomerase-negative cells (ALT cells) such as long and heterogeneous telomere DNA and the 

promyelocytic leukemia (PML) body [71], together forming the ALT-associated promyelocytic 

leukemia body (APB). The PML body is a nuclear made up of proteins which form amongst the 

chromatin and is related to a wide range of cellular processes including tumors formation, cellular 

senescence, and DNA repair [72, 73]. Numerous lines of evidence strongly suggest that the ALT 

pathway is dependent on HR since several proteins involved in DNA double-strand break (DSB) are 

localized at APBs [74-77]. It is significant that proteins localized at APBs like PML, DNA helicases of 

the RecQ family (BLM, WRN and RECQL4), RAD51 and RAD52 (member of the MNR complex) rank 

highly in our prioritization. In this sense, the members belonging to HR complexes are described as 

repair complexes in response to DNA damage. They are relevant to the pathogenesis of the OS, not 

only as factors immersed in cell cycle control as previously discussed, but also because they are 

involved in processes of chromosome stability given by telomere maintenance [78-81]. Consistent 

with the literature, where bone tumors are termed as highly heterogeneous, highly mutable and 

genetically unstable, members described in communities 4 and 9 (TP53, ATM, ATR, CHEK1, BLM, 

BRCA1, BRCA2, RAD51, MLH1, CDK2, CDK4) explain many of these key features within OS, and can 

also be associated with important clinical characteristics such as tumor aggressiveness, metastasis 

and poor survival. 

In conclusion, the use of a consensus strategy proved to be efficient when specifying a broad list 

of genes obtained from several bioinformatics prioritization tools. In addition, the combination of 

these strategies with a network enrichment analysis allowed us to show not only real interactions 

between specific genes, but also to define internal interactions that explained cellular events 

associated with OS pathogenesis. Our results validate several studies that describe the signaling 

pathways PI3K/AKT and MAPK/ERK as oncological for OS. Nevertheless, given its centrality at the 

cellular signaling level, its deregulation can influence downstream specific pathways, such as FOXO, 

and promote tumorigenic scenarios like osteoblast undifferentiation via TGFB1 and NFK1, apoptosis 

via BCL2 and migration and metastasis mediated mainly by MMP2 and MMP9. 
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What is more, the gene composition of communities 4 and 9, and more specifically to their ATM, 

ATR, CHEK1 and RAD51 genes, suggest that the HR repair complex is an important group of genes 

within the pathogenesis of the OS. Its deregulation can influence tumorigenic events characteristic of 

this sarcoma as generalized disruption in the cell cycle and ALT mechanisms. Hence, it is necessary 

to experimentally validate these results, taking into account not only the patient’s age group, but also 

genetic factors that can influence the molecular behavior of these bone tumors, such as racial and 

ethnic factors. 

4. Materials and Methods  

4.1. Prioritization methods and consensus strategy 

The bioinformatics methods used in this study were Biograph [82], Cipher [83], DisGeNET [84], 

Génie [85], GLAD4U [86], Guildify [87], Phenolizer [88], PolySearch [89] and SNPs3D [90].  

The strategy applied to integrate the gene scores obtained in each independent method is similar 

to that previously described [24, 25]. Thus, we normalized each gene (denoted as i) from the ranked 

list obtained from each method (denoted as j) (GeneNi,j which means, the normalized score of the 

gene “i” in the method “j”). The final score by gene (ConsenScorei) was considered as the average 

normalized score and the number of methods which predict the gene (denoted as ni): 

ConsenScorei=√(
(ni-1)

9-1
)(

1

j
∑ GeneNi,j

j
) 

This equation refers to the geometric mean between the average score of each gene derived from 

each method, and the normalized score according to the number of methods that predict the 

association of the gene and the disease.  

The pathogenic OS genes were used to calculate Ii=
TPi

FPi+1
ConsenScorei, where TP and FP are the 

true and false positive values (up to the ranking value of the gene i), respectively. According to that 

which has been previously described [24, 25], the maximum value of Ii can be taken as the maximum 

compromise between the TP and FP rates compensated with the ranking index of each gene. 

4.2. Protein-protein interaction network analysis 

The physical interactions of the members of the consensus list were revised from the STRING 

database, only taking into consideration interactions with a confidence cut-off of 0.9. With this 

information, we generated a OS-PPI network with zero node addition. Network visualization and 

analysis was carried out through the Cytoscape software [91]. 

4.3. Communality and pathway enrichment analysis 

In order to determine the best k-clique in the communality analysis, we used the index “S” [24, 

25]: Sk=
|mean(Ng

k)-median(Ng
k )|

Nc
k  , where Ng

k  and Nc
k are the number of genes in each community and the 

number of communities for a defined k-clique cut-off value.  

Additionally, we applied the partitional algorithm K-means in order to define our best 

communities within a k-clique. The variables used for the clustering were the means of ConsenScorei,  

Degree
i
  and PathScorem for each community within the k-clique. The Degree

i
  variable refers to the 

node’s degree centrality index calculated for each gene from the OS-PPI network and the PathScorem 

is outlined below. From this clustering, we created a sub-network to visualize the interactions of all 

the members of the chosen communities.  

For the pathway enrichment analysis we used a PathRankScorem, PathGeneScorem and PathScorem 

as described previously [24]: 1) Each community “k” was weighted as: Wk=∑ConsenScorei
k /Nk, where 

ConsenScorei
k  is the ConsenScorei  of the gene “i” in the community “k” and Nk  is the number of 

communities; 2) Each pathway “m” was weighted as: PathRankScorem=∑Wk
m /Nk

m, where Wk
m is the 

weight (Wk ) of each community connected with the pathway “m” and Nk
m  is the number of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2019                   

Peer-reviewed version available at Int. J. Mol. Sci. 2020, 21, 1053; doi:10.3390/ijms21031053

https://doi.org/10.3390/ijms21031053


 15 of 20 

 

communities connected with the pathway “m”; and 3) A second weight to the pathway “m”,  

PathGeneScorem , considered all the genes included in each pathway:  

PathGeneScorem=√〈ConsenScorei
m〉

nm

Nm
, where Nm is the total number of genes in the pathway “m”, while 

nm is the number of those genes that are also found in the protein-protein interaction network. The 

average of the ConsenScorei  of all genes presents in the pathway “m” is 〈ConsenScorei
m〉 . The 

geometrical mean between PathGeneScorem and the normalized PathRankScorem refers to the final 

score associated with the pathway “m” (PathScorem). 

4.4. Gene validation with the OncoPPi OS network and the DRIVE project 

The DRIVE project describes a comprehensive mapping of cancer genes obtained from a larger-

scale gene knockdown experiment in 398 cancer cell lines. We filtrated the results of eight cell lines, 

all of which had pathological annotations related to bone cancer (A673, SAOS2, SJSA1, SKES1, 

SKNMC, SW1353, TC71, and U2OS). Subsequently, all essential genes that showed a Sensitivity Value 

of ≤ -3 in > 50% of the chosen cell lines, active genes that showed values of ≤ -3 in 1-49%, and inert 

ones showed values of ≤ -3 for 0% of cancer cells [22], were compared with our results. 

Additionally, from Onco-PPI Portal (http://oncoppi.emory.edu/) [23] a cancer-focused protein-

protein interaction network was generated by only considering the interactions described for bone 

tumor types (BT-OncoPPI). This network was comprised of 171 genes and 442 interactions. The 

Spearman correlation of Degree
i
 between the BT-OncoPPI, OS-PPI and Cfinder networks were 

calculated. 
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