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Abstract: We investigate a notable class of states peculiar to a bosonic binary mixture featuring 
repulsive intraspecies and attractive interspecies couplings. We evidence that, for small values of 
the hopping amplitudes, one can access particular regimes marked by the fact that the interwell 
boson transfer occurs in a jerky fashion. This property is shown to be responsible for the emergence 
of a staircase-like structure in the phase diagram and to strongly resemble the mechanism of the 
superfluid-Mott insulator t ransition. Under certain conditions, in fact, we show that it is possible 
to interpret the interspecies attraction as an effective chemical potential and the supermixed soliton 
as an effective particle reservoir. Our investigation is developed both within a fully quantum 
approach based on the analysis of several quantum indicators and by means of a simple analytical 
approximation scheme capable of capturing the essential features of this ultraquantum effect.

Keywords: Bose-Bose mixtures; Mixing; Localization; Superfluid-Mott transition; Quatum Phase 
Transitions; Entanglement12

1. Introduction13

The possibility to simultaneously Bose-condense two different boson components (whether they14

are two different chemical elements [1], two different isotopes [2], or two different spin states [3])15

and to trap them in optical lattices [4] has opened the door to the investigation of the intriguing16

phenomenology exhibited by the resulting ultracold mixtures. The behaviour of the latter is ruled17

by the competition among tunnelling processes (resulting from the spatial fragmentation of the18

condensates into separated wells), intra- and the inter- species couplings. Such interplay among19

different contributions in the overall energy balance of the system results, among the rest, in a rich20

scenario of mixing-demixing quantum phase transitions [5–8], in the emergence of novel quantum21

phases [9–11], in the possibility of entangling [12,13] the two bosonic species, and in that of triggering22

peculiar dynamical regimes [14,15].23

In particular, mixing-demixing transitions have been thoroughly described, in the case of24

small-size lattices, for repulsive [13,16–19] and attractive [20] interspecies couplings. These analyses25

have highlighted rather complex quantum phase diagrams where various phases, differing in the26

degree of mixing and localization of the two bosonic species, are recognizable. The latter properties27

have been shown to be quantifiable by means of suitable indicators originally devised in the context28

of classical fluids [21], but which can be easily and effectively extended to the case of quantum gases.29

Mixing-demixing and mixing-supermixing transitions in ultracold bosonic mixtures, which involve30

the localization of the condensed species in different sites of the lattice, have also been shown to be31

strongly associated to the presence of criticalities in a number of quantum indicators. The latter include,32

but are not limited to, the functional dependence of the ground state energy on model parameters, the33
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energy fingerprint (constituted by the structure of the first excited energy levels), and the degree of34

entanglement between the bosonic species of the mixture[13,17,18,20,22].35

In this work, we shine light on a particular aspect of the phenomenology exhibited by two-species36

mixtures confined in optical lattices: the emergence of a quantum-granularity effect resulting from the37

combination of strong interspecies attractions and weak hopping amplitudes. In these circumstances,38

in fact, the minority species occupies just one of the available sites and tends to summon the majority39

species in the same site where it localizes (hence the term “supermixed soliton"). Nevertheless, some40

bosons of the majority species do not enter the macroscopically occupied lattice site but remain spread41

in the remaining ones. The resulting ground-state configuration can be therefore regarded as the42

union of two parts: the supermixed soliton, which plays the role of a particle reservoir for the majority43

component, and the remaining sites, which constitute an effective single-species system featuring44

a variable number of particles. In this perspective, the interspecies attraction plays the role of an45

effective chemical potential, as it can finely control the number of bosons which are injected from (to)46

the supermixed soliton into (from) the remaining lattice sites. Within this analogy, the jerky interwell47

transfer of majority bosons occurring in the system is discussed to strongly resemble the well-known48

mechanism underlying the superfluid-Mott insulator transition [23–26]. Recently, there has been49

considerable interest toward the physics of few-body ultracold systems [27] since they allow to better50

understand fundamental properties of quantum systems. In the same spirit, a mesoscopic number of51

particles (instead of a macroscopic one) is employed throughout our analysis to better emphasize the52

emergence of the quantum granularity.53

2. The two-species model54

A bosonic binary mixture trapped in a three-well potential (trimer) can be effectively described in55

terms of the Bose-Hubbard (BH) model. The relevant Hamiltonian,56

H = −Ta

3

∑
j=1

(
A†

j+1 Aj + A†
j Aj+1

)
+

Ua

2

3

∑
j=1

Nj(Nj − 1)−

− Tb

3

∑
j=1

(
B†

j+1Bj + B†
j Bj+1

)
+

Ub
2

3

∑
j=1

Mj(Mj − 1) + W
3

∑
j=1

Nj Mj, (1)

in fact, can capture the ultra-quantum effects originating from the interplay between the spatial57

fragmentation of the two condensates and the competition among tunnelling (Ta and Tb), intra- (Ua58

and Ub) and inter- (W) species couplings [16–20,28]. Operator Aj (A†
j ) destroys (creates) a species-a59

boson in the j-th site. The same holds for operators Bj and B†
j which, respectively, destroy and create a60

species-b boson in the j-th site. These operators satisfy standard bosonic commutators: [Aj, Ak] = 0,61

[Aj, A†
k ] = δi,k, [Bj, Bk] = 0, [Bj, B†

k ] = δi,k, [Aj, Bk] = [A†
j , Bk] = 0.62

Number operators Nj := A†
j Aj and Mj = B†

j Bj respectively count the number of species-a and63

species-b bosons in the j-th site. Their sums,64

3

∑
j=1

Nj = Na,
3

∑
j=1

Mj = Nb,

represent two independent conserved quantities, meaning that [H, Na] = [H, Nb] = 0. The system we65

are going to investigate features a ring geometry, and, for this reason, it is understood that j = 4 ≡ 166

in the summations of Hamiltonian (1). Moreover, in the following, we shall focus on those regimes67

featuring repulsive intraspecies and attractive interspecies couplings, that means Ua > 0, Ub > 0 and68

W < 0.69
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3. A continuous-variable picture to investigate the formation of supermixed solitons70

3.1. The system phase diagram71

Bosonic binary mixtures trapped in ring lattices share, irrespective of the number of lattice sites,72

a rather general mechanism according to which, upon increasing the interspecies attraction |W|, the73

ground-state configuration undergoes deep changes [20]. Basically, the two species are mixed and74

uniformly distributed in the lattice sites [mixed (M) phase] when |W| is small enough. Conversely,75

when the latter becomes sufficiently negative, the minority species localizes in one site, while the76

majority species still occupies all sites, although in a non-uniform way [partially localized (PL) phase].77

Eventually, further increasing |W|, both species localize in the same site, thus giving place to a state78

which goes under the name of “supermixed soliton" [supermixed (SM) phase]. This scenario is79

pictorially illustrated in Figure 1.80
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Figure 1. Pictorial representation of some states belonging to phases M, PL, and SM, respectively.
Labels 1, 2, 3 correspond to site numbers, while the vertical axis corresponds to (normalized) boson
populations x∗,j and y∗,j characterizing the ground-state configuration. The majority (minority) species
is depicted in green (yellow) and corresponds to the left (right) columns of the histograms in each
panel. In phase M, the two bosonic species are mixed and uniformly distributed in the ring trimer;
in phase PL, the minority species is highly localized, while the majority species occupies all the sites
(although in a non-uniform manner); phase SM is characterized by supermixed solitons.

The analytic treatment developed in Ref. [20] was based on the Continuous Variable (CV) Picture81

[29–33], a rather versatile approximation scheme which, under the assumption that the number of82

particles loaded in the system, Na and Nb, is large enough, allows one to turn the search for the ground83

state of Hamiltonian (1) into that for the global minimum of effective potential84

V =
1
2

3

∑
j=1

x2
j +

β2

2

3

∑
j=1

y2
j + αβ

3

∑
j=1

xjyj, (2)

an expression where variables85

xj :=
Nj

Na
, yj :=

Mj

Nb
(3)

represent normalized boson populations, and where only two effective parameters,86

α =
W√
UaUb

, β =
Nb
Na

√
Ub
Ua

, (4)

come into play [18,20]. It is to be noted, in this regard, that, in the limit of large boson populations,87

not only the inherently discrete variables Nj and Mj can be replaced with their continuous counterparts88

xj and yj, but also the contribution of tunnelling terms in potential (2) can be neglected (recall that89

tunnelling energy scales as Nc, while intra- and interspecies coupling energies scale as N2
c , where c =90

a, b). The limit Na � 1, Nb � 1, where Nb/Na = const, can be regarded as a sort of thermodynamic91
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limit if one resorts to the statistical-mechanical framework discussed in [34,35] (see also Refs. [17,18,20])92

and allows one to detect the presence of different phases in the (α, β) plane. These phases correspond93

to different classes of ground states of Hamiltonian (1), differ in the degree of mixing and localization94

of the two bosonic species and, at their borders, the energy corresponding to the configuration (~x, ~y)95

which minimizes (2), regarded as a function of control parameters α and β, features non-analiticities.96

More specifically, if the configuration (~x∗,~y∗) constitutes the global minimum of potential (2), the97

associated energy,98

V∗ := V(~x∗,~y∗) := min
(~x,~y)∈R

V(~x,~y), (5)

where99

R =

{
(~xj,~yj) : 0 ≤ xj, yj ≤ 1,

3

∑
j=1

xj =
3

∑
j=1

yj = 1

}
,

features different functional dependences in different regions of the (α, β) plane and thus exhibits100

non-analiticities along the borders thereof. This circumstance strongly resembles the hallmark of101

quantum phase transitions [36]. Figure 2 illustrates the system phase diagram in the thermodynamic102

limit (mentioned above), while Table 1 summarizes the ground state configuration and the associated103

energy in each of the three phases.104

M

PL

SM

-3 -2 -1 0
0

0.5

1

Figure 2. Phase diagram of a (possibly asymmetric) two-species bosonic mixture confined in a 3-well
potential and featuring repulsive intraspecies and attractive interspecies interactions. Each phase is
characterized by a specific functional dependence of the energy minimum (5) on effective model
parameters (4). Along the red dashed (α = −1) and the red solid (β = −1/α) lines, V∗ is not analytic, a
circumstance which strongly suggests the occurrence of phase transitions. In the former (latter) case, it
is the first (second) derivative of V∗ with respect to control parameter α to be discontinuous.
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Table 1. Summary of the typical minimum-energy configuration and of the associated energy in each
phase.

Phase (~x∗,~y∗) V∗

M

x∗,j = 1/3 ∀j

y∗,j = 1/3 ∀j

VM
∗ =

1
6
(β2 + 2αβ + 1)

PL

x∗,i = [1− 2αβ]/3

x∗,j = [1 + αβ]/3 ∀j 6= i

y∗,i = 1, y∗,j = 0 ∀j 6= i

VPL
∗ =

1
6
[1 + 2αβ

+β2(3− 2α2)]

SM

x∗,i = 1

x∗,j = 0 ∀j 6= i

y∗,i = 1, y∗,j = 0 ∀j 6= i

VSM
∗ =

1
2
(β2 + 2αβ + 1)

To conclude this Section, we remark that the presented study encompasses a rather extended105

portion of the parameters’ space. With reference to definitions (4), in fact, we have verified that no106

additional phases emerge for α < −3, while the case of α > 0 has been thoroughly investigated107

in Refs. [17,18]. As regards parameter β, the choice β ∈ [0, 1] comes with no loss of generality in108

that, if β happens to be bigger than 1, one can always swap species labels and hence come back to109

the aforementioned interval β ∈ [0, 1]. Notice also that the asymmetric role of species labels in the110

definition of β [see formulas (4)] implicitly defines a majority species, a, and a minority species, b.111

3.2. Some quantum indicators to characterize the different phases112

In order to better characterize the three possible phases exhibited by the system, one can make use113

of the “entropy of mixing" and of the “entropy of location", two indicators that are commonly used in114

Physical Chemistry [21,37] to quantify the degree of mixing and localization of chemical compounds.115

In the case of normal fluids, they are defined as116

Smix(~x, ~y) = −1
2

L

∑
j=1

(
xj log

xj

xj + yj
+ yj log

yj

xj + yj

)
(6)

Sloc(~x, ~y) = −
L

∑
j=1

xj + yj

2
log

xj + yj

2
. (7)

where xj and yj are the molar fractions of the two compounds in the j-th spatial domain and L117

represents the number thereof (spatial domains result from the discretization of the available volume).118

As we are dealing with quantum fluids, the system ground state will be, in general, a superposition119

of different Fock states |~N, ~M〉, each one associated to a certain Smix and Sloc which can be, in turn,120

determined by means of formulas (6-7) through the mapping (3) (of course, in our case, L = 3 due to121

the presence of three sites, which already constitute the most natural way to discretize the system’s122

spatial domain). In this perspective, the quantum version of indicators (6-7) reads123

S̃mix :=
Q

∑
~N, ~M

|c(~N, ~M)|2Smix(~N, ~M), (8)
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S̃loc :=
Q

∑
~N, ~M

|c(~N, ~M)|2Sloc(~N, ~M), (9)

where Q = (Na+2)!
Na !2!

(Nb+2)!
Nb !2! is the dimension of the Hilbert space of states associated to Hamiltonian (1)124

and125

c(~N, ~M) = 〈~N, ~M|ψ0〉 (10)

is the projection of the ground state |ψ0〉 onto Fock state |~N, ~M〉 = |N1, N2, N3, M1, M2, M3〉.126

Other quantum indicators that can be used to detect the presence of different phases [36] in the127

(α, β) plane are the ground-state energy128

E0 = 〈ψ0|H|ψ0〉 (11)

and the first excited levels129

Ei = 〈ψi|H|ψi〉. (12)

which indeed constitute a sort of energy fingerprint for quantum phases.130

Eventually, in order to evaluate the degree of quantum correlation between the two species, one131

can introduce the entanglement entropy (EE) relevant to a bipartition of the system space of states in132

terms of species-a and species-b bosons [16,17,22]. More specifically, the entanglement between the133

two quantum fluids reads134

EE = −Tra(ρ̂a log2 ρ̂a), (13)

a formula representing the Von Neumann entropy of the reduced density matrix ρ̂a = Trb (ρ̂0) obtained,135

in turn, by tracing out the degrees of freedom of species-b bosons from the ground-state density matrix136

ρ̂0 = |ψ0〉〈ψ0|.137

Figure 3 illustrates the behaviour of these indicators, regarded as functions of effective model138

parameters (4). It is possible to appreciate that the combined use of critical indicators S̃mix and S̃loc (see139

panels in the second and in the third row of Figure 3) allows one to clearly distinguish the different140

phases. It is worth noticing that, as the number of particles employed to perform the exact numerical141

diagonalization of Hamiltonian (1) is limited (Na = Nb = 15), some finite-size effects are present, which142

affect the “ideal" phase diagram illustrated in Figure 2. More prominently, the border between phase143

M and phase PL (line α = −1 in the thermodynamic limit) has given way to a hyperbole-like border144

which allows phase M to invade the half-plane α < −1 (of course, for sufficiently small values of β).145

The last row of Figure 3 illustrates the behaviour of EE. The transition M-PL can be easily146

recognized, while the border PL-SM cannot be appreciated (as already noticed in Ref. [20]).147

Eventually, as it is visible in the first row of Figure 3, the ground-state energy E0 as such does148

not allow for a direct identification of the various phases because its non-analytic character is better149

highlighted by its first- and second-order derivatives. This aspect will be discussed in Section 4150

and illustrated in Figure 5, where the derivatives of E0 with respect to α and β (regarded, in turn, as151

functions thereof), are used to effectively reconstruct the phase diagram. Each column corresponds to152

a certain value of the tunnelling amplitudes Ta and Tb. Going from left to right, the latter increase, a153

circumstance which favours boson delocalization and determines the blurring of the phase diagram154

illustrated in Figure 2 (see Ref. [20] for further details).155

4. Beyond the continuous-variable picture: emergence of the quantum granularity156

The analytic treatment reviewed in Section 3 and based on the CV picture allows one to find all157

the phases that are possibly exhibited by the two-species mixture in a rather straightforward way. The158

resulting phase diagram (see Figure 2) and the associated characteristic quantities (see Table 1) provide159
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Figure 3. Each row illustrates the behaviour of a genuinely quantum indicator as a function of model
parameters α and β. Going from left to right, plots correspond to T/Ua = 0, 0.02 and 0.50, where
T := Ta = Tb . First row: ground-state energy E0/Ua (11). Second row: quantum version of the
entropy of mixing, S̃mix (8). Third row: quantum version of the entropy of location S̃loc (9). Fourth row:
entanglement between the two condensed species, EE (13). Model parameters Na = Nb = 15, Ua = 1,
Ub ∈ [0, 1] ⇒ β ∈ [0, 1] and α ∈ [−3, 0] have been used. Each plot includes more than 20k points [38],
corresponding to as many numerical diagonalizations of Hamiltonian (1).

a full overview of the different ways in which the two quantum fluids can rearrange among available160

sites and allows one to recognize critical lines in the (α, β) plane.161

Nevertheless, this semiclassical approximation scheme cannot accurately describe the162

ultraquantum effects exhibited by the system when boson populations Na and Nb are finite and163

tunnelling processes very weak. In these cases, in fact, a small variation of control parameters α and β164

[see formulas (4)] may not result in a smooth variation of the system’s ground state.165

To better clarify this circumstance, we begin with considering the central and the right panels166

of Figure 1. In the thermodynamic limit, one loses track of the quantum granularity characterizing167

bosonic particles, and phase PL can be thought of as a collection of states which, upon increasing168

|α|, smoothly approach the supermixed-soliton configuration. Therefore, in this scenario, the majority169

species gradually localizes upon increasing the interspecies attraction, meaning that the outer green170

bars in the central panel of Figure 1 are smoothly reabsorbed by the emerging supermixed soliton.171

In this Section, both by means of exact numerical computations and by developing a suitable172

analytic framework, we show that this smooth and elementary picture is no longer valid for finite173

values of boson populations (Na and Nb) and for sufficiently low values of Ta and Tb. In these regions174

of the parameters’ space, the discrete character of the interwell boson-exchange mechanism emerge175

and the system discloses some new effects ensuing from the granularity of its constituents. Figure 4176

provides a pictorial representation of this phenomenology.177
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111 222 333
jjj

111 222 333
jjj

Figure 4. Pictorial representation of the discrete character of the interwell boson exchange. Left panel:
macroscopic configuration of the system for a certain choice of model parameters. A small variation
of control parameters α and β may (right panel) or may not modify it. The fact that the supermixed
soliton can gain or loose a boson at a time upon varying a control parameter is what we mean with the
term “quantum granularity".

4.1. Exact numerical results178

The emergence of the aforementioned “quantum granularity" in the phenomenology of the179

discussed system can be appreciated by resorting to the quantum indicators already introduced in180

Section 3.2 and including the ground-state energy, the entropy of mixing, the entropy of location, and181

the entanglement entropy. In Figure 5, we illustrate their second derivatives with respect to control182

parameter α, where, for the sake of simplicity, we have set T := Ta = Tb. It is clear that, in the region183

of the (α, β) plane corresponding to phase PL, a staircase-like structure is present for sufficiently low184

values of T (see left and central columns of Figure 5). Conversely, this peculiar property is absent when185

tunnelling is large enough (see right column of Figure 5), a circumstance which can be explained in186

terms of the delocalizing effect of hopping processes, which tend to smooth down transitions and187

sharp features of the phase diagram [16–18,20].188

The presence of this staircase-like structure in the central region of the (α, β) plane is due to189

the fact that, being the hopping amplitude small, the system responds to small variations of control190

parameters in a highly non-linear way. As it will be explained in Section 4.2 by means of a simple191

analytic treatment, when tunnelling terms tend to zero, phase PL [which, in the CV picture, can be192

thought of as a collection of states which transform in a smooth way when α and β are varied] gives193

way to a sequence of stripes in the (α, β) plane within which the ground-state configuration proves194

to be rather rigid upon small variations of α and β themselves. The transition between any two such195

stripes represents an abrupt change in the ground-state configuration and corresponds to the kind of196

bosons rearrangement pictorially illustrated in Figure 4.197

The staircase-like structure corresponding to jerky transfers of bosons from/to the site hosting198

the supermixed soliton is evident also in terms of the energy fingerprint of the system. The latter,199

i.e. the set of the first excited energy levels, are shown in Figure 6 for different values of the hopping200

amplitudes. In particular, if the hopping amplitudes are sufficiently small (see left and central panel201

of Figure 6), the energy level structure in the region of the (α, β) plane between phase M and phase202

SM features sharp peaks. With reference to the aforementioned Figure, where β has been set to 0.6, the203

staircase-like structure is present for −1.6 ≤ α ≤ −1. The number of peaks in the energy spectrum204

corresponds to that of the stripes that one crosses while walking along a straight line at β = const in205

the (α, β) plane. Similarly, the number of valleys visible in the energy spectrum corresponds to that of206

stripes borders crossed by the constant-β pathway. The sequence of stripes whose borders correspond207

to jerky boson transfers (of the type sketched in Figure 4) can be clearly appreciated also in Figure 10,208

which has been derived within a fully analytic framework (see Section 4.2 for details).209

If hopping amplitudes Ta and Tb exceed a certain threshold, the discrete character of the interwell210

boson exchange fades away and the energy levels Ej(α), regarded as functions of control parameter α,211

get well-behaved (see right panel of Figure 6).212
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Figure 5. Each row illustrates the behaviour of a genuinely quantum indicator as a function of model
parameters α and β. Going from left to right, plots correspond to T/Ua = 0, 0.02 and 0.50, where T :=
Ta = Tb. First row: Second derivative of the ground-state energy E0. Second row: second derivative
of the quantum version of the entropy of mixing, S̃mix. Third row: second derivative of the quantum
version of the entropy of location S̃loc. Fourth row: second derivative of the entanglement between the
two condensed species, EE. Model parameters Na = Nb = 15, Ua = 1, Ub ∈ [0, 1] ⇒ β ∈ [0, 1] and
α ∈ [−3, 0] have been used. Each plot includes more than 20k points [38], corresponding to as many
numerical diagonalizations of Hamiltonian (1).

Another effective indicator that can provide insight into the jerky transfers of bosons from/to213

the supermixed soliton is represented by D(E0), the degeneracy of the ground-state level when214

Ta = Tb = 0. We recall, in this regard, that, as soon as the tunnelling is non-vanishing, the ground215

state of Hamiltonian (1) gets unique and not-degenerate [39], although it can take the form of a216

superposition of few macroscopically different configurations (a Schrödinger-cat state) [17,40]. As217

we shall discuss, such a superposition of different Fock states, although being not-degenerate, bears218

memory of the value of D(E0) that one would have if hopping processes were suppressed, since219

D(E0) at Ta = Tb = 0 corresponds to the number of macroscopic configurations which constitute the220

non-degenerate Schrödinger-cat state at small but finite tunnellings.221

The value of D(E0), computed along a path in the (α, β) plane featuring β = const, is illustrated222

in Figure 7. At the chosen value of β, for α < 2.3, the system’s ground state takes the form of a223

supermixed soliton whose degeneracy D is 3, because three is the number of its possible positions in224

the trimer. For −1 < α < 0, the configuration which minimizes the (expectation value of) Hamiltonian225

(1) is the uniform and mixed one. The latter is such that there are Na/3 species-a and Nb/3 species-b226

bosons in each site. If, as in the case of Figure 7, Na and Nb are integer multiples of the number of227

lattice sites, there exists just one state which minimizes energy (1) and, accordingly, the associated228

degeneracy D(E0) is unitary.229
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Figure 6. First 8 excited energy levels, obtained by means of an exact numerical diagonalization of
Hamiltonian (1), for T := Ta = Tb = 0, 0.02, 0.50 in the left, central and right panel, respectively. Model
parameters Na = Nb = 15, Ua = 1, Ub = 0.36 ⇒ β = 0.6 and W ∈ [−1.8, 0] ⇒ α ∈ [−3, 0] have been
chosen.

Figure 7. Degeneracy of the ground-state level E0, obtained by means of an exact numerical
diagonalization of Hamiltonian (1), for T := Ta = Tb = 0. Model parameters Na = Nb = 15,
Ua = 1, Ub = 0.16 ⇒ β = 0.4 and W ∈ [−1.2, 0] ⇒ α ∈ [−3, 0] have been chosen. Each jump
discontinuity corresponds to a change in the ground-state structure of the type illustrated in 4.

For −2.3 < α < −1, the system ground state transforms from the mixed to the supermixed one in230

such a way that bosons are transferred to the emerging supermixed soliton in the jerky fashion sketched231

in Figure 4. Accordingly, the degeneracy of the ground-state level alternatively takes the values 3 and232

6, depending on the number of species-a bosons which are not part of the supermixed soliton. To233

better clarify this property, we observe that, in the region of the phase diagram corresponding to phase234

PL, at Ta = Tb = 0, the ground state of Hamiltonian (1) is made up of Fock states of the type235

|N1, N2, N3, M1, M2, M3〉 = |Na − N2 − N3, N2, N3, Nb, 0, 0〉 (14)

where N2 < Na − N2 − N3 and N3 < Na − N2 − N3. In the light of this, one can immediately conclude236

that the degeneracy of the associated energy level, i.e. the number of possible permutations of the237

quantum numbers that come into play, is 3 when N2 = N3 and it is 6 when N2 6= N3. With reference to238

Figure 10, which is obtained by means of the fully analytic framework discussed in Section 4.2, purple239

(yellow) stripes are associated to D = 6 (D = 3), while, as already explained, in regions SM and M, D240

takes the values 3 and 1, respectively. The fact that purple and yellow stripes have different widths241

will be explained by the simple analytic framework presented in Section 4.2.242

The discussed mechanism of jerky interwell boson transfer is present not only at T = 0, but it243

persists also for finite values of tunnellings. To better illustrate this circumstance, we refer to Figure 8,244

where we plot the second derivative of the ground state energy (11) with respect to control parameter245

α (left panel) and the entropy246

S = −∑
~N

∑
~M

|c(~N, ~M)|2 log |c(~N, ~M)|2 (15)
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of the probability distribution associated to coefficients (10) (right panel). Both plots, which are247

referred to the (α, T/Ua) plane, clearly show the presence of lobes for small values of T/Ua and for248

−2.4 < α < −1. More specifically, as regards the left plot, one can appreciate a sequence of six lobes249

(depicted in green) which correspond to a sequence of Fock states of the type250

|ψ0〉6 ≈
1√
6
[|Na − N2 − N3, N2, N3, Nb, 0, 0〉+ |Na − N2 − N3, N3, N2, Nb, 0, 0〉 +

+|N2, Na − N2 − N3, N3, 0 Nb, 0〉+ |N3, Na − N2 − N3, N2, 0 Nb, 0〉+

+|N2, N3, Na − N2 − N3, 0, 0, Nb〉+ |N3, N2, Na − N2 − N3, 0, 0, Nb〉] (16)

for N2 6= N3, and of the type251

|ψ0〉3 ≈
1√
3
[|Na − N2 − N3, N2, N3, Nb, 0, 0〉+ |N2, Na − N2 − N3, N3, 0 Nb, 0〉+

+|N2, N3, Na − N2 − N3, 0, 0, Nb〉] + (17)

for N2 = N3, where the symbol “≈" has been used to recall that, when T > 0, many other Fock252

states |~N, ~M〉 enter into the expression of |ψ0〉, but their weights |c(~N, ~M)|2 [see (10)] in the linear253

combination |ψ0〉 = ∑~N ∑ ~M c(~N, ~M)|~N, ~M〉 is very small if ratio T/Ua is, in turn, small. Going254

from left to right in both plots of Figure 8, for small enough values of T/Ua, the quantum number255

Na − N2 − N3, which correspond to the number of species-a bosons in the supermixed soliton, takes256

the value 15 for α < −2.4 (SM configuration), and the value 5 for α > −1. More interestingly, for257

−2.4 < α < −1, it takes the sequence of values 14, 13, 12, 11, 10, 9. Accordingly, the system ground258

state alternately takes the form of state (16) and state (17). This sequence of 6 different ground states259

corresponds to that of the 6 green lobe-like domains in the bottom part of the left panel of Figure 8260

and to that of the blue lobe-like domains in the bottom part of the right panel of Figure 8. Notice, in261

this regard, that the domains corresponding to the cases N2 = N3 are bigger, i.e. they are wider and262

they persist for bigger values of T/Ua. Conversely, the lobes corresponding to the cases N2 6= N3 are263

narrower and are more easily disrupted by tunnelling. The different width of the lobes for N2 = N3264

and of those for N2 6= N3 will be explained in Section 4.2 (by means of a simple analytical model),265

while their different height can be explained by means of an analogy with the superfluid-Mott insulator266

transition. Note that, also, these two kinds of lobes visible in the right panel of Figure 8 alternately267

take the values S ≈ log 6 and S ≈ log 3, in that the number of macroscopic components present in the268

non-degenerate Schrödinger-cat-like states of the type (16) and (17) bears memory of the degeneracy269

D(E0) of the ground state if the tunnelling T was suppressed.270

In order to highlight the analogy with the superfluid-Mott insulator transition, we start by271

looking at the trimer system as if it was made up of two parts. One corresponds to the site where the272

supermixed soliton is emerging: it includes Na − N2 − N3 species-a bosons and Nb species-b bosons.273

The other part corresponds to the remaining two sites, hosting, in total, N2 + N3 species-a bosons and274

0 species-b bosons. As Na − N2 − N3 can be much bigger than N2 + N3, the macroscopically occupied275

site can be thought of as a reservoir of species-a bosons and the remaining two sites can be regarded as a276

two-well system including just one bosonic species (instead of a binary mixture) which is in contact277

with a particle reservoir. In this perspective, the interspecies attraction W, and hence effective control278

parameter α [see formula (4)], plays the role of an effective chemical potential, as it can control the279

release/absorption of species-a bosons from/to the particle reservoir.280

Notice that there is a profound difference between states (17) and states (16). Concerning the281

effective two-well potential resulting from the exclusion of the macroscopically occupied site (which282
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plays the role of particle reservoir), the former are marked by a commensurate filling, while the second283

feature an incommensurate filling. As a consequence, lobes corresponding to the case of N2 = N3 play284

the role of Mott lobes, while those corresponding to the case N2 6= N3 correspond to superfuid lobes, as285

one species-a boson is shared between the sites of the effective two-well potential.286

Interestingly, both states (17) and states (16) seem to undergo a deep change when T exceeds a287

certain threshold, which is different in the two cases (T/Ua ≈ 0.02 and ≈ 0.01, respectively). In the288

first case, as N2 = N3 (commensurate filling), the analogy with the superfluid-Mott insulator transition289

suggests that, increasing the ratio T/Ua, bosons tend to delocalize and the system switches from the290

Mott to the superfluid phase. Concerning the other family of states, (16), featuring N2 6= N3, the291

interpretation is more delicate. This because they are already endowed with a superfluid character, as292

one boson is shared by the two sites of the resulting effective system. Although this property deserves293

further investigation (we expect that an increasingly rich structure of “superfluid lobes" necessarily294

emerges when the number of lattice sites increases), it is possible to conjecture that, crossing the border295

of such a lobe, the system switches from a weaker to a stronger type of superfluidity. In fact, states (16)296

are forcefully superfluid, even for T → 0+, because of the extra boson expelled by the supermixed297

soliton and injected into the effective two-well potential. Nevertheless, the superfluid character of298

state (16) is strongly dammed by the fact that it includes just 6 Fock states (actually 2, if one neglects299

the possible ways to permute the position of the particle reservoir) and therefore it is far from being of300

the type301

|ψ0〉 ∝ (A†
2 + A†

3)
N2+N3 |0, 0〉, (18)

the latter representing the exact ground state of a two-well BH Hamiltonian featuring U/T → 0 and302

hosting N2 + N3 species-a bosons. This circumstance would reasonably explain the presence of small303

lobes in both panels of Figure 8. In the same spirit of Ref. [41], where suitable squeezing indicators304

were introduced to detect lobe-like structures in an asymmetric BH-dimer Hamiltonian, we introduce305

indicator306

∆n =
1
2
(
2Nmax − Ni − Nj

)
, (19)

where Nmax := maxk∈{1,2,3}{Nk} and Ni, Nj ∈ {N1, N2, N3} − {Nmax}, which corresponds to the307

average species-a bosons imbalance between the site hosting the supermixed soliton and the sites of the308

remaining two-well system. As it is visible in Figure 9, where the expectation value 〈∆n〉 = 〈ψ0|∆n|ψ0〉309

is plotted, when T/Ua is small enough, a sequence of lobe-like domains is present, which corresponds310

to the sequence of values 15 (SM configuration), 13.5 (first superfluid-like lobe), 12 (first Mott-like311

lobe), 10.5, and so on.312

We conclude this Section by recalling that it is possible to find, either within the CV picture [20], or313

by means of the dynamical-algebra method [28], the region of the parameters space where the mixed314

configuration (the one sketched in the leftmost panel of Figure 1) is stable. It is given by inequality315

α > −

√(
1 +

9
2

Ta

UaNa

)(
1 +

9
2

Tb
UbNb

)
(20)

whose border, in the (α, T/Ua) plane, corresponds to the black line in the right panel of Figure 8.316

Interestingly, one can notice that, while approaching this border from the right, entropy (15) associated317

to the ground state significantly increases and takes the maximum value exactly at the value of α where318

the mixed configuration gives way to a configuration of the type (14).319

4.2. Analytic treatment320

We present a simple but effective analytical treatment, capable of capturing the presence of the321

staircase-like structure in the central region of the (α, β) plane (see Figure 5). By means of fully-analytic322
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Figure 8. The mechanism of jerky interwell boson transfer is present provided that tunnelling T is small
enough. Left panel: second derivative of the ground-state energy (11) with respect to control parameter
α. Right panel: entropy (15) of the probability distribution associated to coefficients |c(~N, ~M)|2 [see
formula (10)]. The black line corresponds to the border of the stability region (20) of the mixed
configuration. Notice that, unlike Figures 3 and 5, these plots are referred to the (α, T/Ua) plane,
instead of the (α, β) plane. Model parameters Na = Nb = 15, Ua = 1, Ub = 0.16 ⇒ β = 0.4,
Ta = Tb =: T ∈ [0, 0.5], and α ∈ [−3, 0] have been used. Each plot includes more than 75k points [38],
corresponding to as many numerical diagonalizations of Hamiltonian (1).

computations, we derive, for T = 0, a set of inequalities giving the stability region not only of the323

mixed and of the supermixed configurations, but also of each intermediate configuration of the type324

(14). The graphical representation of these inequalities is shown in Figure 10, which effectively mimics325

the scenario illustrated in Figure 5, obtained, in turn, by sweeping model parameters and numerically326

diagonalizing Hamiltonian (1).327

Let us consider a supermixed-soliton configuration. The associated energy, for T = 0, reads328

E(SM) =
Ua

2
Na(Na − 1) +

Ub
2

Nb(Nb − 1) + WNaNb. (21)

The first state belonging to the staircase-like structure differs from a supermixed-soliton state because329

one species-a boson has left the macroscopically occupied site and has moved to the remaining two-well330

system. The energy of this configuration reads331

E(SM− 1a) =
Ua

2
(Na − 1)(Na − 2) +

Ub
2

Nb(Nb − 1) + W(Na − 1)Nb. (22)

By solving inequality E(SM) < E(SM− 1a) one obtains that the supermixed configuration ceases to332

be the energetically favorable one for333

α >
1
β

(
1

Na
− 1
)

. (23)

This condition corresponds to the solid black line in Figure 10 and allows one to recognize the border334

between the region of SM states and the first element of the staircase-like structure. It is worth335

mentioning the fact that it would be energetically unfavourable to remove a species-b (instead of a336

species-a) boson from the supermixed soliton. The condition E(SM− 1a) < E(SM− 1b) is indeed337

always verified in the chosen range β ∈ [0, 1] because of the asymmetric role of species-a and species-b338

parameters in the definition of β [see formula (4)]. State |Na − 1, 1, 0, Nb, 0, 0〉 is the actual system339

ground state provided that condition (23) is satisfied and that E(SM− 1a) < E(SM− 2a). The latter340

inequality corresponds to the border between the upper purple stripe and its neighbouring yellow341

stripe in Figure 10.342

One can easily generalize this reasoning in order to find the condition under which a state of343

the type (14) and such that Ka = N2 + N3 species-a bosons have left the supermixed soliton, is the344

actual system’s ground state. One needs to distinguish two cases: Ka odd, and Ka even. After some345
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Figure 9. Expectation value 〈∆n〉 = 〈ψ0|∆n|ψ0〉 of operator imbalance operator ∆n [see formula (19)]
as a function of α and T/Ua. The mechanism of jerky interwell boson transfer is present provided that
tunnelling T is small enough (compare the staircase-like structure for T/Ua → 0 with the slide-like
appearance for T/Ua ≈ 0.2). Notice that, unlike Figures 3 and 5, these plots are referred to the
(α, T/Ua) plane, instead of the (α, β) plane. Notice also that, unlike Figure 8, the range of T/Ua is
[0, 0.2] in order to better appreciate the presence of lobe-like regions. Model parameters Na = Nb = 15,
Ua = 1, Ub = 0.16 ⇒ β = 0.4, Ta = Tb =: T ∈ [0, 0.5], and α ∈ [−3, 0] have been used. The
plot includes more than 60k points [38], corresponding to as many numerical diagonalizations of
Hamiltonian (1).

M

SM

-3 -2 -1 0
0

0.5

1

Figure 10. Map of the system’s minimum-energy configurations. It corresponds to the graphical
representation of the set of inequalities derived in Section 4.2. More specifically: the solid black
[dashed] line corresponds to condition (23) [(28)], while the set of purple [yellow] stripes is given by
condition (24) [(25)]. Model parameters Na = Nb = 15, Ua = 1, Ub ∈ [0, 1] ⇒ β ∈ [0, 1], α ∈ [−3, 0]
and Ta = Tb = 0 have been used.

straightforward algebra, it turns out that the aforementioned state, whose energy is E(SM− Ka), is346

the actual ground state provided that347

1
β

(
3(Ka − 1)/2 + 1

Na
− 1
)

< α <
1
β

(
3(Ka − 1)/2 + 2

Na
− 1
)

if Ka is odd, (24)

1
β

(
3Ka/2− 1

Na
− 1
)

< α <
1
β

(
3Ka/2 + 1

Na
− 1
)

if Ka is even. (25)
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With reference to Figure 10, the former (latter) set of inequalities corresponds to the set of purple348

(yellow) stripes. Notice also that these simple analytical expressions perfectly capture the fact that349

yellow stripes are two times wider than purple stripes or, in other words, that, in Figure 7, the pulses350

with degeneracy D(E0) = 6 are two times narrower than those with degeneracy D(E0) = 3. The same351

reasoning, of course, accounts for the different widths of superfluid-like and Mott-insulator-like lobes352

of Figure 8 (see the relevant discussion in Section 4.1).353

It is known from the theory developed in Ref. [20] and reviewed in Section 3 that, when α354

approaches the value ≈ −1, the system ground state sharply switches to the uniform and mixed (M)355

configuration, featuring Na/3 species-a and Nb/3 species-b bosons in each well. This dramatic change356

in the structure of the ground state corresponds, in the thermodynamic limit, to the transition M-PL357

(see Section 3). To derive the condition under which the mixed configuration, featuring energy358

E(M) = 3
Ua

2
Na

3

(
Na

3
− 1
)
+ 3

Ub
2

Nb
3

(
Nb
3
− 1
)
+ 3W

Na

3
Nb
3

, (26)

gets energetically favourable, one needs to solve the inequality E(M) < E(SM− Ka), giving359

α >

(
3Ka

4Na
− 1

2

)
1
β
− Naβ

2Na − 3Ka
, (27)

and then impose that the critical value of α falls exactly where the lobe with energy E(SM− Ka) would360

give way to the lobe with energy E(SM− Ka − 1). As a result, one obtains relation361

α∗ = −
√

β2N2
a + 1

βNa
(28)

giving the border between region M and the staircase-like structure (see black dashed line in Figure 10)362

and relation363

Ka,max =
2
3

(
Na − 1−

√
β2N2

a + 1
)

(29)

giving, for a certain value of β, the maximum number of species-a bosons which can be subtracted364

from the supermixed soliton before abruptly switching to the uniform and mixed configuration (of365

course, as Ka,max must be an integer number, the use of the floor function is implicitly needed).366

It is important to remark that the presence of the staircase-like structure which is observed for367

small values of T and finite boson populations, Na and Nb, is not in contrast with the analysis developed368

within the CV picture (see Ref. [20] and its brief review in Section 3), but it is complementary to it.369

In fact, in the limit of large boson populations, one loses track of the quantum granularity which370

is responsible for the sequence of superfluid-like and Mott-insulator-like lobes and one re-obtains371

the same expressions which were obtained by approximating boson populations with continuous372

variables. For example, one has that373

lim
Na→+∞

α∗ = −1,

which corresponds to the M-PL border in the phase diagram illustrated in Figure 2, and also374

lim
Na→+∞

Ka,max

Na
=

2(1− β)

3
,

which perfectly matches the results obtained within the CV picture (see Table 1 at the M-PL transition).375

5. Conclusions376

In this work, we have investigated the quantum-granularity effect characterizing the formation of377

supermixed solitons in ring lattices. It occurs for small values of the tunnelling parameters and consists378
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in a jerky transfer of bosons from/to the site hosting the supermixed soliton. Interestingly, we have379

shown that it is possible to draw an analogy between the physics of a mixture trapped in a few-well380

potential and that of the superfluid-Mott insulator transition. More specifically, we have shown that,381

in certain regimes, the interspecies attraction plays the role of an effective chemical potential and382

therefore controls the release of bosons from a macroscopically occupied site which, in turn, plays the383

role of particle reservoir.384

In Section 2, we have introduced the model, highlighting the fact the we are considering a bosonic385

binary mixture featuring repulsive intraspecies and attractive interspecies couplings. In Section 3.1,386

we have presented the system phase diagram, which was shown to be spanned by just two effective387

parameters, accounting for the ratio between inter- and intraspecies couplings, and incorporating388

the possible asymmetry between bosonic species. Section 3.2 has been devoted to the presentation of389

several quantum indicators which are conveniently used to quantify the degree of localization and390

mixing of the two bosonic species, and the amount of quantum correlation (entanglement) between391

them. In Section 4 we have pointed out that small hopping amplitudes are responsible for a discrete392

interwell boson exchange and hence for the emergence of a staircase-like structure in the central region393

of the phase diagram. To this purpose, in Section 4.1, we have shown the behaviour of different394

quantum indicators including but not limited to the energy spectrum, various types of entropy, and395

the degree of degeneracy of the ground-state level. The interesting analogy with the mechanism396

of the superfluid-Mott insulator transition has been also discussed. Eventually, in Section 4.2 we397

have presented a simple but effective analytic framework capable of capturing the emergence of398

the quantum-granularity effect and the ensuing properties. The rich sequence of Mott-like and399

superfluid-like lobes revealed for the ring trimer is expected to be present in larger-size lattices. This400

aspect deserves further investigation which we shall develop elsewhere.401
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M Mixed
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