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Abstract: Single nucleotide polymorphisms (SNPs) are associated with diseases and drug response 
variabilities in humans. Elucidating the damaging and disease-associated SNPs using wet-
laboratory approaches can be challenging and resource-demanding due to the large number of SNPs 
in the human genome. Due to the growth in the field of computational biology and bioinformatics, 
algorithms have been developed to help screen and filter out the most deleterious SNPs that are 
worth considering for wet-laboratory studies. This article reviews the existing in-silico based 
methods used to predict and characterize the effects of SNPs on protein structure and function. This 
cutting-edge approach will facilitate the search for novel therapeutics, help understand the etiology 
of diseases and fast-track the personalized medicine agenda. 
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1. Introduction 

Single nucleotide polymorphisms are the most common types of genetic variation in the human 
genome, occurring within coding [1] and non-coding regions [2] including intergenic stretches [3]. 
The wide distribution of SNPs in regions of the human genome results in different types of the 
mutation (Figure 1) with varying phenotypic characteristics. SNPs in non-coding regions do not alter 
protein sequences but may affect gene expression, non-coding RNA sequence, and gene splicing. In 
coding regions, SNPs may alter the amino acid sequence of proteins (non-synonymous) or not 
(synonymous) since the genetic code is degenerate. Synonymous mutations are not always silent, as 
they have been reported to alter transcription/translation processes [4] and protein conformation [5]. 
A nonsense mutation occurs when a single nucleotide variation results in a stop codon, thereby 
producing a premature protein. The missense mutation, however, results in a codon that codes for a 
different amino acid.  

 
Figure 1:  Types of single nucleotide polymorphisms in the human genome 
 

SNP

Coding regions

Synonymous Non-synonymous

Missense Nonsense

Non-coding regions

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2019                   

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2019                   doi:10.20944/preprints201912.0131.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints201912.0131.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 21 

Associating the various SNPs with their phenotypic characteristics using wet laboratory 
approaches can be challenging. There is growth in the use of high-throughput DNA sequencing 
techniques which has resulted in a plethora of genetic mutation data [6]. Filtering out the functional 
SNPs in this large pool of data using wet-laboratory approaches could be resource-demanding and 
cumbersome. Development in the field of computational biology and bioinformatics have 
contributed massively to alleviate this challenge. Researchers have used computational methods to 
characterize functional SNPs and predict the effect of the mutations on protein structure and function 
[7, 8, 9, 10, 11, 12]. Most of the computational algorithms make their predictions based on protein 
sequence and structure information [13], physicochemical properties of amino acids [14] and 
evolutionary conservation [15] to classify the effect as damaging or tolerable.  Computational 
modeling studies help to elucidate the structural dynamics and biological activities of the protein 
molecules, providing detailed information on the atomic fluctuations and conformational changes of 
the protein. 

 

2. SNP database 

2.1. dbSNP (Single Nucleotide Polymorphism Database) 

The National Center for Biotechnology Information (NCBI) created the dbSNP to serve as a 
central repository for genetic variation. In addition to single nucleotide variations, dbSNP contains 
other nucleotide sequence variations such as microsatellite repeats and small insertion/deletion 
(indel) polymorphism [16]. The mutations in dbSNP include publications related to the variations, 
sequence context of the polymorphism, population frequency, the experimental methods used to 
assay the variations, genomic and RefSeq mapping information [17].Associating sequence variations 
to phenotypic variations is of prime importance to genetic research, thus, the dbSNP facilitates 
studies in wide range of fields including, pharmacogenomics, association studies and evolutionary 
studies.  

2.2. HGMD (Human Gene Mutation Database) 

HGMD is a repository of all known genetic mutations in germline responsible for inherited 
diseases and other disease-oriented genetic polymorphisms available in peer-reviewed scientific 
literature [18]. The classes of variants available at selected genetic variation database including 
dbSNP and HGMD are listed in Table 1.  

 

3. In-silico prediction tools 

3.1. Sorting Intolerant from Tolerant (SIFT) 

SIFT web server (https://sift.bii.a-star.edu.sg/) uses sequence conservation and amino acid 
physicochemical properties to compute the potential impacts of single nucleotide polymorphisms 
(SNPs) and frameshifting insertions/deletions (indel) mutations in coding regions on protein function 
[19]. SIFT is a sequence-based prediction algorithm which assumes that highly conserved amino acids 
are vital for protein function and structure [20]. Based on this assumption, amino acid mutations at 
these conserved regions as a result of SNP may confer deleterious effect on protein activity. To 
ascertain evolutionary conserved sequences/regions, SIFT searches protein databases to obtain 
homologous sequences of the query and then performs a multiple sequence alignments (MSA) to 
identify conserved regions [20]. The SIFT algorithm then calculates the probability that a given 
substitution can be tolerated at a position based on the physicochemical properties of the native 
residue [14]. The substitution potentially affects protein function if its probability score falls lower 
than a cutoff score of 0.05 [21]. 

 
Table 1: Some notable genetic variation database and the type of mutation they host. 
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Mutation database Mutation type Reference 

dbSNP 
(https://www.ncbi.nlm.nih.go

v/snp/) 

Single nucleotide variations, small-scale 
deletions or insertions, retroposable element 
insertions, microsatellite repeat variations/short 
tandem repeats, multi-nucleotide variations 

[16, 17] 

dbVar 
(https://www.ncbi.nlm.nih.go

v/dbvar) 

Copy number variants (CNV), insertions, 
deletions, inversions, and translocations 50 base 
pairs (bp). 

[63] 

HGMD 
(http://www.hgmd.cf.ac.uk/ac

/index.php) 

Missense substitution, Nonsense substitutions, 
Splicing substitutions (intronic and exonic), 
Regulatory substitutions (exonic, intronic, 5′- and 3′-
untranslated regions), Micro-deletions ≤20 bp, 
Micro-insertions/duplications ≤20 bp, Micro-indels ≤ 
20 bp, Gross deletions >20 bp, Gross 
insertions/duplications >20 bp, Complex 
rearrangements (including 
inversions, translocations and complex 
indels), Repeat variations 

[18] 

OMIM 
(https://omim.org/) 

    Genetic variations associated with known 
genetic disorders. 

[64] 

1000 Genome 
(https://www.internationalge

nome.org/) 

A catalog of human genetic variations: single 
nucleotide polymorphisms, short 
insertions/deletions (indels), structural variants, 
haplotypes. 

[65] 

PharmKGB 
(https://www.pharmgkb.org/) 

Variants (SNP, indel, haplotype, etc.) associated 
with drug response phenotypes 

[66, 67, 68] 

HGVD 
(http://www.hgvd.genome.me

d.kyoto-u.ac.jp/) 

Exomic genetic variations in the Japanese 
population 

[69] 
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NHLBI Exome Variant Server 
(https://evs.gs.washington.ed

u/EVS/) 

Exome sequence variations relating to heart, 
lung and blood diseases 

 

ClinVar 
(https://www.ncbi.nlm.nih.go

v/clinvar/) 

The literature reviewed genetic variations 
significant to diseases/human health. Includes both 
sequence variants and structural variants. 

[70] 

LOVD 
(https://www.lovd.nl/) 

A network of curated gene variant [71] 

Exome Aggregation 
Consortium 

(http://exac.broadinstitute.org
/) 

Exome sequence variations [72] 

COSMIC 
(https://cancer.sanger.ac.uk/co

smic) 
Somatic mutations related to human cancer  [73] 

MitoMap 
(https://www.mitomap.org/M

ITOMAP) 
Human mitochondrial DNA variation [74] 

Database of Genomic 
Variants 

(http://dgv.tcag.ca/dgv/app/h
ome) 

Structural variation in the human genome: 
genomic alterations that involve segments of DNA 
that are larger than 50bp. 

[75] 

 

3.2. Protein Variation Effect Analyzer (PROVEAN) 

PROVEAN (http://provean.jcvi.org/index.php) is an algorithm that predicts the impact of single 
or multiple amino acid substitutions, insertion and deletion mutations on the biological activity of 
proteins [22]. The input data for the PROVEAN algorithm are the query protein sequence and the 
variations. The algorithm integrates the protein blast tool (BLASTP) with a 0.1 E-value threshold and 
NCBI NR protein database to search and obtain homologous and distantly related sequences [22]. A 
BLOSSUM62 substitution matrix-based computation is performed on the supporting sequences 
which comprise the sequence clusters that are very similar to the query sequence [23]. The effect of 
the variation is quantified by the delta alignment score - the degree of impact a variation in the protein 
query sequence has on protein function when compared to another protein subject of high similarity 
[22]. The algorithm then generates a PROVEAN score (average of the delta scores), which will define 
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the damaging effect of the variation. The variation is predicted as deleterious if the PROVEAN score 
is less than or equal to a threshold of -2.5 [24]. 

3.3. Screening for Non-acceptable Polymorphisms 2 (SNAP2) 

SNAP2 algorithm (https://rostlab.org/services/snap2web/) uses a machine learning system 
called an artificial neural network to predict the impact of single amino acid substitutions on the 
function of a protein [25]. The algorithm considers evolutionarily conserved regions, protein 
secondary structure, biophysical properties of amino acids, residue flexibility, SWISS-PROT 
annotations, predicted binding residues solvent accessibility amongst others [26]. SNAP2 relies on 
the query protein sequence as input data and for a given amino acid substitution, computes a score 
depicting the potency of the mutation to affect the function of the wild type protein. The score ranges 
from -100 to +100 implying strong neutral prediction and strong effect prediction respectively. Using 
the query protein sequence, SNAP2 collects dataset from Protein Mutant Database (PMD), SWISS-
PROT, Online Mendelian Inheritance in Men (OMIM), and HumVar. The algorithm fetches all amino 
acid variants from PMD, map the variants to the corresponding sequence and classify the impact as 
‘neutral’ or ‘effect [26].  To obtain the enzyme dataset, SNAP2 retrieves the Enzyme Classification 
Commission (EC) number of the query protein from SWISS-PROT, compares it with enzymes of the 
same experimental annotation function and determines the residue variations among them [25]. The 
disease-associated variations retrieved from OMIM and Human Var are all classified as ‘effect’ [26]. 
Predictions are based on the PMD dataset, Enzyme dataset and Disease dataset. 

3.4. Polymorphism Phenotyping 2 (PolyPhen-2) 

PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) predicts the impacts of non-synonymous 
SNPs (nsSNPs) on the stability and function of human proteins using sequence and structure-based 
predictive features. The structural parameters used by the Polyphen-2 algorithm include solvent 
accessible surface area, dihedral angles, hydrophobic propensity and B-factor [13]. Polyphen-2 
requires the query protein sequence and the amino acid mutation as the input data. The algorithm 
automatically runs a series of programs to predict the damaging effect of missense mutations on 
protein function. Based on the input data, Polyphen-2 confirms the missense mutation in the gene 
and then characterizes the substitution site as binding or active site, a transmembrane region or 
metal-binding site using a sequence-based prediction feature [27]. Polyphen-2 performs a multiple 
sequence alignment (MSA) followed by homology sequence analysis and calculates a profile score or 
position-specific independent count (PSIC) [13]. PSIC represents the logarithmic ratio of the 
probability of a given amino acid occurring at a position to the probability of the same amino acid 
occurring at a different position [27, 28]. Polyphen-2 maps the amino acid variations to known 3D 
structures or homologous 3D structures, thus, discovering whether the mutation can potentially 
affect the structural and functional properties of the protein [20, 27]. Based on these derived 
sequences and structural parameters, Polyphen-2 predicts the impacts of the amino acid substitution 
as ‘probably damaging’, ‘possibly damaging’ or ‘benign’ [27].  

3.5. Protein AnalysisTthrough Evolutionary Relationships (PANTHER) 

PANTHER-PSEP (position-specific evolutionary preservation) is tool for predicting the 
functional impact of a particular missense mutation on proteins through evolutionary analysis of 
coding SNPs. PATHER-PSEP is available freely online 
(http://www.pantherdb.org/tools/csnpScoreForm.jsp) and as a command-line based tool. 
PANTHER-PSEP computes the period an amino acid has been evolutionary conserved in the protein 
of interest. The longer the preservation time of a given amino acid, the likely a substitution of the 
amino acid has a pathogenic or damaging effect. The input data are the query protein sequence and 
the amino acid variation(s). PANTHER-PSEP reconstruct the ancestral sequence using sequence 
alignments and phylogenetic trees retrieved from PANTHER database [29]. PANTHER-PSEP then 
calculates the length of time a given amino acid has been preserved. 
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3.6. Multivariate Analysis of Protein Polymorphism (MAPP) 

MAPP(http://mendel.stanford.edu/sidowlab/downloads/MAPP/index.html) A tool is available 
as a command-line based software built with JAVA programming language. MAPP algorithm is a 
sequence-based prediction tool that evaluates the roles played by missense mutations on protein 
function and diseases considering amino acid physicochemical variations among homologous 
sequences [30]. The physicochemical properties of amino acids used in the MAPP algorithm are 
hydropathy, polarity, charge, side-chain volume, free energy in α-helical conformation and free 
energy in β-sheet conformation [30]. MAPP algorithm first generates multiple sequence alignment 
composed of the query protein sequence and its homologs, then computes the mean and variance of 
the physicochemical property in a particular column in the alignment matrix. The methods used by 
the MAPP algorithm has been outlined in detail [30]. 

3.7. PredictSNP 

PredictSNP is a software tool hat predicts the effect of SNPs on protein function by integrating 
multiple prediction tools. The performance of MAPP [30], nsSNPAnalyzer [31], PANTHER [32], PhD-
SNP [33], PolyPhen-1 [27], PolyPhen-2 [13], SIFT [14] and SNAP [25]. The PredictSNP tool is a 
combination of the six best performing prediction tools: MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, 
SIFT and SNAP. 

3.8. MutPred 

MutPred2 is a machine-learning based prediction algorithm available as standalone executable 
software and as a web server (http://mutpred.mutdb.org/index.html). MutPred2 predicts the 
pathogenicity of amino acid substitutions and explores the molecular mechanism behind the 
phenotype of the mutation [34]. MutPred2 was trained with a dataset (pathogenic and unlabeled) 
obtained from SWISSVar, Human Gene Mutation Database (HGMD), dbSNP and inter-species 
pairwise alignments for accurate pathogenicity prediction [34]. The algorithm is built with 30 feed-
forward neural networks that compute the probability of a substitution being pathogenic [34]. The 
average of the scores from each neural network represents the final prediction score, ranging from 0 
(lowest probability of pathogenicity) to 1 (highest probability of pathogenicity). 

3.9. PMut 

PMut (http://mmb.irbbarcelona.org/PMut/) is a neural network-based prediction tool that uses 
residue conservation and physico-chemical properties to predict the pathological nature of amino 
acid variations [35]. PMut2017 prediction algorithm is written as a Pyhton 3 module that uses popular 
python libraries such as NumPy, SciPy and Matplotlib [36]. Pmut2017 prediction engine was trained 
with a variation dataset retrieved from SWISSVar [36]. The module computes numerical data for the 
variations and gives a prediction score ranging from 0 to 1 [36]. 

3.10. Conservation Surface-Mapping (ConSurf) Server 

ConSurf (http://consurf.tau.ac.il) predicts the relevance of an amino acid residue to the function 
and conformation of proteins by examining the evolutionary dynamics or pattern of the residues [37]. 
ConSurf considers the fact that residues that are relevant for optimal protein activity and perfect 
conformation are highly conserved, hence, evolve slowly. ConSurf computes the evolutionary rate of 
the residues which determine their level of importance to the protein structure and function [38]. 
Given an input (query sequence or structure), the ConSurf algorithm retrieves homologous sequences 
of the query and then build a phylogenetic tree and a multiple sequence alignment [15]. Unlike some 
other prediction algorithms (Table 2), ConSurf computes the evolutionary rates of the residues and 
represents the outcome as a color-code bar (Figure 2). 
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Figure 2:  ConSurf color-code bar. The color scheme tells the relative degree of conservation of 
the residues on a scale of 1(lowly conserved) to 9 (highly conserved), It also tells whether the 
residue is buried (‘b’) or exposed (‘e’) and characterize the residues as functional component (‘f’) 
or structural component (‘s’). 

 
 
Table 2: Other in-silico prediction tools available 
 

Prediction tool Algorithm Reference 

PhyreRisk 
Maps genetic variants to proteins structures 
URL: http://phyrerisk.bc.ic.ac.uk/  

[76] 

PROJECT HOPE 

Project HOPE collects structural information 
from a range of information sources and analyzes 
how the mutation affects the protein structure 

URL: http://www.cmbi.ru.nl/hope/  

[77] 

SNPs&GO 

Support Vector Machine (SVM) based classifier 
integrated with gene ontology (GO) predictor terms. 
Predict the effect of SNP on protein function based 
on mutation type, sequence environment 
information, sequence profiles 

URL:http://snps.biofold.org/snps-and-go/snps-
and-go.html  

[78, 79] 

ParePro 

An SVM-based algorithm which predicts the 
deleterious effect of SNP on protein function 
considering residue difference (RD), the status of the 
mutation position (SM) and the mutation sequence 
environment (ME) 

URL: http://www.mobioinfor.cn/parepro/  

[80] 
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SNPEffect 4.0 

Predicts the structural and molecular effect of 
SNPs on protein. Integrates aggregation prediction 
(TANGO), amyloid prediction (WALTZ), chaperone-
binding prediction (LIMBO) and protein stability 
analysis (FoldX) 

URL: https://snpeffect.switchlab.org/  

[81] 

LIST 

Predicts the damaging effects of amino acid 
mutations in a protein sequence. Uses Local identity 
Pair-wise Sequence Alignment (LPSA). Computes 
the damaging effect of the mutation using shared 
taxa or Taxonomy distance  

URL: https://list-s2.msl.ubc.ca/  

[82] 

SuSPect 

Predicts the phenotypic impacts (especially 
diseases-related) of single amino acid variants on 
proteins. Integrates sequence conservation and 
network-level features 

URL: http://www.sbg.bio.ic.ac.uk/suspect  

[83] 

 
 

4. Molecular modeling approaches 

The structural and functional differences between the mutants and native proteins can be 
elucidated thoroughly using computational molecular modeling techniques. Molecular dynamics 
simulation and docking (molecular) studies are by far the most utilized computational modeling 
approaches to study protein function and structure.  

4.1. Molecular Docking Studies 

Molecular docking is a way of predicting the most favorable positioning of one molecule relative 
to another when they are brought together to form a complex. Docking tools predict the correct 
relative conformation and orientation of a ligand to its target (receptor) binding site [39]. The docking 
algorithm computationally simulates the specific interactions (hydrophobic, Van der Waals, 
hydrogen bonding and electrostatic forces) between the ligand and the receptor to obtain an 
optimized conformation that will ensure that the free energy of the system is minimized [40, 41]. The 
receptor is usually a protein or a nucleic acid and the ligand is often a small molecule or another 
protein [42]. A proper docking protocol integrates shape complementarity of ligand-receptor 
complex and simulation of the complex to account for ligand and receptor flexibilities [43]. Target 
and ligand preparation are important prerequisites for successful docking. Some experimentally 
determined protein models are incomplete, thus, efforts are made to obtain accurate models of the 
target protein. Missing hydrogen atoms and residues are expected to be present. Cofactors that are 
relevant to the binding interactions or activity of the protein and water molecules that are critical for 
optimal protein functioning are retained [44]. Preparing a library of ligands involves characterization 
of compounds based on physicochemical properties of interest to filter out the most prominent 
candidates. The library usually consists of energy minimized ligands with proper protonation, 
valence states, and geometry [44]. There are popular databases (Figure 3) from which users can 
retrieve ligand libraries for docking.  
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Figure 3: Chemical structure databases used in gathering a library of ligands for docking studies. 
 
There are enormous possible binding modes between the ligand and the target. The search 

algorithm samples the various possible conformations of the ligand in the target [45], considering 
ligand flexibility and target flexibility. Various docking tools employ a variety of search strategies or 
algorithms that account for ligand and receptor flexibilities (Figure 4). Some of the freely available 
docking software are listed in Table 3, however, for a full list of docking tools, the reader should refer 
to these publications [43, 44, 46, 47, 48]. 

 
Figure 4: Components of a molecular docking process. The search algorithm generates poses 
taking into account ligand and target flexibilities. The generated poses or ligand-target 
alignments are then ranked using scoring algorithms. The docked ligand-target complex is 
evaluated using variables such as RMSD and binding energies. 

Ligand database

•ZINC                                         BindingDB

•PubChem                                   ChemBL
•
•DrugBank                                  NCI

•PDB                                           HMDB

•ChemSpider                               eMolecules

•ChEBI                                       Crystallography Open Database 

Docking

Search algorithm

•Ligand flexibility
•Simulation, Ensemble 

docking, Side-chain 
flexibility, Soft-

docking

•Target flexibility
•Stochastic method, 

Shape 
complementarity, 
Genetic algorithm

Scoring algorithm

•Empirical
•Force field

•Knowledge-based
•Consensus method Docking evaluation 

and analysis

•Binding energy
•RMSD

•Docking accuracy
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Docking tools are capable of generating many potential modes of binding thus, a method must 
exist to rank the binding of the ligand to the receptor. The scoring algorithm evaluates and ranks the 
predicted ligand conformations in the target. The various scoring functions used by scoring 
algorithms include a force-field based function (computes binding energy considering non-covalent 
interactions, torsional forces, and entropy) and empirical free energy-based function [39, 45, 49]. 

 
 
Table 3: Some freeware and open-source docking software tools available for protein-ligand and 
protein-protein docking. 
 

TOOL URL REFERE
NCE 

Protein-Ligand Docking 
AutoDock 4.2 http://autodock.scripps.edu/ [84] 

SwissDock http://www.swissdock.ch/ [85] 

DOCK 6 http://dock.compbio.ucsf.edu/ [86] 

GEMDOCK http://gemdock.life.nctu.edu.tw/dock/ [87] 

AutoDock Vina 
 

http://vina.scripps.edu/ [88] 

FRED https://www.eyesopen.com/oedocking [89] 

                   Protein-Protein Docking  

Clustpro 2.0 
 

https://cluspro.bu.edu/login.php [90] 

PIPER 
 

https://www.schrodinger.com/piper [91] 

PatchDock 
 

http://bioinfo3d.cs.tau.ac.il/PatchDock/p
hp.php 

[92] 

GRAMM-X 
 

http://vakser.compbio.ku.edu/resources/
gramm/grammx/ 

[93] 

RosettaDock 3.2 http://rosettadock.graylab.jhu [94] 

pyDock and pyDockWeb  https://life.bsc.es/pid/pydock/ [95, 96]  
 

HADDOCK 2.2 
 

http://haddock.science.uu.nl/services/H
ADDOCK2.2/ 

[97] 

HDOCK http://hdock.phys.hust.edu.cn/data/5de3
9cc5b25ff/ 

[98] 

SymmDock 
 

http://bioinfo3d.cs.tau.ac.il/SymmDock/
php.php 

[99] 
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4.2. Molecular Dynamics Simulation  

The main experimental technique to elucidate the molecular structures of macromolecules is the 
X-ray diffraction of crystallized protein [50]. This technique has led to great achievements in the field 
of structural biology; but, in the best cases, X-ray crystallography can only provide a static snapshot 
of a fully functional state. NMR has become an increasingly important technique for protein 
structural investigations, giving access to the flexibility of a system by revealing an ensemble of 
conformations [51]. Consequently, complementary tools have always been required to allow a 
dynamic insight into biological targets and ligand binding. The structure of macromolecules and 
supramolecular assemblies are not rigid and static [52]; they experience local and global movements 
and rearrangements at different time scales due to thermal diffusion/fluctuations, or in response to 
external perturbations such as pressure, concentration, pH, or temperature changes. This dynamic 
behavior and the dependence of the structure on external factors are key for technological 
applications [53]. However, it is difficult to obtain experimental structural information on individual 
molecules as a function of time, as well as to get fine structural information of supramolecular 
assemblies. Molecular dynamics simulations have offered massive progress to these shortcomings. 
Molecular dynamics simulations provide time-dependent microscopic properties of biomolecules, 
which could not be explained by experimental methods like X-ray crystallography [54]. These 
specifications enable MD simulations as the most widely used computational techniques for the 
study of dynamical properties of proteins, DNAs and other bio-macromolecules. Molecular 
dynamics simulation provides the methodology for detailed microscopical modeling on the atomic 
scale. This technique is a scheme for the study of the natural time evolution of the system that allows 
the prediction of the static and dynamic properties of substances directly from the underlying 
interactions between the molecules. In a molecular dynamics simulation, the classical equations of 
motion for the system of interest, say, biomolecules in solution are integrated numerically by solving 
Newton’s equation of motion [55]. A full review of molecular dynamics simulations is available in 
the following publications [46, 54, 56, 57]. Popular molecular dynamics programs used in the study 
of biomolecules include GROMACS [58], CHARMM [59], AMBER [60], NAMD [61], YASARRA [62]. 
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Figure 5: The general steps to run molecular dynamics simulation of a protein molecule in water 
using GROMACS 2018.2 software package. 
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Figure 6: Outline for the computational-based approach of predicting the effects of SNPs on 
protein structure and function. Data on the mutation and the protein of interest can be retrieved 
from databases such as dbSNP and UniProtKB (https://www.uniprot.org/uniprot/)  
respectively. In-silico prediction methods (Table 2) are used to filter the most deleterious 
variants of the protein.  Proteins with known 3D structures can be fetched from protein 
databases like Protein data bank (PDB). However, proteins with unsolved structures are treated 
with homology modeling tools (Figure 7). These tools build 3D models of the query proteins 
using templates (solved proteins that are homologous to the query). Mutagenesis tools are then 
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used to obtain the mutants of the protein. Molecular dynamics simulation (Fig. 5) and docking 
studies are then performed to compare the wild type and mutant models on the basis of structure 
and function. 
 

 
Figure 7: Homology modeling tools available to build structures of proteins with unknown 3D 
models. 
 

5. Summary and outlook 

SNPs are ubiquitous in the human genome, occurring at both coding and non-coding regions 
of the DNA, thus affecting gene expression and protein dynamics. Proteins play roles in drug 
response and development of both metabolic and inheritable diseases. The dynamics of drug 
transporters, receptors and enzymes are influenced by SNPs in the human genome, hence, causing 
inter-individual drug response variability. Protein-protein interactions are vital for molecular and 
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biological activities such as cell signaling, DNA transcription, and translation. This should explain 
the role of SNPs in cancer, metabolic and inherited disease development. Experimentally, it is 
difficult to determine how SNPs affect protein dynamics due to the large number of SNPs collated. 
Integrating computational/bioinformatics approaches with experimental studies is the most 
efficient way of achieving such a task. The bioinformatics-based studies serve as a first-pass filter 
which predicts the most deleterious mutations for further experimental studies. Explaining the 
genetic basis of drug response variability in humans is the primary goal of pharmacogenomics 
which is a crucial element of personalized medicine and stratified medicine. Integrating 
computational prediction methods with computational molecular modeling studies will greatly 
enhance pharmacogenomics studies and revolutionize therapeutic discoveries. Nonetheless, these 
computational algorithms may have limitations to their performances. The researcher must 
therefore carefully select the most appropriate tools to handle the research problem at hand. 
Combining many prediction algorithms helps to complement each other, yielding more accurate 
results. 
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