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Abstract: This study reports a general scenario for the out-of-equilibrium features of collapsing 
polymeric architectures. We use molecular dynamics simulations to characterize the coarsening 
kinetics, in bad solvent, for several macromolecular systems with an increasing degree of structural 
complexity. In particular, we focus on: flexible and semiflexible polymer ch ains, star polymers 
with 3 and 12 arms, and microgels with both ordered and disordered networks. Starting from a 
powerful analogy with critical phenomena, we construct a density field representation that removes 
fast fluctuations a nd p rovides a  c onsistent c haracterization o f t he d omain g rowth. O ur results 
indicate that the coarsening kinetics presents a scaling behaviour that is independent of the solvent 
quality parameter, in analogy to time-temperature superposition principle. Interestingly, the domain 
growth in time follows a power-law behaviour that is approximately independent of the architecture 
for all the flexible systems; while it is steeper for the semiflexible ch ains. Nevertheless, the fractal 
nature of the dense regions emerging during the collapse exhibits the same scaling behaviour for all 
the macromolecules. This suggests that the faster growing length scale in the semiflexible chains 
originates just from a faster mass diffusion along the chain contour, induced by the local stiffness. 
The decay of the dynamic correlations displays scaling behavior with the growing length scale of the 
system, which is a characteristic signature in coarsening phenomena.
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1. Introduction18

Understanding the collapse of, fully polymeric, topologically complex objects in a bad solvent is19

of broad importance, because of its relevance in the early stages of the protein folding [1,2], and its20

connections with arresting processes or aging phenomena [3,4]. The thermodynamic and structural21

properties of the macromolecular collapse in solution, occurring when the quality of the solvent is22

decreased below a critical value, have been exhaustively investigated over the years [5–10], and at23

equilibrium, the dynamic and static behavior are well known above and below the volume phase24

transition [11]. Comparatively, a general framework for the non-equilibrium aspects, as the kinetics25

of the collapse, is still lacking. The development of new experimental setups for small angle X-ray26

scattering or single-molecule fluorescence spectroscopy allows to monitor the collapse of a single27

molecule [12–14], sheding light on the aspects controlling the collapse dynamics.28

Recent computational works have proposed analogies between the collapse of linear polymer29

chains in bad solvent [3,15,16] and phase-ordering phenomena or coarsening systems (as foams [17] or30

polymer blends [18]), where coarsening refers to any out-of-equilibrium relaxation process involving31

the growth of two separated phases from an initially homogeneous mixture. In a coarsening system the32
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characteristic length scale grows over time and exhibits key universal features like dynamic scaling and33

self-similarity [19]. In the context of macromolecular collapse in bad solvent, the coarsening process34

initiates with the formation of small clusters of monomers along the polymeric strands. Afterwards,35

these clusters become stable and start to grow by withdrawing monomers from the bridges connecting36

them or by coalescence with other clusters. This moves forward until all the monomers pile up to37

a single cluster. Finally, the single cluster collapses to the ultimate equilibrium state, characterized38

by a compact object of melt-like density [3]. The characteristic length scale of the coarsening process,39

associated to the collapse from the initial self-avoiding conformations of the polymer strands to the40

late fully-collapsed state, is given by the size of the growing aggregates of monomers.41

Some theoretical approaches have been developed for describing the different scaling regimes42

associated to the coarsening kinetics. In binary liquids, where the chemical potential gradient acts43

as the driving force [20], the domains grow with time as ∼ t1/3. For fluids and polymers, where44

hydrodynamic contributions are relevant, linear growth is predicted at late times in the viscous regime45

[21] . An apparent sublinear regime for the domain growth, ∼ t1/2, has been observed at intermediate46

times in simulations of a gas-liquid separating system [22], suggesting an effective interpolation47

between the former early and late regimes. In a previous work by some of us [23] a scaling exponent48

of ∼ 0.7 has been found at intermediate times for the growth of the domains during the deswelling of49

microgels in bad solvent. This accelaration (higher exponent) with respect to the system of Ref. [22] is50

tentatively related to the polymer connectivity of the microgels, which facilitates the merging of close51

clusters.52

In this contribution we investigate whether the scaling behaviour found for the microgels of53

Ref. [23] is a general result for other macromolecules or if it depends significantly on the architecture54

of the system. In order to quantify the growing length scale we introduce a density field representation55

of the macromolecules that removes artifacts arising from the local, fast density fluctuations in the56

coarsening structure [22]. We establish a set of scaling laws for the time dependence of the growing57

domain size during the coarsening, which are independent of the solvent quality parameter in analogy58

to time-temperature superposition principle. Domain growth in microgels shows a power law, though59

an overshoot is found in the late stage of the collapse for the case of diamond-like networks. This60

unusual behavior is related to the fast late merging of the regularly distributed nucleating centers.61

Power-laws are also observed for the coarsening dynamics of collapsing flexible linear chains and62

star polymers, though with slightly smaller exponents imputable to a lower number of nucleation63

centers in the absence of a network structure. Semiflexible chains present a significantly higher64

exponent for the domain growth. We also analyze the fractal structure of the clusters of different65

sizes that are formed during the coarsening process, and find no differences between the flexible and66

semiflexible systems, concluding that the higher exponent for the growing length scale originates from67

a faster mass diffusion in the semiflexible chains induced by the stiffness. Finally we characterize the68

dynamic density correlations during the collapse and relate them with the growing length scale. A69

common power-law is found for this relation, irrespective of the solvent quality and macromolecular70

architecture, which is a typical signature of the critical nature of the process.71

The paper is organised as follows. In Section 2 the model and the simulation details are presented.72

In Section 3 a deep analysis of the kinetics of the collapse for all the investigated systems is reported.73

In particular, the density field construction is introduced, and data for the domain growth and the74

scaling of the dynamic correlations are discussed. Section 4 summarizes our conclusions.75

2. Model and simulation details76

We performed NVT molecular dynamics simulations of star polymers with 3 and 12 arms,
semiflexible and flexible linear chains, and migrogels with a disordered and a diamond-like network
structure. We used the bead-spring model of Kremer and Grest [24] for the interactions. All the
non-bonded interactions were implemented by a, purely repulsive, Weeks-Chandler-Andersen (WCA)
potential [25] that was modified in order to tune the quality of the solvent. This was achieved by
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introducing an attractive tail, regulated by a solvent quality parameter φ that sets the solvophobicity
of the monomers [23,26–28]. Therefore this parameter plays the role of an effective temperature in the
model. The non-bonded interactions were given by:

Vnb(r) =


VLJ(r) = 4ε

[(
σ
r
)12 −

(
σ
r
)6

+ 1
4

]
− εφ r ≤ 21/6σ

Vφ(r) = 1
2 φε

[
cos

(
α( r

σ )
2 + β

)
− 1
]

21/6σ < r ≤ 1.5σ

0 r > 1.5σ

(1)

The values for the parameters α = π(2.25− 21/3)−1 and β = 2π − 2.25α are chosen in order to satisfy77

the condition that the non-bonded potential and its first derivative are continuous both at r = 21/6σ78

and at the cutoff rc = 1.5σ [26]. For the case φ = 0 the purely repulsive WCA potential is recovered79

and the system is in good solvent conditions. The quality of the solvent is worsened by choosing φ > 0.80

Bad solvent conditions are reached when φ is higher than some critical value and the system collapses.81

In all the studied systems the collapse transition (θ-point) occurred at φ ∼ 0.6 (this was estimated from82

the maximum of the derivative of the radius o gyration vs. φ).83

In addition, bonded monomers interact via a finite extensible nonlinear elastic (FENE) potential,
which implements the molecular connectivity. The FENE potential reads [24]:

VFENE(r) = −εKFR2
0 ln

[
1−

(
r

R0σ

)2
]

, (2)

where KF = 30 is the spring constant and R0 = 1.5 is the maximum elongation. The sum of the FENE
and the non-bonded potential provides a total interaction between two connected monomers showing
a deep minimum at r ∼ 0.95, which guarantees uncrossability and prevents violation of the topological
constraints. In the case of the semiflexible linear chains the bending stiffness was implemented through
the worm-like model [29,30]. Thus, the interaction for the polymer bending has the form:

Vbending(θ) = Ks(1− cos θ), (3)

where θ is the angle between two successive bonds and Ks is the strength of the bending. We used a84

value Ks = 5. The units of energy, length, mass and time are respectively ε, σ, m and τ = (σ2m/ε)1/2
85

where m is the mass of a monomer. In the rest of the paper all the numerical values will be given in86

reduced units ε = σ = m = τ = 1.87

We performed MD simulations at temperature T = ε/kB = 1.0 (with kB the Boltzmann constant)
using a Langevin thermostat [31,32]. Thus, the force experienced by the monomers is:

r̈i = −∇V(ri)− γṙi +
√

2γkBTζ(t), (4)

where ri is the position vector and V(ri) is the total interaction potential for the monomer of index88

i. The second term of the right side of Equation (4) represents viscous damping, with γ the friction89

coefficient. The last term is a random uncorrelated force, 〈ζα
i (t)ζ

β
j (t
′)〉 = δi,jδα,βδ(t− t′) (with α, β the90

Cartesian components), representing the collisions with solvent particles. The Langevin thermostat91

acts therefore as an implicit solvent, in which every particle interacts independently with the solvent,92

but hydrodynamic interactions between solute particles are not considered. Their inclusion would93

require the use of e.g., Lattice Boltzmann [33], multi-particle collision dynamics (MPCD) [34] or94

dissipative particle dynamics [35] methods, involving a huge computational cost due to the size of the95

investigated systems and the big boxes needed to avoid finite size effects. For example, in the widely96

used MPCD method, radii of gyration Rg ∼ 50 would require using boxes of side Lbox ∼ 200 and at97

least 5L3
box = 4× 107 solvent particles for both correctly implementing the hydrodynamic interactions98

and avoiding significant finite-size effects [36]. Still, based on previous evidence [37–40] we do not99

expect that hydrodynamics will lead to qualitatively different results from those presented here. We100
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used a time step δt = 0.005, and a friction γ = 0.05, which is high enough for good thermalization and101

low enough to prevent strong damping that would slow down the dynamics to time scales requiring a102

huge computational cost.103

After generating them, equilibration of all the investigated systems (flexible and semiflexible104

chains, stars, disordered and diamond microgels) was performed in the limit of good solvent (φ = 0).105

To investigate the coarsening kinetics, the systems equilibrated at φ = 0 were quenched at infinite rate106

to different values of the solvent parameter φ well below the θ-point, and coarsening was analyzed107

from the quenching instant (t = 0) until the macromolecule reached its equilibrium fully collapsed108

state.109

The linear chains were constructed as simple strings of beads and springs (adding the bending
interaction in the case of the semiflexible chains). We used N = 1600 and 400 beads for the flexible and
semiflexible chain, respectively. The star polymers were constructed by linking flexible linear arms of
800 beads to a central bead. Several protocols have been recently proposed to generate realistic models
of microgels [23,28,41–44] beyond the regular networks usually employed in the literature. In our
method we take inspiration from the synthesis of microgels in microfluidic cavities. This experimental
route takes place via confinement in a droplet of pre-existing linear polymer chains, and further inter-
and intra-molecular irreversible association [45]. In our model each confined single chain consists of N
beads, and in each chain Nr of these beads are reactive (cross-linkable) groups, randomly distributed
along the polymer backbone and with at least one inert group between consecutive reactive groups to
prevent trivial cross-links. In order to implement the cavity, a confining spherical, purely repulsive, LJ
potential is applied to each monomer:

Vwall(rw) =

 4ε

[(
σ

rw

)12
−
(

σ
rw

)6
+ 1

4

]
rw ≤ 21/6σ

0 rw > 21/6σ
(5)

where rw represents the shortest distance from the monomer to the spherical wall.110

We performed the cross-linking of Ncha = 36 chains in a cavity of radius Rcav = 55. Each111

chain had N = 600 beads, so that the finally generated microgel had 21600 beads. The number of112

reactive beads in each chain was Nr = 12, i.e., the fraction of cross-linked monomers in the microgel113

was f = Nr/N = 0.02. The number density used in the synthesis was 3NchaN/(4πR3
cav) ≈ 0.03,114

which qualitatively corresponds to experimental concentrations of about 30 mg/mL [24,46,47]. After115

equilibration of the chains inside the cavity the cross-linking of the reactive groups was activated. A116

permanent bond (modeled by the FENE potential) between two reactive groups was formed if: (i)117

none of them was already bonded to another reactive group, and (ii) they were at a mutual capture118

distance r < 1.3σ. A random choice was made in case of multiple candidates within the capture119

distance. To speed up the late stage of the cross-linking process (≤ 6 remaining unbonded reactive120

groups), a random pair was chosen from the unreacted groups and an attractive harmonic interaction121

between the constituents of the pair was implemented, in order to approach them to the capture122

distance and form the bond. After forming the bond the microgel was equilibrated and the procedure123

was repeated until full completion of the cross-linking. Then the cavity was removed to allow for124

swelling and equilibration of the obtained microgel. Cross-linking of 50 initial realizations, with the125

same former values of N, Ncha, Nr and Rcav was perfomed, leading to microgels with the same number126

of monomers and cross-links but topologically polydisperse [23]. It was found that a large number of127

the cross-links (about 65 %) occurred between reactive groups belonging to the same polymer chain,128

forming loops. These kind of cross-links do not contribute to the connectivity of the network and129

are elastically inactive. On the other hand in the diamond-like microgels no loops are present and130

all the cross-links are elastically active. Therefore, for a fair comparison with the disordered ones,131

the diamond-like microgels were constructed with the same fraction of cross-links (nodes) as the132

average number of intermolecular bonds in the disordered microgels, tuning the number of nodes133

so that the total mass of both kinds of microgels was essentially the same [23]. Thus, we simulated a134
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diamond-like microgel of N = 21615 beads containing 78 nodes. The diamond-microgel was generated135

by placing the cross-links in the nodes of a regular diamond network, and by connecting every pair136

of nearest-neighbour nodes through linear bead-spring rods [48–52]. All the beads out of a sphere137

containing the selected N beads were removed.138

We computed the time-averaged asphericity a [53] of each disordered microgel in the swollen state139

(φ = 0) and obtained the corresponding distribution P(a). For the analysis of the coarsening kinetics140

we selected three disordered microgels, at the center and at the two extremes of the distribution of141

asphericities. The corresponding radius of gyration, at φ = 0, of the selected disordered microgels142

is Rg = 49.3, 52.4 and 64.0 for a = 0.02, 0.06 and 0.14, respectively. In the rest of the paper these143

disordered microgels will be denoted in the figure legends as I-II-III from lower to higher asphericity.144

The size of the other investigated systems at φ = 0 is Rg = 51.8 (diamond-like microgel), 45.3 (3-arm145

star), 48.9 (12-arm star), 39.9 (flexible chain) and 26.4 (semiflexible chain).146

3. Coarsening Kinetics147

The coarsening kinetics is characterized by a growing length scale. The quantitative148

characterization of such a length scale can be easily affected by artifacts originating from the ‘structural149

noise’ emerging during the macromolecular collapse (bridges that connect the clusters of monomers,150

small halls, protrusions, etc). To avoid these artifacts we introduce a smooth representation of the151

macromolecules through a coarse-grained density field. This method is based, originally, on the152

characterization of the growing length scales in a coarsening binary Ising system [54] and was later153

applied in the continuous space to a liquid-gas phase separating system [22,55]. In the first case the154

thermal noise effects on the coarsened structure were removed by using a majority spin rule, i.e. by155

replacing each spin by the majority spin of its nearest neighbours. In the second case, the real particles156

were substituted by their local densities averaged over their nearest environment. These averaging157

procedures smooth the interface corrugations, fill the smallest holes, and delete the smallest clusters in158

the coarsening structure. In this way the smooth density field avoids, in the calculation of the growing159

length scale, the effect of non-relevant minimal paths or artificial interruptions of long paths within160

the dense domains. In our systems we construct our coarse-grained density field as follows:161

i) we divide the space into cubic cells of side δ;162

ii) we define the local density (for each cell) by the number of monomers in a sphere:163

ρ(r) = 3n(r)/(4πr3
c) (6)

where rc is the cutoff radius of the sphere and n(r) is the number of monomers at a distance d ≤ rc

from the position r of the cell center;
iii) we fix the value of the coarse-grained density at r as a weighted average of the local density over
the surrounding cells:

ρ̄(r) =
1
8

[
2ρ(r) + ∑

k
ρ(r + δk)

]
(7)

where the sum is performed over the directions k ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. The grid size164

δ and the cutoff radius rc are chosen in order to get a smooth density field while keeping sufficient165

spatial resolution in the representation of the real system. This is achieved by using values δ ∼ 0.5166

and rc ∼ 1. In what follows we will present results for δ = 0.5 and for two specific values rc = 1.0 and167

rc = 1.2. By using a threshold value ρmin in the density field construction the macromolecules can be168

seen as a coarsening biphasic system composed by ’empty’ and ’filled’ domains. These domains are169

identified according to their low (ρ̄(r) ≤ ρmin) or high (ρ̄(r) > ρmin) local density, respectively.170

Figure 1 shows snapshots of the real-coordinates (read beads) and the density field representations171

(orange beads) at different times during the collapse of a flexible chain (a), a 3-arm star (b) and172

a semiflexible chain (c), respectively. In the real-coordinate representation all the momomers are173

displayed. In the density-field representation only the filled cells (ρ̄(r) > ρmin) are shown. All these174
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(a)

(b)

(c)

flexible chain

3-arm star

semiflexible chain
Figure 1. Snapshots of real (red beads) and density field (orange beads) coordinates of the flexible
linear chain (a), the 3-arm star (b) and the semiflexible linear chain (c). In all cases the collapse occurs
at solvent parameter φ = 1.2, and the parameters rc = 1.0 and ρmin = 0.6 are used to construct the
density field. The times for each panel are, from left to right: t = 5, 50, 126, 251, 316, 1000 ((a) and (b)),
and t = 5, 50, 126, 398, 500, 8000 (c).
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snapshots correspond to φ = 1.2, a bad-solvent state well below the θ-point. The final state reached at175

the end of the simulation (last columns on the right) is in all cases a fully collapsed macromolecule.176

The collapse experienced by the flexible chain and the star polymer (panels (a) and (b)) begins with the177

formation of clusters of monomers along the chain, then those merge by withdrawing monomers from178

the bridges connecting them, in a longitudinal diffusion process. In the stars this process also includes179

merging of clusters of different arms. The collapse for the semiflexible chain (panel (c)) seems to be180

qualitatively different: the dense regions are better defined, as it becomes evident in the density field181

representation. At early times, when the conformations are close to those of φ = 0, there are many182

less clusters than in the flexible case. Indeed small fluctuations leading to local transient clustering183

are strongly hindered by bending stiffness. However, as time goes on and the effective monomer184

attraction starts to drive the collapse, the clusters quickly grow up before starting to merge into larger185

clusters. In contrast to the flexible systems where the chain or arm backbone can still perform broad186

lateral fluctuations at early and intermediate times, in the semiflexible chains merging of the cluster187

proceeds along a quasi-rodlike structure during the whole process. In the next subsections we quantify188

the observed similarities and differences, by analyzing the domain length distribution, the domain189

growth rate, as well as the dynamic correlations, during the coarsening process.190

3.1. Chord length distributions and domain growth191

The construction of the coarse-grained density field allows to measure the distribution of the192

domain size from the obtained smooth biphasic structure. We define an ‘interfacial cell’ [23] in our193

system as a filled cell with at least one adjacent empty cell. In order to compute the characteristic194

lengths of the coarsened structures we use the definition of chord [22,55]. This is a straight path, along195

one of the three x, y, z-directions of the grid, which is formed just by filled cells and whose two end196

cells are interfacial cells. To compute the distribution of chord lengths of a given macromolecular197

configuration at a given time and solvent parameter φ, we sampled all the existing chords by following198

all the possible paths along the three directions within a volume containing all the filled cells. To199

improve statistics 5 random rotations of the former configuration were taken, and the whole procedure200

was repeated over 5 independent realizations of the same macromolecule.201

Figure 2 shows the normalized distributions of chord lengths, P(L), at φ = 1.2 and different202

times during the collapse of the disordered microgel of middle asphericity (Figure 2a), the semiflexible203

chain (2b), 12-arm star polymer (2c) and 3-arm star polymer (2d). P(L) shows the characteristic length204

distribution observed in coarsening systems [3,22,54,56–58]. In particular, for earlier times P(L) shows205

an exponential decay and extends over longer distances as time increases, which is a consequence206

of the growth of the filled domains during the coarsening. As expected, the exponential behavior207

saturates at long times when the fully collapsed state is reached. The flat plateau originates from208

the equiprobable different straight paths that connect two points, at both sides of the outer interface,209

in the fully collapsed state (where empty cells are absent). The drop from the plateau obviously210

reflects the finite size of the collapsed object . Interestingly, the P(L) of the semiflexible chain shows211

an approximate self-similar behavior over time, i.e., the decay is shifted to longer times but shows212

roughly the same shape, in contrast with the other systems for which the slope of the exponential is213

strongly time-dependent. This is consistent with the growth and transport process of the nucleation214

centers anticipated in Figure 1c. In fact, as shown there, the clusters are better defined and further215

apart, and they grow considerably before coalescing in a single cluster. Instead, in the flexible systems216

(panels (a,b) of Figure 1) the clusters grow and merge in a much more gradual way until the single217

globule is formed at late times.218

We use the information on the former distributions to quantify the growing length scale
characteristic of the coarsening process. The mean domain length for a given time t is obtained
from the first momentum of the distribution P at time t , i.e., L(t) =

∫
L′P(L′; t)dL′. We find the same

qualitative behavior of P(L) for several choices of rc and ρmin, whereas quantitatively L(t) depends on
the specific parameters used to construct the density field. Indeed, choosing, e.g., a lower value for
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Microgel II Semiflexible chain

12-arm star 3-arm star

(a) (b)

(d)(c)

Figure 2. Normalized distribution of chord lengths at φ = 1.2 and different times during the collapse
of the disordered microgel of middle asphericity (a), the semiflexible chain (b), 12-arm star (c) and
3-arm star (d). The chord lengths are calculated for a density field with rc = 1.0 and ρmin = 0.6.

ρmin implies having a higher number of filled cells in the density field, and consequently a larger value
of L. For this reason we quantify the domain growth rate in terms of the relative domain size, defined
as:

C(t) =
L(t)− L(0)

L(∞)− L(0)
(8)

In this way C(t) represents a normalized mean chord length growing from zero at t = 0 to 1 at late219

times in the collapsed state. Figure 3 shows the domain growth for three different topologies of220

the disordered microgels (corresponding to a low, middle, and large value in the distribution of the221

asphericity parameter), in comparison with the diamond-like network. For each system the panel222

includes data of C(t) for several selections of the parameters rc and ρmin. The absolute times have223

been rescaled by the time τ0.5, defined as C(τ0.5) = 0.5. As can be seen for all systems, after this224

time rescaling the different data sets of C(t) nicely overlap. This demonstrates that the density field225

approach is consistent, as it provides a time dependence of C(t) that is independent of any reasonable226

choice of the parameters defining the density field. Furthermore a good overlap is observed also for227

different values of the solvent quality parameter (φ = 1.2 and φ = 1.5), indicating that the coarsening228

kinetics follows an effective time-temperature superposition principle.229

As can be seen in Figure 3, the function C(t) reveals that the coarsening length scale grows by230

following a sublinear power law ∼ tx. The exponents are x & 0.6 for all the microgels, irrespective231

of the microstructural degree of disorder. The exponents obtained here for f = 0.02 are slightly232

smaller than those found in our previous work [23] (x ∼ 0.7) for a much higher degree of cross-linking233

( f = 0.1). We believe that the slightly higher value of the exponent for f = 0.1 is just an artifact234

originating from the proximity of the cross-links in such a system. Namely, since the higher density235

of monomers around a cross-link enhances its propensity to become a nucleating center, the much236
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Figure 3. Relative domain size C(t) over time during the collapse at φ = 1.2 and φ = 1.5 of three
disordered microgels of small (a), middle (b) and large asphericity (c) and of a diamond microgel (d).
Different data sets correspond to different values of the parameters rc and ρmin used to construct the
density field. The time t is normalized by τ0.5, defined as the time when C = 0.5. Straight lines in all
panels are fits to a power-law time dependence. Exponents are indicated. In panels (b) and (d) we
show typical simulation snapshots at early and intermediate times.

smaller distance between cross-links in the case f = 0.1 than in f = 0.02 may effectively accelerate the237

coalescence of the growing clusters, leading to the observed faster domain growth.238

Our previous work in microgels with higher f suggested that the diamond network exhibited239

the same power-law in C(t) that the disordered networks. However, for the diamond network this240

behaviour was developed only in a narrow time window and the results were not conclusive [23].241

The results in Figure 3d for f = 0.02 clearly confirm the power law regime over 3 time decades.242

These data also confirm the acceleration of the domain growth in the late stage of the collapse of243

the diamond network [23], which is at most a marginal effect in the disordered networks, where the244

power-law continues and is a good approximation until the collapsed state is reached and the ultimate245

plateau emerges. The strong late acceleration in the diamond network is tentatively related to the246

regular spatial distribution of the cross-links acting as preferential nucleating centers, which leads to a247

more homogeneous collapse until all holes in the structure vanish in a short time window (compare248

snapshots in panels (b) and (d)), and the filled paths in the density field experience a late sudden249

growth.250

The results presented above confirm the common scaling law C(t) ∼ t0.6 for the domain growth in251

collapsing microgels, irrespective of their topology (disordered or regular networks). In order to search252

for a more general scenario, we investigate the scaling properties of the coarsening kinetics in other253

very different architectures, as stars with different number of arms, and flexible and semiflexible linear254

chains. We follow the same procedure as for the microgels, constructing the density field and analyzing255

the domain growth in this representation of the macromolecule. Figure 4 shows the corresponding256
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Figure 4. Relative domain size C(t) over time during the collapse at φ = 1.2 of 3-arm stars (a), 12-arm
stars (b), flexible chains (c) and semiflexible chains (d). Different data sets correspond to different
values of the parameters rc and ρmin used to construct the density field. The time t is normalized by τ0.5,
defined as in Figure 3. Straight lines in all panels are fits to a power-law time dependence (exponents
are indicated).

results of C(t) for the stars and linear chains. We find that the systems without bending stiffness (the257

stars and the flexible linear chains) essentially show the same power-law C(t) ∼ t0.56, with an exponent258

that is just slightly smaller than those found for the microgels. The only investigated system with259

bending stiffness, i.e., the semiflexible linear chains, shows a different power-law, with a clearly higher260

exponent C(t) ∼ t0.8. In a first approximation it is possible to venture that the flexible nanoparticles261

as microgels and star polymers act in a similar fashion during most of the coarsening process: at262

distances shorter than the arm length and the mesh size, the arms and strands behave like linear263

flexible chains. Microgels show an exponent of ∼ 0.6 for the domain growth, slightly larger than the264

value ∼ 0.56 found for stars and single flexible chains. This difference might be connected with the265

higher concentration of nucleating centers in the microgels (due to the presence of the cross-links).266

Comparatively, at the local scale the semiflexible chain is influenced by the presence of the bending,267

which reduces its lateral fluctuations. This reduction may promote a faster and more homogeneous268

aggregation of mass along the chain contour, leading to the observed steeper growth of the coarsening269

length scale.270

3.2. Cluster analysis271

In this subsection we shed some ligth on the microscopic origin of the different scaling exponents272

for the domain growth in the flexible systems and the semiflexible linear chains. We first analyze273

whether stiffness plays a role on the conformational properties of the dense regions that progressively274

emerge in the coarsening structure. Namely we analyze their fractal behaviour, i.e., the power-law275

dependence between the size and the mass of such dense regions. This can be done by defining clusters276

of filled cells (ρ > ρmin) in the density field representation, and determining the relation between the277

mean radius Rclus and mean population Nclus of the clusters. Two filled cells belong to a same cluster278

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2019                   doi:10.20944/preprints201912.0105.v1

https://doi.org/10.20944/preprints201912.0105.v1


11 of 17

10
1

10
2

10
3

10
4

10
5

1

10

disordered microgel II
diamond microgel
flexible chain
3-arm star
semiflexible chain

N
clus

R
clus

~ N
clus

0.5

~ N
clus

0.25

Figure 5. Mean cluster radius vs. mean cluster population at φ = 1.2, for clusters of filled cells in
the density field representation with parameters rc = 1.0 and ρmin = 0.6. Data are shown for the
disordered microgel of middle asphericity, the diamond network, the 3-arm star and the flexible and
semiflexible linear chains. The arrows indicate the approximate cluster population at the saturation
point prior the formation of the late plateau in Nclus(t). Lines are power-laws, exponents are indicated.

10
-3

10
-2

10
-1

10
0

10
110

-4

10
-3

10
-2

10
-1

10
0

~ t
1.2

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

~ t
1.1

10
-3

10
-2

10
-1

10
0

10
110

-2

10
-1

10
0

~ t
0.63

10
-3

10
-2

10
-1

10
0

10
110

-2

10
-1

10
0

~ t
0.60

n(t) n(t)

r(t) r(t)

t/τ
0.5

t/τ
0.5

t/τ
0.5

t/τ
0.5

disordered microgel II

disordered microgel II diamond microgel

diamond microgel

(a) (b)

(c) (d)

Figure 6. Normalized population (a,b) and radius (c,d) of the clusters in the density field representation
of the disordered microgel with middle asphericity (a,c) and the diamond microgel (b,d). Data
correspond to a solvent quality parameter φ = 1.2, and a density field representation with parameters
rc = 1.0 and ρmin = 0.6. The arrows indicate the time scale for which Nclus(t) = N∗ ≈ 400. Times are
rescaled by τ0.5 as defined in Figure 3.

if they are adjacent, i.e., if they are connected by a vector δk ∈ {(±δ, 0, 0), (0,±δ, 0), (0, 0,±δ)}. The279

mean radius Rclus is just obtained as 〈R2
g〉1/2, with Rg the radius of gyration of the cluster. At each280

time we average the former quantities over all the clusters, obtaining the time-dependence Rclus(t)281

and Nclus(t). Substitution of time provides a univoque relation Rclus(Nclus) for the fractal behavior of282
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The arrows indicate the time scale for which Nclus(t) = N∗ ≈ 400. Times are rescaled by τ0.5 as defined
in Figure 3.

the clusters. Figure 5 shows Rclus(Nclus) for several representative flexible systems (see legend) and283

for the semiflexible chains. All the systems show two different power-laws Rclus ∼ Nν
clus at both sides284

of a crossover value N∗ ∼ 400. For small clusters (Nclus < N∗) an exponent ν ≈ 0.5 is found, which285

indicates approximate Gaussian statistics of the cluster conformations. Big clusters, which are formed286

in the late stage of the coarsening process, show an exponent ν ≈ 0.25, reflecting the expected compact287

structures that progressively merge until reaching the equilibrium globule.288

Figures 6 and 7 show the time dependence of the cluster population and size for the microgels289

and the flexible and semiflexible linear chains. In analogy with the normalized function for the domain290

growth C(t), we define the normalized population and size of the clusters as n(t) = (Nclus(t) −291

Nclus(0))/(Nclus(∞)− Nclus(0)) and r(t) = (Rclus(t)− Rclus(0))/(Rclus(∞)− Rclus(0)), respectively,292

so that both n(t) and r(t) grow from 0 to 1. The arrows in all panels of Figures 6 and 7 indicate the293

time scale for which Nclus = N∗. As shown in Figure 5, the clusters in all systems have the same fractal294

behaviour. However, their evolution in time (Figures 6 and 7) can strongly depend on the system,295

namely there are clear differences between the flexible and semiflexible systems. In other words,296

coarsening leads to mass aggregation into the same kind of clusters for all the systems, but the rate297

of mass aggregation can be significantly affected by bending stiffness. For the time scales where the298

mean population of the clusters is smaller than N∗ (clusters are still relatively small and approximately299

Gaussian), we find a power-law n(t) ∼ tβ, with exponent β ≈ 1.2 for the flexible systems, and a much300

higher value β = 1.6 for the semiflexible chains. Not surprisingly, the growing length scale of the301

clusters follows a power-law r(t) ∼ tγ that is compatible with the same exponents found in C(t) for the302

growing domain size (see Figures 3 and 4) —though clusters and domains represent different concepts,303

growing length scales in the system should follow the same scaling. The effective exponents β and304

γ for n(t) and r(t) in all cases are related as γ/β ≈ 0.5. This indeed reflects the scaling Rclus ∼ N0.5
clus305
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found in Figure 5. In the case of the flexible and semiflexible chains, and in the stars (not shown), no306

apparent or significant change is observed in the power-law behavior of n(t) and r(t) at later times307

when larger clusters are formed, until the former quantities finally saturate when all clusters have308

merged into a single one and the systems approach the equilibrium fully collapsed state. An overshoot309

in n(t) and r(t) before saturation is however found in the microgels. This effect is specially pronounced310

in the diamond network, and not surprisingly occurs roughly in the same time window as for the311

normalized domain length C(t) (Figure 3d). Since r ∼ nν with ν ≤ 0.5, the overshoot is much less312

pronounced in the growing size of the clusters than in the mass aggregation.313

In summary, the analysis of clusters reveals that there are no significant differences in314

the conformations of the dense regions that are formed during the coarsening of the different315

macromolecular architectures, but on the rate at which they are formed, which is essentially the316

same in flexible systems but can be accelerated through bending stiffness in semiflexible systems.317

3.3. Dynamic correlations318

A well-known feature of phase separating and coarsening systems is the scaling of the dynamic
correlations with the growing length scale. To test this possibility we first define a ‘spin’ self-correlation
function Ps(t) for the density-field representation. The function is defined as [59]:

Ps(t) = 〈S(t)S(0)〉 − 〈S(t)〉〈S(0)〉 (9)
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where the variable S is computed for each cell of the density field, and it is assigned a value 0 or 1 if319

the cell is empty (ρ ≤ ρmin) or filled (ρ > ρmin), respectively.320

In Figure 8 we show the correlation function Ps(t) for the three selected disordered microgels321

(low, middle and high asphericity) and for the diamond-like microgel, at solvent parameter Φ = 1.2.322

Data are shown for two different couples of the parameters (rc, ρmin) used to define the density field,323

and the times are rescaled by τ0.5 as defined above. Again, the good overlap of the different data sets324

confirms the consistency of the density field representation for characterizing the coarsening. The325

underlying complex dynamics associated to the coarsening process is reflected by the non-exponential326

decay of the dynamic correlations, which indeed follows a power-law, Ps(t) ∼ t−y. Results for all327

the microgels are consistent with an exponent y & 0.5, irrespective of the network topology. This is328

analogous to our results for the domain growth (C(t), Figure 3) in the microgels, for which the specific329

network topology has no significant effect on the observed power-law.330

Moreover, from the computation of Ps(t) and the average domain size L(t), we can establish a331

direct relation between the dynamic self-correlations and the growing characteristic length scale, just by332

taking at each time t the corresponding values of Ps and L. Figure 9 shows the results for this relation333

in the diamond-like microgel and in the three selected disordered microgels (panel (a)) and in the334

3-arm and 12-arm stars (panel (b)). The data are computed for several values of the solvent parameter335

φ and the parameters (rc, ρmin) used to define the density field. Time-temperature superposition is336

also confirmed for this scaling relation, and data for all flexible systems are consistent with a common337

power law Ps ∼ L−1.1. Unfortunately we could not confirm this observation for the semiflexible case,338

for which the power-law regime in Ps(L) developed over a short range — note that the size of the339

investigated semiflexible chains is much smaller than for the flexible systems — and had very poor340

statistics. Confirmation would require to simulate much longer semiflexible chains, which would341

highly complicate the analysis. Tests for much longer chains showed that they tend to collapse into rods342

and in an extremely heterogeneous fashion (visiting several long-living intermediate conformations343

prior to the equilibrium state).344

4. Conclusions345

By means of simulations, we have investigated the coarsening kinetics emerging during the346

collapse of several macromolecular architectures in bad solvent: microgels with realistic (disordered)347

and with ideal regular (diamond) networks, star polymers of 3 and 12 arms, and linear chains. We348

have also investigated the effect of bending stiffness on the coarsening kinetics by simulating the349

collapse of semiflexible linear chains. In order to remove fast fluctuations that can lead to artifacts350
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in the characterization of the growing length scale, we have made use of a smooth density field351

representation of the macromolecules. The domain growth during the coarsening follows a power-law352

behaviour that is independent of any reasonable selection of the parameters used to construct the353

density field (grid size and threshold for defining dense regions). The scaling behaviour is independent354

of the solvent quality parameter, in analogy to time-temperature superposition. All flexible systems355

show approximately the same exponent for the time dependence of the coarsening length scale (∼ t0.6).356

An overshoot is found in the diamond networks in the late stage of the coarsening, which can be357

tentatively assigned to the regular distribution of the nodes acting as preferential nucleating centers358

and their roughly simultaneous merging when the network is close to the collapsed globular state.359

The length scale of coarsening shows a clearly steeper growth in the semiflexible chains (∼ t0.8). To360

elucidate the origin of this difference, we have analyzed the clusters of dense regions formed during361

the coarsening in the density field representation. The clusters in all systems (flexible or semiflexible)362

show the same fractal behaviour, i.e., their size scales with the mass following the same power-laws.363

This suggests that the faster growing length scale in the semiflexible chains just originates from a faster364

mass diffusion along the chain contour, and not from a distinct structural feature of the aggregates365

formed during the coarsening process. We have analyzed dynamic correlations, and in analogy with366

critical phenomena, investigated their dependence on the growing length scale L. We find an apparent367

common power-law dependence of the correlations (∼ L−1.1) for all the flexible systems.368

This work reports, to the best of our knowledge, the first comparison of the coarsening kinetics in369

bad solvent for a broad range of macromolecular architectures, and explores the role of chain stiffness.370

As such, it provides a general physical scenario, and a valuable set of results for future theoretical371

developments in this, still scarcely studied, fundamental problem with potential applications to e.g.,372

protein folding.373
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