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Abstract: A human organism depends on stable glucose blood levels in order to maintain the 

metabolic needs. Glucose is considered as the most important energy source and glycolysis is 

postulated as a backbone pathway. However, when glucose supply is limited, ketone bodies and 

amino acids can be used to produce enough ATP. In contrast, for the functioning of pentose 

phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. PPP 

generates and maintains levels of NADPH needed for reduction of oxidized glutathione and protein 

thiols, synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox 

signaling and counteracting infections. Flux of glucose into a PPP, particularly under extreme 

oxidative and toxic challenges is critical for survival, whereas the glycolytic pathway is primarily 

activated when glucose is abundant, and there is lack of NADP+ that is required for activation of 

glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative 

challenges is discussed. Current evidences explain disruptive metabolic effects and detrimental 

health consequences of chronic nutritional carbohydrate overload and provides new insights into 

positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet 

through modulation of redox homeostasis. 

Keywords: glucose; pentose phosphate pathway; NADPH; redox balance; glycogen; glycolysis; 

stress resistance; insulin resistance 

 

1. Introduction 

The glucose level in blood is one of the most important homeostatic parameters and is strictly 

regulated [1]. A complex interplay of signals from central and autonomic branches of the nervous 

system, impact of multiple hormones and cytokines, all support coordinated glucose flows within 

the body according to the actual needs and availability, in order to maintain its concentration in a 

narrow range [2]. Since severe alterations of glucose metabolism take place in many diseases, 

including diabetes that affects hundreds of millions of patients worldwide, there is a wealth of 
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information about health effects and biochemical changes due to high (over 10.0 mM) or low (under 

3.5 mM) glucose levels. The pathways of glucose metabolism and its regulation such as 

glycolysis/glycogenolysis, pentose phosphate pathway (PPP), gluconeogenesis, polyol pathway, 

insulin signaling pathway and many others are very well studied and their physiology and 

pathophysiology are firmly established. It is well documented that hyperglycemia is associated with 

oxidative stress and severity of diabetes correlates with the levels of accumulation of lipid 

peroxidation products, oxidatively modified proteins and advanced glycation products, therefore, 

glucose itself is recognized by many prooxidant factor. Short-time higher than physiological glucose 

levels (more than 10mM) cause certain degree of damage due to increased rate of non-enzymatic 

glycation of proteins but are usually not life-threatening if blood glucose does not exceed 20mM and 

is associated with diabetic ketoacidosis due to insulin insufficiency. In contrast, low blood 

concentrations (2.5 mM and lower) can cause severe brain damage and potentially death within the 

periods of time as short as 5-6 hours [3]. Brain and particularly neurons are the most sensitive to 

glucose deprivation, while other tissues and cells show a wide divergence in resistance to 

hypoglycemia [1] that is very much dependent on their function, peculiarities blood flow and 

capability to store glucose in the form of glycogen. 

In the present review we would like to focus on the other aspects of glucose metabolism that are 

not sufficiently addressed in the literature, namely physiological aspects of involvement of glucose 

and its stores in the form of glycogen in regulation/maintenance of redox balance in cells and tissues. 

The role of glucose as a fundamental source of reducing equivalents to antioxidant intracellular 

machinery very often underestimated and remains deep in the shadow due to its reputation as 

primary source of energy. Understanding the involvement of glucose in redox processes will enable 

not only better explanation of its metabolic role, but also will open new possibilities to address poorly 

understood nature of insulin resistance, and metabolic changes in diabetes overall. Our interpretation 

is also consistent with the mounting epidemiological evidence and can explain deleterious health 

effects of excessive dietary consumption of carbohydrates and sedentary lifestyle. 

2. Basic overview of glucose metabolism and its role in maintenance of redox balance 

It is well known that most of the glucose in human metabolism is utilized intracellularly in 

glycolytic pathway with further degradation of products in the tricarboxylic acid (TCA) cycle in order 

to produce NADH and ATP [4]. Glycolysis is effectively activated by insulin in conditions of glucose 

abundance and a number of intermediates are also used for synthesis of needed amino and fatty acids 

as well as other important metabolites [2]. However, in conditions of limited glucose supply and/or 

excessive metabolic needs there are numerous alternative ways to generate enough NADH and ATP, 

for example by oxidation of fatty acids, utilization of ketone bodies etc. Flexibility and 

interchangeability of cellular energy supply provides sustainable and at the same time variable flow 

of metabolites that is capable to accumulate them when the nutrients are in abundance and consume 

them in a most effective way when there is their deficit. In the periods of starvation or glucose deficit 

activation of catabolic programs is capable to maintain energy production in most of the organs [5]. 

Since neurons do not accumulate glycogen and total accumulation of glycogen in central nervous 

system being extraordinarily low is limited to astrocytes, neurons rely on glucose supply from the 

bloodstream [6]. Interestingly, in the periods of starvation the brain can effectively use ketone bodies 

as a primary fuel accounting for more than 75% of its energetic needs, pointing out the possibility 

that glucose may be used for other purposes in this case [7]. This is further confirmed by the 

observation that glycolysis in neurons is actively downregulated by proteasomal degradation of 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3, preventing utilization of glucose for 

bioenergetics purposes. This mechanism, as suggested by authors, spares glucose in neurons for 

maintaining antioxidant status, especially in conditions of limited glucose supply [8]. 

The importance of other major pathway of glucose metabolism, which to certain degree is an 

alternative or parallel to upper glycolysis, a pentose phosphate pathway (PPP) is also long known. It 

is believed that its major function is generation of reducing equivalents in the form of NADPH 

needed for de novo lipogenesis, synthesis of DNA and aromatic amino acid [9]. Indeed, proliferating 
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cells use most of the NADPH for DNA and fatty acid synthesis [10]. The other major functions of 

NADPH are the reduction of oxidized thiols and glutathione, generation of superoxide anion and 

hydrogen peroxide during respiratory burst to fight infections and to provide redox signals to 

regulate cell functions. In addition, it is also needed for detoxification of xenobiotics [11]. A growing 

number of publications point out rerouting of glucose into a PPP as a major protective mechanism 

employed to counteract acute and severe oxidative stress [9,12,13]. According to the calculations, full 

oxidation of one molecule of glucose in PPP yields 12 molecules of NADPH reduced from NADP+ 

[14]. This aspect highlights extraordinary efficiency and prompt responsiveness of this mechanism in 

balancing redox homeostasis in conditions of acute oxidative challenge. Indeed, activation of redox-

sensitive transcription factors such as Nrf2 or FOXOs, in response to oxidative stress will result in 

induction of antioxidant enzymes within hours [15], while rerouting of glucose into PPP to generate 

reducing power for antioxidant enzymes takes place almost immediately [14]. With the use of13C 

flux analysis in neurons it was recently shown, that glucose metabolism through PPP may be much 

more significant than it was estimated earlier [16]. Moreover, authors demonstrated that about 73% 

of produced labeled pyruvate was exported from neurons as lactate [16]. This may indicate that 

neurons remove glucose that cannot be fully utilized in TCA away from the cells. In case of increased 

functional activity, oxidative stress or glucose deficit during starvation, most of the glucose flux may 

be redirected into PPP. 

PPP is a major source of NADPH, however, not the only one. Substantial amounts of NADPH 

are generated in folate-dependent NADPH-producing pathway [10] as well as by cytosolic isocitrate 

dehydrogenase and malic enzyme [11]. However, these sources are often coupled with synthetic 

pathways, for example isocitrate is in abundance when glycolysis is activated and contributes to fatty 

acid synthesis, therefore it is difficult to expect their substantial contribution to regeneration of 

NADPH in case of oxidative stress. To certain degree metabolism of amino acids can compensate 

functional lack of glucose and contribute to maintenance of NADPH, but this seems to be the 

mechanism with limited power under extreme exposures. Noteworthy, recently it was shown, that 

malic enzyme and 6-phosphogluconate dehydrogenase (6PGD) form a hetero-oligomer to promote 

activity of 6PGD, independently on activity of malic enzyme [17]. It is likely that the other structural 

and functional interactions may exist in the cells in order to couple synergistic metabolic processes in 

response to oxidative stress. Activity of alternative pathways provides robustness of NADPH supply 

and to some extent compensates deficit of PPP flux in patients with glucose-6 phosphate 

dehydrogenase (G6PD) deficiency, the most common genetic disease in humans [18]. Patients with 

G6PD deficiency generally have no symptoms and their lifespan is not affected by disease, but it was 

shown that in addition to increased hemolysis they are less resistant to some poisonings [18] and 

have higher risk of diabetes and metabolic syndrome [19]. Glucose-6 phosphate (G6P) is an exclusive 

substrate for G6PD, a rate limiting enzyme of PPP and in human organism can be supplied from 

extracellular space in the form of glucose, then phosphorylated by hexokinase. Alternatively, glucose-

1 phosphate released from glycogen, if the latter is available in the cell, is converted by 

phosphoglucomutase to G6P. Some tissues, namely liver, kidneys or intestine [7], and to some extent 

glial cells can generate glucose via gluconeogenesis. Also, tumor cells may reverse glycolysis in order 

to maintain their biosynthesis in glucose-free conditions [20]. Noteworthy, expression of most of the 

enzymes in the PPP is controlled by Nrf2, a redox sensitive transcription factor involved in 

upregulation of antioxidant and detoxifying genes, degradation of damaged proteins and metabolic 

reprogramming during stress [21] pointing out tight conjugation of redox balance maintenance and 

glucose metabolism. In other words, on the cellular and organism ś levels response to local or 

systemic oxidative stress is associated with increased glucose release/production by liver and 

subsequently hyperglycemia, which may be physiological adaptive response in healthy subjects and 

may also take place as a chronic metabolic deterioration in patients. 

3. Oxidative PPP is thermodynamically more favorable compared to upper glycolysis under 

conditions of limited glucose supply 
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In physiological conditions (without metabolic/oxidative stress) ratio of reduced and oxidized 

forms of this coenzyme NADPH/NADP+ is very high (in the range of approximately 100/1 but is 

highly tissue-dependent) and the lack of free NADP+ prevents G6P from entering PPP [14]. However, 

as soon as NADPH is oxidized (e.g. in conditions of oxidative stress) increased availability of NADP+ 

immediately redirects metabolic flow to PPP and suppress further steps of glycolysis and 

downstream utilization of glucose metabolites in TCA [8, 13]. In other words, cells prioritize 

metabolism of glucose through PPP over standard reactions of upper glycolysis in order to maintain 

a sufficient NADPH/NADP+ ratio needed for counteraction of acute oxidative challenge (prompt 

enzymatic reduction of glutathione and other oxidized thiols), biosynthesis and/or generation of 

superoxide during immune responses or as physiological redox signaling (Figure 1). Glucose 

availability for PPP, either from extracellular space, or from intracellular glycogen stores, is essential 

for acute antioxidant responses providing survival of cells and organism in extreme conditions. 

Stable and robust liver glucose output in case of severe stress (including oxidative stress), infection, 

starvation and extreme exercise is protected by the development of insulin resistance in order to 

provide sufficient glucose flow to balance redox homeostasis. In absolute quantities, especially at rest, 

glucose flow into PPP may be low compared to standard upper glycolysis, but under conditions when 

the NADPH/NADP+ ratio drops, amounts of glucose entering PPP will correspond to the degree of 

NADPH depletion. 

 

(a)              (b) 

Figure 1. Schematic presentation of the conventional (a) and pentose phosphate pathway-centric (b) 

views of glucose metabolism. Abbreviations: G1P – glucose 1 phosphate, G6P – glucose 6 phosphate, 

PPP – pentose phosphate pathway, TCA – tricarboxylic acid cycle, NOX – NADPH oxidase, NOS – 

nitric oxide synthase. 

A key factor leading G6P into PPP is the presence of NADP+. The first reactions of PPP as well 

as other reactions producing NADPH are energetically very favorable and are basically irreversible 

[22]. In contrast, most of the reactions of glycolysis are reversible. Activation of glucose utilization 

through glycolysis in physiological conditions takes place when the NADPH/NADP+ ratio is high 

(usually 50-100/1), glucose is relatively abundant and insulin signaling is not compromised. 

Glycolysis serves as a source of pyruvate for TCA cycle and a number of anabolic intermediates in 

conditions of high carbohydrate availability and is supposed to be fully activated only occasionally 
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under physiological conditions often switching to oxidation of fatty acids when glucose availability 

is limited. This shift takes place in concert with activation of transcription factors involved in 

antioxidant defense (Nrf2, FOXOs, etc.) as a part of systemic antioxidant response aimed to balance 

redox homeostasis, where gluconeogenesis and activation of PPP are fundamental parts of it (Figure 

2). A sedentary lifestyle plus an abundance of carbohydrates in food lead to imbalance of nutritional 

consumption and actual metabolic needs, therefore, cause redox dysregulation that contributes to 

metabolic syndrome, diabetes type 2 and is important factor that increases in the incidence of cancer 

that is discussed in more detail in the next section. 

 

 

 

Figure 2. Glucose availability is a major factor in maintenance of redox homeostasis through reduction 

of oxidized NADP+, which is used for reduction of oxidized glutathione and thiols. At the same time 

NADPH is used for synthesis of DNA and fatty acid synthesis and is needed for activities of NADPH 

oxidases and NO-synthase activities and other processes. The scheme is simplified and regulatory 

networks functioning in living systems are much more complex and include other mechanisms and 

feedback loops. For example, it was recently shown, that deletion of Nrf2 in mice can be to large extend 

compensated by other adaptive mechanisms in conditions of caloric restriction [23]. This suggests that 

robust regulatory network beyond Nrf2 and FOXO transcription factors exists in order to maintain 

redox balance. Abbreviations: PPP – pentose phosphate pathway, NOX – NADPH oxidase, NOS – nitric 

oxide synthase, GSH – glutathione, GSSG – glutathione disulfide, Pr – protein, ARE – antioxidant 

response element, InsR – insulin receptor, cAMP – cyclic adenosine monophosphate, FOXO – 

forheadkbox O transcription factors, Prx3 – peroxiredoxin 3, Nrf2 – Nuclear factor (erythroid-derived 

2)-like 2 transcription factor, MnSOD – manganese superoxide dismutase, NF-kB - nuclear factor 

kappa-light-chain-enhancer of activated B cells. 

4. The epidemiological evidence of glucose overload in human population: current vs. historical 

nutritional/behavioral patterns and a growing potential of pharmacological interventions 

As currently observed, massive nutritional carbohydrate overload associated with dramatic 

decreases in physical activity caused an epidemic of non-communicable diseases such as obesity, 

metabolic syndrome, type 2 diabetes, atherosclerosis, hypertension and cancer [24]. A large-scale 
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epidemiological cohort study pointed out that high carbohydrate consumption is a major factor for 

all-cause mortality, while different types of fat were not associated with increased mortality. Thus, 

authors question current dietary guidelines suggesting an urgent need for their reconsideration [25]. 

On the other hand, the result of a large prospective cohort study indicate that health outcomes 

depend rather on quality of food rather than just limiting carbohydrate or saturated fat in the diet. In 

addition, “unhealthy” low carbohydrate and/or fat diet may increase all-cause mortality in studied 

population [26]. Together with other evidences, including numerous animal studies, a serious 

demand for strategies on how to counteract carbohydrate overload is indicated. Different approaches 

including pharmacological interventions [27] as well as public health and food regulation policies are 

increasingly discussed in the literature [28]. Careful evaluation of multiplicity of factors must be in 

place in order to determine the optimal nutritional pattern for health preservation and prevention of 

age-related diseases. 

In fact, abundance of carbohydrates in food during human evolution was rather rare and a kind 

of short-term and often seasonal luxury [29]. Human neonates grow very rapidly and their need in 

carbohydrate supply is probably higher than in adults and in other species due to relatively large 

brain and rapid development of nervous system, however, human breast milk contains “only” about 

6.7 g per 100 ml of lactose accounting for up to 40% of calories, highest compared to other mammals 

[30, 31]. It is not likely, that adults need more carbohydrates than babies as a percent of calories intake 

in usual conditions without regular vigorous physical activity. Excessive consumption of 

carbohydrates and low physical activity are major contributors to increasing rates of metabolic 

syndrome and obesity in children and adolescents [32]. 

At high growth rate, intensive physical activity as well as strong immunity needed for resistance 

to infections and occasional poisonings requires maintenance of sufficient levels of glucose in blood 

despite prolonged periods of carbohydrate deficit. Dietary glucose as well as other carbohydrates 

were precious food components with limited, often seasonal availability promoting survival under 

extreme conditions [29]. Therefore, an evolutionary sweet taste developed to detect sources of 

digestible carbohydrates [33]. Only development of agriculture about 10000 years ago enabled higher 

consumption of grain, increasing the share of carbohydrate in the diet. Even though carbohydrates 

became more available, any possible overload would rather not take place considering intensive 

physical activity of most of the people at that time. Thus, gradual increase in basic food availability 

and elimination of physical work created a massive nutritional carbohydrate overload at the 

organism’s level causing respective health consequences [25]. Consistent with this, recently a 

metabolic core model was used to evaluate how increased glycolytic utilization of glucose together 

with glutamine-dependent lactate production promotes cancer growth [34]. Hyperglycemia may 

directly contribute to increased risk of cancer as it was recently shown by Wu et al. [35]. Overall, there 

is a growing evidence, both mechanistic and epidemiological, that confirms previous predictions of 

interrelationships between risk of cardiovascular/metabolic diseases and cancer risks [36-38]. 

Consistent with this is recent data generated on C. elegance model regarding integration of stress 

induced responses of nervous system with metabolic adaptations [39]. It was shown that the flight 

response mediated by tyramine (worm analog of catecholamines) in the end leads to stimulation of 

insulin-IGF-1 signaling and have the opposite effect to longevity-promoting stress responses to heat, 

starvation, glucose restriction or exercise [40-42]. If hypothetically translated to modern humans it 

can provide accurate mechanistical explanations why emotional stress accompanied with sedentary 

behaviors may have detrimental health consequences associated with both excessive insulin and 

adrenaline signaling causing atherosclerosis [24], contributing among the other factors to insulin 

resistance and accelerated aging [43] but can be reversed by exercise or fasting [44]. In this sense 

psycho-emotional stress prepares the organism to the impact of “expected” extreme factor in near 

future, and in case of “false alarm” excess of glucose needs to be utilized by activation of insulin 

signaling contributing to pathologic continuum that leads to atherosclerosis [24]. 

In regard to glucose balance/overload and its crucial role in metabolic diseases very important 

is new data obtained in clinical trials where patients were exposed to sodium glucose co-transporter 

2 (SGLT-2) inhibitors. Designed initially to improve glycemia in patients with type 2 diabetes that are 
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not optimally controlled by metformin monotherapy – canagliflozin, dapagliflozin, empagliflozin 

and others are continuously surprising clinicians and researchers by new positive effects far beyond 

glycemia including but not limited to improvement of insulin resistance, reducing body weight [45], 

preventing acute cardiovascular events [46], exerting normalizing effect on blood pressure, kidney 

function [47] and reversing manifestations of heart failure [46]. A plethora of positive effects 

convincingly confirmed in strictly controlled clinical trials according to the highest standards of 

evidence-based medicine by simply getting rid of approximately 50-70g of (excessive) glucose per 

day really makes difference for patients and potentially may find its place among preventive 

interventions. It is worth pointing that some contribution to the effect may potentially come from 

sodium reabsorption inhibition, however, it is clear that the role of glucose excretion is prominent. 

Thus, from the evolutionary point of view human organism was rather not used to consumption 

of large amounts of glucose and have had to optimize metabolism in order to be able to produce 

sufficient its amounts accordingly to metabolic needs. PPP importance evolved in order to provide 

resistance to oxidative challenges that is crucial for the survival in acute extreme conditions in 

multicellular organisms. Upregulation of PPP under oxidative stress is tightly coupled with enhanced 

glucose output from glycogen stores and/or stimulation of gluconeogenesis. Glucose 6-phosphate is 

a specific substrate for PPP that makes glucose so important and strictly regulated in maintaining 

redox homeostasis in human organism [1]. 

5. Glycogen protects against (not only) oxidative stress 

According to our hypothesis, availability of intracellular glycogen is supposed to be protective 

against oxidative stress, and vice-versa; its absence exposes cells to higher risk. Indeed, neurons, 

which are unable to accumulate glycogen appear to be among the most sensitive cells to oxidative 

stress and they apply sophisticated mechanisms to direct the flow of glucose into the PPP in order to 

protect themselves [8]. Severe hypoglycemia may result in seizures, loss of consciousness, coma and 

if glucose is not administered/ingested for longer periods (more than 5-6 hours) – death [48]. Very 

similar clinical manifestations are observed in case of hyperbaric oxygen exposure (so called oxygen 

poisoning) that also causes severe redox imbalance in brain [49]. 

A recent C. elegans study demonstrated the crucial role of glycogen stores in resistance to acute 

oxidative stress [50]. Moreover, excessive accumulation of glycogen from a high-glucose diet and 

with impaired glycogen degradation resulted in decreased lifespan of the worms [50]. Insecticide 

poisonings causing oxidative stress in the fruit-eating bat Artibeus lituratus causes glycogen stores 

depletion [51]. It was recently shown that hawkmoths, who have one of the highest metabolic rates 

among known animals, use nectar sugar directed through PPP to counteract oxidative damage 

resulting from flight [52]. In humans, inability to deplete muscular glycogen in patients with glycogen 

phosphorylase deficiency (McArdle disease) is associated with severe exercise induced oxidative 

stress and a risk of rhabdomyolysis [53]. This points out the possibility that the function of glycogen 

in muscles is not only an energy store during periods of intensive contraction, but also for 

counteracting oxidative challenges associated with exercise. 

It was noted that main life- and health-span promoting interventions such as caloric restriction, 

intermittent fasting and exercise have in common that the depletion of glycogen stores [44], thus 

reducing the protective capacity of glycogen and exposing the cells to moderate hormetic oxidative 

stress. Glycogen stores are not simply an intracellular source of glucose, they also have an important 

signaling function [54] and are protective against a number of stressful situations, namely 

hyper/hypo osmotic stress [55], anoxia/hypoxia [56] etc. In addition, growing evidence indicates that 

a metabolic switch from utilization of glucose, which is abundant in western diets, to ketone bodies 

use derived from fatty acids is an evolutionarily conserved trigger-point responsible for health effects 

from intermittent fasting, caloric restriction and exercise [57]. Also, a complex interplay of hormones 

including insulin, glucagon, leptin, adiponectin and others regulate metabolic adjustments in 

conditions of food abundance and deficit to provide needed glucose levels and energy in the 

organism [58-60]. 
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6. Epigenetics and posttranslational protein modification modulate oxidative stress responses 

Epigenetics regulates gene expression modifying DNA methylation and chromatin structure. 

This regulatory mechanism works differently in each tissue to guarantee specific genetic responses 

to environmental factors (i.e. nutrition, chemicals, stress, etc.), without any changes in the sequence 

of nucleotides [61, 62]. Epigenetics plays a key role starting from early life, where it is the master 

director of cell differentiation, X-inactivation and programming of adult health [63]; epigenetic 

changes can be transferred to the progenies and, sometimes, they can be reverted [64]. 

DNA methylation consists in the methylation of Cytosine at CpG islands in the promoter region 

of genes which has been associated with gene silencing, while different responses (activation or 

inhibition of gene expression) derives from methylation of CpG islands located in the regulatory 

regions of genes. Histone modifications are changes that are more complex, because functional 

groups (i.e. acetyl, methyl, P, etc.) deriving from oxidation of nutrients, can be added to histones’ 

amino acid residues, thus remodeling chromatin. The final result of histone modification is chromatin 

remodeling at specific genes, leading to increased/decreased gene expression associated with healthy 

or unhealthy regulatory responses [63]. 

Oxidative stress related with metabolic responses linked to hyperglycemia can enhance DNA 

methylation interfering with S-adenosyl-L-methionine (SAM), the key methyl donor for DNA 

methyltransferases (DNMTs) which catalyze CpG methylation [65]. In particular, the deprotonation 

by superoxide anion of cytosine C5 at CpG islands can support the formation of DNA-SAM complex 

leading to the final cytosine methylation; furthermore, DNA methylation has been associated to the 

increase of DNMT1 and DNMT3B expression due to reactive oxygen species (ROS) [65,66];. Glucose 

can mediate epigenetic modification not only through ROS, but also because the high level of glucose 

can interfere with DNA demethylation via TET2 and AMPK [67]. 

However, oxidation at the level of guanine leading to 8-hydroxydeoxyguanosine (8-OHdG) in 

CpG islands, can also decrease cytosine methylation and reduce the binding of transcription factors 

to the promoter region. Oxidation of 5-methylcytosine (5mC) due to Ten-Eleven Translocation (TET) 

proteins leads to 5-hydroxymethylcytosine (5hmC) formation which is deaminated to 5-

hydroxymethyluracil and then replaced with unmethylated cytosine [68]. Oxidative stress can also 

inhibit the NAD+ dependent deacetylase SIRT1 that controls inflammatory responses, lipid storage, 

telomerase activity, mitochondrial respiration and ROS production [69, 70]. In this context, a high-

fat/glucose diet that decreases NAD+ content can negatively regulate Sirtuin activity. 

Regulation of responses to oxidative stress is complex and includes many mechanisms [71] such 

as oxidative modifications of macromolecules by ROS [72], signaling through lipid peroxidation and 

their products [73] and involvement of different transcription factors (i.e. mentioned above FOXOs 

and Nrf2) [74, 75]. Considering ubiquitous expression of these transcription factors as well as their 

crucial cellular functions it is very difficult to modulate them by pharmacological interventions [72, 

76]. Similarly, lipid peroxidation products play important physiological functions, for example in 

gastrointestinal tract [77]. Considering significance of regulatory functions of 4-hydroxynonenal and 

other lipid peroxidation products they also start attracting interest as a target for pharmacological 

interventions in major stress-associated disorders [78]. 

7. The evidence from glucose-6 phosphate dehydrogenase deficiency 

G6PD deficiency is the most common genetic human disease [18] and much can be learned from 

the published evidence. Since G6PD is a gateway to such an important metabolic pathway as PPP, 

dramatic consequences to the patients could be expected. However, it is very often not the case. As it 

was already mentioned in the introduction section, patients have few or no symptoms with generally 

positive prognosis and their expected lifespan is not different compared to the general population 

[18]. There are two basic explanations for this evidence: first, most of the patients have moderate 

degree of G6PD deficiency and PPP is still functioning at some level and also alternative pathways 

generate sufficient amounts of NADPH; second, humans in modern lifestyle are exposed to relatively 

low intensity stressors and there is simply no need for acute responses to stress. In contrast, severe 

G6PD deficiency indeed has a detrimental effect on the immune system and causes higher 
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susceptibility to infections [79]. In addition, G6PDH deficient athletes and patients with this genetic 

defect may have severe hemolytic crises after physical exertion [80], however, severity of 

susceptibility of individual subjects may vary widely [81]. Complete G6PD knockout in mammals is 

incompatible with life, but in mouse embryonic stem cells it led to severe susceptibility of cells to 

oxidative stress induced by H2O2  or diamide and reduced cloning efficiency. However, the later was 

restored when the oxygen concentration was reduced [82]. Therefore, in conditions of substantial 

oxidative challenge proper function of PPP and generation of NADPH are essential for survival [83]. 

Conversely, G6PD overexpression may be expected to increase resistance to oxidative stress. Indeed, 

recent reports indicate that G6PD overexpression extends the lifespan of Drosophila melanogaster 

[84], which is consistent with some of the results obtained using a G6PD overexpressing mouse model, 

where it leads to the extension of health-span of mice and increased resistance to oxidative damage 

[85]. 

8. Redox dependence of pancreatic regulation of blood glucose levels 

A growing body of evidence indicates that release of insulin from pancreatic β-cells depends on 

a functioning of PPP. It was shown that insulin levels of G6PD deficient patients are lower compared 

to unaffected controls and patients have significantly reduced insulin response to elevation of blood 

glucose [86]. More recently, with the use of metabolomics approach it was shown that insulin release 

is controlled by direct implication of PPP [87]. According to a recent review, among the most 

important amplifiers/regulators of insulin secretion by β-cells are high levels of NADPH and 

glutathione [88]. So, insulin release is taking place in conditions of “metabolic welfare” and oxidative 

stress may reduce the ability of β-cells to release insulin [89]. α-cells also have their intrinsic 

mechanisms of glucose sensing relying on intracellular redox balance, but they are activated by pro-

oxidant situations [90]. Interestingly, under physiological conditions β-cells do not accumulate 

glycogen but are able to do so under prolonged hyperglycemia and may prolong insulin secretion 

even after normalization of glucose concentration. In contrast, α-cells do not accumulate glycogen, 

so when the concentration of blood glucose drops, they can be quickly activated without delay [91], 

which is extremely important in case of emergencies. 

One may argue, that there are many other mechanisms of regulation of insulin and glucagon 

that can either enhance or inhibit respective secretion, including paracrine δ-cells secreting 

somatostatin[92, 93], effects of glucagon-like peptide-1 (GLP-1)[94], glucose-dependent 

insulinotropic peptide (GIP)[95], leptin/adiponectin axis[96], autonomic nervous system[97, 98] etc. 

However, the effects of all these regulators are integrated at the level of α- and β-cells and their 

metabolism resulting shifts of redox potential [87, 88, 90]. 

9. Inflammation, insulin resistance and redox homeostasis 

NADPH produced by PPP or by other pathways is also used by NADPH oxidases and nitric 

oxide synthase to produce superoxide anion. This is important for proper functioning of the immune 

system and for redox regulation of multiple processes in the tissues including endothelial function 

[99]. It was shown, that pro-inflammatory interleukin 1β enhances glucose uptake under 

hyperglycemic conditions in cultured human aortic smooth muscle cells. It also activates PPP and 

promotes production of superoxide by NADPH oxidase contributing to vascular damage [100] 

pointing out a particularly dangerous combination of inflammation and hyperglycemia. Since 

immune cells require glucose for their function, they send regulatory signals, for example TNF-α [101] 

or microRNAs [102] to the liver to enhance hepatic glucose output and thus chronic inflammatory 

conditions may cause insulin resistance [103]. The opposite effects are mediated by anti-inflammatory 

interleukin-10 [104] and the spleen plays a particularly important role in these regulatory interactions 

[105]. The autonomic nervous system may also be involved in regulation of interactions of local 

inflammatory conditions and oxidative stress [106]. Autonomic output is actively involved in 

regulation of glucose homeostasis and can adjust the rates of glucose production and utilization 

independently of hormonal influences [107]. Healing of oxidative stress associated conditions, 

therefore, may improve autonomic balance [108]. Chronic carbohydrate overload and reduced 
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physical activity cause obesity and metabolic syndrome and for these conditions insulin resistance is 

very typical [109]. Thus, there exist complex multilevel regulatory interactions to provide sufficient 

flow of glucose to tissues in order to maintain redox balance. Prompt adjustments of redox 

homeostasis are critical for the immune defense where the PPP plays a major role. Insulin resistance 

developing in this case seems to be adaptive and to some extent a protective mechanism [110], but, if 

dysregulated, it leads to detrimental health consequences. 

10. Glucose – “oxidant” or “antioxidant” after all? Sola dosis facit venenum. 

There is a certain degree of confusion in the literature concerning the role of glucose in 

maintenance of redox homeostasis. It was long known, that diabetes and hyperglycemia obviously 

cause redox dysregulation, oxidative stress and accelerated ageing [111]. On the other hand, glycogen 

clearly protects against the oxidative stress and at the same time decreases lifespan and healthspan 

[50, 112]. Starvation and stress induced gluconeogenesis clearly support survival and improve health- 

and lifespans [112, 113], but are associated with increase generation of ROS [40]. Moreover, complete 

withdrawal of glucose hence leads to short-term fall of ATP production, surprisingly causes a rise in 

ATP and increased mitochondrial content shortly after that is associated with the activation of the 

protein deacetylase SIRT1. At the same time increased ROS production or possibly insufficient ROS 

utilization is documented [114]. This suggests that there is a variety of effective metabolic adaptations 

to compensate lack of glucose for ATP production, but subsequent deficit of reducing power to 

counteract to increase in ROS production is much more difficult to compensate. Exercise, intermittent 

fasting/caloric restriction all lead to functional glucose/glycogen depletion through activation of 

autophagy supports healthy aging that requires certain degree of oxidative stress that leads to 

metabolic shift to catabolism and activate endogenous protective mechanisms that include enhanced 

protein quality control, stimulation of endogenous antioxidant defense including gluconeogenesis 

[57, 111, 115]. 

The other interesting aspect of glucose involvement in redox homeostasis is that 

supraphysiological concentrations of glucose in the cells actually may lead to increased production 

of hydrogen peroxide by mitochondria through inhibition of mitochondria-bound hexokinase [116]. 

Similarly, chronically high levels of NADPH may contribute to enhanced generation of superoxide 

and/or hydrogen peroxide by NADPH-oxidases (NOX) as well as enhances reduction of glucose in 

polyol pathway (Figure 2) [99]. Involvement of NOX in regulation and maintenance of redox 

homeostasis is very complex and depends on its isoforms that are expressed differently in tissues. 

For example, cardiomyocytes express NOX2 and NOX4 isoforms and use generation of H2O2 for 

regulation of cellular metabolism and contractile function (NOX4 activation acts similarly as beta-

blockers decreasing inotropy) [117]. NOX isoforms are increasingly studied as potential therapeutic 

targets in order to modulate redox balance in the cells during cardiovascular and metabolic diseases 

[118]. 

Diabetes, both type 1 and 2 are well documented diseases associated with oxidative stress. The 

fundamental feature of diabetes is chronic hyperglycemia due to excessive glucose production and/or 

impaired its utilization by the tissues. There are several mechanisms contributing to oxidative stress 

in conditions of hyperglycemia that include but are not limited to non-enzymatic glycation and 

formation of advanced glycation products, activation of polyol pathway that results in depletion of 

NADPH (decreased rate of enzymatic reduction of oxidized glutathione and thiol groups of proteins), 

increase in NADH and depletion of NAD+ (increased superoxide anion production in mitochondria), 

inhibition of histone deacylation and excessive histone acetylation due to accumulation of acetyl-CoA, 

as well as generation of excessive amounts of sorbitol and fructose [119]. 

Taken together, the evidence indicates that there exists a delicate balance between protective 

and damaging redox effects of glucose and chronic dietary carbohydrate overload may affect the 

regulatory mechanisms that developed during evolution to maintain redox homeostasis (Figure 3). 

Bell-shaped antioxidant activity of glucose explains well necessity to regulate it strictly within the 

narrow range, while both excessively high and/or low levels of glucose/carbohydrates [120] lead to 

oxidative and metabolic stress that quickly becomes damaging. Dysregulation of glucose metabolism 
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that takes place in diabetes closes vicious cycle further exacerbating redox dysregulation that was 

actually meant to be fixed by induction of hyperglycemia. 

 

 

Figure 3. Dependence of redox effects of glucose on its concentration (hypothetic relationship 

suggested by the authors). Hypothetical simplified model describing influence of blood concentration 

of glucose on redox potential in human organism. Multiple additional factors influencing redox 

potential such as concentration of oxygen, availability of amino and fatty acids, type of cells and 

effects of either hormones (insulin, glucagon etc.) or cytokines are not considered. Concentrations of 

glucose as well as the shape of the curve are roughly estimated and not confirmed by actual 

experiments and may significantly vary depending on conditions and tissue type. 

11. Important implications 

Glucose is a central metabolite and depending on its availability and metabolic need can play 

different roles in the organism. Glucose flows within the human body are strictly regulate and 

promptly adjustable in order to maintain metabolic flexibility and provides robust resistance to 

different types of stressing factors (Figure 4). The role of glucose is not limited to merely generate 

enough ATP (which is the case in conditions of glucose abundance and low stress), but more 

importantly, it is responsible for emergency mechanisms of maintenance of redox potential that is 

essential for the survival in extreme situations (fight or flight reactions, infections, poisoning etc.). 

Since TCA-cycle reactions and oxidative phosphorylation can be effectively maintained in 

almost absence of glucose by oxidation of fatty and amino acids, its residual amounts are in catabolic 

conditions redirected into PPP to maintain redox balance in the cells. At the same time anabolic state 

requires redirecting of glucose excess into energy production and biosynthesis (growth, proliferation, 

hypertrophy etc.), when the primary life-supporting and life preserving needs ensured by glucose 

have already been met (“survival – first, growth – follows”). Proposed principle is helpful for 

understanding of the regulation of glucose metabolism aimed primarily to maintain redox balance, 

especially in acute extreme conditions requiring prompt and massive antioxidant responses. 

Oxidative stress, infections/inflammation, starvation, exercise, aging and many other pathological 
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conditions or processes decrease GSH/GSSG and NADPH/NADP+ ratios. Sensors sense these changes 

and drive glucose flows to compensate for these metabolic disturbances at the organismic level. In 

this regard insulin resistance develops as a protective “antioxidant” adaptive mechanism that 

stimulates glucose production and prevents its waste in order to cope with increased needs. When 

dysregulated and chronically over-activated, though, this leads to detrimental consequences caused 

by hyperglycemia [110]. 

 

 

Figure 4. Role of redox sensors (pancreatic α and β cells), immune system and central nervous system 

in regulation of blood glucose concentration by liver. Glucose release or absorption by liver integrates 

signals from nervous and immune systems, and peripheral redox sensors. System is highly flexible 

and tunable providing redox modulation that is dependent on actual needs. The other way around, 

glucose flows and redox state regulate the function of immune system [121]. Failure of feedback loops 

and distorted signaling either from CNS (stress), immune system (inflammation) or malfunction of 

peripheral sensors lead to excessive uncontrolled (poorly controlled) glucose release and or activation 

of gluconeogenesis leading to diabetes. 

The other important issue, which is often not taken into consideration by researchers, is that the 

presence of glucose stores in the form of glycogen or extracellular glucose availability provide 

enhanced resistance to oxidative stress. It is possible also, that glucose by strengthening of the 

reductive power of NADPH-dependent antioxidant enzymes prevents activation of redox sensitive 

regulatory factors such as Nrf2. That means that glucose nutritional overload affects physiological 

redox signaling, and chronic over-activation of insulin signaling causes metabolic diseases, as 

described in detail [24]. On the other hand, severe glucose overload itself can serve as a source of 

oxidative stress in the cells by participation of glucose in polyol pathway, over-activation of NADPH 
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oxidases and increased production of ROS by mitochondria. Exercise, caloric restriction, intermittent 

fasting, a ketogenic diet and some drugs have in common that they deplete organism’s glycogen 

stores [44], reduce glucose availability for the cells, restore physiological redox signaling suppressed 

by chronic excessive glucose consumption and leads to dramatic improvement of life- and health-

span in model organisms and humans (Figure 2). Metabolic changes caused by carbohydrate 

overload in the general population often take place far before clinically significant changes occur [43]. 

That is why relevant and sensitive instruments for early detection of these metabolic shifts are needed. 

11. Limitations of the analysis and directions of further research 

In this review we presented mainly general principles of glucose metabolism in the cells and its 

importance for maintenance of redox balance. However, different cells in different tissues have their 

specific metabolic patterns, specific functions, and own physiological peculiarities. We tried to focus 

on the most important findings and inconsistencies in the literature from our point of view rather 

than focusing on biochemical details, different pathways, tissue differences and to show how the 

clinical and experimental evidence may be interpreted when the glucose will be considered as redox 

mediator rather than simply fuel “burned” to generate ATP. Glucose metabolism may differ 

substantially depending on the specifics of tissues and cells, proliferation activity, redox balance 

required to maintain the functions, expression and activities of involved enzymes. It is not possible 

do describe accurately all the evidence that is published in the literature and we are aware that many 

important details may be missing in our analysis. Nevertheless, we hypothesize that convincing 

literature evidence indicate that glucose flows in the organism are primarily targeted to maintain 

redox homeostasis and counteract possible oxidative challenges. 

It may be argued that the actual flow through PPP is relatively low in the brain (as it has been 

shown by Gaitonde M. et al. [122]) and it increases substantially to approximately 20% of total glucose 

utilization by neurons only in case of severe oxidative stress induced by hydrogen peroxide [123] or 

during experimental brain injury [124]. However, a closer look into the methods used in the studies 

reveals that non-physiologically high concentrations of glucose were used, namely 22.3 mM in the 

medium and 50mM for perfusion in [123] and 23.9-26.9 mM plasma glucose after infusion in [124]). 

Flow of glucose into PPP is inhibited in conditions of high NADPH/NADP+ ratio, therefore as soon 

as the levels of NADPH are restored glucose is redirected into glycolysis or glycogen storage. 

Our reconsiderations may provide better understanding of physiology of glucose regulation in 

health and diseases and shift of general paradigm of glucose induced oxidative stress, which is, 

however true for hyperglycemia and diabetes, towards to understanding of redox effects of glucose 

in concentration-dependent manner. In other words, glucose maintenance at physiological levels is 

fundamental mechanism of counteracting excessive oxidation due to its involvement in the PPP and 

the NADPH production. Endogenous antioxidant systems using glucose provide sufficient 

antioxidant defense in physiological conditions. Moreover, redox modulating agents that have some 

health benefits when supplemented often turn to be rather prooxidant than antioxidant and lead to 

stimulation of endogenous antioxidant defense and improvement of glucose metabolism. Besides, 

therapeutic approaches to apply antioxidant substances in order to reduce oxidative damage and any 

administration of compounds with pure purpose to provide reducing equivalents appears weak [125] 

in contrast to often high in vitro activities [126] in comparison to existing endogenous antioxidant 

mechanisms, based on glucose as a source of reducing power for generation of NADPH and recycling 

oxidized glutathione and thiols and can in some cases be deleterious since they may interfere with 

redox sensors, for example protein thiol groups and cause dysregulations. 

The other important issue is the lack of convenient, informative, sensitive and specific ways of 

glucose and/or glycogen determination in tissues for research and clinical use. As we suggested 

earlier, glycogen determination, preferably in a simple, affordable and noninvasive way could be 

potentially a good biomarker for redox biomedicine [44]. Unfortunately, there are too many technical 

issues preventing development of such equipment for clinical use so far, but some efforts have been 

made to enable label-free glycogen estimation in C. elegans, an important animal model for metabolic 

and aging research [127]. 
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12. Conclusions 

Our critical analysis of current literature unveiled significant controversies and insufficient 

general understanding of metabolic role of glucose, particularly regarding redox homeostasis. An 

importance of glucose metabolism in the PPP for maintenance of redox homeostasis is very often 

underestimated. In the light of recent epidemiological evidence and advancements in the field of 

redox biology it is hypothesized, that a specific physiological function of glucose is its metabolism in 

the PPP to provide stress resistance to unfavorable factors by reduction of NADP+ to NADPH in order 

to maintain redox homeostasis and functioning of immune cells. Meanwhile the glycolysis takes place 

in favorable redox conditions when glucose is in abundance. This approach and interpretation in a 

simple way explains adverse metabolic effects and detrimental health consequences of nutritional 

carbohydrate overload and provides new details in explaining the positive metabolic effects of 

intermittent fasting, caloric restriction, exercise, and ketogenic diet. Better understanding the 

evolutionary adaptations and biological role of glucose may serve as an important theoretical 

background for future experimental and clinical studies related to glucose metabolism, aging, 

diabetes as well as other adjacent fields. 
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