
Comparative Analysis of Software Defect Prediction
Techniques

Mehreen Sirshar
faculty of software engineering
fatima jinnah women university

Rawalpindi, Pakistan
mehreensirshar@fjwu.edu.pk

Khadija Amir
dept. of software engineering

fatima jinnah women university
Rawalpindi, Pakistan

amirkhadija09@gmail.com

Hira Mir
dept. of software engineering
fatima jinnah women university

Rawalpinidi, Pakistan
hiramir0987@gmail.com

Laraib Zainab
dept.of software engineering

fatima jinnah women university
Rawalpindi, Pakistan

zainablaraib1@gmail.com

Abstract—Accurate prediction of defects in software compo-
nents plays a vital role in administrating the quality of the quality
and efficiency of the system to be developed. So we have written
a systematic literature review in order to evaluate the four main
defect prediction techniques. Defect prediction paves way for the
testers to find bugs and modify them in order to achieve input
to output conformance. In this paper we have discussed the open
issues in predicting software defects and have provided with
a detailed analyzation of different methods including Machine
Learning, Integrated Approach, Cross-Project and Deep Forest
algorithm in order to prevent these flaws. However, it is almost
impossible to rule which method is better than the other so every
technique can be analyzed separately and the best technique
according to the problem at hand can be used or can be altered
to create hybrid technique suitable for the cause.

Index Terms—Software Defect Prediction, Machine Learning
Approach, Integrated Approach, Deep Forest

I. INTRODUCTION

Software quality assurance (SQA) is the process that in-
cludes tracking and managing the process of development
life cycle to ensure the quality of software by reducing
its cost. It may include structured code audits, code walk-
throughs, software testing, and prediction of software faults.
Software Defect Prediction (SDA) is the highly cost-effective
and valuable operation in the field of software engineering.
Such prediction approaches would concentrate on directing
software testing activities by estimating potential defects in
the code prior to release of a latest product before testing
begins. Software practitioners see it as a critical step depending
on which software quality is being produced. Significant
resources were expended by both investors and companies
on fixing the problems instigated by the defects contained in
the software product. Ensurance of testing and debugging is
done by the software prediction in a fast-track mode which is
done by providing advanced data dependent on the errors that
a new software would probably encounter. To find software
components that are unstable as soon as possible would help

specialists to concentrate and direct the efforts towards solving
potential problems that may occur in a software system that
is yet to be developed.

Software defect prediction is a method of creating machine
learning classifiers to predict faulty code snippets, using
historical information in computer repositories such as com-
plexity of code and change in records to model defects of
software metrics. Software’s complex source code tends to
produce software errors that may result in software failure.
In the beginning of development process, when the designers
fail to fix an issue in the software results lead to increase
in complexity of the software along with the exponentially
increase in the monetary terms of projects, predicted results
can help developers to detect and repair possible errors, thus
improving performance and stability of the software. In the
project management, the metrics used early in the life cycle of
software development helps in decreasing a software product’s
defect density; specifically, these metrics can be used to assess
if additional performance control is required during process of
development. Today, the prior defect prediction methods have
been substituted by many data miners. Prediction of software
defect has become one of the research avenues in the field of
data mining to help developers and testers in identify timely
defects of software.

A. Software Defect Dataset

A software defect prediction model understands the soft-
ware defect data with the application system details (software
metrics) being combined with the defect value to make the
predictions. An essential requirement for successful estimation
of software faults is the availability of reliable information on
quality defects. In SDP, software defect database consists pri-
marily of three elements: collection of software metrics, defect
details such as defects-per-component and meta information.
The software defect prediction is basically divided into three
main components which are:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/

1) Project’s defect information: The defect information
explains how defect in software modules are identified? what
is the extent of the defect etc.? To predict the software defect,
three kinds of dataset repositories are accessible namely pri-
vate repository, partially public/freeware or public repository.
The defect data is collected during the software project’s spec-
ifications, design, construction and test phases and registered
in the database related to each element of the software.

• Private Repository: No defect database or source code is
available in this form of repository. The organizational
companies use and timely update this dataset. It may not
be feasible to replicate the study relying on these datasets.

• Partially public/freeware Repository: The defect informa-
tion or source code is available in this form of repository.
Typically, the values of metric are not available. Users
should be able to evaluate the standard values from source
code and scale these values directly to the existing fault
knowledge. The operator must therefore evaluate metric
values and plot these values on the obtainable defect
information. This kind of process often demand extra
attention because it is a critical job to measure metric
values and map their fault data.

• Public Repository: Both the metric values and defect in-
formation are available publicly is this from of repository.
The research performed from these collections using data
sets can be replicated.

2) Software Metrics: Developers want to predict the per-
formance of the software objects for the expansion of an
efficient and reliable SQA system. The software metrics are
devised for this purpose. It is possible to quantitatively assess
a software project and determine its performance using these
metrics. These metrics are linked to the project’s operational
properties which includes inheritance, cohesion, coupling etc.
Each software metric is linked to some of the software
project’s operational properties such as inheritance, coupling
and cohesion etc. that are utilized to signify an internal
performance features i.e, consistency, checking, or defect-
proneness.

Software metrics are divided into two main groups: product
metrics and process metric. Both groups are not mutually
segregated and sometimes behave as both process and product
metrics. Figure shows the taxonomy of software metrics.

Fig. 1. Taxonomy of Software Metrics

a. Product Metrics: The type of metric that is computed
with the help of different features of the product finally
developed. These metrics are basically investigating
whether the software product supports certain principles
such as “ISO-9126”. The Product measures is usually be
categorized as object-oriented, traditional and dynamic
metrics.

• Traditional metric: Metrics that are developed ear-
lier in the field of software engineering can be
called traditional metrics such as source line of
code, defects per SLOC, function points, kilo-SLOC
etc.

• OO metrics: The type of metric that is basically pa-
rameters determined through OO methodology from
the software developed. In order to recognize the
project’s structural properties, several OO metrics
suites have been suggested.

• Dynamic metrics: The type of metric which focuses
on a running program’s collected features. Through-
out the execution process These measurements dis-
close component behavior and used to evaluate
the belongings of running program, modules and
methods.

b. Process Metrics:The set of metrics that relies on char-
acteristics gathered throughout the life cycle of software
development. The strategic decision can be easily taken
using these metrics. They aim to provide a collection
of system steps that will improve the process of tech-
nology in the long term. We evaluate the feasibility of
a process via extracting the measurements depend on
the outcomes i.e, schedule conformance, bug-fix change
modules, effort required for each activity etc.

3) Project Meta Information: Meta project information
comprises of data on different software system characteristics.
It consists of a variety of information includes domain of the
developing software, amount of software revision, etc. and
accurate evidence based on the reliable defect dataset used
to create the defect predictive method. The meta information
project attributes are illustrates in the figure.

Fig. 2. Attributes of Meta Information

II. LITERATURE REVIEW
From the perspective of system testing, Shantanu et al. [1]

tends to illustrate the schema of how to make accurate predic-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

tion of the software. In this paper, by considering parameters
from system testing matrices and a special parameter named
“Component Dependency Score”, he proposed that machine
learning based approach with the main goal of finding probable
areas of faults. The prediction model has been tested with data
from only one version and the findings are very positive. By
discovering more appropriate features, the model’s reliability
could be enhanced. As accurate prediction of such faults
contributes to improve the quality of the continuously evolving
software. The result of the test was an approximately 78
percent of the determination coefficient together with the
acceptable absolute mean error.

Santosh S et al. [2] provides an overview of how to predict
faults in the software system. The various aspects of the
software fault prediction are investigated and discussed. The
main purpose of this survey is to deliver the basic concept of
different elements involved in the method of fault prediction
and uncovered the problems associated with it. This survey
undergoes classified into three main groups namely, issues of
data quality, software metrics and processes of fault prediction.
From this research, it is discovered that object-oriented metrics
and process metrics are the one among which the maximum
work is based. The results explored that the quality impacts
on fault prediction techniques differs with respect to the use
of multiple datasets.

Current software defect prediction approaches emphasis
primarily on developing static code metrics that are fed into
ML classifiers to predict code defect probabilities. Though,
these metrics do not comprise of program logical structure
and syntax structure. Guisheng Fan et al. [3] proposed a
new framework for predicting defects that is “attention-based
recurrent neural network (DP-ARNN)”. The program logical
structure and syntax structure is automatically discovered by
DP-ARNN which can be more helpful for predicting accurate
results of the model. The attention mechanism is used to
find the critical features that contributes in enhancing the
performance of the model. They performed an experiment
using 7 open source projects which indicates that DR-ARNN
progresses such as 14% of the F1 measure and 7% of the
AUC.

Xian Zhang et al. [4] proposed a new metric called cross-
entropy that contributes in improving the performance of
defect prediction. Cross-entropy is a new code metric for
the tasks of defect prediction and introduces a model for
this process called Defect Learner. Cross-entropy is compared
with twenty commonly used metrics on twelve open-source
projects to estimate the discrimination of defect proneness. The
experiential results reveal that the metric of cross-entropy is
more prejudiced than 50 percent of the traditional metrics. The
author used combination of both the traditional metrics with
cross entropy for enhancing the defect prediction accuracy. By
using this, the performance of F1-score predictive models is
increased by an average of 2.8%. These results suggest that
cross-entropy is effective in predicting code defects and in
addition to the existing metric suits.

To improve the software performance, J. Li et al. [5]

concentrate on predicting possible code defects in software
implementation, thus reducing the software maintenance work-
load. They proposed a new framework known as “Defect
Prediction via Convolutional Neural Network” (DP-CNN) to
generate successful features. DP-CNN uses CNN to generate
automated source code features with retained semantic and
structural data. They also used word embedding and integrate
the CNN-learned features with conventional handcrafted fea-
tures to further increase performance of prediction of defects.
By using seven open-source projects, results showed that DP-
CNN improves the performance of defect prediction in terms
of F-measure by 12% to 16% respectively.

The effective method for fault prediction is classification as
the performance of algorithm is directly depending upon the
dataset quality. W. Liu et al. [6] proposed a “Two stage data
processing approach” that includes selection of features and
reduction of unnecessary instances. Model consist of several
steps that include feature ranking that comprises of relevance
analysis, threshold-based cluster, feature selection, random
sampling to differentiate between non-faulty and faulty in-
stances and lastly the trained dataset. The model was carried
out on the datasets obtained from NASA that showed cost
provoked preprocessing.

Many traditional defect methodologies were used to identify
change in software source code that causes defects at initial
development stage by using training data. Due to limitation
of training data at initial stage Yasutaka Kamei et al. [7]
proposed a Cross project model that work with JIT (Just-
in-time) model. The main purpose of the model was that it
learns from the history of other related projects. The three
main approaches of this model were select models that are
related to testing projects, cartel many correlated projects to
produce big training data and cartel models of many other
related projects to produce a novel model.

Defect prediction at early stage may result in reduction of
testing phase cost, saves delivery time of software, increase the
reliability and quality of the software. Pradeep Kumar Singh
et al. [8] suggested that identifying most prominent defects
in software while development process removes dependent
modules and their associated defects that indirectly results in
reduction of testing time. Systematic review determined that
produced, processed and object-oriented metrics were widely
used as defect prediction methodologies.

In testing phase software defect prediction play an important
role but at some stages it fails to predict the faulty module in
software. Ishani Arora et al. [9] discussed issues related to de-
fect prediction that includes discovering set of instances to be
co-related with defects, lack of standard to measure software
performance rate, finances of software defect prediction and
lack of proper framework for defect prediction in software.

Fault prediction methodologies are highly helpful in in-
creasing the performance of software. Tracy Hall et al. [10]
examined 208 studies regarding the defect prediction from
which 176 contained least information about the proposed
model for software defect prediction due to which they became
useless for other researchers to use them in their research. Only

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

36 studies contained brief description of proposed methodolo-
gies which was helpful in enhancing model performance and
less defect prediction influence on cost and reliability of the
software.

The paper [11] illustrates the important study to understand
and promote the relationship between the metric defining the
direction of the object and the principle of shift proneness in
the subject area. The research study focuses on the identifica-
tion and comparison of all learning techniques corresponding
to the performance parameter with its statistical method and
methodology, which can often lead to improved performance.
By using machine learning approach, they suggested a reduc-
tion in the effort involved in software testing. The main aim
is to reduce the period of testing using machine learning. The
developer will have a known notion and idea in the vicinity
about the sets of classes that present the evolving behavior and
select them during testing time.

M. Kakkar et al. [12] perform a research which showed
that the hybrid classifier model produced more accurate results
than the single traditional approaches. The paper emphasizes
on developing a framework using IBk, KStar, LWL, Random
Tree, and Random Forest defect prediction attribute selection.
Comparison of results is based on the values of accuracy and
ROC. The proposed model enhances predictive reliability with
fewer attributes. The findings and evaluation show that the
system decreased the total number of parameters used in each
dataset by an estimate of 6 folds, and that LWL operated
much better than four other classifiers when evaluated with 10
Cross Validation (10CV) and 66% split. Thus, the time space
complexity for predicting defect is reduced without affecting
the prediction accuracy by using feature selection methods.

Four machine learning strategies were investigated with
the proposed feature selection method to handle predictive
tasks in the identification of code defects. Simulation studies
carried out on public NASA data sets demonstrated the speed
and performance of the diverse algorithms proposed in the
paper. In most cases, we can increase the effectiveness of
classified learning algorithms. The paper [13] shows that
feature selection algorithms is used for software anticipation
and makes the model function efficiently. Dealing with super
copious characteristics is a significant challenge for classifica-
tion algorithms. Thus, it is important to have a pre-defined set
of features before performing classification algorithms.

In the evaluation of the commercial software product, the
weighing component can be divided into two groups, static and
dynamic measuring metrics. The static measurement compo-
nent can be obtained from a static calculation of numerical
software packages, including a few lines of code, magnitude
function etc. The dynamic measuring aspect is that the anti-
statistical measuring factor must be learned in the running
path. Simultaneously, code evaluation must be done after
the engineering work has been completed throughout the
development process, making it tough to restrict the number
of errors in software products. Nonetheless, code testing costs
significantly and can be done in or just after the product
development process if the design agencies do not have enough

time to find out glitches. To address this issue in paper [14],
scholars are promoting a computer defect prediction method.
Software defect prediction strategies presume that multifaceted
modules with a high error rate, statistic software product
complexity, then foresee the software unit defect status.

Defected software modules have a huge impact of the
software cost and development and often results is cost
overruns, delay in project schedule and much higher budget
and maintenance cost in general. The techniques of ”ma-
chine Learning Algorithms - ” such as ”Automated Neural
Networks” (ANN), ”PSO” (P article Swarm Optimization”),
”Decision Trees”, ”Naı̈ve Bayes” are analyzed using ”k-fold
validation technique”. If the software faults are not eliminated
prior to market testing then the bugged modules are taken back
into account in the form of maintenance and the ripple effect
is taken care of in the form of ”regression testing”. ”Neural
networks” provide the lowest error rate in comparison to all
other techniques [15].

Prediction of software defects provides engineering teams
with actionable results when leading to operational perfor-
mance. Empirical researches in paper [16] have been car-
ried out on the revelation of code defects for cross-project
and in-project defects. Predicting code abnormalities virtually
guarantees that screening and debugging stays in a fast track
mode by supplying real time data on the majority of faults
that a new system is likely to encounter. Significant resources
were expended by both investors and software companies on
putting in place the defect caused by defects in the software
product. Fault detection in faulty systems provides a base for
program evaluation and also improves the efficacy of design
activities. To ensure that software stakeholders make smart
decisions about future programs and better allocate capital to
software projects, managers must obtain a practical outcome
from a predictive model.

Application development and testing focuses on the fault-
prone system to increase reliability, statistical and machine
learning approaches are the most commonly used or the
combination of both methods is preferred. From the conclusion
drawn from several work in this paper, code metric is shown
to be an efficient source for providing a predictive model of
fault. For all forms of metrics, class-level metrics show good
predictive performance compared to method-level metrics.
Machine predictive algorithm is incorporated by categorizing
components into problematic and non-defective models to cre-
ate predictive fault system instantly. Based on the performance
such as sensitivity, precision and operating attribute analysis of
the receiver shown from preceding experiments, the “SVM”
and “Random Forest algorithm” provide the best model for
two diverse data sets of prediction. Such two algorithms can
be used as a suggestion for fault prediction machine learning
algorithm. Most of these studies have demonstrated using
some machine learning algorithms to use computer metric for
fault prediction. [17]

Cross-project defect prediction (CPDP) has attracted a
lot of attention for projects with partial historical statistics.
Nonetheless, to the best of our knowledge, due to substandard

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

cross-project training data, the output of current approaches is
usually poor. Many early researches thoroughly trained predic-
tors (also known as prediction models) of historical structure
inadequacies / bugs in more of the same software project and
anticipated shortcomings in its upcoming multiplayer beta.
This approach is referred as “Within-Project Defect Prediction
(WPDP)”. However, when a venture has limited historical
defected data, WPDP has an obvious drawback. In order to
address this particular issue ”Cross-Project Defect Prediction
(CPDP)” was introduced by He P. et al. [18]. The main
purpose of ”CPDP” is to classify fault-prone cases (such as
classes) in a project based on defect data obtained from public
software databases such as PROMISE from other programs.
Although preceding “CPDP” studies considered various kinds
of software metrics during the assortment process of applicable
training samples, none considered the quantity of defects
contained in each section (defects identified).

In the paper [19], there was built a four-stage cross-project
defect prediction model, referred to as KMP, to combine data
pre-processing and learning algorithm modeling at the same
time. The method involves sorting instances, choosing soft-
ware features, minimizing instances and predicting fault-prone
class. The classic ”k-means algorithm” is used to find the
relatively nearest data of the software projects from historical
cross-project data for the instance filtering stage.

Empirical studies have been carried out on the identification
of code defects for “cross-project” and “in-project” defects by
X. Chen et al. [20]. Nonetheless, a medium for the estimation
of the number of defects in a forthcoming artifact release has
yet to be demonstrated by existing studies. The aptitude to
foresee the software defects would support software teams in
software testing, planning and software standard maintenance.
Therefore, considerable efforts are still required to develop an
appropriate “prediction model” that can envisage the amount
of software deficiencies in a potential software plan. A predic-
tion model’s primary purpose is to provide lucrative support
and guidance during software testing. To ensure expense-
effectiveness, it is important to try to predict the frequency
of failures in a new software release.

III. OPEN ISSUES IN SOFTWARE DEFECT PREDICTION

This section presents the challenges faced in the prediction
of software defects and the solutions proposed for these
problems by researchers. It also addresses the issues that have
not been resolved in this area.

A. No Generalized Framework Available

Major issue arising in software defect prediction is that
different scholars use different techniques or methodologies
on different data sets. Beside this very few frameworks are
proposed on software defect prediction from which most are
pending for future work.

Haijin Ji et al. [19] designed a new framework as KMP (k-
Means and Maximum Correntropy) Criterion Based Predictor.
The first step of model is instance filtering in which k-mean
model is applied on the dataset obtained from cross project

method and similar data is extracted by means of analog-
based learning. The second step is to extract a feature from
the cluster obtained after applying correlation techniques. The
third step is to choose the training data after Appling random
sampling based on false positive and false negative ratio. MCC
(well known for handling noisy non gaussian data) was built
to perform software defect prediction.

Chen et al. [21] came up with a new framework in software
development. Almost nine projects were used and analyzed,
and conclusion was drawn between proposed methodology
and previously present methodologies. Different classifica-
tion techniques were involved like NB (Naı̈ve Byes), SVM
(Support Vector Machine) and DT (Decision Trees) and for
evaluating a new measure “process execution qualification
rate” was developed with great advantages. Beside considering
the advantages of various proposed frameworks there is no
general framework proposed for predicting software defects.

B. Issues in Cross-Project Defect Prediction

It is preferred for a developed model to learn from the
previous data available and can also be tested upon that
data. Similar software projects can be used to obtain data by
applying some programming languages. However, most of the
times the scholars face problem of training data because they
are unable to find similar projects related to their framework.
Cross project was introduced by researchers to solve this
problem. It aimed to develop defect prediction model on one
software project and then the model is to be tested on another
software project. Many researchers have worked to increase
the efficiency of cross project prediction.

Menzies et al. [22] performed MORPH and CLIF methods
on the datasets of ten different projects obtained from reposi-
tory of PROMISE. He used three different classification algo-
rithms that includes neural network, support vector machine
and naı̈ve byes in Weka tool. The proposed methodology was
able to evaluate based on recall. The results showed that the
methodology doesn’t perform negotiation in software defect
prediction on the contrary it conveyed the private data.

Zhang et al. [23] explained that by using only one transfor-
mation model cannot increase the efficiency of cross project
defect prediction but using multiple transformation method-
ologies may result in increase in performance but above all
selection of training data set can be done by using any un-
supervised learning methodology.The proposed methods may
have improved the reliability of cross-project models, but there
was considerable scope for enhancement in this area.

C. Relationship between Various Attributes and Faults

Researchers are unable to predict attributes subsets which
are non faulty or incorrect. Beside this issue the major problem
is to detect which metrics level to be applied from require-
ment, source and design matrices for software analysis. It
is also verified that software defect prediction can be done
in early stages of software development life cycle. Many
experiments were performed on developed software defect
prediction methodologies from requirement metrics, sources

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

metrics and by using their combination. The results reveal
that larger components with class level metrics can be used in
software defect prediction.

A new metric is proposed called cross-entropy that con-
tributes in improving the performance of defect prediction.
Cross-entropy is compared with twenty commonly used met-
rics on twelve open-source projects to estimate the discrimina-
tion of defect proneness. The experiential results reveal that the
metric of cross-entropy is more prejudiced than 50 percent of
the traditional metrics. The author used combinations of both
the traditional metrics with cross entropy for enhancing the
defect prediction accuracy. By using this, the performance of
F1-score predictive models is increased by an average of 2.8
percent. These results suggest that cross-entropy is effective in
predicting code defects and in addition to the existing metric
suits.

As explored from the above researches, none of them
discovered a universal association between the attributes and
the fault.

IV. SOFTWARE DEFECT PREDICTION USING INTEGRATED
APPROACH

In order to estimate the amount of errors in a given
project, both simple and multiple linear regression structures
are built. Multiple ”linear regression models” are designed
for prediction based on two various independent variables,
while only one independent predictive variable is considered
to examine the specific effect of each predictor variable for
each sample of ”linear regression model”. Each prediction
method’s quality evaluation focuses on the ”data interpolation
method” used. ”Cross-validation sampling” is used at times for
testing in order to obtain reliable results but mostly because
cross-validation sampling of information divided into 10 folds
with a comparative training set volume of 8% and a test
(validation) set size of 20% performs better than remain-
one-out or randomized sampling for a huge data set. Model
performance figures are used to show how well a certain model
performs on unknown data.

Cross validation sampling technique was used for the assess-
ment of their performance. Separate learning and testing data
sets have been used in cross-validation to avoid dependency
on each other, and this method is considered to be almost
unbiased . However, that smaller sampler show signs of higher
variance. It is thus claimed that when dealing with smaller
samples, neither ”bootstrapping” nor ”cross-validation” is ef-
fective. Moreover, inconsistent evidence gathered by cross-
validation can be balanced by repeating the validation process
for several cycles, as in the 10-fold cross-validation used.
Mechanisms of both distance and prediction error are regarded
in the cross-validation sampling method to obtain a more
accurate reflection of the quality of model prediction. To some
degree, static metrics are effective, but their predictability
declines over a certain time period. On the contrary, process
metrics are better to use in order to assess a system’s quality
because they record more information about defective code.

System metrics show great potential for predicting the con-
dition of launch of post-products and are effective for large
amounts of data .

V. SOFTWARE DEFECT PREDICTION USING
CROSS-PROJECT MODEL

Researchers and professionals have drawn keen interest in
the prediction of defects on projects with minimal historical
data. Use of cross-project model in prediction is very effective
when the data related is not existing and analysis is performed
by using the data of external project. ”Just-in-time (JIT) ”
model recognizes defect-inducing modifications. JIT defect
systems would provide programmers with quicker feedback
when design decisions still are in mind. Unfortunately, JIT
framework demands large amount of training data, similar
to ”traditional defect models”, that is not accessible while
programs are in initial development stages. Preliminary ef-
fort has suggested cross-project models, i.e. models trained
from additional schemes through enough experience are used
overcome this weakness in conventional defect estimation. JIT
models seldom execute well within a cross-project context,
they generally improve the efficiency when using strategies
that:

1) Pick models trained and equipped with the help of other
similar projects to the test project

2) Integrate data from a variety of other programs to create
a broader selection of training data.

3) Incorporate multiple other project models to build an
aggregate model.

It confirms therefore that for the projects with limited historical
information, JIT models learned from many programs are a
practical solution. Nonetheless, with the help of data that
is thoroughly portrayed in the cross-project context, the JIT
models operate significantly.

VI. SOFTWARE DEFECT PREDICTION USING MACHINE
LEARNING ALGORITHM

The examination of ML expertise in predicting software
defect is based on three supervised ML learning algorithms.
The methods discussed below are ”Naı̈ve Bayes (NB) classi-
fier”, ”Decision Tree (DT) classifier” and ”Artificial Neural
Networks (ANNs) classifier”. Following is a summarized
description of the machine learning processes:

• Naı̈ve Bayes: NB is basically a straightforward and effec-
tive deterministic algorithm depending upon the theorem
of the Bayes with the presumption of autonomy among
characteristics. NB isn’t just a single algorithm, however
a set of algorithms related to a particular concept which
presumes the presence and unavailability of specific class
characteristics that does not relate to the participation or
exclusion of another characteristics.

• Decision Tree Decision tree mentions a hierarchical and
statistical model using perception of the object as sections
to achieve the goal value of the object in the tree.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

• Artificial Neural Networks (ANNs) Artificial Neural net-
works are non-linear classifiers that can model complex
input-output relationships.

VII. SOFTWARE DEFECT PREDICTION USING DEEP
FOREST MODEL

The software defect prediction can be effective for the
implementation of software of good quality. In order to
enhance the performance of defect prediction models, it will
be necessary to develop more advanced techniques. The new
model called deep forest is proposed for evaluating the ac-
curate prediction of the software defect. This model also
known as gcForest which an alternate approach of “deep neural
network”. It’s helpful in reducing the overfitting problems and
attaining high performance accuracy.

By using a new cascade strategy that basically converts RF
classifier into the layered structure, deep forest can classify
more crucial defect characteristics. The essential purpose of
predicting defect using deep forest is to get benefit from
deep learning by applying layered structure. After expanding
a layer, the accuracy of the entire cascade is predicted on
the test set and cascade is immediately terminated when
no advancement in performance is observed. The use of
RF classifier with this model promotes diversity and input
discrepancies and increase the model’s effectiveness to detect
more crucial fault-prone features.

VIII. CONCLUSION

In this paper, we have provided with detailed information of
all the defects prediction techniques our software development
life cycle can adapt to in order to improve its quality and
defer from all the change costs and maintenance costs it
would have to spend in addition. To avoid these circumstances
defect prediction techniques are the ultimate solution as they
pave way to avoid errors prior to committing them. We have
also provided with a detailed analysis of the open issues
with these defect prediction techniques. Various methods of
defect prediction such as integrated approach, cross project
model, machine learning algorithms were the main highlight
in the present paper. Based on analyzing these techniques and
reading their limitations one can choose the best solution for
their problem and analyze, predict and avoid all the errors.

REFERENCES

[1] Sutar, S., Kumar, R., Pai, S., Shwetha, B. R. (2019, February). “Defect
Prediction based on Machine Learning using System Test Parame-
ters”. In 2019 Amity International Conference on Artificial Intelligence
(AICAI) (pp. 134-139). IEEE.

[2] Rathore, Santosh S., & Kumar, S. (2019). “A study on software fault
prediction techniques” Artificial Intelligence Review, 51(2), 255-327.

[3] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang, Liqiong Chen.
(2019). “Software Defect Prediction via Attention-Based Recurrent
Neural Network” Volume 2019, Article ID 6230953, Hindwai.

[4] Zhang, X., Ben, K., & Zeng, J. (2018, July). “Cross-entropy: A new
metric for software defect prediction”. In 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS) (pp.
111-122). IEEE.

[5] J. Li, P. He, J. Zhu and M. R. Lyu, ”Software Defect Prediction via
Convolutional Neural Network,” 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), Prague, 2017

[6] W. Liu, S. Liu, Q. Gu, J. Chen, X. Chen and D. Chen, “Studies of a
Two-Stage Data Preprocessing Approach for Software Fault Prediction,”
in IEEE Transactions on Reliability, vol. 65, no. 1, pp. 38-53, March
2016.

[7] Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N.,
& Hassan, A. E. (2016). Studying just-in-time defect prediction using
cross-project models. Empirical Software Engineering, 21(5), 2072-
2016.

[8] Singh, P. K., Panda, R., & Sangwan, O. P. (2015). A critical analysis
on software fault prediction techniques. World applied sciences journal,
33(3), 371-379.

[9] Arora, I., Tetarwal, V., &; Saha, A. (2015). Open issues in software
defect prediction. Procedia Computer Science, 46, 906-912.

[10] Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2014). A
systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering, 38(6), 1276-
1304.

[11] K. Chandra, G. Kapoor, R. Kohli and A. Gupta, ”Improving software
quality using machine learning,” 2016 IEEE International Conference
on Innovation and Challenges in Cyber Security (ICICCS-INBUSH),
Noida,

[12] M. Kakkar and S. Jain, ”Feature selection in software defect prediction:
A comparative study,” 2016 IEEE 6th International Conference - Cloud
System and Big Data Engineering (Confluence), Noida, 2016, pp. 658-
663.

[13] Rawat, Mrinal & Dubey, Sanjay. (2015). IEEE. Software Defect Predic-
tion Models for Quality Improvement: A Literature Study. International
Journal of Computer Science Issues. 9. 288-296.

[14] Z. Xiang and Z. Tang, ”Research of Software Defect Prediction Model
Based on Gray Theory,” 2014 International Conference on Management
and Service Science, Wuhan, 2009, pp. 1-4.

[15] P. Deep Singh and A. Chug, ”Software defect prediction analysis using
machine learning algorithms,” 2017 7th International Conference on
Cloud Computing, Data Science & Engineering - Confluence, Noida,
2017, pp. 775-781

[16] Ebubeogu A. Felix, Sai Peck Lee. “Integrated Approach to Software
Defect Prediction”, VOLUME 5, 2017. IEEE Access

[17] Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol, E. Abdurachman
and B. Soewito, ”Software metrics for fault prediction using machine
learning approaches: A literature review with PROMISE repository
dataset,” 2017 IEEE International Conference on Cybernetics and Com-
putational Intelligence (CyberneticsCom), Phuket, 2017, pp. 19-23

[18] He P., He, Y., Yu, L., & Li, B. (2018). An Improved Method for Cross-
Project Defect Prediction by Simplifying Training Data. Mathematical
Problems in Engineering, 2018. Hindawi

[19] Ji, H., & Huang, S. (2018). A new framework consisted of data
preprocessing and classifier modelling for software defect prediction.
Mathematical Problems in Engineering, 2018. Hindawi

[20] C. Ni, W. Liu, Q. Gu, X. Chen and D. Chen, ”FeSCH: A Feature
Selection Method using Clusters of Hybrid-data for Cross-Project Defect
Prediction,” 2017 IEEE 41st Annual Computer Software and Applica-
tions Conference (COMPSAC), Turin, 2017, pp. 51-56.

[21] Chen N, Hoi SCH, Xiao X. Software process evaluation: A machine
learning framework with application to defect management process.
Empirical Software Engineering 2013; 19:1531-64

[22] Peters F, Menzies T, Gong L, Zhang H. Balancing privacy and utility
in cross-company defect prediction. IEEE Transactions on Software
Engineering 2013; 39:1054-68.

[23] Zhang, F., Keivanloo, I., Zou, Y. (2017). Data transformation in cross-
project defect prediction. Empirical Software Engineering, 22(6), 3186-
3218.

[24] Y. Zhang, D. Lo, X. Xia, and J. Sun, ”An empirical study of classifer-
combination for cross-project defect prediction”, in Proc. IEEE 39th
Annu.Comput. Softw. Appl. Conf. (COMPSAC), vol. 2. Jul. 2015

[25] D. G. Cavezza, R. Pietrantuono, and S. Russo,”Performance of defect-
prediction in rapidly evolving software,”in Proc. IEEE/ACM 3rd Int.
Workshop Release Eng. (RELENG), May 2015, pp. 8-11.

[26] Hammouri, Awni Hammad, Mustafa Alnabhan, Mohammad Al-
sarayrah, Fatima. (2018). ”Software Bug Prediction using Machine
Learning Approach”. International Journal of Advanced Computer Sci-
ence and Applications.IJACSA.2018.

[27] Zhou, T., Sun, X., Xia, X., Li, B., Chen, X. (2019). Improving defect
prediction with deep forest. Information and Software Technology, 114,
204-216.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2019

