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Abstract: Single nucleotide polymorphisms (SNPs) are associated with diseases and drug response
variabilities in humans. Elucidating the damaging and disease-associated SNPs using wet-
laboratory approaches can be challenging and resource-demanding due to the large number of SNPs
in the human genome. Due to the growth in the field of computational biology and bioinformatics,
algorithms have been developed to help screen and filter out the most deleterious SNPs that are
worth considering for wet-laboratory studies. This article reviews the existing in-silico based
methods used to predict and characterize the effects of SNPs on protein structure and function. This
cutting-edge approach will facilitate the search for novel therapeutics, help understand the etiology
of diseases and fast-track the personalized medicine agenda.
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1. Introduction

Single nucleotide polymorphisms are the most common types of genetic variation in the human
genome, occurring within coding [1] and non-coding regions [2] including intergenic stretches [3].
The wide distribution of SNPs in regions of the human genome results in different types of the
mutation (Figure 1) with varying phenotypic characteristics. SNPs in non-coding regions do not alter
protein sequences but may affect gene expression, non-coding RNA sequence, and gene splicing. In
coding regions, SNPs may alter the amino acid sequence of proteins (non-synonymous) or not
(synonymous) since the genetic code is degenerate. Synonymous mutations are not always silent, as
they have been reported to alter transcription/translation processes [4] and protein conformation [5].
A nonsense mutation occurs when a single nucleotide variation results in a stop codon, thereby
producing a premature protein. The missense mutation, however, results in a codon that codes for a
different amino acid.
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Figure 1: Types of single nucleotide polymorphisms in the human genome
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Associating the various SNPs with their phenotypic characteristics using wet laboratory
approaches can be challenging. There is growth in the use of high-throughput DNA sequencing
techniques which has resulted in a plethora of genetic mutation data [6]. Filtering out the functional
SNPs in this large pool of data using wet-laboratory approaches could be resource-demanding and
cumbersome. Development in the field of computational biology and bioinformatics have
contributed massively to alleviate this challenge. Researchers have used computational methods to
characterize functional SNPs and predict the effect of the mutations on protein structure and function
[7, 8,9, 10, 11, 12]. Most of the computational algorithms make their predictions based on protein
sequence and structure information [13], physicochemical properties of amino acids [14] and
evolutionary conservation [15] to classify the effect as damaging or tolerable. Computational
modeling studies help to elucidate the structural dynamics and biological activities of the protein
molecules, providing detailed information on the atomic fluctuations and conformational changes of
the protein.

2. SNP database

2.1. dbSNP (Single Nucleotide Polymorphism Database)

The National Center for Biotechnology Information (NCBI) created the dbSNP to serve as a
central repository for genetic variation. In addition to single nucleotide variations, dbSNP contains
other nucleotide sequence variations such as microsatellite repeats and small insertion/deletion
(indel) polymorphism [16]. The mutations in dbSNP include publications related to the variations,
sequence context of the polymorphism, population frequency, the experimental methods used to
assay the variations, genomic and RefSeq mapping information [17].Associating sequence variations
to phenotypic variations is of prime importance to genetic research, thus, the dbSNP facilitates
studies in wide range of fields including, pharmacogenomics, association studies and evolutionary
studies.

2.2. HGMD (Human Gene Mutation Database)

HGMD is a repository of all known genetic mutations in germline responsible for inherited
diseases and other disease-oriented genetic polymorphisms available in peer-reviewed scientific
literature [18]. The classes of variants available at selected genetic variation database including
dbSNP and HGMD are listed in Table 1.

3. In-silico prediction tools

3.1. Sorting Intolerant from Tolerant (SIFT)

SIFT web server (https://sift.bii.a-star.edu.sg/) uses sequence conservation and amino acid
physicochemical properties to compute the potential impacts of single nucleotide polymorphisms
(SNPs) and frameshifting insertions/deletions (indel) mutations in coding regions on protein function
[19]. SIFT is a sequence-based prediction algorithm which assumes that highly conserved amino acids
are vital for protein function and structure [20]. Based on this assumption, amino acid mutations at
these conserved regions as a result of SNP may confer deleterious effect on protein activity. To
ascertain evolutionary conserved sequences/regions, SIFT searches protein databases to obtain
homologous sequences of the query and then performs a multiple sequence alignments (MSA) to
identify conserved regions [20]. The SIFT algorithm then calculates the probability that a given
substitution can be tolerated at a position based on the physicochemical properties of the native
residue [14]. The substitution potentially affects protein function if its probability score falls lower
than a cutoff score of 0.05 [21].

Table 1: Some notable genetic variation database and the type of mutation they host.
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Mutation database Mutation type Reference
JbSNP Single nucleotide variations, small-scale
. . deletions or insertions, retroposable element
(https://www.ncbi.nlm.nih.go . ) . : . [16,17]
Jsnp/) insertions, microsatellite repeat variations/short
vishp tandem repeats, multi-nucleotide variations
dbVar Copy number variants (CNV), insertions,
(https://www.ncbi.nlm.nih.go  deletions, inversions, and translocations 50 base [63]
v/dbvar) pairs (bp).
Missense substitution, Nonsense substitutions,
Splicing substitutions (intronic and exonic),
Regulatory substitutions (exonic, intronic, 5'- and 3'-
HCGMD untranslated regions), Micro-deletions <20 bp,
(http://www.hgmd.cf.ac.uk/ac Micro-insertions/duplications <20 bp, Micro-indels < [18]
P /inc.ief h.). ’ 20 bp, Gross deletions >20 bp, Gross
L insertions/duplications >20  bp, Complex
rearrangements (including
inversions, translocations and complex
indels), Repeat variations
OMIM Genetic variations associated with known [64]
(https://omim.org/) genetic disorders.
1000 Genome A catalog of human genetic variations: single
_ . . nucleotide polymorphisms, short
(https://www.internationalge . ) . . . [65]
nome.org)) insertions/deletions (indels), structural variants,
018 haplotypes.
PharmKGB Variants (SNP, indel, haplotype, etc.) associated (66, 67, 68]
(https://www.pharmgkb.org/)  with drug response phenotypes R
HGVD Exomic genetic variations in the Japanese
(http://www.hgvd.genome.me & P [69]

d.kyoto-u.ac.jp/) population
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NHLBI Exome Variant Server . .
. Exome sequence variations relating to heart,
(https://evs.gs.washington.ed lune and blood diseases
u/EVS)) ung a a
ClinVar The literature reviewed genetic variations
ttps://www.ncbinlm.nih.go  significant to diseases/human health. Includes bot
https:// bi.nlm.nih.g ignifi di /h health. Includes both [70]
v/clinvar/) sequence variants and structural variants.
LOVD
(https://www.lovd.nl)) A network of curated gene variant [71]
Exome Aggregation
Consortium Exome sequence variations [72]
(http://exac.broadinstitute.org q
/)
COSMIC
(https://cancer.sanger.ac.uk/co Somatic mutations related to human cancer [73]
smic)
MitoMap
(https://www.mitomap.org/M Human mitochondrial DNA variation [74]
ITOMAP)
Database of Genomic .
. Structural variation in the human genome:
Variants genomic alterations that involve segments of DNA [75]
http://dgv.tcag.ca/d h
(http://dgv f)an%ec)a/ gv/app/ that are larger than 50bp.

3.2. Protein Variation Effect Analyzer (PROVEAN)

PROVEAN (http://provean.jcvi.org/index.php) is an algorithm that predicts the impact of single
or multiple amino acid substitutions, insertion and deletion mutations on the biological activity of
proteins [22]. The input data for the PROVEAN algorithm are the query protein sequence and the
variations. The algorithm integrates the protein blast tool (BLASTP) with a 0.1 E-value threshold and
NCBI NR protein database to search and obtain homologous and distantly related sequences [22]. A
BLOSSUMS62 substitution matrix-based computation is performed on the supporting sequences
which comprise the sequence clusters that are very similar to the query sequence [23]. The effect of
the variation is quantified by the delta alignment score - the degree of impact a variation in the protein
query sequence has on protein function when compared to another protein subject of high similarity
[22]. The algorithm then generates a PROVEAN score (average of the delta scores), which will define
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the damaging effect of the variation. The variation is predicted as deleterious if the PROVEAN score
is less than or equal to a threshold of -2.5 [24].

3.3. Screening for Non-acceptable Polymorphisms 2 (SNAP2)

SNAP2 algorithm (https://rostlab.org/services/snap2web/) uses a machine learning system
called an artificial neural network to predict the impact of single amino acid substitutions on the
function of a protein [25]. The algorithm considers evolutionarily conserved regions, protein
secondary structure, biophysical properties of amino acids, residue flexibility, SWISS-PROT
annotations, predicted binding residues solvent accessibility amongst others [26]. SNAP2 relies on
the query protein sequence as input data and for a given amino acid substitution, computes a score
depicting the potency of the mutation to affect the function of the wild type protein. The score ranges
from -100 to +100 implying strong neutral prediction and strong effect prediction respectively. Using
the query protein sequence, SNAP2 collects dataset from Protein Mutant Database (PMD), SWISS-
PROT, Online Mendelian Inheritance in Men (OMIM), and HumVar. The algorithm fetches all amino
acid variants from PMD, map the variants to the corresponding sequence and classify the impact as
‘neutral’ or ‘effect [26]. To obtain the enzyme dataset, SNAP2 retrieves the Enzyme Classification
Commission (EC) number of the query protein from SWISS-PROT, compares it with enzymes of the
same experimental annotation function and determines the residue variations among them [25]. The
disease-associated variations retrieved from OMIM and Human Var are all classified as ‘effect’ [26].
Predictions are based on the PMD dataset, Enzyme dataset and Disease dataset.

3.4. Polymorphism Phenotyping 2 (PolyPhen-2)

PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) predicts the impacts of non-synonymous
SNPs (nsSNPs) on the stability and function of human proteins using sequence and structure-based
predictive features. The structural parameters used by the Polyphen-2 algorithm include solvent
accessible surface area, dihedral angles, hydrophobic propensity and B-factor [13]. Polyphen-2
requires the query protein sequence and the amino acid mutation as the input data. The algorithm
automatically runs a series of programs to predict the damaging effect of missense mutations on
protein function. Based on the input data, Polyphen-2 confirms the missense mutation in the gene
and then characterizes the substitution site as binding or active site, a transmembrane region or
metal-binding site using a sequence-based prediction feature [27]. Polyphen-2 performs a multiple
sequence alignment (MSA) followed by homology sequence analysis and calculates a profile score or
position-specific independent count (PSIC) [13]. PSIC represents the logarithmic ratio of the
probability of a given amino acid occurring at a position to the probability of the same amino acid
occurring at a different position [27, 28]. Polyphen-2 maps the amino acid variations to known 3D
structures or homologous 3D structures, thus, discovering whether the mutation can potentially
affect the structural and functional properties of the protein [20, 27]. Based on these derived
sequences and structural parameters, Polyphen-2 predicts the impacts of the amino acid substitution
as ‘probably damaging’, ‘possibly damaging’ or ‘benign” [27].

3.5. Protein AnalysisTthrough Evolutionary Relationships (PANTHER)

PANTHER-PSEP (position-specific evolutionary preservation) is tool for predicting the
functional impact of a particular missense mutation on proteins through evolutionary analysis of
coding SNPs. PATHER-PSEP is available freely online
(http://www.pantherdb.org/tools/csnpScoreForm.jsp) and as a command-line based tool.
PANTHER-PSEP computes the period an amino acid has been evolutionary conserved in the protein
of interest. The longer the preservation time of a given amino acid, the likely a substitution of the
amino acid has a pathogenic or damaging effect. The input data are the query protein sequence and
the amino acid variation(s). PANTHER-PSEP reconstruct the ancestral sequence using sequence
alignments and phylogenetic trees retrieved from PANTHER database [29]. PANTHER-PSEP then
calculates the length of time a given amino acid has been preserved.
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3.6. Multivariate Analysis of Protein Polymorphism (MAPP)

MAPP(http://mendel.stanford.edu/sidowlab/downloads/MAPP/index.html) A tool is available
as a command-line based software built with JAVA programming language. MAPP algorithm is a
sequence-based prediction tool that evaluates the roles played by missense mutations on protein
function and diseases considering amino acid physicochemical variations among homologous
sequences [30]. The physicochemical properties of amino acids used in the MAPP algorithm are
hydropathy, polarity, charge, side-chain volume, free energy in a-helical conformation and free
energy in [3-sheet conformation [30]. MAPP algorithm first generates multiple sequence alignment
composed of the query protein sequence and its homologs, then computes the mean and variance of
the physicochemical property in a particular column in the alignment matrix. The methods used by
the MAPP algorithm has been outlined in detail [30].

3.7. PredictSNP

PredictSNP is a software tool hat predicts the effect of SNPs on protein function by integrating
multiple prediction tools. The performance of MAPP [30], nsSNPAnalyzer [31], PANTHER [32], PhD-
SNP [33], PolyPhen-1 [27], PolyPhen-2 [13], SIFT [14] and SNAP [25]. The PredictSNP tool is a
combination of the six best performing prediction tools: MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2,
SIFT and SNAP.

3.8. MutPred

MutPred? is a machine-learning based prediction algorithm available as standalone executable
software and as a web server (http://mutpred.mutdb.org/index.html). MutPred2 predicts the
pathogenicity of amino acid substitutions and explores the molecular mechanism behind the
phenotype of the mutation [34]. MutPred2 was trained with a dataset (pathogenic and unlabeled)
obtained from SWISSVar, Human Gene Mutation Database (HGMD), dbSNP and inter-species
pairwise alignments for accurate pathogenicity prediction [34]. The algorithm is built with 30 feed-
forward neural networks that compute the probability of a substitution being pathogenic [34]. The
average of the scores from each neural network represents the final prediction score, ranging from 0
(lowest probability of pathogenicity) to 1 (highest probability of pathogenicity).

3.9. PMut

PMut (http://mmb.irbbarcelona.org/PMut/) is a neural network-based prediction tool that uses
residue conservation and physico-chemical properties to predict the pathological nature of amino
acid variations [35]. PMut2017 prediction algorithm is written as a Pyhton 3 module that uses popular
python libraries such as NumPy, SciPy and Matplotlib [36]. Pmut2017 prediction engine was trained
with a variation dataset retrieved from SWISSVar [36]. The module computes numerical data for the
variations and gives a prediction score ranging from 0 to 1 [36].

3.10.  Conservation Surface-Mapping (ConSurf) Server

ConSurf (http://consurf.tau.ac.il) predicts the relevance of an amino acid residue to the function
and conformation of proteins by examining the evolutionary dynamics or pattern of the residues [37].
ConSurf considers the fact that residues that are relevant for optimal protein activity and perfect
conformation are highly conserved, hence, evolve slowly. ConSurf computes the evolutionary rate of
the residues which determine their level of importance to the protein structure and function [38].
Given an input (query sequence or structure), the ConSurf algorithm retrieves homologous sequences
of the query and then build a phylogenetic tree and a multiple sequence alignment [15]. Unlike some
other prediction algorithms (Table 2), ConSurf computes the evolutionary rates of the residues and
represents the outcome as a color-code bar (Figure 2).
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Figure 2: ConSurf color-code bar. The color scheme tells the relative degree of conservation of
the residues on a scale of 1(lowly conserved) to 9 (highly conserved), It also tells whether the
residue is buried ('b’) or exposed (‘e’) and characterize the residues as functional component (‘f")
or structural component ('s”).

Table 2: Other in-silico prediction tools available

Prediction tool Algorithm Reference

Maps genetic variants to proteins structures

PhyreRisk URL: http://phyrerisk.bc.ic.ac.uk/ [76]
Project HOPE collects structural information
PROJECT HOPE from a range of information sources and analyzes [77]

how the mutation affects the protein structure
URL: http://www.cmbi.ru.nl/hope/

Support Vector Machine (SVM) based classifier
integrated with gene ontology (GO) predictor terms.
Predict the effect of SNP on protein function based
SNPs&GO on mutation type, sequence environment [78, 79]
information, sequence profiles
URL:http://snps.biofold.org/snps-and-go/snps-
and-go.html

An SVM-based algorithm which predicts the
deleterious effect of SNP on protein function
considering residue difference (RD), the status of the

ParePro . . :
mutation position (SM) and the mutation sequence

(80]

environment (ME)
URL: http://www.mobioinfor.cn/parepro/



http://phyrerisk.bc.ic.ac.uk/
http://www.cmbi.ru.nl/hope/
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://snps.biofold.org/snps-and-go/snps-and-go.html
http://www.mobioinfor.cn/parepro/
https://doi.org/10.20944/preprints201912.0131.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 December 2019 d0i:10.20944/preprints201912.0131.v1

8 of 21

Predicts the structural and molecular effect of
SNPs on protein. Integrates aggregation prediction
(TANGO), amyloid prediction (WALTZ), chaperone-
binding prediction (LIMBO) and protein stability
analysis (FoldX)

URL: https://snpeffect.switchlab.org/

SNPEffect 4.0 [81]

Predicts the damaging effects of amino acid
mutations in a protein sequence. Uses Local identity
Pair-wise Sequence Alignment (LPSA). Computes
the damaging effect of the mutation using shared
taxa or Taxonomy distance

URL: https://list-s2.msl.ubc.ca/

LIST [82]

Predicts the phenotypic impacts (especially
diseases-related) of single amino acid variants on
SuSPect proteins. Integrates sequence conservation and [83]
network-level features
URL: http://www .sbg.bio.ic.ac.uk/suspect

4. Molecular modeling approaches

The structural and functional differences between the mutants and native proteins can be
elucidated thoroughly using computational molecular modeling techniques. Molecular dynamics
simulation and docking (molecular) studies are by far the most utilized computational modeling
approaches to study protein function and structure.

4.1. Molecular Docking Studies

Molecular docking is a way of predicting the most favorable positioning of one molecule relative
to another when they are brought together to form a complex. Docking tools predict the correct
relative conformation and orientation of a ligand to its target (receptor) binding site [39]. The docking
algorithm computationally simulates the specific interactions (hydrophobic, Van der Waals,
hydrogen bonding and electrostatic forces) between the ligand and the receptor to obtain an
optimized conformation that will ensure that the free energy of the system is minimized [40, 41]. The
receptor is usually a protein or a nucleic acid and the ligand is often a small molecule or another
protein [42]. A proper docking protocol integrates shape complementarity of ligand-receptor
complex and simulation of the complex to account for ligand and receptor flexibilities [43]. Target
and ligand preparation are important prerequisites for successful docking. Some experimentally
determined protein models are incomplete, thus, efforts are made to obtain accurate models of the
target protein. Missing hydrogen atoms and residues are expected to be present. Cofactors that are
relevant to the binding interactions or activity of the protein and water molecules that are critical for
optimal protein functioning are retained [44]. Preparing a library of ligands involves characterization
of compounds based on physicochemical properties of interest to filter out the most prominent
candidates. The library usually consists of energy minimized ligands with proper protonation,
valence states, and geometry [44]. There are popular databases (Figure 3) from which users can
retrieve ligand libraries for docking.


https://snpeffect.switchlab.org/
https://list-s2.msl.ubc.ca/
http://www.sbg.bio.ic.ac.uk/suspect
https://doi.org/10.20944/preprints201912.0131.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 December 2019 d0i:10.20944/preprints201912.0131.v1

9 of 21

Ligand database
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*PubChem ChemBL
: DrugBank NCI
*PDB HMDB
*ChemSpider eMolecules
*ChEBI Crystallography Open Database

Figure 3: Chemical structure databases used in gathering a library of ligands for docking studies.

There are enormous possible binding modes between the ligand and the target. The search
algorithm samples the various possible conformations of the ligand in the target [45], considering
ligand flexibility and target flexibility. Various docking tools employ a variety of search strategies or
algorithms that account for ligand and receptor flexibilities (Figure 4). Some of the freely available
docking software are listed in Table 3, however, for a full list of docking tools, the reader should refer
to these publications [43, 44, 46, 47, 48].

Scoring algorithm

Search algorithm *Empirical
eLigand flexibility *Force field
eSimulation, Ensemble *Knowledge-based
dockipg., Side—chain * Consensus method Docking evaluation
ﬂexgmhl?/ , Soft- and analysis
ockin,
® *Binding energy
e Target flexibility '.RMSD
eStochastic method, & - *Docking accuracy
Shape "
complementarity, ‘ _
Genetic algorithm /
Docking

Figure 4: Components of a molecular docking process. The search algorithm generates poses
taking into account ligand and target flexibilities. The generated poses or ligand-target

alignments are then ranked using scoring algorithms. The docked ligand-target complex is
evaluated using variables such as RMSD and binding energies.
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Docking tools are capable of generating many potential modes of binding thus, a method must
exist to rank the binding of the ligand to the receptor. The scoring algorithm evaluates and ranks the
predicted ligand conformations in the target. The various scoring functions used by scoring
algorithms include a force-field based function (computes binding energy considering non-covalent
interactions, torsional forces, and entropy) and empirical free energy-based function [39, 45, 49].

Table 3: Some freeware and open-source docking software tools available for protein-ligand and
protein-protein docking.

TOOL URL REFERE
NCE
Protein-Ligand Docking
AutoDock 4.2 http://autodock.scripps.edu/ [84]
SwissDock http://www.swissdock.ch/ [85]
DOCK 6 http://dock.compbio.ucsf.edu/ [86]
GEMDOCK http://gemdock.life.nctu.edu.tw/dock/ [87]
AutoDock Vina http://vina.scripps.edu/ [88]
FRED https://www.eyesopen.com/oedocking [89]
Protein-Protein Docking
Clustpro 2.0 https://cluspro.bu.edu/login.php [90]
PIPER https://www.schrodinger.com/piper [91]
PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock/p [92]
hp.php
GRAMM-X http://vakser.compbio.ku.edu/resources/ [93]
gramm/grammx/
RosettaDock 3.2 http://rosettadock.graylab.jhu [94]
pyDock and pyDockWeb https://life.bsc.es/pid/pydock/ [95, 96]
HADDOCK 2.2 http://haddock.science.uu.nl/services/H [97]
ADDOCK?2.2/
HDOCK http://hdock.phys.hust.edu.cn/data/5de3 [98]
9cc5b25(f/
SymmDock http://bioinfo3d.cs.tau.ac.il/SymmDock/ [99]

php.php
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4.2. Molecular Dynamics Simulation

The main experimental technique to elucidate the molecular structures of macromolecules is the
X-ray diffraction of crystallized protein [50]. This technique has led to great achievements in the field
of structural biology; but, in the best cases, X-ray crystallography can only provide a static snapshot
of a fully functional state. NMR has become an increasingly important technique for protein
structural investigations, giving access to the flexibility of a system by revealing an ensemble of
conformations [51]. Consequently, complementary tools have always been required to allow a
dynamic insight into biological targets and ligand binding. The structure of macromolecules and
supramolecular assemblies are not rigid and static [52]; they experience local and global movements
and rearrangements at different time scales due to thermal diffusion/fluctuations, or in response to
external perturbations such as pressure, concentration, pH, or temperature changes. This dynamic
behavior and the dependence of the structure on external factors are key for technological
applications [53]. However, it is difficult to obtain experimental structural information on individual
molecules as a function of time, as well as to get fine structural information of supramolecular
assemblies. Molecular dynamics simulations have offered massive progress to these shortcomings.
Molecular dynamics simulations provide time-dependent microscopic properties of biomolecules,
which could not be explained by experimental methods like X-ray crystallography [54]. These
specifications enable MD simulations as the most widely used computational techniques for the
study of dynamical properties of proteins, DNAs and other bio-macromolecules. Molecular
dynamics simulation provides the methodology for detailed microscopical modeling on the atomic
scale. This technique is a scheme for the study of the natural time evolution of the system that allows
the prediction of the static and dynamic properties of substances directly from the underlying
interactions between the molecules. In a molecular dynamics simulation, the classical equations of
motion for the system of interest, say, biomolecules in solution are integrated numerically by solving
Newton’s equation of motion [55]. A full review of molecular dynamics simulations is available in
the following publications [46, 54, 56, 57]. Popular molecular dynamics programs used in the study
of biomolecules include GROMACS [58], CHARMM [59], AMBER [60], NAMD [61], YASARRA [62].
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Obtain initial coordinates

e Protein Data Bank (.pdb files)

w
Generate topologies
*gmx pdb2gmx

w
Periodic boundary conditions (define
box)
*gmx editconf

-
Solvation
*gmx solvate

-
Addition of Ions
egmx genion

NS

Energy Minimization

.ng grompp; gmx mdrun

v

Equilibration stage
*NVT; NPT

e

Production of simulation

-
Analysis of trajectories

*RMSD, RMSF, Radius of gyration,
Hydrogen bond, etc

Figure 5: The general steps to run molecular dynamics simulation of a protein molecule in water
using GROMACS 2018.2 software package.
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SNP database
(Table 1)
Data Mining —
Protein database
—1 (Protein Data Bank,
UniProtKB)
. o Prediction algorithms (SIFT,
In-silico Prediction of MutPred, etc)
deleterious SNPs
Table 2
| Protein Data Bank Repository of known 3D
structures
Protein modeling of L1 Homology Modeling Tools Building of unknown 3D
damaging SNPs (Figure 7) Structures
Generate protein mutant

— PyMol Mutagenesis Tool —— models

Molecular Dynamics

Simulation
— (GROMACS, CHARMM, Elucidate Structural changes
YASARRA, etc)
Molecular modeling of .
proteins (Eiches)
Molecular docking

Elucidate functional changes
( Table 3), (Figure 4)

Figure 6: Outline for the computational-based approach of predicting the effects of SNPs on
protein structure and function. Data on the mutation and the protein of interest can be retrieved
from databases such as dbSNP and UniProtKB (https://www.uniprot.org/uniprot/)
respectively. In-silico prediction methods (Table 2) are used to filter the most deleterious
variants of the protein. Proteins with known 3D structures can be fetched from protein
databases like Protein data bank (PDB). However, proteins with unsolved structures are treated
with homology modeling tools (Figure 7). These tools build 3D models of the query proteins
using templates (solved proteins that are homologous to the query). Mutagenesis tools are then
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used to obtain the mutants of the protein. Molecular dynamics simulation (Fig. 5) and docking
studies are then performed to compare the wild type and mutant models on the basis of structure
and function.

HOMOLOGY SWISS-MODEL

MODELING httos://swi del

TOOLS ttps://swissmodel.expasy.org/
I-TASSER

https://zhanglab.ccmb.med.umich.edu/I-TASSER/

RaptorX
http://raptorx.uchicago.edu/

Modeller
https://salilab.org/modeller/

Phyre2
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index

EsyPred3D

https://www.unamur.be/sciences/biologie/urbm/bioinfo/esypred/

Robetta
http://new.robetta.org/

PRIMO

http://www.immt.res.in/maxmod/

MaxMod

http://www.immt.res.in/maxmod/

Bhageerath-H

http://www .scfbio-iitd.res.in/
bhageerath/bhageerath_h.jsp

Figure 7: Homology modeling tools available to build structures of proteins with unknown 3D
models.

5. Summary and outlook

SNPs are ubiquitous in the human genome, occurring at both coding and non-coding regions
of the DNA, thus affecting gene expression and protein dynamics. Proteins play roles in drug
response and development of both metabolic and inheritable diseases. The dynamics of drug
transporters, receptors and enzymes are influenced by SNPs in the human genome, hence, causing
inter-individual drug response variability. Protein-protein interactions are vital for molecular and
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biological activities such as cell signaling, DNA transcription, and translation. This should explain
the role of SNPs in cancer, metabolic and inherited disease development. Experimentally, it is
difficult to determine how SNPs affect protein dynamics due to the large number of SNPs collated.
Integrating computational/bioinformatics approaches with experimental studies is the most
efficient way of achieving such a task. The bioinformatics-based studies serve as a first-pass filter
which predicts the most deleterious mutations for further experimental studies. Explaining the
genetic basis of drug response variability in humans is the primary goal of pharmacogenomics
which is a crucial element of personalized medicine and stratified medicine. Integrating
computational prediction methods with computational molecular modeling studies will greatly
enhance pharmacogenomics studies and revolutionize therapeutic discoveries. Nonetheless, these
computational algorithms may have limitations to their performances. The researcher must
therefore carefully select the most appropriate tools to handle the research problem at hand.
Combining many prediction algorithms helps to complement each other, yielding more accurate
results.

Conflicts of Interest: The author declares no conflict of interest.
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