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Abstract. In a generalized topological space Tg = (Ω,Tg), ordinary interior
and ordinary closure operators intg, clg : P (Ω) −→ P (Ω), respectively, are
defined in terms of ordinary sets. In order to let these operators be as general
and unified a manner as possible, and so to prove as many generalized forms
of some of the most important theorems in generalized topological spaces as
possible, thereby attaining desirable and interesting results, the present au-
thors have defined the notions of generalized interior and generalized closure
operators g-Intg, g-Clg : P (Ω) −→ P (Ω), respectively, in terms of a new
class of generalized sets which they studied earlier and studied their essen-
tial properties and commutativity. The outstanding result to which the study
has led to is: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than
intg : P (Ω) −→ P (Ω) and g-Clg : P (Ω) −→ P (Ω) is coarser (or, smaller,
weaker) than clg : P (Ω) −→ P (Ω). The elements supporting this fact are
reported therein as a source of inspiration for more generalized operations.

Key words and phrases. Generalized topological space, generalized sets,
generalized interior operator, generalized closure operator, commutativity

Contents

1. Introduction 2
2. Theory 4
2.1. Preliminaries 4
3. Main Results 6
3.1. Essential Properties 7
3.2. Commutativity 15
4. Discussion 30
4.1. Categorical Classifications 30
4.2. A Nice Application 34
4.3. Concluding Remarks 36
Appendix A. Pre-preliminaries 37
References 43

Email Address for Correspondence: ikhodabo@gmail.com.
1

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2019                   doi:10.20944/preprints201912.0064.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints201912.0064.v1
http://creativecommons.org/licenses/by/4.0/


2 KHODABOCUS M. I. AND SOOKIA N. U. H.

1. Introduction

Just as the concepts of T, g-T-interior1 operators in T -spaces (ordinary and
generalized interior operators in ordinary topological spaces) and T, g-T-closure op-
erators in T -spaces (ordinary and generalized closure operators in ordinary topo-
logical spaces) are essential operators in the study of T-sets in T -spaces (arbi-
trary sets in ordinary topological spaces) [CJK04, Cs6, Cs5, Cs8, Cs7, GS17, JN19,
Kal13, Lev70, Lev63, Lev61, MG16], so are the concepts of Tg, g-Tg-interior op-
erators in Tg-spaces (ordinary and generalized interior operators in generalized
topological spaces) and Tg, g-Tg-closure operators in Tg-spaces (ordinary and gen-
eralized closure operators in generalized topological spaces) essential operators in
the study of Tg-sets in Tg-spaces (arbitrary sets in generalized topological spaces)
[DB11, GS14, Min10, Min05, Mus17].

Intuitively, T, g-T-interior operators, respectively, in a T -space can be charac-
terized as one-valued maps int, g-Int : P (Ω) −→P (Ω) from the power set P (Ω)
of Ω into itself, assigning to each T-set in the T -space the ∪-operation (union
operation) of all T, g-T-open subsets of the T-set [And96, Dix84, Nj5, Wil70].
When the role of ∪-operation and T, g-T-open subsets, respectively, are given to
∩-operation (intersection operation) and T, g-T-closed supersets of the T-set, the
dual notions, called T, g-T-closure operators in the T -space follow [AON09, Cs8,
Dix84, DM99, Kur22, Wil70], which can likewise be characterized as one-valued
maps cl, g-Cl : P (Ω) −→ P (Ω). Finally, when (T ,T, g-T) 7−→

(
Tg,Tg, g-Tg

)
,

the notions of Tg, g-Tg-interior and Tg, g-Tg-closure operators in a Tg-space follow
[Cam19, Min11a, Pan11, SKK15, TC13], which can in a similar manner be char-
acterized as one-valued maps of the types intg, g-Intg : P (Ω) −→ P (Ω) and clg,
g-Clg : P (Ω) −→P (Ω), respectively.

Thus, in a T -space, int, g-Int : S 7−→ int (S ), g-Int (S ) describe two types of
collections of points interior in S and, cl, g-Cl : S 7−→ cl (S ), g-Cl (S ) describe
another two types of collections of points but close to S . Similarly, in a Tg-space,
intg, g-Intg : Sg 7−→ intg (Sg), g-Intg (Sg) describe two types of collections of
points interior in Sg and, clg, g-Clg : Sg 7−→ clg (Sg), g-Clg (Sg) describe another
two types of collections of points but close to Sg. Of all such operators int, cl, g-Int,
g-Cl : P (Ω) −→P (Ω) in T -spaces and intg, clg, g-Intg, g-Clg : P (Ω) −→P (Ω)
in Tg-spaces, int, cl : P (Ω) −→P (Ω) are the oldest and g-Intg, g-Clg : P (Ω) −→
P (Ω) are the newest. Hence, the studies of operators of these kinds have evolved
from the studies of ordinary operators in ordinary topological spaces to the studies
of generalized operators in generalized topological spaces.

In the literature of Tg-spaces on g-Tg-interior and g-Tg-closure operators, some
new types of one-valued maps g-Intg, g-Clg : P (Ω) −→ P (Ω) have been defined
and investigated by Mathematicians.

1Notes to the reader: The structures T = (Ω,T ) and Tg = (Ω,Tg), respectively, are called
ordinary and generalized topological spaces (briefly, T -space and Tg-space). The symbols T
and Tg, respectively, are called ordinary topology and generalized topology (briefly, topology and
g-topology). Subsets of T and Tg, respectively, are called T-sets and Tg-sets; subsets of T and
Tg, respectively, are called T -open and Tg-open sets, and their complements are called T -closed
and Tg-closed sets. Generalizations of T-sets, T -open and T -closed sets in T , respectively, are
called g-T-sets, g-T -open and g-T -closed sets; generalizations of Tg-sets, Tg-open and Tg-closed
sets in Tg, respectively, are called g-Tg-sets, g-Tg-open and g-Tg-closed sets. By a Λ-operator
is meant an operator using Λ-sets to characterize its argument, where Λ ∈ {T ,T, g-T , g-T} ∪{
Tg,Tg, g-T g, g-Tg

}
.
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In one paper, [Min09] has introduced g-Tg-interior and g-Tg-closure operators
based on θ-sets in Tg-spaces characterized by iθ, cθ : P (Ω) −→ P (Ω), respec-
tively; the g-Tg-operators were used to study some properties of θ (g, g′)-continuity
in Tg-spaces. In one subsequent paper, [Min11b] has introduced another types
of g-Tg-interior and g-Tg-closure operators in Tg-spaces characterized by iθ(ν1,ν2),
cθ(ν1,ν2) : P (Ω) −→P (Ω), respectively; the θ (ν1, ν2)-operators were used to study
other properties on mixed weak continuity on Tg-spaces. In another subsequent
paper, [Min11a] has made use of such θ, θ (ν1, ν2)-interior and θ, θ (ν1, ν2)-closure
operators to study the notions of mixed θ-continuity on Tg-spaces. In the work
of [CYWW13], the authors have introduced and then used other g-Tg-interior and
g-Tg-closure operators in T -spaces called λ-interior and λ-closure operators and
characterized by iλ, cλ : P (Ω) −→P (Ω), respectively, where λ ∈ {α, β, σ, π}.

In studying the properties of µ̃-open sets in Tg-spaces, [SKK15] have also used
these g-Tg-sets to define new g-Tg-interior and g-Tg-closure operators called µ̃-
interior and µ̃-closure operators and characterized by iµ̃, cµ̃ : P (Ω) −→ P (Ω),
respectively, and studied some of their properties. Thereafter, in studying a new
family of g-Tg-sets called gu-semi closed sets in Tg-spaces, [SJ16] have introduced
new g-Tg-interior and g-Tg-closure operators called g-semi interior and g-semi clo-
sure operators and characterized by sig, scg : P (Ω) −→P (Ω), respectively. In the
paper of [Boo18], the author gave the definitions of g-Tg-interior and g-Tg-closure
operators called δ (µ)-interior and δ (µ)-closure operators and characterized by iδ(µ),
cδ(µ) : P (Ω) −→P (Ω), respectively, and utilized them to study the properties of
ζδ(µ) and (ζ, δ (µ))-closed sets in strong in Tg-spaces. Later on, in extending the
notion of µ-β̂g-closed set introduced by [KN12] in T -spaces to Tg-spaces and then
studying their properties, [Cam19] has also investigated the related g-Tg-interior
and g-Tg-closure operators called, µ-β̂g-interior and µ-β̂g-closure operators and
characterized by β̂giµ, β̂gcµ : P (Ω) −→P (Ω), respectively. Relative to the g-Tg-
interior and g-Tg-closure operators introduced by [Cs2, Cs5], the author found that
the image of a Tg-set under β̂giµ : P (Ω) −→ P (Ω) is a superset of that under
iµ : P (Ω) −→P (Ω) and, the image of the Tg-set under β̂gcµ : P (Ω) −→P (Ω)
is a subset of its image under cµ : P (Ω) −→P (Ω).

In this paper titled Theory of g-Tg-Interior and g-Tg-Closure Operators and
subtitled Definitions, Essential Properties, and Commutativity, the authors attempt
to add, in as unique and unified a way as possible, a further contribution to the
field with these two research objectives in mind:

• i. To present the definitions and the essential properties of a new class of
g-Tg-interior and g-Tg-closure operators in Tg-spaces.

• ii. To discuss the commutativity of the g-Tg-interior and g-Tg-closure op-
erators of this class.

The rest of this paper is structured as thus: In Sect. 2, preliminary notions are
described in Sect. 2.1 (Appx. A contains pre-preliminary notions extracted from
the preliminary section of our first work titled Theory of g-Tg-Sets) and the main
results of the theory of g-Tg-interior and g-Tg-closure operators in Tg-spaces are
reported in Sect. 3: results associated with essential properties are given in Sect.
3.1 and those associated with the notion of commutativity are given in Sect. 3.2.
In Sect. 4, the establishment of the various relationships between these g-Tg-
operators are discussed in Sects 4.1. To support the work, a nice application of
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the g-Tg-interior and g-Tg-closure operators in a Tg-space is presented in Sect.
4.2. Finally, Sect. 4.3 provides concluding remarks and future directions of the
theory of g-Tg-interior and g-Tg-closure operators in Tg-spaces.

2. Theory

2.1. Preliminaries. Foreign terms used here are extracted from the preliminary
section of our first work titled Theory of g-Tg-Sets and are presented in Appx. A.

The discussion commences by defining the notions of g-Tg-closure and g-Tg-
interior operators of category ν in Tg-spaces.

Definition 2.1 (g-ν-Tg-Interior, g-ν-Tg-Closure Operators). Let Tg = (Ω,Tg) be
a Tg-space, let Csub

g-ν-O[Tg] [Sg]
def
=

{
Og ∈ g-ν-O

[
Tg

]
: Og ⊆ Sg

}
be the family of

all g-ν-Tg-open subsets of Sg ∈ P (Ω) relative to the class g-ν-O [Tg] of g-ν-Tg-
open sets, and let Csup

g-ν-K[Tg]
[Sg]

def
=

{
Kg ∈ g-ν-K

[
Tg

]
: Kg ⊇ Sg

}
be the family

of all g-ν-Tg-closed supersets of Sg ∈ P (Ω) relative to the class g-ν-K [Tg] of
g-ν-Tg-closed sets. Then, the one-valued maps of the types

g-Intg,ν : P (Ω) −→ P (Ω)
def
=

{
Sg,µ ⊆ Ω : µ ∈ I∗∞

}
(2.1)

Sg 7−→
∪

Og∈Csub
g-ν-O[Tg]

[Sg]

Og,

g-Clg,ν : P (Ω) −→ P (Ω)
def
=

{
Sg,µ ⊆ Ω : µ ∈ I∗∞

}
(2.2)

Sg 7−→
∩

Kg∈Csup

g-ν-K[Tg]
[Sg]

Kg

on P (Ω) ranging in P (Ω) are called, respectively, a ”g-Tg-interior operator of
category ν” and a ”g-Tg-closure operator of category ν.” The classes g-I [Tg]

def
={

g-Intg,ν : ν ∈ I03
}

and g-C [Tg]
def
=

{
g-Clg,ν : ν ∈ I03

}
, respectively, are called the

classes of all g-Tg-interior and g-Tg-closure operators.

Remark 2.2. According to their definitions, g-Intg : P (Ω) −→P (Ω) is the dual
of g-Clg : P (Ω) −→P (Ω), and conversely. For, the definition of the first rests on
such concepts as ∪, ⊆, Og,1, Og,2, . . . whereas the second, on ∩, ⊇, Kg,1, Kg,2, . . .,
which are dual concepts to ∪, ⊆, Og,1, Og,2, . . ., respectively.

It is interesting to view g-Intg, g-Clg : P (Ω) −→ P (Ω) as the components of
some so-called g-Tg-vector operator.

Definition 2.3 (g-Tg-Vector Operator). Let Tg = (Ω,Tg) be a Tg-space. Then,
an operator of the type

g-Icg,ν : P (Ω)×P (Ω) −→ P (Ω)×P (Ω)(2.3)
(Rg,Sg) 7−→

(
g-Intg,ν (Rg) , g-Clg,ν (Sg)

)
on P (Ω) ×P (Ω) ranging in P (Ω) ×P (Ω) is called a ”g-Tg-vector operator of
category ν.” Then, g-IC [Tg]

def
=

{
g-Icg,ν =

(
g-Intg,ν , g-Clg,ν

)
: ν ∈ I03

}
is called

the class of all g-Tg-vector operators.
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Remark 2.4. Observing that, for every ν ∈ I∗3 , the first and second components of
the g-Tg-vector operator g-Icg,ν =

(
g-Intg,ν , g-Clg,ν

)
are based on g-ν-O [Tg] and

g-ν-K [Tg], respectively, it follows that:

• i. g-Icg,ν = icg
def
=

(
intg, clg

)
if based on O [Tg] and K [Tg];

• ii. g-Icg,ν = g-Icν
def
=

(
g-Intν , g-Clν

)
if based on g-ν-O [T] and g-ν-K [T];

• iii. g-Icg,ν = ic
def
=

(
int, cl

)
if based on O [T] and K [T].

In this way, icg, g-Icν , ic : P (Ω)×P (Ω) −→P (Ω)×P (Ω) are called a Tg-vector
operator in a Tg-space Tg = (Ω,Tg), a g-T-vector operator of category ν in a T -
space T = (Ω,T ) and a T-vector operator in a T -space T = (Ω,T ), respectively.
Accordingly,

g-IC [T]
def
=

{
g-Icν =

(
g-Intν , g-Clν

)
: ν ∈ I03

}
(2.4)

⊆
{
g-Intν : ν ∈ I03

}
×
{
g-Clν : ν ∈ I03

} def
= g-I [T]× g-C [T] .

Then, g-IC [T] denotes the class of all g-T-vector operators in the T -space T =
(Ω,T ); g-I [T] denotes the class of all g-T-interior operators while g-C [T] denotes
the class of all g-T-closure operators in the T -space T = (Ω,T ).

Definition 2.5 (Complement g-Tg-Operator). Let Tg = (Ω,Tg) be a Tg-space.
Then, the one-valued map

g-Opg,Rg
: P (Ω) −→ P (Ω)(2.5)

Sg 7−→ {Rg
(Sg) ,

where {Rg
: P (Ω) −→P (Ω) denotes the relative complement of its operand with

respect to Rg ∈ g-S [Tg], is called a ”natural complement g-Tg-operator” on P (Ω).

For clarity, the notation g-Opg,Rg
= g-Opg is employed whenever Rg = Ω or

Rg is understood from the context. When g-Opg,Rg
: P (Ω) −→ P (Ω) is with

respect to Rg ∈ S [Tg], Rg ∈ g-S [T] and Rg ∈ S [T], the terms natural complement
Tg-operator, natural complement g-T-operator and natural complement T-operator
are employed and these terms stand for Opg,Rg

, g-OpRg
, OpRg

: P (Ω) −→P (Ω),
respectively.

Definition 2.6 (Symmetric Difference g-Tg-Operator). Let Tg = (Ω,Tg) be a
Tg-space. Then, the one-valued map

g-Sdg : P (Ω)×P (Ω) −→ P (Ω)(2.6)
(Rg,Sg) 7−→ g-Opg,Rg

(Sg) ∪ g-Opg,Sg
(Rg)

is called the ”symmetric difference g-Tg-operator” on P (Ω).

When the definition of g-Sdg : P (Ω) ×P (Ω) −→ P (Ω) is based on Opg,Rg
,

g-OpRg
, OpRg

: P (Ω) −→ P (Ω) instead of g-Opg,Rg
: P (Ω) −→ P (Ω), the

concepts of symmetric difference Tg-operator Sdg : P (Ω) ×P (Ω) −→ P (Ω),
symmetric difference g-T-operator g-Sd : P (Ω) ×P (Ω) −→ P (Ω) and symmet-
ric difference T-operator Sd : P (Ω) × P (Ω) −→ P (Ω), respectively, present
themselves.
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The components of g-Icg ∈ g-IC [Tg] are said to commute in a Tg-space if and
only if, for some Sg ∈P (Ω), g-Intg ◦ g-Clg : Sg 7−→ g-Clg ◦ g-Intg (Sg), or equiv-
alently, g-Clg ◦ g-Intg : Sg 7−→ g-Intg ◦ g-Clg (Sg). Thus, the definition follows.

Definition 2.7 (g-ν-Pg-Property). A Tg-set Sg ⊂ Tg in a Tg-space Tg = (Ω,Tg)
is said to have g-Pg-property of category ν in Tg if and only if it belongs to:

g-ν-P [Tg]
def
=

{
Sg : g-Intg,ν ◦ g-Clg,ν (Sg)←→ g-Clg,ν ◦ g-Intg,ν (Sg)

}
,

(2.7)
called the class of all Tg-sets having g-Pg-property of category ν in Tg.

The following classes:

P [Tg]
def
=

{
Sg : intg ◦ clg (Sg)←→ clg ◦ intg (Sg)

}
,

g-ν-P [T]
def
=

{
Sg : g-Intν ◦ g-Clν (Sg)←→ g-Clν ◦ g-Intν (Sg)

}
,(2.8)

P [T]
def
=

{
Sg : int ◦ cl (Sg)←→ cl ◦ int (Sg)

}
,

respectively, stand for the class of all Tg-sets having Pg-property in Tg, the class of
all T-sets having g-P-property of category ν in T and the class of all T-sets having
P-property in T. Thus, by Sg ∈ g-P [Tg]

def
=

∪
ν∈I0

3
g-ν-P [Tg] is meant a Tg-set

having g-Pg-property in Tg and by Sg ∈ g-P [T]
def
=

∪
ν∈I0

3
g-ν-P [T], a T-set having

g-P-property in T. The notion of Tg-set having g-Qg-property of category ν may
well be defined as thus.

Definition 2.8 (g-ν-Qg-Property). A Tg-set Sg ⊂ Tg in a Tg-space Tg = (Ω,Tg)
is said to have g-ν-Qg-property of category ν in Tg if and only if it belongs to:

g-ν-Nd [Tg]
def
=

{
Sg : g-Intg,ν ◦ g-Clg,ν : Sg 7−→ ∅

}
,(2.9)

called the class of all Tg-set having g-Qg-property in Tg.

In an analogous manner, the following classes:

Nd [Tg]
def
=

{
Sg : intg ◦ clg : Sg 7−→ ∅

}
,

g-ν-Nd [T]
def
=

{
Sg : g-Intν ◦ g-Clν : Sg 7−→ ∅

}
,(2.10)

Nd [T]
def
=

{
Sg : int ◦ cl : Sg 7−→ ∅

}
,

respectively, stand for the class of all Tg-sets having Qg-property in Tg, the class
of all Tg-sets having g-Q-property of category ν in T and the class of all T-sets
having Q-property in T. Hence, by Sg ∈ g-Nd [Tg]

def
=

∪
ν∈I0

3
g-ν-Nd [Tg] is meant

a Tg-set having g-Qg-property in Tg and by Sg ∈ g-Nd [T]
def
=

∪
ν∈I0

3
g-ν-Nd [T], a

T-set having g-Q-property in T.
In the the following sections, the main results of the theory of g-Tg-closure and

g-Tg-interior operators are presented.

3. Main Results

Using the foregoing definitions, some essential properties as well as the commu-
tativity of the g-Tg-interior and g-Tg-closure operators in Tg-spaces are presented
below.
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3.1. Essential Properties. The discussion begins by giving some of the basic
consequences resulting from the foregoing definition.

Lemma 3.1. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg), then:

• i. Csub
O[Tg]

[∩
ν∈I∗

σ
Sg,ν

]
=

∩
ν∈I∗

σ

Csub
O[Tg] [Sg,ν ],

• ii. Csup
K[Tg]

[∪
ν∈I∗

σ
Sg,ν

]
=

∪
ν∈I∗

σ

Csup
K[Tg]

[Sg,ν ].

Proof. Let {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg), then by virtue of Tg-set-theoretic (∩,∪)-operation, it results that
Csub

O[Tg]

[∩
ν∈I∗

σ
Sg,ν

]
=

{
Og ∈ O [Tg] : Og ⊆

∩
ν∈I∗

σ
Sg,ν

}
=

{
Og ∈ O [Tg] :

∧
ν∈I∗

σ

(
Og ⊆ Sg,ν

)}
=

∩
ν∈I∗

σ

{
Og ∈ O [Tg] : Og ⊆ Sg,ν

}
=

∩
ν∈I∗

σ

Csub
O[Tg] [Sg,ν ] ;

Csup
K[Tg]

[∪
ν∈I∗

σ
Sg,ν

]
=

{
Kg ∈ K [Tg] : Kg ⊇

∪
ν∈I∗

σ
Sg,ν

}
=

{
Kg ∈ K [Tg] :

∨
ν∈I∗

σ

(
Kg ⊇ Sg,ν

)}
=

∪
ν∈I∗

σ

{
Kg ∈ K [Tg] : Kg ⊇ Sg,ν

}
=

∪
ν∈I∗

σ

Csup
K[Tg]

[Sg,ν ] .

The proof of the lemma is complete. Q.e.d.

For any (Og,Kg) ∈ O [Tg] × K [Tg], the relations Og ⊆ opg (Og) and Kg ⊇
¬ opg (Kg) hold, or alternatively, O [Tg] ⊆ g-O [Tg] and K [Tg] ⊆ g-K [Tg]. Conse-
quently,(

Og ∈ O [Tg] −→ Og ∈ g-O [Tg]
)
∧
(
Kg ∈ K [Tg] −→ Kg ∈ g-K [Tg]

)
.

As a consequence of the above lemma, the corollary follows.

Corollary 3.2. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a
Tg-space Tg = (Ω,Tg), then:

• i. Csub
g-O[Tg]

[∩
ν∈I∗

σ
Sg,ν

]
=

∩
ν∈I∗

σ

Csub
g-O[Tg] [Sg,ν ],

• ii. Csup
g-K[Tg]

[∪
ν∈I∗

σ
Sg,ν

]
=

∪
ν∈I∗

σ

Csup
g-K[Tg]

[Sg,ν ].

Remark 3.3. It is easily seen that the relations Csub
g-O[Tg]

[∩
ν∈I∗

σ
Sg,ν = ∅

]
= {∅}

and Csup
g-K[Tg]

[∪
ν∈I∗

σ
Sg,ν

]
= {Ω} hold. On the other hand, Csub

g-O[Tg]

[
Sg = Ω

]
=

g-O [Tg] and Csup
g-K[Tg]

[
Sg = ∅

]
= g-K [Tg].

Proposition 3.4. Let Sg ⊂ Tg be a Tg-set and, let g-Intg, g-Clg : P (Ω) −→
P (Ω), respectively, be a g-Tg-interior and a g-Tg-closure operators in a Tg-
space Tg = (Ω,Tg). Then, the necessary and sufficient conditions for (ξ, ζ) ∈
g-Intg (Sg)× g-Clg (Sg) ⊂ Tg × Tg to hold in Tg are:

• i. ξ ∈ g-Intg (Sg) ←→
(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
,

• ii. ζ ∈ g-Clg (Sg) ←→
(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩Sg 6= ∅

]
.
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Proof. Let Sg ⊂ Tg be a Tg-set and, let g-Intg, g-Clg : P (Ω) −→ P (Ω),
respectively, be a g-Tg-interior and a g-Tg-closure operators in a Tg-space Tg =
(Ω,Tg). Suppose

(ξ, ζ) ∈ g-Intg (Sg)× g-Clg (Sg) =

( ∪
Og∈Csub

g-O[Tg]
[Sg]

Og

)
×

( ∩
Kg∈Csup

g-K[Tg]
[Sg]

Kg

)
.

Then, since the relations

∪
Og∈Csub

g-O[Tg]
[Sg]

Og ←→
{
ξ :

(
∃Og ∈ Csub

g-O[Tg] [Sg]
)[
ξ ∈ Og

]}
,

∩
Kg∈Csup

g-K[Tg]
[Sg]

Kg ←→
{
ζ :

(
∀Kg ∈ Csup

g-K[Tg]
[Sg]

)[
ζ ∈ Kg

]}

hold and g-O [Tg] × g-K [Tg] ⊇ Csub
g-O[Tg] [Sg] × Csup

g-K[Tg]
[Sg], and, on the other

hand, the relation ξ ∈ Og,ξ ⊆ Sg ⊆ Kg,ξ also holds for any (ξ,Og,ξ,Kg,ξ) ∈
Sg × Csub

g-O[Tg] [Sg]× Csup
g-K[Tg]

[Sg], it follows that

ξ ∈ g-Intg (Sg) ←→
(
∃Og ∈ Csub

g-O[Tg] [Sg]
)[
ξ ∈ Og

]
←→

(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
;

ζ ∈ g-Clg (Sg) ←→
(
∀Kg ∈ Csup

g-K[Tg]
[Sg]

)[
ζ ∈ Kg

]
←→

(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩Sg 6= ∅

]
.

Hence, ξ ∈ g-Intg (Sg) is equivalent to
(
∃Og,ξ ∈ g-O [Tg]

)[
Og,ξ ⊆ Sg

]
and ζ ∈

g-Clg (Sg) is equivalent to
(
∀Og,ζ ∈ g-O [Tg]

)[
Og,ζ ∩ Sg 6= ∅

]
. The proof of the

proposition is complete. Q.e.d.

In a Tg-space, the g-Tg-interior of finite intersection and the g-Tg-closure of
finite union equal intersections of g-Tg-interiors and g-Tg-closures, respectively, as
proved in the following theorem.

Theorem 3.5. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-
space Tg = (Ω,Tg) then:

• i. g-Intg :
∩

ν∈I∗
σ

Sg,ν 7−→
∩

ν∈I∗
σ

g-Intg
(
Sg,ν

)
∀ g-Intg ∈ g-I [Tg],

• ii. g-Clg :
∪

ν∈I∗
σ

Sg,ν 7−→
∪

ν∈I∗
σ

g-Clg
(
Sg,ν

)
∀ g-Clg ∈ g-C [Tg].
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Proof. Let {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets of a Tg-space
Tg = (Ω,Tg). Then for any

(
g-Intg, g-Clg

)
∈ g-I [Tg]× g-C [Tg], it follows that

g-Intg :
∩

ν∈I∗
σ

Sg,ν 7−→
∪

Og∈Csub
g-O[Tg]

[∩
ν∈I∗σ

Sg,ν

]Og

=
∪

Og∈
∩

ν∈I∗σ
Csub

g-O[Tg]
[Sg,ν ]

Og

=
∩

ν∈I∗
σ

( ∪
Og∈Csub

g-O[Tg]
[Sg,ν ]

Og

)
=

∩
ν∈I∗

σ

g-Intg (Sg,ν) ;

g-Clg :
∪

ν∈I∗
σ

Sg,ν 7−→
∪

Kg∈Csup

g-K[Tg]

[∪
ν∈I∗σ

Sg,ν

]Kg

=
∪

Kg∈
∪

ν∈I∗σ
Csup

g-K[Tg]
[Sg,ν ]

Kg

=
∪

ν∈I∗
σ

( ∪
Kg∈Csup

g-K[Tg]
[Sg,ν ]

Kg

)
=

∪
ν∈I∗

σ

g-Clg (Sg,ν) .

The proof of the theorem is complete. Q.e.d.

Theorem 3.6. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:(
∀ g-Icg ∈ g-IC [Tg]

)[(
g-Intg (Sg) ⊆ Sg

)
∧
(
g-Clg (Sg) ⊇ Sg

)]
.(3.1)

Proof. Let Sg ⊂ Tg be any Tg-set and g-Icg ∈ g-IC [Tg] be arbitrary in a Tg-
space Tg = (Ω,Tg). Then, by virtue of the definition of the g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω), it results that,

g-Intg : Sg 7−→
∪

Og∈Csub
g-O[Tg]

[Sg]

Og

g-Clg : Sg 7−→
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg,

respectively. But, for every (Og,Kg) ∈ Csub
g-O[Tg] [Sg] × Csup

g-K[Tg]
[Sg], the relation

(Og,Sg) ⊆ (Sg,Kg) holds. Hence, g-Intg (Sg) ⊆ Sg and g-Clg (Sg) ⊇ Sg. This
completes the proof of the theorem. Q.e.d.

A consequence of the above theorem is the following corollary.

Corollary 3.7. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:(
∀ g-Icg ∈ g-IC [Tg]

)[
g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg)

]
.(3.2)

Remark 3.8. Employing the terminology of [Lev63], any Tg-set Sg ⊂ Tg in a
Tg-space Tg = (Ω,Tg) which satisfies the relation Og = g-Intg (Sg) ⊆ Sg ⊆
g-Clg (Sg) = g-Clg (Og) for some g-Tg-open set Og ∈ g-O [Tg] may well be termed
a ”g-Tg-semi-open set.”
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Proposition 3.9. If Tg = (Ω,Tg) be a strong Tg-space, then:(
∀ g-Icg ∈ g-IC [Tg]

)[
g-Icg : (Ω, ∅) 7−→ (Ω, ∅)

]
.(3.3)

Proof. Let g-Icg ∈ g-IC [Tg] in a strong Tg-space Tg = (Ω,Tg). Then, since Tg is
a strong Tg-space, (Ω, ∅) ∈ g-O [Tg]×g-K [Tg] and, therefore, Ω is the biggest g-Tg-
open subset contained in itself and, ∅ is the smallest g-Tg-closed superset containing
itself. Consequently,

g-Icg : (Ω, ∅) 7−→
( ∪

Og∈Csub
g-O[Tg]

[Ω]

Og,
∩

Kg∈Csup

g-K[Tg]
[∅]

Kg

)

=

( ∪
Og∈{Ω}∪Csub

g-O[Tg]
[Ω]

Og,
∩

Kg∈{∅}∪Csup

g-K[Tg]
[∅]

Kg

)
= (Ω, ∅) .

Hence, g-Icg : (Ω, ∅) 7−→ (Ω, ∅). The proof of the proposition is complete. Q.e.d.

In a Tg-space, the components of g-Icg ∈ g-IC [Tg] are both idempotent g-Tg-
operators, as demonstrated in the following proposition.

Proposition 3.10. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:
• i. g-Intg ◦ g-Intg : Sg 7−→ g-Intg (Sg) ∀ g-Intg ∈ g-I [Tg],
• ii. g-Clg ◦ g-Clg : Sg 7−→ g-Clg (Sg) ∀ g-Clg ∈ g-C [Tg].

Proof. Let Sg ⊂ Tg be any Tg-set and let
(
g-Intg, g-Clg

)
∈ g-I [Tg]× g-C [Tg] be

arbitrary in a Tg-space Tg = (Ω,Tg). Then,

g-Intg : g-Intg (Sg) 7−→
∪

Og∈Csub
g-O[Tg]

[g-Intg(Sg)]

Og;

g-Clg : g-Clg (Sg) 7−→
∩

Kg∈Csup

g-K[Tg]
[g-Clg(Sg)]

Kg.

But, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) and consequently,∪
Og∈Csub

g-O[Tg]
[g-Intg(Sg)]

Og =
∪

Og∈Csub
g-O[Tg]

[Sg]

Og;

∩
Kg∈Csup

g-K[Tg]
[g-Clg(Sg)]

Kg =
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg.

Hence, g-Intg ◦ g-Intg : Sg 7−→ g-Intg (Sg) and g-Clg ◦ g-Clg : Sg 7−→ g-Clg (Sg).
This completes the proof of the proposition. Q.e.d.

Proposition 3.11. If Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg), then:
• i. g-Intg ◦ g-Clg : Sg 7−→ g-Intg (Sg) ∀

(
g-Intg, g-Clg

)
∈ g-IC [Tg],

• ii. g-Clg ◦ g-Intg : Sg 7−→ g-Clg (Sg) ∀
(
g-Intg, g-Clg

)
∈ g-IC [Tg].

Proof. Let Sg ⊂ Tg be any Tg-set and let g-Icg ∈ g-IC [Tg] be a g-Tg-operator
in a Tg = (Ω,Tg). Then, the first and second components of g-Icg : P (Ω) ×
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P (Ω) −→P (Ω)×P (Ω) operated on g-Clg (Sg), g-Intg (Sg) ⊂ Tg gives

g-Intg : g-Clg (Sg) 7−→
∪

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

=
∪

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

(
Og ∩ g-Clg (Sg)

)
=

∪
Og∈Csub

g-O[Tg]
[Sg]

(
Og ∩Sg

)
=

∪
Og∈Csub

g-O[Tg]
[Sg]

Og,

g-Clg : g-Intg (Sg) 7−→
∩

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

=
∩

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

(
Kg ∪ g-Intg (Sg)

)
=

∩
Kg∈Csup

g-K[Tg]
[Sg]

(
Kg ∪Sg

)
=

∩
Kg∈Csup

g-K[Tg]
[Sg]

Kg,

respectively. Hence, g-Intg ◦ g-Clg : Sg 7−→ g-Intg (Sg) and g-Clg ◦ g-Intg : Sg 7−→
g-Clg (Sg). The proof of the proposition is complete. Q.e.d.

In a Tg-space, the g-Tg-interior and g-Tg-closure of subset are subsets of g-Tg-
interior and g-Tg-closure, respectively, as shown in the theorem below.

Theorem 3.12. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg, g-Clg :
P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg) then, for every (Rg,Sg) ⊂ Tg × Tg

such that Rg ⊆ Sg:

g-Icg (Rg,Rg) ⊆ g-Icg (Sg,Sg) .(3.4)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given
and (Rg,Sg) ⊂ Tg × Tg such that Rg ⊆ Sg be an arbitrary pair of Tg-sets.
Then, since for any Sg ∈ Pg (Ω), (Og,Sg) ⊆ (Sg,Kg) for every (Og,Kg) ∈
Csub

g-O[Tg] [Sg] × Csup
g-K[Tg]

[Sg], it follows by virtue of the relation Rg ⊆ Sg that
(Og,Rg) ⊆ (Rg,Sg) ⊆ (Sg,Kg) for any (Og,Kg) ∈ Csub

g-O[Tg] [Rg] × Csup
g-K[Tg]

[Sg].
Consequently, it results on the one hand that

g-Intg : Rg 7−→
∪

Og∈Csub
g-O[Tg]

[Rg]

Og =
∪

Og∈Csub
g-O[Tg]

[Rg]

(Og ∩Sg)

⊆
∪

Og∈Csub
g-O[Tg]

[Sg]

(Og ∩Sg) =
∪

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ,
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and on the other hand,

g-Clg : Rg 7−→
∩

Kg∈Csup

g-K[Tg]
[Rg]

Kg =
∩

Kg∈Csup

g-K[Tg]
[Rg]

(Kg ∩Rg)

⊆
∩

Kg∈Csup

g-K[Tg]
[Sg]

(Kg ∩Sg) =
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg = g-Clg (Sg) .

These show that the images of Rg under g-Intg, g-Clg : P (Ω) −→ P (Ω), re-
spectively, are subsets of g-Intg (Sg) and g-Clg (Sg). Hence, g-Icg (Rg,Rg) ⊆
g-Icg (Sg,Sg). The proof of the theorem is complete. Q.e.d.

Theorem 3.13. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg, g-Clg :
P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg, clg :
P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ⊂ Tg

)[(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)]
.(3.5)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] and icg ∈
IC [Tg] be given and Sg ⊂ Tg be an arbitrary Tg-set. Then,

intg : Sg 7−→
∪

Og∈Csub
O[Tg]

[Sg]

Og ⊆
∪

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ;

clg : Sg 7−→
∩

Kg∈Csup

K[Tg]
[Sg]

Kg ⊇
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg = g-Clg (Sg) .

Therefore, it follows that the images of Sg under intg, g-Clg : P (Ω) −→P (Ω), re-
spectively, are subsets of g-Intg (Sg) and clg (Sg). Hence,

(
intg (Sg) , g-Clg (Sg)

)
⊆(

g-Intg (Sg) , clg (Sg)
)
. The proof of the theorem is complete. Q.e.d.

Proposition 3.14. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg,
clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg) then, for any Tg-set Sg ⊂ Tg,(

g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg)
)
−→

(
intg (Sg) ⊆ Sg ⊆ clg (Sg)

)
.(3.6)

Proof.

Remark 3.15. If ”g-Intg % intg” stands for ”g-Intg (Sg) ⊇ intg (Sg)” and ”g-Clg -
clg,” for ”g-Clg (Sg) ⊆ clg (Sg),” then the outstanding facts are: g-Intg : P (Ω) −→
P (Ω) is finer (or, larger, stronger) than intg : P (Ω) −→ P (Ω) or, intg :
P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than g-Intg : P (Ω) −→ P (Ω);
g-Clg : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than clg : P (Ω) −→
P (Ω) or, clg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than g-Clg :
P (Ω) −→P (Ω).

If g-Icg ∈ g-IC [Tg] and icg ∈ IC [Tg] be given and, let Sg ⊂ Tg be an arbitrary
Tg-set in a Tg-space Tg = (Ω,Tg). Then, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg). But
since

(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)
it follows that

intg (Sg) ⊆ g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) ⊆ clg (Sg) .

Hence, g-Intg (Sg) ⊆ Sg ⊆ g-Clg (Sg) implies intg (Sg) ⊆ Sg ⊆ clg (Sg). The
proof of the proposition is complete. Q.e.d.
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Proposition 3.16. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→ P (Ω) and icg ∈ IC [Tg] be a given pair of Tg-operators intg,
clg : P (Ω) −→P (Ω), and (Rg,Sg) ⊂ Tg×Tg be any pair of Tg-sets in a Tg-space
Tg = (Ω,Tg), then:

(Rg,Sg) ∈ O [Tg]×K [Tg] −→ g-Icg (Rg,Sg) = icg (Rg,Sg) .(3.7)

Proof. Let g-Icg ∈ g-IC [Tg] and icg ∈ IC [Tg] be given and, let (Rg,Sg) ⊂
Tg×Tg be arbitrary in a Tg-space Tg = (Ω,Tg). Then, since S [Tg] = O [Tg]∪K [Tg]
and, O [Tg] ⊆ g-O [Tg] and g-K [Tg] ⊇ K [Tg], it follows that

g-icg : (Rg,Sg) 7−→
( ∪

Og∈Csub
O[Tg]

[Rg]

Og,
∩

Kg∈Csup

K[Tg]
[Sg]

Kg

)

=

( ∪
Og∈Csub

O[Tg]∩g-O[Tg]
[Rg]

Og,
∩

Kg∈Csup

K[Tg]∩g-K[Tg]
[Sg]

Kg

)

=

( ∪
Og∈Csub

g-O[Tg]
[Rg]

Og,
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg

)

= g-Icg (Rg,Sg) .

Hence, g-Icg (Rg,Sg) = icg (Rg,Sg). The proof of the proposition is complete.
Q.e.d.

Proposition 3.17. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[(

g-Intg (Sg) ⊆ g-Intg ◦ g-Clg (Sg)
)

∧
(
g-Clg (Sg) ⊇ g-Clg ◦ g-Intg (Sg)

)]
.(3.8)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given and
Sg ∈P (Ω) be an arbitrary Tg-set. Then,

g-Intg : g-Clg (Sg) 7−→
∪

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

⊇
∪

Og∈Csub
g-O[Tg]

[Sg]

Og = g-Intg (Sg) ;

g-Clg : g-Intg (Sg) 7−→
∩

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

⊆
∩

Kg∈Csub
g-K[Tg]

[Sg]

Kg = g-Clg (Sg) .

Hence, the image of g-Clg (Sg) under g-Intg : P (Ω) −→ P (Ω) is a superset of
g-Intg (Sg) and that of g-Intg (Sg) under g-Clg : P (Ω) −→ P (Ω) is a subset of
g-Clg (Sg). The proof of the proposition is complete. Q.e.d.
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The theorem stated below and the corollary following it mark the end of this
section.

Theorem 3.18. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg, g-Clg :
P (Ω) −→P (Ω) in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[
g-Icg (Sg) ∈ g-O [Tg]× g-K [Tg]

]
.(3.9)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Icg ∈ g-IC [Tg] be given and
Sg ∈ P (Ω) be an arbitrary Tg-set. Then, by virtue of the definition of g-Icg, it
results that,

g-Intg : Sg 7−→
∪

Og∈Csub
g-O[Tg]

[Sg]

Og

⊆
∪

Og∈Csub
Tg

[Sg]

opg (Og) = opg

( ∪
Og∈Csub

Tg
[Sg]

Og

)
;

g-Clg : Sg 7−→
∩

Kg∈Csup

g-K[Tg]
[Sg]

Kg

⊇
∩

Kg∈Csup
¬Tg

[Sg]

opg (Kg) = opg

( ∩
Kg∈Csup

¬Tg
[Sg]

Kg

)
.

But since ( ∪
Og∈Csub

Tg
[Sg]

Og,
∩

Kg∈Csup
¬Tg

[Sg]

Kg,

)
∈ Tg × ¬Tg,

it follows, consequently, that g-Intg (Sg) ∈ g-O [Tg] and g-Intg (Sg) ∈ g-K [Tg].
Hence, g-Icg (Sg) ∈ g-O [Tg]× g-K [Tg]. This proves the theorem. Q.e.d.

An immediate consequence of the above theorem is the corollary stated below.

Corollary 3.19. If g-Icg ∈ g-IC
[
Ω
]

be a given pair of g-Tg-operators g-Intg,
g-Clg : P (Ω) −→P (Ω) and Sg ⊂ Tg be any Tg-set in a Tg-space Tg = (Ω,Tg),
then there exists (Og,Kg) ∈ Tg × ¬Tg such that:[

g-Intg (Sg) ⊆ opg (Og)
]
∧
[
g-Clg (Sg) ⊇ ¬ opg (Kg)

]
.(3.10)

In view of Thms 3.2, 3.5 and Props 3.9, 3.10, it follows immediately that the
g-Tg-interior and g-Tg-closure operators g-Intg, g-Clg: P(Ω) −→ P (Ω), respec-
tively possess similar properties analogous to the Kuratowski closure Axioms which
can be grouped and stated in the form of a corollary.

Corollary 3.20. Let g-Intg, g-Clg : P (Ω) −→ P (Ω) be a g-Tg-interior and a
g-Tg-closure operators in a strong Tg-space Tg = (Ω,Tg). Then:

• For every (Rg,Sg) ∈P (Ω)×P (Ω),
– i. g-Intg (Ω) = Ω,
– ii. g-Intg (Rg) ⊆ Rg,
– iii. g-Intg ◦ g-Intg (Rg) = g-Intg (Rg),
– iv. g-Intg (Rg ∩Sg) = g-Intg (Rg) ∩ g-Intg (Sg).

• For every (Rg,Sg) ∈P (Ω)×P (Ω),
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– v. g-Clg (∅) = ∅,
– vi. g-Clg (Rg) ⊇ Rg,
– vii. g-Clg ◦ g-Clg (Rg) = g-Clg (Rg),
– viii. g-Clg (Rg ∪Sg) = g-Clg (Rg) ∪ g-Clg (Sg).

Some nice Mathematical vocabulary follow. In Cor. 3.20, Items i., ii., iii. and
iv. state that the g-Tg-interior operator g-Intg : P (Ω) −→ P (Ω) is Ω-grounded,
non-expansive, idempotent and ∩-additive, respectively. Items v., vi., vii. and
viii. state that the g-Tg-closure operator g-Clg : P (Ω) −→ P (Ω) is ∅-grounded,
expansive, idempotent and ∪-additive, respectively.

The axiomatic definitions of the concepts of g-Tg-interior and g-ν-Tg-closure
operators in Tg-spaces follow.

Definition 3.21 (Axiomatic Definition: g-Tg-Interior Operator). A one-valued
map of the type g-Intg : P (Ω) −→ P (Ω) in a Tg-space Tg = (Ω,Tg) is called
a ”g-Tg-interior operator” on P (Ω) ranging in P (Ω) if and only if, for any
(Rg,Sg) ∈P (Ω)×P (Ω), it satisfies the following axioms:

• Ax. i. g-Intg (Rg) ⊆ Rg,
• Ax. ii. Rg ⊆ Sg −→ g-Intg (Rg) ⊆ g-Intg (Sg).

Thus, a g-Tg-interior operator g-Intg : P (Ω) −→ P (Ω) in a Tg-space Tg =
(Ω,Tg) is a non-expansive g-Tg-set-valued set map forming a generalization of the
Tg-set-valued set map intg : P (Ω) −→P (Ω) in the Tg-space Tg, provided[

g-Intg (Rg) ⊆ Rg

]
∧
[
g-Intg (Rg ∩Sg) ⊆ g-Intg (Rg) ∩ g-Intg (Sg)

]
(3.11)

holds for any (Rg,Sg) ∈P (Ω)×P (Ω).

Definition 3.22 (Axiomatic Definition: g-Tg-Closure Operator). A one-valued
map of the type g-Clg : P (Ω) −→ P (Ω) in a strong Tg-space Tg = (Ω,Tg) is
called a ”g-Tg-closure operator” on P (Ω) ranging in P (Ω) if and only if, for any
(Rg,Sg) ∈P (Ω)×P (Ω), it satisfies the following axioms:

• Ax. i. g-Clg (Rg) ⊇ Rg,
• Ax. ii. Rg ⊆ Sg −→ g-Clg (Rg) ⊆ g-Clg (Sg).

Hence, a g-Tg-closure operator g-Clg : P (Ω) −→ P (Ω) in a Tg-space Tg =
(Ω,Tg) is an expansive g-Tg-set-valued set map forming a generalization of the
Tg-set-valued set map clg : P (Ω) −→P (Ω) in the Tg-space Tg, provided[

g-Clg (Rg) ⊇ Rg

]
∧
[
g-Clg (Rg ∪Sg) ⊇ g-Clg (Rg) ∪ g-Clg (Sg)

]
(3.12)

holds for any (Rg,Sg) ∈ P (Ω) ×P (Ω). The discussion of the present section
terminates here.

3.2. Commutativity. It is the intent of the present section to give some charac-
terizations on the commutativity of the g-Tg-operators in Tg-spaces, giving some
characterizations of Tg-sets having g-Pg-property and g-Qg-property in a Tg-space.
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Lemma 3.23. If g-Icg ∈ g-IC [Tg] be a given pair of g-Tg-operators g-Intg, g-Clg :
P (Ω) −→ P (Ω) and g-Opg : P (Ω) −→ P (Ω) be the natural complement g-Tg-
operator of its components in a Tg-space Tg = (Ω,Tg), then:(

∀Sg ∈P (Ω)
)[(

g-Intg (Sg)←→ g-Opg ◦ g-Clg ◦ g-Opg (Sg)
)

∧
(
g-Clg (Sg)←→ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

)]
.(3.13)

Proof. Let g-Icg ∈ g-IC [Tg] be a given and, let g-Opg : P (Ω) −→P (Ω) be the
natural complement g-Tg-operator of its components in a Tg-space Tg = (Ω,Tg).
Then, for a Sg ∈P (Ω) taken arbitrarily, it follows that

g-Opg ◦ g-Intg : g-Opg (Sg) 7−→ g-Opg

( ∪
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og

)
;

g-Opg ◦ g-Clg : g-Opg (Sg) 7−→ g-Opg

( ∩
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg

)
.

Let
{
Og,ν : (∀ν ∈ I∗∞) [Og,ν ⊆ Sg]

}
and

{
Kg,ν : (∀ν ∈ I∗∞) [Kg,ν ⊇ Sg]

}
stand

for Csub
g-O[Tg] [Sg] ⊆ g-O [Tg] and Csup

g-K[Tg]
[Sg] ⊆ g-K [Tg], respectively. Then,

g-Opg

( ∪
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og

)
= g-Opg

( ∪
ν∈I∗

∞

(
Og,ν ⊆ g-Opg (Sg)

))

= {Ω
( ∪

ν∈I∗
∞

(
Og,ν ⊆ g-Opg (Sg)

))
=

∩
ν∈I∗

∞

(
{Ω (Og,ν) ⊇ {Ω

(
{Ω (Sg)

))
=

∩
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg;

g-Opg

( ∩
Kg∈Csup

g-K[Tg]
[g-Opg(Sg)]

Kg

)
= g-Opg

( ∪
ν∈I∗

∞

(
Og,ν ⊆ g-Opg (Sg)

))

= {Ω
( ∩

ν∈I∗
∞

(
Kg,ν ⊇ g-Opg (Sg)

))
=

∪
ν∈I∗

∞

(
{Ω (Kg,ν) ⊆ {Ω

(
{Ω (Sg)

))
=

∪
Og∈Csub

g-O[Tg]
[g-Opg(Sg)]

Og.

Since Sg ∈P (Ω) is arbitrary, it follows that, for every Sg ∈P (Ω), the relations

g-Intg (Sg) ←→ g-Opg ◦ g-Clg ◦ g-Opg (Sg) ,

g-Clg (Sg) ←→ g-Opg ◦ g-Intg ◦ g-Opg (Sg)
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hold. The proof of the lemma is complete. Q.e.d.

A necessary and sufficient condition for a Tg-sets to have g-Pg-property in a
Tg-space is contained in the following theorem.

Theorem 3.24. A Tg-sets Sg ⊂ Tg in a Tg-space Tg = (Ω,Tg) is said to have
g-Pg-property in Tg if and only if:

Sg ∈ g-P [Tg]←→ g-Opg (Sg) ∈ g-P [Tg] .(3.14)

Proof. Necessity. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-
space Tg = (Ω,Tg). Then,

g-Intg : g-Clg ◦ g-Opg (Sg) 7−→ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Intg (Sg)

= g-Opg ◦ g-Intg ◦ g-Clg (Sg)

= g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

= g-Opg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

= g-Clg ◦ g-Intg ◦ g-Opg (Sg)

Thus, it follows that

g-Intg ◦ g-Clg
(
g-Opg (Sg)

)
←→ g-Clg ◦ g-Intg

(
g-Opg (Sg)

)
,

and hence, g-Opg (Sg) ∈ g-P [Tg]. The condition of the theorem is, therefore,
necessary.

Sufficiency. Conversely, suppose g-Opg (Sg) ∈ g-P [Tg] be a Tg-set having g-Pg-
property in a Tg-space Tg. Set Rg = g-Opg (Sg). Then,

Sg ←→ g-Opg ◦ g-Opg (Sg) ←→ g-Opg (Rg) .

But Rg ∈ g-P [Tg] and it in turn implies g-Opg (Rg) ∈ g-P [Tg]. Hence, it follows
that g-Opg (Sg) ∈ g-P [Tg] implies Sg ∈ g-P [Tg]. The condition of the theorem is,
therefore, sufficient. Q.e.d.

Two if-then conditions for a Tg-set to have g-Pg-property in a Tg-space are given
in the following proposition in terms of the g-Tg-interior and closure operators.

Proposition 3.25. If Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg), then:

• i. Sg ∈ g-P [Tg] −→ g-Intg (Sg) ∈ g-P [Tg],
• ii. Sg ∈ g-P [Tg] −→ g-Clg (Sg) ∈ g-P [Tg].
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Proof. i. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-space
Tg = (Ω,Tg). Then,

g-Intg ◦ g-Clg
(
g-Intg (Sg)

)
= g-Intg ◦ g-Clg ◦ g-Intg (Sg)

←→ g-Intg ◦ g-Clg ◦ g-Intg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Clg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Opg ◦ g-Opg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Intg ◦ g-Opg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Intg ◦ g-Clg (Sg)

←→ g-Clg ◦ g-Intg (Sg)←→ g-Clg ◦ g-Intg
(
g-Intg (Sg)

)
Hence, Sg ∈ g-P [Tg] implies g-Intg (Sg) ∈ g-P [Tg]. The proof of Item i. of the
proposition is complete.

ii. Suppose Sg ∈ g-P [Tg] in Tg. Then,

g-Clg ◦ g-Intg
(
g-Clg (Sg)

)
= g-Clg ◦ g-Intg ◦ g-Clg (Sg)

←→ g-Clg ◦ g-Intg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Intg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Intg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Opg ◦ g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

←→ g-Clg ◦ g-Intg (Sg)

←→ g-Intg ◦ g-Clg (Sg)←→ g-Intg ◦ g-Clg
(
g-Clg (Sg)

)
Hence, Sg ∈ g-P [Tg] implies g-Clg (Sg) ∈ g-P [Tg]. The proof of Item ii. of the
proposition is complete. Q.e.d.

Theorem 3.26. If Sg ⊂ Tg be a Tg-set of a strong Tg-space Tg = (Ω,Tg) such
that Sg ∈ g-Nd [Tg] or g-Opg (Sg) ∈ g-Nd [Tg] in Tg, then Sg ∈ g-P [Tg].

Proof. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) such that
Sg ∈ g-Nd [Tg] or g-Opg (Sg) ∈ g-Nd [Tg] in Tg. Then:

Case i. Suppose Sg ∈ g-Nd [Tg] in Tg. Then, for every g-Icg ∈ g-IC [Tg],
it follows that g-Intg ◦ g-Clg : Sg 7−→ ∅. But g-Intg ◦ g-Clg (Sg) ⊇ g-Intg (Sg)
and consequently, g-Intg : Sg 7−→ ∅. Since Tg is a strong Tg-space, it follows,
furthermore, that g-Clg ◦ g-Intg : Sg 7−→ ∅. Therefore, g-Intg ◦ g-Clg (Sg) = ∅ =
g-Clg ◦ g-Intg (Sg) and, hence, Sg ∈ g-P [Tg].

Case ii. Suppose g-Opg (Sg) ∈ g-Nd [Tg] in Tg. Then, by virtue of the above
case, g-Opg (Sg) ∈ g-P [Tg] and by virtue of the fact that g-Opg (Sg) ∈ g-P [Tg] is
equivalent to Sg ∈ g-P [Tg], it results that g-Opg (Sg) ∈ g-Nd [Tg] implies Sg ∈
g-P [Tg]. The proof of the theorem is complete. Q.e.d.
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Theorem 3.27. Let Sg ⊆ Tg,Γ be a Tg-set in a Tg-subspace Tg,Γ = (Γ,Tg,Γ) of a
Tg-space Tg,Ω = (Ω,Tg,Ω), where Tg,Γ : P (Γ) 7−→ Tg,Γ =

{
Og ∩ Γ : Og ∈ Tg,Ω

}
.

Then:

• i. Γ ∈ g-O [Tg,Ω] implies g-Intg,Γ (Sg) = g-Intg,Ω (Sg),
• ii. Γ ∈ g-K [Tg,Ω] implies g-Clg,Γ (Sg) = g-Clg,Ω (Sg).

Proof. Let Sg ⊆ Tg,Γ be a Tg-set in a Tg-subspace Tg,Γ = (Γ,Tg,Γ) of a Tg-
space Tg,Ω = (Ω,Tg,Ω) and let

(
g-Intg,Λ, g-Clg,Λ

)
∈ g-I [Tg,Λ]× g-C [Tg,Λ] be a pair

of g-Tg-interior and g-Tg-closure operators g-Intg,Λ, g-Clg,Λ : P (Λ) −→ P (Λ),
respectively, where Λ ∈ {Ω,Γ}. Then:

i. Suppose Γ ∈ g-O [Tg,Ω] in Tg,Ω. Then,

g-Intg,Ω : Sg 7−→
∪

Og∈Csub

g-O[Tg,Ω]
[Sg]

Og

=
∪

Og∈Csub

g-O[Tg,Ω]
[Γ∩Sg]

Og

⊆
∪

Og∈Csub

g-O[Tg,Ω]
[Γ]

Og = g-Intg,Ω (Γ) = Γ.

Thus, Γ ∩ g-Intg,Ω (Sg) = g-Intg,Ω (Sg). On the other hand,

g-Intg,Γ : Sg 7−→
∪

Og∈Csub

g-O[Tg,Γ]
[Sg]

Og

←→
∪

Og∈Csub

g-O[Tg,Γ]
[Sg]

(Og ∩ Γ)

←→
∪

Og∈Csub

g-O[Tg,Ω]
[Sg]

(Og ∩ Γ)

←→ Γ ∩
( ∪

Og∈Csub

g-O[Tg,Ω]
[Sg]

Og

)
= Γ ∩ g-Intg,Ω (Sg) .

But Γ ∩ g-Intg,Ω (Sg) = g-Intg,Ω (Sg) and hence, g-Intg,Γ (Sg) = g-Intg,Ω (Sg).
ii. Suppose Γ ∈ g-K [Tg,Ω] in Tg,Ω. Then,

g-Clg,Ω : Sg 7−→
∩

Kg∈Csup

g-K[Tg,Ω]
[Sg]

Kg

⊆
∩

Kg∈Csup

g-K[Tg,Ω]
[Γ]

Kg = g-Clg,Ω (Γ) = Γ.
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Consequently, Γ ∩ g-Clg,Ω (Sg) = g-Clg,Ω (Sg). On the other hand,

g-Clg,Γ : Sg 7−→
∩

Kg∈Csup

g-K[Tg,Γ]
[Sg]

Kg

←→
∩

Kg∈Csup

g-K[Tg,Γ]
[Sg]

(Kg ∩ Γ)

←→
∩

Kg∈Csup

g-K[Tg,Ω]
[Sg]

(Kg ∩ Γ)

←→ Γ ∩
( ∩

Kg∈Csup

g-K[Tg,Ω]
[Sg]

Kg

)
= Γ ∩ g-Clg,Ω (Sg) .

But Γ ∩ g-Clg,Ω (Sg) = g-Clg,Ω (Sg) and hence, g-Clg,Γ (Sg) = g-Clg,Ω (Sg). The
proof of the theorem is complete. Q.e.d.

Theorem 3.28. Let Qg ∈ g-O [Tg] ∩ g-K [Tg] be a g-Tg-open-closed set and let
(Sg,α,Sg,β) ⊆ Tg × Tg be a pair of Tg-sets in a Tg-space Tg = (Ω,Tg). If
(Sg,α,Sg,β) ⊆

(
Qg, g-Opg (Qg)

)
, then:

(
∀ g-Intg ∈ g-I [Tg]

)[
g-Intg

(∪
σ=α,βSg,σ

)
=

∪
σ=α,β

g-Intg (Sg,σ)

]
.(3.15)

Proof. Let Qg ∈ g-O [Tg]∩ g-K [Tg] be a g-Tg-open-closed set, let (Sg,α,Sg,β) ⊆
Tg×Tg be a pair of Tg-sets in a Tg-space Tg = (Ω,Tg) and, suppose (Sg,α,Sg,β) ⊆(
Qg, g-Opg (Qg)

)
. Then, for every Sg ∈ {Sg,α,Sg,β},

g-Intg : Sg 7−→
∪

Og∈Csub
g-O[Tg]

[Sg]

Og

⊆
∪

Og∈Csub
g-O[Tg]

[Sg,α∪Sg,β ]

Og = g-Intg
(∪

σ=α,βSg,σ

)
.

Consequently, g-Intg
(∪

σ=α,βSg,σ

)
⊇

∪
σ=α,β g-Intg (Sg,σ). Set Ŝg,α = Sg,α ∩Qg

and Ŝg,β = Sg,β ∩ g-Opg (Qg). Then, since (Sg,α,Sg,β) ⊆
(
Qg, g-Opg (Qg)

)
, it
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follows that

Csub
g-O[Tg]

[∪
σ=α,βSg,σ

]
= Csub

g-O[Tg]

[∪
σ=α,βŜg,σ

]
=

{
Og ∈ g-O [Tg] : Og ⊆

∪
σ=α,β

Ŝg,σ

}

=

{
Og ∈ g-O [Tg] :

∨
σ=α,β

(
Og ⊆ Ŝg,σ

)}
=

∪
σ=α,β

{
Og ∈ g-O [Tg] : Og ⊆ Ŝg,σ

}
=

∪
σ=α,β

Csub
g-O[Tg]

[
Ŝg,σ

]
=

∪
σ=α,β

Csub
g-O[Tg]

[
Sg,σ

]
.

Therefore, Csub
g-O[Tg]

[∪
σ=α,βSg,σ

]
=

∪
σ=α,β C

sub
g-O[Tg]

[
Sg,σ

]
, as a consequence of

the condition (Sg,α,Sg,β) ⊆
(
Qg, g-Opg (Qg)

)
. Taking this fact into account, it

follows, moreover, that

g-Intg :
∪

σ=α,βSg,σ 7−→
∪

Og∈Csub
g-O[Tg]

[Sg,α∪Sg,β ]

Og

⊆
∪

Og∈
∪

σ=α,β Csub
g-O[Tg]

[Sg,σ]

Og

⊆
∪

σ=α,β

( ∪
Og∈Csub

g-O[Tg]
[Sg,σ ]

Og

)
=

∪
σ=α,β

g-Intg (Sg,σ) .

Hence, g-Intg
(∪

σ=α,βSg,σ

)
⊆

∪
σ=α,β g-Intg (Sg,σ). The proof of the theorem is

complete. Q.e.d.

Theorem 3.29. Let Tg,Γ = (Γ,Tg,Γ) be a Tg-subspace of a Tg-space Tg,Ω =
(Ω,Tg,Ω), where Tg,Γ : P (Γ) 7−→ Tg,Γ =

{
Og ∩ Γ : Og ∈ Tg,Ω

}
. If Γ ∈

g-O [Tg,Ω] ∩ g-K [Tg,Ω] and Sg ∈ g-Nd [Tg,Ω], then Sg ∩ Γ ∈ g-Nd [Tg,Γ].

Proof. Let Tg,Γ = (Γ,Tg,Γ) be a Tg-subspace of a Tg-space Tg,Ω = (Ω,Tg,Ω)
and, suppose Γ ∈ g-O [Tg,Ω] ∩ g-K [Tg,Ω] and Sg ∈ g-Nd [Tg,Ω]. Then, since Γ ∈
g-O [Tg,Ω] ∩ g-K [Tg,Ω] implies g-Intg,Γ (Sg) = g-Intg,Ω (Sg) and g-Clg,Γ (Sg) =
g-Clg,Ω (Sg), it follows that

g-Intg,Γ ◦ g-Clg,Γ : Sg ∩ Γ 7−→ g-Intg,Ω ◦ g-Clg,Ω (Sg ∩ Γ)

⊆ g-Intg,Ω ◦ g-Clg,Ω (Sg) .

Since Sg ∈ g-Nd [Tg,Ω], it follows, moreover, that g-Intg,Ω ◦ g-Clg,Ω : Sg 7−→ ∅.
Consequently, g-Intg,Γ ◦ g-Clg,Γ : Sg ∩ Γ 7−→ ∅ and hence, Sg ∩ Γ ∈ g-Nd [Tg,Γ].
The proof of the theorem is complete. Q.e.d.

Theorem 3.30. In order that a Tg-set Sg ⊂ Tg in a strong Tg-space Tg = (Ω,Tg)
satisfies the condition Sg ∈ g-P [Tg], it is necessary and sufficient that there exist a
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g-Tg-open-closed set Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having
g-Qg-property such that it be expressible as:

Sg = (Qg −Rg) ∪ (Rg −Qg) .(3.16)

Proof. Sufficiency. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg)
and let there exist Qg ∈ g-O [Tg] ∩ g-K [Tg] and Rg ∈ g-Nd [Tg] such that the
relation Sg = (Qg −Rg) ∪ (Rg −Qg) holds. Clearly, (Qg −Rg,Rg −Qg) ⊆(
Qg, g-Opg (Qg)

)
, implying

Csub
g-O[Tg]

[
(Qg −Rg) ∪ (Rg −Qg)

]
= Csub

g-O[Tg]

[
Qg −Rg

]
∪ Csub

g-O[Tg]

[
Rg −Qg

]
.

Set Sg,(q,r) = Qg−Rg and Sg,(r,q) = Rg−Qg. Then, g-Intg
(
Sg,(q,r) ∪Sg,(r,q)

)
=

g-Intg
(
Sg,(q,r)

)
∪ g-Intg

(
Sg,(r,q)

)
. Since

(
Sg,(q,r),Sg,(r,q)

)
⊆

(
Qg, g-Opg (Qg)

)
and Qg ∈ g-O [Tg] ∩ g-K [Tg], it follows that

g-Intg
(
Sg,(q,r)

)
= g-Intg,Qg

(
Sg,(q,r)

)
,

g-Clg
(
Sg,(q,r)

)
= g-Clg,Qg

(
Sg,(q,r)

)
,

g-Intg
(
Sg,(r,q)

)
= g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
,

g-Clg
(
Sg,(r,q)

)
= g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Consequently,

g-Intg : g-Clg (Sg) 7−→
∪

Og∈Csub
g-O[Tg]

[g-Clg(Sg)]

Og

=
∪

Og∈Csub
g-O[Tg]

[
g-Clg,Qg(Sg,(q,r))∪g-Clg,g-Opg(Qg)(Sg,(r,q))

]Og

=

( ∪
Og∈Csub

g-O[Tg]
[g-Clg,Qg(Sg,(q,r))]

Og

)

∪
( ∪

Og∈Csub
g-O[Tg]

[
g-Clg,g-Opg(Qg)(Sg,(r,q))

]Og

)

= g-Intg
(
g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

))
= g-Intg ◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Intg,Qg

◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Thus, it follows that
g-Intg ◦ g-Clg (Sg) = g-Intg,Qg

◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.
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Similarly,

g-Clg : g-Intg (Sg) 7−→
∩

Kg∈Csup

g-K[Tg]
[g-Intg(Sg)]

Kg

=
∩

Kg∈Csup

g-K[Tg]

[
g-Intg,Qg(Sg,(q,r))∪g-Intg,g-Opg(Qg)(Sg,(r,q))

]Kg

=

( ∩
Kg∈Csup

g-K[Tg]
[g-Intg,Qg(Sg,(q,r))]

Kg

)

∪
( ∩

Kg∈Csup

g-K[Tg]

[
g-Intg,g-Opg(Qg)(Sg,(r,q))

]Kg

)

= g-Clg
(
g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

))
= g-Clg ◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg,Qg

◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
.

Hence, it results that

g-Clg ◦ g-Intg (Sg) = g-Clg,Qg
◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
.

By virtue of the relation
(
Sg,(q,r),Sg,(r,q)

)
⊆

(
Qg, g-Opg (Qg)

)
, it is plain that

Sg,(q,r) = Qg −Qg ∩Rg and Sg,(r,q) = g-Opg (Qg) ∩Rg. Since Qg ∈ g-O [Tg] ∩
g-K [Tg] and Rg ∈ g-Nd [Tg], it follows that Qg ∩ Rg is a Tg-set having g-Qg-
property in Qg and g-Opg (Qg)∩Rg is a Tg-set having g-Qg-property in g-Opg (Qg).
But Sg,(q,r) = {Qg

(Rg) and Rg ∈ g-Nd [Tg]. Consequently, Rg has g-Pg-property
in Qg and hence,

g-Clg,Qg
◦ g-Intg,Qg

(
Sg,(q,r)

)
= g-Intg,Qg

◦ g-Clg,Qg

(
Sg,(q,r)

)
.

On the other hand, the statement that g-Opg (Qg) ∩Rg is a Tg-set having g-Qg-
property in g-Opg (Qg) implies that Sg,(r,q) has g-Pg-property in g-Opg (Qg) and
therefore,

g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
.
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When all the foregoing set-theoretic expressions are taken into account, it results
that

g-Intg ◦ g-Clg (Sg) = g-Intg,Qg
◦ g-Clg,Qg

(
Sg,(q,r)

)
∪ g-Intg,g-Opg(Qg) ◦ g-Clg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg,Qg

◦ g-Intg,Qg

(
Sg,(q,r)

)
∪ g-Clg,g-Opg(Qg) ◦ g-Intg,g-Opg(Qg)

(
Sg,(r,q)

)
= g-Clg ◦ g-Intg (Sg) .

Hence, g-Intg ◦ g-Clg (Sg) = g-Clg ◦ g-Intg (Sg). The condition of the theorem is,
therefore, sufficient.

Necessity. Conversely, suppose that Sg ∈ g-P [Tg]. Then, g-Intg ◦ g-Clg (Sg) =
g-Clg ◦ g-Intg (Sg). Set g-Intg ◦ g-Clg (Sg) = Qg = g-Clg ◦ g-Intg (Sg). Then,
Qg ∈ g-O [Tg] ∩ g-K [Tg], meaning that Qg is a g-Tg-open-closed set in Tg. Set
Sg,(s,q) = Sg −Qg and Sg,(q,s) = Qg −Sg. Then,

g-Intg ◦ g-Clg
(
Sg,(s,q)

)
⊆ g-Intg ◦ g-Clg (Sg) = Qg;

g-Intg ◦ g-Clg
(
Sg,(s,q)

)
⊆ g-Intg ◦ g-Clg

(
g-Opg (Qg)

)
= g-Opg (Qg) .

But Qg∩g-Opg (Qg) = ∅ and consequently, g-Intg ◦ g-Clg : Sg,(s,q) 7−→ ∅, meaning
that Qg is a Tg-set having g-Qg-property in Sg. On the other hand,

g-Intg ◦ g-Clg
(
Sg,(q,s)

)
⊆ g-Intg ◦ g-Clg (Qg) = Qg;

g-Intg ◦ g-Clg
(
Sg,(q,s)

)
⊆ g-Intg ◦ g-Clg

(
g-Opg (Sg)

)
= g-Opg ◦ g-Clg ◦ g-Opg ◦ g-Clg ◦ g-Opg (Sg)

= g-Opg ◦ g-Clg ◦ g-Intg (Sg) = g-Opg (Qg) .

Since Qg∩g-Opg (Qg) = ∅ it follows, consequently, that g-Intg ◦ g-Clg : Sg,(q,s) 7−→
∅, meaning that Sg is a Tg-set having g-Qg-property in Qg. Set Rg = Sg,(q,s) ∪
Sg,(s,q). Then,

g-Intg ◦ g-Clg : Rg 7−→ g-Intg ◦ g-Clg
(
Sg,(q,s) ∪Sg,(s,q)

)
= g-Intg ◦ g-Clg

(
Sg,(q,s)

)
∪ g-Intg ◦ g-Clg

(
Sg,(s,q)

)
= ∅ ∪ ∅ = ∅,

implying that Rg ∈ g-Nd [Tg]. Having evidenced the existence of a g-Tg-open-closed
set Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having g-Qg-property, it
only remains to show that Sg ⊂ Tg is expressible as Sg = (Qg −Rg)∪ (Rg −Qg).
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Observe that
Sg,(q,r) ∪Sg,(r,q)

=
{
Qg ∩ g-Opg (Rg)

}
∪
{
Rg ∩ g-Opg (Qg)

}
=

{
Qg ∩ g-Opg

[(
Qg ∩ g-Opg (Sg)

)
∪
(
Sg ∩ g-Opg (Qg)

)]}
∪
{[(

Qg ∩ g-Opg (Sg)
)
∪
(
Sg ∩ g-Opg (Qg)

)]
∩ g-Opg (Qg)

}
=

{
Qg ∩ g-Opg

(
Qg ∩ g-Opg (Sg)

)
∩ g-Opg

(
Sg ∩ g-Opg (Qg)

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

{
Qg ∩

(
g-Opg (Qg) ∪Sg

)
∩
(
g-Opg (Sg) ∪Qg

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

{(
Qg ∩Sg

)
∩
(
g-Opg (Sg) ∪Qg

)}
∪
{
Sg ∩ g-Opg (Qg)

}
=

(
Qg ∩Sg

)
∪
(
Sg ∩ g-Opg (Qg)

)
.

But since g-Intg ◦ g-Clg (Sg) = Qg = g-Clg ◦ g-Intg (Sg) and the latter in turn
implies g-Clg ◦ g-Intg

(
g-Opg (Sg)

)
= g-Opg (Qg) = g-Intg ◦ g-Clg

(
g-Opg (Sg)

)
, it

follows that Qg ∩ Sg = Sg and Sg ∩ g-Opg (Qg) = ∅. Consequently, Sg,(q,r) ∪
Sg,(r,q) = Sg. But, Sg,(q,r) ∪Sg,(r,q) = (Qg −Rg) ∪ (Rg −Qg) and hence, Sg =
(Qg −Rg) ∪ (Rg −Qg). The condition of the theorem is, therefore, necessary.

Q.e.d.

Observe that Sg = (Qg −Rg)∪ (Rg −Qg) = g-Opg,Qg
(Rg)∪g-Opg,Rg

(Qg) =

g-Sdg
(
Qg,Rg

)
. Thus, an immediate consequence of the above theorem is the fol-

lowing corollary.

Corollary 3.31. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg).
Then, Sg ∈ g-P [Tg] if and only if:(

∃Qg ∈ g-O [Tg] ∩ g-K [Tg]
)(
∃Rg ∈ g-Nd [Tg]

)[
Sg = g-Sdg

(
Qg,Rg

)]
.

(3.17)

Proposition 3.32. If Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property, then
g-Clg (Sg) 6= Ω:

Sg ∈ g-P [Tg] −→ g-Clg (Sg) 6= Ω.(3.18)

Proof. Let Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property in a strong Tg-
space Tg = (Ω,Tg). Then, since Tg is a strong Tg-space, it follows that Ω ∈
g-O [Tg] × g-K [Tg]. Consequently, g-Intg ◦ g-Clg (Ω) = Ω. But, Sg ∈ g-Nd [Tg]
implies g-Intg ◦ g-Clg (Sg) = ∅. Thus, g-Intg ◦ g-Clg (Sg) = ∅ 6= Ω = g-Intg (Ω),
implying g-Clg (Sg) 6= Ω. The proof of the proposition is complete. Q.e.d.

Proposition 3.33. If Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) and
Tg be g-Tg-connected, then:

Sg ∈ g-P [Tg]←→
(
Sg ∈ g-Nd [Tg]

)
∨
(
g-Opg (Sg) ∈ g-Nd [Tg]

)
.(3.19)

Proof. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg) and Tg be
g-Tg-connected. Suppose Sg ∈ g-P [Tg]. Then, there exist a g-Tg-open-closed set
Qg ∈ g-O [Tg] ∩ g-K [Tg] and a Tg-set Rg ∈ g-Nd [Tg] having g-Qg-property such
that Sg be expressible as Sg = (Qg −Rg)∪ (Rg −Qg). Since the strong Tg-space
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Tg is g-Tg-connected, the only g-Tg-open-closed set are the improper Tg-sets ∅,
Ω ⊂ Tg. Consequently,

Sg ∈ g-P [Tg]←→
(
Qg ∈ {∅,Ω}

)[
Sg = (Qg −Rg) ∪ (Rg −Qg)

]
.

Case i. Suppose Qg = ∅. Then Sg = (∅ −Rg)∪ (Rg − ∅). But ∅−Rg = ∅ and
Rg − ∅ = Rg. Therefore, Sg = ∅ ∪Rg = Rg. Thus, Sg ∈ g-Nd [Tg].

Case ii. Suppose Qg = Ω. Then Sg = (Ω−Rg) ∪ (Rg − Ω). But Ω −Rg =
g-Opg (Rg) and Rg−Ω = ∅. Consequently, Sg = g-Opg (Rg)∪∅ = g-Opg (Rg) and
therefore, g-Opg (Sg) = g-Opg ◦ g-Opg (Rg) = Rg. Hence, g-Opg (Sg) ∈ g-Nd [Tg].
The proof of the proposition is complete. Q.e.d.

Lemma 3.34. If (Qg,Rg,Sg) ∈ g-S
[
Tg

]
×g-S

[
Tg

]
×g-S

[
Tg

]
be a triple of g-Tg-sets

and g-Sdg : P (Ω) ×P (Ω) −→ P (Ω) be the symmetric difference g-Tg-operator
in a Tg-space Tg = (Ω,Tg), then:

• i. g-Sdg
(
Qg,Rg

)
= g-Sdg

(
RgQg

)
∈ g-S

[
Tg

]
,

• ii. g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Qg, g-Sdg

(
Rg,Sg

))
∈ g-S

[
Tg

]
,

• iii. Qg ∩ g-Sdg
(
Rg,Sg

)
= g-Sdg

(
Qg ∩Rg,Qg ∩Sg

)
.

Proof. Let (Qg,Rg,Sg) ∈ g-S
[
Tg

]
× g-S

[
Tg

]
× g-S

[
Tg

]
and, let g-Sdg : P (Ω)×

P (Ω) −→ P (Ω) be the symmetric difference g-Tg-operator in a Tg-space Tg =
(Ω,Tg). The proof that g-Sdg

(
RgQg

)
∈ g-S

[
Tg

]
holds for any (Qg,Rg) ∈ g-S

[
Tg

]
×

g-S
[
Tg

]
is first supplied. It is evident that

g-Sdg
(
Qg,Rg

)
= g-Opg,Qg

(Rg) ∪ g-Opg,Rg
(Qg)

=
(
Qg ∩ g-Opg (Rg)

)
∪
(
Rg ∩ g-Opg (Qg)

)
⊆ Qg ∪Rg,

implying g-Sdg
(
Qg,Rg

)
⊆ Qg ∪ Rg. Since Qg ∪ Rg ∈ g-S

[
Tg

]
, it follows that

g-Sdg
(
Qg,Rg

)
∈ g-S

[
Tg

]
. Items i., ii. and iii. are now proved.

i. Since the order of the operands under the ∪-operation does not change, it
follows that

g-Sdg
(
Qg,Rg

)
= g-Opg,Qg

(Rg) ∪ g-Opg,Rg
(Qg)

= g-Opg,Rg
(Qg) ∪ g-Opg,Qg

(Rg) = g-Sdg
(
Rg,Qg

)
.

Hence, g-Sdg
(
Qg,Rg

)
= g-Sdg

(
Rg,Qg

)
∈ g-S

[
Tg

]
.

ii. For any (Sg,Sg) ∈ g-S
[
Tg

]
× g-S

[
Tg

]
, it is plain that g-Opg,Rg

(Sg) =

Rg ∩ g-Opg (Sg). Therefore,

g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
=

{
g-Sdg (Qg,Rg) ∩ g-Opg (Sg)

}
∪

{
Sg ∩ g-Opg

(
g-Sdg

(
Qg,Rg

))}
=

{
Qg ∩ g-Opg (Rg) ∩ g-Opg (Sg)

}
∪

{
Rg ∩ g-Opg (Qg) ∩ g-Opg (Sg)

}
∪

{
Sg ∩ g-Opg (Qg) ∩ g-Opg (Rg)

}
∪ {Sg ∩Qg ∩Rg} .

If P (Qg,Rg,Sg)
def
= Qg ∩ g-Opg (Rg) ∩ g-Opg (Sg), then

g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= P(Qg,Rg,Sg) ∪ P (Rg,Qg,Sg)

∪ P (Sg,Qg,Rg) ∪
(
Sg ∩Qg ∩Rg

)
.
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Since g-Sdg
(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Sg, g-Sdg

(
Qg,Rg

))
, it follows that

g-Sdg
(
Qg, g-Sdg

(
Rg,Sg

))
= g-Sdg

(
Sg = Qg, g-Sdg

(
Qg = Rg,Rg = Sg

))
= P(Rg,Sg,Qg) ∪ P (Sg,Rg,Qg)

∪ P (Qg,Rg,Sg) ∪
(
Qg ∩Rg ∩Sg

)
.

But by virtue of the associativity and distributive properties of the ∩, ∪-operations,
the relations P (Qg,Rg,Sg) = P (Qg,Sg,Rg), P (Rg,Qg,Sg) = P (Rg,Sg,Qg),
P (Sg,Qg,Rg) = P (Sg,Rg,Qg), and Sg ∩Qg ∩Rg = Qg ∩Rg ∩Sg hold. Thus,
g-Sdg

(
g-Sdg

(
Qg,Rg

)
,Sg

)
= g-Sdg

(
Qg, g-Sdg

(
Rg,Sg

))
∈ g-S

[
Tg

]
.

iii. Since the relation g-Opg,Rg
(Sg) = Rg∩g-Opg (Sg) holds for any (Sg,Sg) ∈

g-S
[
Tg

]
× g-S

[
Tg

]
, it results that

Qg ∩ g-Sdg
(
Rg,Sg

)
= Qg ∩

(
g-Opg,Rg

(Sg) ∪ g-Opg,Sg
(Rg)

)
=

(
Qg ∩ g-Opg,Rg

(Sg)
)
∪
(
Qg ∩ g-Opg,Sg

(Rg)
)

=
(
Qg ∩

(
Rg ∩ g-Opg (Sg)

))
∪
(
Qg ∩

(
Sg ∩ g-Opg (Rg)

))
=

((
Qg ∩Rg

)
∩ g-Opg (Sg)

)
∪
((

Qg ∩Sg

)
∩ g-Opg (Rg)

)
= g-Opg,Qg∩Rg

(Sg) ∪ g-Opg,Qg∩Sg
(Rg)

= g-Sdg
(
Qg ∩Rg,Qg ∩Sg

)
.

Hence, Qg ∩ g-Sdg
(
Rg,Sg

)
= g-Sdg

(
Qg ∩Rg,Qg ∩Sg

)
∈ g-S

[
Tg

]
. The proof of

the lemma is complete.

Theorem 3.35. If Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
are σ ≥ 1 Tg-sets having

g-Pg-property in a strong Tg-space Tg = (Ω,Tg), then
∩

ν∈I∗
σ

Sg,ν ∈ g-P
[
Tg

]
.

Proof. Let Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
be σ ≥ 1 Tg-sets having g-Pg-property

in a strong Tg-space Tg = (Ω,Tg). Then, since Sg,1, Sg,2, . . ., Sg,σ ∈ g-P
[
Tg

]
,

there exist σ ≥ 1 g-Tg-open-closed sets Qg,1, Qg,2, . . ., Qg,σ ∈ g-O [Tg] ∩ g-K [Tg]
and σ ≥ 1 Tg-sets Rg,1, Rg,2, . . ., Rg,σ ∈ g-Nd [Tg] having g-Qg-property such that

Sg,1 = g-Sdg
(
Qg,1,Rg,1

)
,

Sg,2 = g-Sdg
(
Qg,2,Rg,2

)
, . . . , Sg,σ = g-Sdg

(
Qg,σ,Rg,σ

)
.

For an arbitrary pair (ν, µ) ∈ I∗σ × I∗σ, set Qg,(ν,µ) = Qg,ν ∩ Qg,µ, Wg,(ν,µ) =
Qg,ν ∩Rg,µ, and Rg,(ν,µ) = Rg,ν ∩Rg,µ. Then,

Sg,ν ∩Sg,µ = Sg,ν ∩ g-Sdg
(
Qg,µ,Rg,µ

)
= g-Sdg

(
Sg,ν ∩Qg,µ,Sg,ν ∩Rg,µ

)
= g-Sdg

[
g-Sdg

(
Qg,ν ,Rg,ν

)
∩Qg,µ, g-Sdg

(
Qg,ν ,Rg,ν

)
∩Rg,µ

]
= g-Sdg

[
g-Sdg

(
Qg,(ν,µ),Wg,(µ,ν)

)
, g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]
= g-Sdg

{
Qg,(ν,µ), g-Sdg

[
Wg,(µ,ν), g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]}
.

But, Rg,ν , Rg,µ ∈ g-Nd [Tg] implies Rg,(ν,µ) ∈ g-Nd [Tg], (Qg,ν ,Rg,µ) ∈
(
g-O [Tg]∩

g-K [Tg]
)
× g-Nd [Tg] implies Wg,(ν,µ) ∈ g-Nd [Tg] and, Qg,ν , Qg,µ ∈ g-O [Tg] ∩

g-K [Tg] implies Qg,(ν,µ) ∈ g-O [Tg] ∩ g-K [Tg]. Thus, g-Sdg
(
Wg,(ν,µ),Rg,(ν,µ)

)
∈

g-Nd [Tg], implying g-Sdg
[
Wg,(µ,ν), g-Sdg

(
Wg,(ν,µ),Rg,(ν,µ)

)]
= R̂g,(ν,µ) ∈ g-Nd [Tg].

Therefore, Sg,ν ∩ Sg,µ = g-Sdg
(
Qg,(ν,µ), R̂g,(ν,µ)

)
, where Qg,(ν,µ) ∈ g-O [Tg] ∩
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g-K [Tg] and R̂g,(ν,µ) ∈ g-Nd [Tg], and consequently, Sg,ν ∩ Sg,µ ∈ g-P [Tg] for
any (ν, µ) ∈ I∗σ × I∗σ. Hence,

∩
ν∈I∗

σ
Sg,ν ∈ g-P

[
Tg

]
. The proof of the theorem is

complete. Q.e.d.

Proposition 3.36. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets each
of which having g-Pg-property in a strong Tg-space Tg = (Ω,Tg), then

∪
ν∈I∗

σ
Sg,ν

has also g-Pg-property in Tg:∧
ν∈I∗

σ

(
Sg,ν ∈ g-P [Tg]

)
−→

∪
ν∈I∗

σ

Sg,ν ∈ g-P [Tg] .(3.20)

Proof. Let Sg,1, Sg,2, . . ., Sg,σ ∈ g-P [Tg] be σ ≥ 1 Tg-sets having g-Pg-property
in a strong Tg-space Tg = (Ω,Tg). Then, since Sg = g-Opg ◦ g-Opg (Sg) for any
Tg-set Sg ⊂ Tg, it follows that Sg,ν ∪ Sg,µ = g-Opg ◦ g-Opg (Sg,ν ∪Sg,µ) =

g-Opg
(
g-Opg (Sg,ν) ∩ g-Opg (Sg,µ)

)
for any arbitrary pair (ν, µ) ∈ I∗σ × I∗σ. But,

g-Opg (Sg,ν), g-Opg (Sg,µ) ∈ g-P [Tg] and therefore, g-Opg (Sg,ν)∩g-Opg (Sg,µ) ∈
g-P [Tg]. Set g-Opg

(
Ŝg

)
= g-Opg (Sg,ν)∩g-Opg (Sg,µ). Then, since g-Opg

(
Ŝg

)
∈

g-P [Tg] is equivalent to g-Opg ◦ g-Opg
(
Ŝg

)
∈ g-P [Tg] and, the relation Sg,ν ∪

Sg,µ = g-Opg ◦ g-Opg
(
Ŝg

)
holds, it follows that Sg,ν ∪Sg,µ ∈ g-P [Tg]. The proof

of the proposition is complete. Q.e.d.

Theorem 3.37. Let Sg ⊂ Tg be a Tg-set in a Tg-space Tg = (Ω,Tg). If Sg has
g-Pg-property in Tg, then it has also Pg-property in Tg:(

Sg ⊂ Tg

)[
Sg ∈ g-P [Tg] −→ Sg ∈ P [Tg]

]
.(3.21)

Proof. Let Sg ∈ g-P [Tg] be a Tg-set having g-Pg-property in a Tg-space Tg =
(Ω,Tg). Then, it satisfies the relation g-Intg ◦ g-Clg (Sg) ←→ g-Clg ◦ g-Intg (Sg).
Since

(
intg (Sg) , g-Clg (Sg)

)
⊆

(
g-Intg (Sg) , clg (Sg)

)
, it follows that

intg ◦ clg (Sg) ⊇ intg ◦ g-Clg (Sg) ⊆ g-Intg ◦ g-Clg (Sg) ,

clg ◦ intg (Sg) ⊆ clg ◦ g-Intg (Sg) ⊇ g-Clg ◦ g-Intg (Sg) .

Consequently,

intg ◦ g-Clg (Sg) ∩ g-Intg ◦ g-Clg (Sg) = intg ◦ g-Clg (Sg)

= intg ◦ g-Clg (Sg) ∩ clg ◦ g-Intg (Sg) ,

implying clg ◦ g-Intg (Sg) = intg ◦ clg (Sg). But, clg ◦ g-Intg (Sg)∩clg ◦ intg (Sg) =
clg ◦ intg (Sg) and intg ◦ g-Clg (Sg) ∩ intg ◦ clg (Sg) = intg ◦ g-Clg (Sg). Conse-
quently, it results that intg ◦ g-Clg (Sg) = clg ◦ intg (Sg) which, in turn, implies
clg ◦ g-Intg (Sg) = clg ◦ intg (Sg). Therefore, intg ◦ clg (Sg) = clg ◦ intg (Sg), mean-
ing that Sg has also Pg-property in Tg. Hence, Sg ∈ P [Tg]. The proof of the
theorem is complete. Q.e.d.

Proposition 3.38. If {Sg,ν ⊂ Tg : ν ∈ I∗σ} be a collection of σ ≥ 1 Tg-sets having
g-Qg-property in a strong Tg-space Tg = (Ω,Tg), then

∪
ν∈I∗

σ
Sg,ν has also g-Qg-

property in Tg:∧
ν∈I∗

σ

(
Sg,ν ∈ g-Nd [Tg]

)
−→

∪
ν∈I∗

σ

Sg,ν ∈ g-Nd [Tg] .(3.22)
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Proof. Let
{
Sg,ν ∈ g-Nd [Tg] : ν ∈ I∗σ

}
be a collection of σ ≥ 1 Tg-sets having

g-Qg-property in a Tg-space Tg = (Ω,Tg). Suppose
∧

ν∈I∗
σ

(
Sg,ν ∈ g-Nd [Tg]

)
implies

∪
ν∈I∗

σ
Sg,ν ∈ g-Nd [Tg] is an untrue logical statement. Then,

∧
ν∈I∗

σ

(
Sg,ν ∈

g-Nd [Tg]
)

is true and g-Intg ◦ g-Clg :
∪

ν∈I∗
σ

Sg,ν 7−→ ∅ is untrue. Thus, to prove
the proposition, it suffices to prove that

∪
ν∈I∗

σ
Sg,ν /∈ g-Nd [Tg] is a contradiction.

For arbitrary (ν, µ (ν)) ∈ I∗σ×I∗σ(ν) such that I∗σ(ν) = I∗σ\{ν}, set Sg,(ν,µ(ν)) = Sg,ν∪
Sg,µ(ν), where

{
Sg,ν ,Sg,µ(ν)

}
⊂ g-Nd [Tg]. Since g-Intg ◦ g-Clg

(
Sg,(ν,µ(ν))

)
⊆

g-Clg
(
Sg,(ν,µ(ν))

)
= g-Clg

(
Sg,ν

)
∪ g-Clg

(
Sg,µ(ν)

)
, it follows that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
⊆ g-Clg

(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
= g-Clg (Sg,ν) ∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
⊆ g-Clg (Sg,ν) .

Thus, for arbitrary (ν, µ (ν)) ∈ I∗σ × I∗σ(ν) such that I∗σ(ν) = I∗σ \ {ν}, it follows that

g-Intg
[
g-Intg ◦ g-Clg

(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)]
⊆ g-Intg ◦ g-Clg (Sg,ν) = ∅.

Since Tg is a strong Tg-space, it results that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∩ g-Opg ◦ g-Clg

(
Sg,µ(ν)

)
= ∅,

and therefore, g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
⊆ g-Clg

(
Sg,µ(ν)

)
. On the other hand,

since g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
∈ g-O [Tg], it follows that

g-Intg ◦ g-Clg
(
Sg,(ν,µ(ν))

)
⊆ g-Intg ◦ g-Clg

(
Sg,µ(ν)

)
= ∅,

Thus, Sg,(ν,µ(ν)) ∈ g-Nd [Tg] holds for arbitrary (ν, µ (ν)) ∈ I∗σ × I∗σ(ν) such that
I∗σ(ν) = I∗σ \ {ν} and hence,

∪
ν∈I∗

σ
Sg,ν ∈ g-Nd [Tg]. The relation

∪
ν∈I∗

σ
Sg,ν /∈

g-Nd [Tg] is therefore a contradiction. The proof of the proposition is complete.
Q.e.d.

Theorem 3.39. Let Sg ⊂ Tg be a Tg-set in a strong Tg-space Tg = (Ω,Tg). If
Sg is a Tg-set having g-Qg-property in Tg, then it has also Qg-property in Tg:(

Sg ⊂ Tg

)[
Sg ∈ g-Nd [Tg] ←− Sg ∈ Nd [Tg]

]
.(3.23)

Proof. Let Sg ∈ g-Nd [Tg] be a Tg-set having g-Qg-property in a strong Tg-
space Tg = (Ω,Tg). Suppose Sg ∈ Nd [Tg] implies Sg ∈ g-Nd [Tg] is an untrue
logical statement. Then, Sg ∈ Nd [Tg] is true and g-Intg ◦ g-Clg : Sg 7−→ ∅ is
untrue. Thus, to prove the theorem, it suffices to prove that Sg /∈ g-Nd [Tg]
is a contradiction. Since g-Intg ◦ g-Clg (Sg) ⊆ g-Intg ◦ clg (Sg), it follows that
g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg) ⊆ clg (Sg). Consequently,

intg
[
g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg)

]
⊆ intg ◦ clg (Sg) .

Since Sg ∈ Nd [Tg] and Tg is a strong Tg-space, it follows that intg ◦ clg : Sg 7−→ ∅
and therefore, g-Intg ◦ g-Clg (Sg)∩g-Intg ◦ clg (Sg) = ∅. Since g-Intg ◦ g-Clg (Sg) ⊆
g-Intg ◦ clg (Sg), it results that

g-Intg ◦ g-Clg (Sg) = g-Intg ◦ g-Clg (Sg) ∩ g-Intg ◦ clg (Sg) = ∅,
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implying g-Intg ◦ g-Clg : Sg 7−→ ∅. Hence, Sg ∈ g-Nd [Tg]. The relation Sg /∈
g-Nd [Tg] is therefore a contradiction. The proof of the theorem is complete.

Q.e.d.

The important remark given below ends the present section.

Remark 3.40. In a Tg-space Tg = (Ω,Tg), the converse of the following statements
with respect to some Tg-set Sg ⊂ Tg are in general untrue:

• i. Sg ∈ g-P [Tg] −→ g-Intg (Sg) ∈ g-P [Tg],
• ii. Sg ∈ g-P [Tg] −→ g-Clg (Sg) ∈ g-P [Tg],
• iii.

(
Sg ∈ g-Nd [Tg]

)
∨
(
g-Opg (Sg) ∈ g-Nd [Tg]

)
−→ Sg ∈ g-P [Tg].

Because, in the event that Tg = (Ω,Tg) =
(
R,Tg,R

)
= Tg,R and Sg = Q (Q and

R, respectively, denote the sets of rational and real numbers, where R ⊃ Q), the
converse of Items i.,ii. and iii., reading

• iv. Q ∈ g-P
[
Tg,R

]
←− g-Intg (Q) ∈ g-P

[
Tg,R

]
,

• v. Q ∈ g-P
[
Tg,R

]
←− g-Clg (Q) ∈ g-P

[
Tg,R

]
,

• vi.
(
Q ∈ g-Nd

[
Tg,R

])
∨
(
g-Opg (Q) ∈ g-Nd

[
Tg,R

])
←− Q ∈ g-P

[
Tg,R

]
,

respectively, are all untrue. In fact, every Tg-open set Og ∈ Tg,R contains both
points ξ ∈ Q and ζ ∈ R \ Q. Consequently, there are no g-Tg-interior points
of Q. Therefore, g-Intg (Q) = ∅ and g-Clg (Q) = R and thus, g-P

[
Tg,R

]
3 R =

g-Clg (R) = g-Intg ◦ g-Clg (Q) 6= g-Clg ◦ g-Intg (Q) = g-Clg (∅) = ∅ ∈ g-P
[
Tg,R

]
;(

Q, g-Opg (Q)
)

/∈ g-Nd
[
Tg,R

]
× g-Nd

[
Tg,R

]
. In Items iv., v. and vi., the con-

sequents Q ∈ g-P
[
Tg,R

]
, Q ∈ g-P

[
Tg,R

]
and

(
Q ∈ g-Nd

[
Tg,R

])
∨
(
g-Opg (Q) ∈

g-Nd
[
Tg,R

])
are all untrue and on the other hand, their antecedents g-Intg (Q) ∈

g-P
[
Tg,R

]
, g-Clg (Q) ∈ g-P

[
Tg,R

]
and Q ∈ g-P

[
Tg,R

]
are all true. Consequently,

Items iv., v. and vi. are all untrue statements and hence, the converse of
Items i., ii. and iii. are untrue statements. In addition, since

(
Q, g-Opg (Q)

)
/∈

g-Nd
[
Tg,R

]
× g-Nd

[
Tg,R

]
it follows that, for some Tg-set Sg ⊂ Tg, the condition

g-Opg (Sg) ∈ g-Nd [Tg] can be satisfied without the condition Sg ∈ g-Nd [Tg]
being satisfied, though Og ∩ g-Opg ◦ g-Clg (Sg) 6= ∅ for every Og ∈ g-O [Tg] is a
consequence of Sg ∈ g-Nd [Tg].

The categorical classifications of g-T-interior and g-T-closure operators, T-sets
having g-P-property and T-sets having g-Q-property in the T -space T and, g-Tg-
interior and g-Tg-closure operators, Tg-sets having g-Pg-property and Tg-sets hav-
ing g-Qg-property in the Tg-space Tg are discussed and diagrammed on this basis
in the next sections.

4. Discussion

4.1. Categorical Classifications. Having adopted a categorical approach in
the classifications of g-Tg-interior and g-Tg-closure operators, Tg-sets with g-Pg-
property, and Tg-sets with g-Qg-property, the twofold purposes here are to es-
tablish the various relationships between the classes of g-T-interior operators in
the T -space T and g-Tg-interior operators in the Tg-space Tg, the classes of g-T-
closure operators in the T -space T and g-Tg-closure operators in the Tg-space Tg,
the classes of T-sets with g-P-property in the T -space T and Tg-sets with g-Pg-
property in the Tg-space Tg and, the classes of T-sets with g-Q-property in the
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T -space T and Tg-sets with g-Qg-property in the Tg-space Tg, and to illustrate
them through diagrams.

In a T -space T, for every Og ∈ O
[
T
]
, the relation op0 (Og) ⊆ op1 (Og) ⊆

op3 (Og) ⊇ op2 (Og) holds implying, for any Sg ∈ T, g-Int0 (Sg) ⊆ g-Int1 (Sg) ⊆
g-Int3 (Sg) ⊇ g-Int2 (Sg). Likewise, in a Tg-space Tg, for every Og ∈ O

[
Tg

]
,

the relation opg,0 (Og) ⊆ opg,1 (Og) ⊆ opg,3 (Og) ⊇ opg,2 (Og) holds implying, for
any Sg ∈ Tg, g-Intg,0 (Sg) ⊆ g-Intg,1 (Sg) ⊆ g-Intg,3 (Sg) ⊇ g-Intg,2 (Sg). But,
for every ν ∈ I03 , it results that Og ⊆ opν (Og) ⊆ opg,ν (Og) implying, for any
(ν,Sg) ∈ I03 × Tg, g-Intν (Sg) ⊆ g-Intg,ν (Sg). Consequently, this diagram, which
is to be read horizontally, from left to right and vertically, from top to bottom,
follows:

Og = Og = Og = Og

⊆ ⊆ ⊆ ⊆

op0 (Og) ⊆ op1 (Og) ⊆ op3 (Og) ⊇ op2 (Og)

⊆ ⊆ ⊆ ⊆

opg,0 (Og) ⊆ opg,1 (Og) ⊆ opg,3 (Og) ⊇ opg,2 (Og) .

(4.1)

In Fig. 1, we present the relationships between the elements of the collections{
g-Intν (Sg) : ν ∈ I03

}
in the T -space T and

{
g-Intg,ν (Sg) : ν ∈ I03

}
in the

Tg-space Tg; Fig. 1 may well be called a
(
g-Int, g-Intg

)
-valued diagram.

g-Int0 (Sg) g-Int1 (Sg) g-Int2 (Sg)g-Int3 (Sg)

g-Intg,0 (Sg) g-Intg,1 (Sg) g-Intg,2 (Sg)g-Intg,3 (Sg)

g-Int (Sg)

g-Intg (Sg)

Figure 1. Relationships: g-T-interior operators in T -spaces and
g-Tg-interior operators in Tg-spaces.

On the other hand, for every Kg ∈ K
[
T
]
, the relation ¬ op0 (Kg) ⊇ ¬ op1 (Kg) ⊇

¬ op3 (Kg) ⊆ op2 (Kg) holds implying, for any Sg ∈ T, g-Cl0 (Sg) ⊇ g-Cl1 (Sg) ⊇
g-Cl3 (Sg) ⊆ g-Cl2 (Sg). Likewise, in a Tg-space Tg, for every Kg ∈ K

[
Tg

]
, the

relation ¬ opg,0 (Kg) ⊇ ¬ opg,1 (Kg) ⊇ ¬ opg,3 (Kg) ⊆ ¬ opg,2 (Kg) holds implying,
for any Sg ∈ Tg, g-Clg,0 (Sg) ⊇ g-Clg,1 (Sg) ⊇ g-Clg,3 (Sg) ⊆ g-Clg,2 (Sg). But,
for every ν ∈ I03 , it results that Kg ⊇ ¬ opν (Kg) ⊇ ¬ opg,ν (Kg) implying, for any
(ν,Sg) ∈ I03 × Tg, g-Clν (Sg) ⊇ g-Clg,ν (Sg). Consequently, this diagram, which
is to be read horizontally, from left to right and vertically, from top to bottom,
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follows:
Kg = Kg = Kg = Kg

⊇ ⊇ ⊇ ⊇

¬ op0 (Kg) ⊇ ¬ op1 (Kg) ⊇ ¬ op3 (Kg) ⊆ ¬ op2 (Kg)

⊇ ⊇ ⊇ ⊇
¬ opg,0 (Kg) ⊇ ¬ opg,1 (Kg) ⊇ ¬ opg,3 (Kg) ⊆ ¬ opg,2 (Kg) .

(4.2)

In Fig. 2, we present the relationships between the elements of the collections{
g-Clν (Sg) : ν ∈ I03

}
in the T -space T and

{
g-Clg,ν (Sg) : ν ∈ I03

}
in the

Tg-space Tg; Fig. 2 may well be called a
(
g-Cl, g-Clg

)
-valued diagram.

g-Cl0 (Sg) g-Cl1 (Sg) g-Cl2 (Sg)g-Cl3 (Sg)

g-Clg,0 (Sg) g-Clg,1 (Sg) g-Clg,2 (Sg)g-Clg,3 (Sg)

g-Cl (Sg)

g-Clg (Sg)

Figure 2. Relationships: g-T-closure operators in T -spaces and
g-Tg-closure operators in Tg-spaces.

Since Sg ∈ g-P [Tg] implies
∨

ν∈I0
3

(
Sg ∈ g-ν-P [Tg]

)
, it follows that, g-Pg ←−

g-ν-Pg in Tg for every ν ∈ I03 ; likewise, g-P←− g-ν-P in T for every ν ∈ I03 , since
Sg ∈ g-P [T] implies

∨
ν∈I0

3

(
Sg ∈ g-ν-P [T]

)
. Therefore, g-0-Pg −→ g-1-Pg −→

g-3-Pg ←− g-2-Pg and g-0-P −→ g-1-P −→ g-3-P ←− g-2-P. Finally, g-P ←−
g-ν-P −→ g-ν-Pg −→ g-ν-Pg for every ν ∈ I03 . Altogether, Eq. (4.3) present itself
which may well be called

(
g-P, g-Pg

)
-properties diagram.

g-P ←→ g-P ←→ g-P ←→ g-P←
−

←
−

←
−

←
−

g-0-P −→ g-1-P −→ g-3-P ←− g-2-P−→ −→ −→ −→

g-0-Pg −→ g-1-Pg −→ g-3-Pg ←− g-2-Pg−→ −→ −→ −→

g-Pg ←→ g-Pg ←→ g-Pg ←→ g-Pg

(4.3)

In terms of the classes of the collections
{
g-ν-P [T] : ν ∈ I∗3

}
and

{
g-ν-P [Tg] : ν ∈

I∗3
}

, Fig. 3 present itself which may well be called
(
g-P, g-Pg

)
-classes diagram.

Since Sg ∈ g-Q [Tg] implies
∨

ν∈I0
3

(
Sg ∈ g-ν-Q [Tg]

)
, it follows that, g-Qg ←−

g-ν-Qg in Tg for every ν ∈ I03 ; likewise, g-Q←− g-ν-Q in T for every ν ∈ I03 , since
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g-0-P [T] g-1-P [T] g-2-P [T]g-3-P [T]

g-0-P [Tg] g-1-P [Tg] g-2-P [Tg]g-3-P [Tg]

g-P [T]

g-P [Tg]

Figure 3. Relationships:
(
g-P, g-Pg

)
-classes diagram in Tg-spaces.

Sg ∈ g-Q [T] implies
∨

ν∈I0
3

(
Sg ∈ g-ν-Q [T]

)
. Therefore, g-0-Qg −→ g-1-Qg −→

g-3-Qg ←− g-2-Qg and g-0-Q −→ g-1-Q −→ g-3-Q ←− g-2-Q. Finally, g-Q ←−
g-ν-Q −→ g-ν-Qg −→ g-ν-Qg for every ν ∈ I03 . Altogether, Eq. (4.4) present itself
which may well be called

(
g-Q, g-Qg

)
-properties diagram.

g-Q ←→ g-Q ←→ g-Q ←→ g-Q←
−

←
−

←
−

←
−

g-0-Q −→ g-1-Q −→ g-3-Q ←− g-2-Q−→ −→ −→ −→

g-0-Qg −→ g-1-Qg −→ g-3-Qg ←− g-2-Qg−→ −→ −→ −→

g-Qg ←→ g-Qg ←→ g-Qg ←→ g-Qg

(4.4)

In terms of the classes of the collections
{
g-ν-Nd [T] : ν ∈ I∗3

}
and

{
g-ν-Nd [Tg] :

ν ∈ I∗3
}

, Fig. 4 present itself which may well be called
(
g-Q, g-Qg

)
-classes diagram.

g-0-Nd [T] g-1-Nd [T] g-2-Nd [T]g-3-Nd [T]

g-0-Nd [Tg] g-1-Nd [Tg] g-2-Nd [Tg]g-3-Nd [Tg]

g-Nd [T]

g-Nd [Tg]

Figure 4. Relationships:
(
g-Q, g-Qg

)
-classes diagram in Tg-spaces.

Since Sg ∈ g-Nd [Tg], Sg ∈ g-P [Tg] and Sg ∈ Nd [Tg] imply Sg ∈ g-P [Tg],
Sg ∈ P [Tg] and Sg ∈ g-Nd [Tg], respectively, in Tg, it follows that Qg −→
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g-Qg −→ g-Pg −→ Pg in Tg; likewise, Q −→ g-Q −→ g-P −→ P in T, since
Sg ∈ g-Nd [T], Sg ∈ g-P [T] and Sg ∈ Nd [T] imply Sg ∈ g-P [T], Sg ∈ P [T] and
Sg ∈ g-Nd [T], respectively, in T. Finally, Sg ∈ Nd [T] and Sg ∈ g-Nd [T] imply
Sg ∈ Nd [Tg] and Sg ∈ g-Nd [Tg], respectively, and, Sg ∈ P [Tg] and Sg ∈ g-P [Tg]
imply Sg ∈ P [T] and Sg ∈ g-P [T], respectively. Altogether, Eq. (4.5) present
itself which may well be called

(
P, g-P;Qg, g-Q

)
-properties diagram.

Q −→ g-Q −→ g-P −→ P−→ −→ ←
−

←
−

Qg −→ g-Qg −→ g-Pg −→ Pg

(4.5)

In terms of the classes of the collection
{
Nd [T] ,P [T] , g-Nd [T] , g-P [T]

}
and the

classes of the collection
{
Nd [Tg] ,P [Tg] , g-Nd [Tg] , g-P [Tg]

}
, Fig. 5 present itself

which may well be called
(
P, g-P;Qg, g-Q

)
-classes diagram.

Nd [T] g-Nd [T] P [T]g-P [T]

Nd [Tg] g-Nd [Tg] P [Tg]g-P [Tg]

Figure 5. Relationships:
(
P, g-P;Qg, g-Q

)
-classes diagram in

Tg-spaces.

As in the works of other authors [CJS05, Don97, JJLL08, TC16], the man-
ner we have positioned the arrows in the

(
g-Int, g-Intg

)
,
(
g-Cl, g-Clg

)
-valued di-

agrams (Figs 1, 2), the
(
g-P, g-Pg

)
,
(
g-Q, g-Qg

)
,
(
P, g-P;Qg, g-Q

)
-classes dia-

grams (Figs 3, 4, 5), and the
(
g-P, g-Pg

)
,
(
g-Q, g-Qg

)
,
(
P, g-P;Qg, g-Q

)
-property

diagrams (Eqs (4.3), (4.4), (4.5)) is solely to stress that, in general, the implications
in Figs 1–5 and Eqs (4.3)–(4.5) are irreversible.

At this stage, a nice application is worth considering, and is presented in the
following section.

4.2. A Nice Application. Focusing on essential concepts from the standpoint of
the theory of g-Tg-interior and g-Tg-closure operators in an attempt to shed lights
on the essential properties established in the earlier sections, we shall now present
a nice application. Let Ω =

{
ξν : ν ∈ I∗5

}
denotes the underlying set and consider

the Tg-space Tg = (Ω,Tg), where Ω is topologized by the choice:
Tg (Ω) =

{
∅,

{
ξ1
}
,
{
ξ1, ξ3, ξ5

}
, Ω

}
(4.6)

=
{
Og,1, Og,2, Og,3, Og,4

}
;

¬Tg (Ω) =
{
Ω,

{
ξ2, ξ3, ξ4, ξ5

}
,
{
ξ2, ξ4

}
, ∅
}

(4.7)

=
{
Kg,1, Kg,2, Kg,3, Kg,4

}
.

Evidently, the set-valued set maps Tg, ¬Tg : P (Ω) −→ P
({

ξν : ν ∈ I∗5
})

establish the classes of Tg-open and Tg-closed sets, respectively. Since conditions
Tg (∅) = ∅, Tg (Og,ν) ⊆ Og,ν for every ν ∈ I∗4 , Tg (Ω) = Ω, and Tg

(∪
ν∈I∗

4
Og,ν

)
=
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ν∈I∗

4
Tg (Og,ν) are satisfied, it is clear that the one-valued map Tg : P (Ω) −→

P
({

ξν : ν ∈ I∗5
})

is a strong g-topology and hence, Tg = (Ω,Tg) is a strong
Tg-space. On the other hand, because the additional condition Tg

(∩
ν∈I∗

4
Og,ν

)
=∩

ν∈I∗
4

Tg (Og,ν) is satisfied, Tg : P (Ω) −→ P
({

ξν : ν ∈ I∗5
})

is also a topology
and thus, Tg = (Ω,Tg) is a T -space T = (Ω,T ). Moreover, it is easily checked
that Og,µ ∈ g-ν-O

[
T
]

for every (ν, µ) ∈ I03 × I∗4 . Thus, the Tg-open sets forming
the g-topology Tg : P (Ω) −→ P

({
ξν : ν ∈ I∗5

})
of the Tg-space Tg = (Ω,Tg)

are g-T-open sets relative to the T -space T = (Ω,T ).
Clearly, the cardinality card

(
P (Ω)

)
= 2card(Ω) is very large. For convenience

of notation, express P (Ω) in set-builder notation as a collection indexed by the
Cartesian product I∗card(P(Ω)) × I0card(Ω):

P (Ω) =
{
Sg,(ν,µ) ∈P (Ω) : (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω)

}
,(4.8)

where Sg,(ν,µ) ∈ P (Ω) denotes a Tg-set labeled ν ∈ I∗card(P(Ω)) and containing
µ ∈ I0card(Ω) elements. Below is established the indexing by the Cartesian product
I∗card(P(Ω)) × I0card(Ω) by the choice: Sg,(1,0) = ∅, . . ., Sg,(ν,µ) =

{
ξ1, ξ2, . . . , ξµ

}
,

. . ., Sg,(32,5) = Ω.
For Sg ∈P (Ω) such that card (Sg) ∈ {0, 5}, let Sg,(1,0) = ∅ and Sg,(32,5) = Ω.

For Sg ∈ P (Ω) such that card (Sg) ∈ {1, 4}, let Sg,(2,1) = {ξ1}, Sg,(3,1) = {ξ2},
Sg,(4,1) = {ξ3}, Sg,(5,1) = {ξ4}, and Sg,(6,1) = {ξ5}; Sg,(27,4) = {ξ1, ξ2, ξ3, ξ4},
Sg,(28,4) = {ξ2, ξ3, ξ4, ξ5}, Sg,(29,4) = {ξ1, ξ3, ξ4, ξ5}, Sg,(30,4) = {ξ1, ξ2, ξ3, ξ5},
and Sg,(31,4) = {ξ1, ξ2, ξ4, ξ5}. For Sg ∈ P (Ω) such that card (Sg) ∈ {2, 3}, let
Sg,(7,2) = {ξ1, ξ2}, Sg,(8,2) = {ξ1, ξ3}, Sg,(9,2) = {ξ1, ξ4}, Sg,(10,2) = {ξ1, ξ5},
Sg,(11,2) = {ξ2, ξ3}, Sg,(12,2) = {ξ2, ξ4}, Sg,(13,2) = {ξ2, ξ5}, Sg,(14,2) = {ξ3, ξ4},
Sg,(15,2) = {ξ3, ξ5}, and Sg,(16,2) = {ξ4, ξ5}; Sg,(17,3) = {ξ1, ξ2, ξ3}, Sg,(18,3) =
{ξ1, ξ3, ξ4}, Sg,(19,3) = {ξ1, ξ4, ξ5}, Sg,(20,3) = {ξ1, ξ2, ξ4}, Sg,(21,3) = {ξ1, ξ2, ξ5},
Sg,(22,3) = {ξ1, ξ3, ξ5}, Sg,(23,3) = {ξ2, ξ3, ξ4}, Sg,(24,3) = {ξ2, ξ3, ξ5}, Sg,(25,3) =
{ξ3, ξ4, ξ5}, and Sg,(26,3) = {ξ2, ξ4, ξ5}.

A first series of calculations shows that, for every (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω),

intg
(
Sg,(ν,µ)

)
⊆ g-Intg

(
Sg,(ν,µ)

)
= Sg,(ν,µ)(4.9)
= g-Clg

(
Sg,(ν,µ)

)
⊆ clg

(
Sg,(ν,µ)

)
.

That for every (ν, µ) ∈ I∗card(P(Ω)) × I0card(Ω), the relation

g-Clg ◦ g-Intg
(
Sg,(ν,µ)

)
= Sg,(ν,µ) = g-Intg ◦ g-Clg

(
Sg,(ν,µ)

)
(4.10)
holds is evidently an immediate consequence of the above relation. Introduce
J∗
28 = I∗1 ∪ (I∗7 \ I∗2 ) ∪ (I∗16 \ I∗10) ∪ (I∗26 \ I∗22) ∪ (I∗28 \ I∗27). Then, a second se-

ries of calculations shows that, for every (ν, µ) ∈ J∗
28 × I04 and every (δ, η) ∈(

I∗card(P(Ω)) \ J
∗
28

)
× I0card(Ω),

clg ◦ intg
(
Sg,(ν,µ)

)
= ∅ = intg ◦ clg

(
Sg,(ν,µ)

)
;(4.11)

clg ◦ intg
(
Sg,(δ,η)

)
= Ω = intg ◦ clg

(
Sg,(δ,η)

)
.

On inspecting each of Eqs (4.9)–(4.11), some interesting features can be remarked
and thus, some interesting conclusions can be drawn.

Having ordered the Tg, g-Tg-interior operators intg, g-Intg : P (Ω) −→ P (Ω),
respectively, by setting g-Intg % intg if and only if g-Intg (Sg) ⊇ intg (Sg) and
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the Tg, g-Tg-closure operators clg, g-Clg : P (Ω) −→ P (Ω), respectively, by
setting g-Clg - clg if and only if g-Clg (Sg) ⊆ clg (Sg), where Sg ∈ P (Ω)
is arbitrary, Eq. (4.9), then, is but a result validating the following outstand-
ing facts: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than intg :
P (Ω) −→ P (Ω) or, intg : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker)
than g-Intg : P (Ω) −→ P (Ω); g-Clg : P (Ω) −→ P (Ω) is coarser (or, smaller,
weaker) than clg : P (Ω) −→P (Ω) or, clg : P (Ω) −→P (Ω) is finer (or, larger,
stronger) than g-Clg : P (Ω) −→P (Ω).

From Eq. (4.10), it is thus evident that the g-Tg-interior and g-Tg-closure
operators g-Intg, g-Clg : P (Ω) −→P (Ω), respectively, do commute in which case,
it is no error to consider the following interpretation: g-Clg ◦ g-Intg : P (Ω) −→
P (Ω) is both coarser and finer (or, smaller and larger, weaker and stronger)
than g-Intg ◦ g-Clg : P (Ω) −→P (Ω). Consequently, Sg ∈ g-P [Tg] for any Sg ∈
P (Ω). Furthermore, it is easily checked from Eq. (4.10) that, Sg ∈ g-Nd [Tg] −→
Sg ∈ g-P [Tg] is untrue if and only if Sg ∈ g-Nd [Tg] is true and Sg ∈ g-P [Tg] is
untrue.

From Eq. (4.11), both Sg,(ν,µ) ∈ Nd [Tg] for every (ν, µ) ∈ J∗
28×I04 and Sg,(δ,η) ∈

Nd [Tg] for every (δ, η) ∈
(
I∗card(P(Ω)) \J

∗
28

)
× I0card(Ω) are easily checked. Moreover,

it results from Eqs (4.10), (4.11) that, Sg,(ν,µ) ∈ Nd [Tg] is true and Sg,(ν,µ) ∈
g-Nd [Tg] is untrue for every (ν, µ) ∈

(
J∗
28 \ I∗1

)
× I04 . This confirms the statement

that, Sg ∈ g-Nd [Tg] ←− Sg ∈ Nd [Tg] is untrue if and only if Sg ∈ Nd [Tg] is
true and Sg ∈ g-Nd [Tg] is untrue. Observing that, for every (ν, µ) ∈ J∗

28 × I04 and
every (δ, η) ∈

(
I∗card(P(Ω)) \ J

∗
28

)
× I0card(Ω), the relations

∅ = clg ◦ intg
(
Sg,(ν,µ)

)
⊆ g-Clg ◦ g-Intg

(
Sg,(ν,µ)

)
= g-Intg ◦ g-Clg

(
Sg,(ν,µ)

)
⊇ intg ◦ clg

(
Sg,(ν,µ)

)
= ∅,

intg ◦ clg
(
Sg,(δ,η)

)
= Ω ⊇ g-Intg ◦ g-Clg

(
Sg,(δ,η)

)
= g-Clg ◦ g-Intg

(
Sg,(δ,η)

)
⊆ Ω = clg ◦ intg

(
Sg,(δ,η)

)
,

respectively, hold, of which the first relation is the dual of the second, and con-
versely, it follows that the logical statement Sg ∈ g-P [Tg] −→ Sg ∈ P [Tg] is
satisfied for any Sg ∈P (Ω).

If the discussions of this nice application be explore a step further, other interest-
ing conclusions can be drawn. The next section provides concluding remarks and
future directions of the theory of g-Tg-interior and g-Tg-closure operators discussed
in the preceding sections.

4.3. Concluding Remarks. In this paper, a new theory called Theory of g-Tg-
Interior and g-Tg-Closure Operators has been developed. The definitions of the
notions of g-Tg-interior and g-Tg-closure operators in Tg-spaces were presented in
as general and unified a manner as possible and, the essential properties and the
commutativity of such g-Tg-operators were discussed in such a way as to show
that much of the fundamental structure of Tg-spaces is better considered for g-Tg-
interior and g-Tg-closure operators g-Intg, g-Clg : P (Ω) −→ P (Ω) than for the
Tg-interior and Tg-closure operators intg, clg : P (Ω) −→ P (Ω), respectively.
If ”g-Intg % intg” stands for ”g-Intg (Sg) ⊇ intg (Sg)” and ”g-Clg - clg,” for
”g-Clg (Sg) ⊆ clg (Sg),” then the outstanding facts are: g-Intg : P (Ω) −→P (Ω)
is finer (or, larger, stronger) than intg : P (Ω) −→ P (Ω) or, intg : P (Ω) −→
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P (Ω) is coarser (or, smaller, weaker) than g-Intg : P (Ω) −→ P (Ω); g-Clg :
P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than clg : P (Ω) −→ P (Ω) or,
clg : P (Ω) −→P (Ω) is finer (or, larger, stronger) than g-Clg : P (Ω) −→P (Ω).

In its own rights, the proposed theory has also several advantages. The very
first advantage is that the theory offers very nice features for the passage from
g-Tg-interior and g-Tg-closure operators to Tg-interior and Tg-closure operators,
g-T-interior and g-T-closure operators and T-interior and T-closure operators, re-
spectively. Hence, the theory holds equally well when (Ω,Tg) = (Ω,T ) and other
features adapted on this ground, in which case it might be called Theory of g-T-
Interior and g-T-Closure Operators.

In a Tg-space the theoretical framework categorises such pairs of concepts as
the pair

(
g-Intg,0 (Sg) , g-Clg,0 (Sg)

)
of g-Tg-open and g-Tg-closed sets, the pair(

g-Intg,1 (Sg) , g-Clg,1 (Sg)
)

of g-Tg-semi-open and g-Tg-semi-closed sets, the pair(
g-Intg,2 (Sg) , g-Clg,2 (Sg)

)
of g-Tg-preopen and g-Tg-preclosed sets, and the pair(

g-Intg,3 (Sg) , g-Clg,3 (Sg)
)

of g-Tg-semi-preopen and g-Tg-semi-preclosed sets as
pairs of g-Tg-open and g-Tg-closed sets of categories 0, 1, 2, and 3, respectively, and
theorises the concepts in a unified way. In a T -space the theoretical framework cat-
egorises such pairs of concepts as the pair

(
g-Int0 (S ) , g-Cl0 (S )

)
of g-T-open and

g-T-closed sets, the pair
(
g-Int1 (S ) , g-Cl1 (S )

)
of g-T-semi-open and g-T-semi-

closed sets, the pair
(
g-Int2 (S ) , g-Cl2 (S )

)
of g-T-preopen and g-T-preclosed sets,

and the pair
(
g-Int3 (S ) , g-Cl3 (S )

)
of g-T-semi-preopen and g-T-semi-preclosed

sets as pairs of g-T-open and g-T-closed sets of categories 0, 1, 2, and 3, respectively,
and theorises the concepts in a unified way.

Making the theorization of g-Tg-interior and g-Tg-closure operators of mixed
categories in Tg-spaces a prime subject of inquiry is an interestingly promising
avenue for future research. More precisely, for some pair (ν, µ) ∈ I03 × I03 such
that ν 6= µ, to develop the theory of g- (ν, µ) -Tg-interior and g- (ν, µ) -Tg-closure
operators g-Intg,νµ, g-Clg,νµ : P (Ω) −→ P (Ω) respectively, in Tg-spaces, where
g-Intg,νµ : Sg 7−→ g-Intg,νµ (Sg) describes a type of collection of points interior
in Sg and interiorness are characterized by g-Tg-open sets belonging to the class{
Og = Og,ν ∪ Og,µ : (Og,ν ,Og,µ) ∈ g-ν-O

[
Tg

]
× g-µ-O

[
Tg

]}
; g-Clg,νµ : Sg 7−→

g-Clg,νµ (Sg) describes a type of collection of points close to Sg and closeness
are characterized by g-Tg-closed sets belonging to the class

{
Kg = Kg,ν ∩Kg,µ :

(Kg,ν ,Kg,µ) ∈ g-ν-K
[
Tg

]
× g-µ-K

[
Tg

]}
. Such an interestingly promising theory is

what the present authors thought would certainly be worth considering, and the
discussion of this paper ends here.

Appendix A. Pre-preliminaries

In this pre-preliminaries section, the elements accompanying the foregoing pre-
liminary section are given below. In actual fact, they are the elements extracted
from the preliminaries section of two previous works of the authors entitled The-
ory of g-Tg-Sets and Theory of g-Tg-Connectedness. As in all the previous works
of the authors (See, Theories of g-Tg-Sets, g-Tg-Maps, g-Tg-Connectedness, g-Tg-
Separation Axioms, g-Tg-Compactness), U is the universe of discourse, fixed within
the framework of the theory of g-Tg-interior and g-Tg-closure operators and con-
taining as elements all sets (Ω, Γ-sets; T , g-T , T, g-T-sets; Tg, g-Tg, Tg, g-Tg-sets)
considered in this theory, and I0n

def
=

{
ν ∈ N0 : ν ≤ n

}
; index sets I0∞, I∗n, I∗∞ are
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defined similarly. A set Γ ⊂ U is a subset of the set Ω ⊂ U and, for some Tg-open
set Og ∈ T ∪ g-T ∪Tg ∪ g-Tg, these implications hold:

Og ∈ T ⇒ Og ∈ g-T ⇒ Og ∈ Tg ⇒ Og ∈ g-Tg ⇒ Og ⊂ Ω ⊂ U.(A.1)
In a natural way, a monotonic map Tg : P (Ω) −→ P (Ω) from the power set
P (Ω) of Ω into itself can be associated to a given mapping πg : Ω −→ Ω, thereby
inducing a g-topology Tg ⊂P (Ω) on the underlying set Ω ⊂ U [PC12]. When some
further axioms [LR15] is specified for Tg : P (Ω) −→ P (Ω) with no separation
axioms assumed unless otherwise stated, the notion of a Tg-space follows.

Definition A.1 (Tg-Space). Let Ω ⊂ U be a given set and let P (Ω)
def
=

{
Og,ν ⊆

Ω : ν ∈ I∗∞
}

be the family of all subsets Og,1, Og,2, . . ., of Ω. Then every one-valued
map of the type Tg : P (Ω) −→P (Ω) satisfying the following axioms:

• Ax. i. Tg (∅) = ∅,
• Ax. ii. Tg (Og) ⊆ Og,
• Ax. iii. Tg

(∪
ν∈I∗

∞
Og,ν

)
=

∪
ν∈I∗

∞
Tg (Og,ν),

is called a ”g-topology on Ω,” and the structure Tg
def
= (Ω,Tg) is called a ”Tg-space.”

In Def. A.1, by Ax. i., Ax. ii. and Ax. iii., respectively, are meant that the
unary operation Tg : P (Ω) → P (Ω) preserves nullary union, is contracting and
preserves binary union. Any element Og ∈ Tg

def
=

{
Og : Og ∈ Tg

}
of the Tg-space

Tg is called a Tg-open set and its complement element {Ω (Og) = Kg ∈ ¬Tg
def
={

Kg : { (Kg) ∈ Tg

}
, a Tg-closed set; by convention, Tg and ¬Tg, respectively,

stand for the classes of all Tg-open and Tg-closed sets relative to the g-topology
Tg. If there exists a ν ∈ I∗∞ such that Og,ν = Ω, then Tg is called a strong Tg-space
[Cs5, PC12]. Moreover, if Tg

(∩
ν∈I∗

n
Og,ν

)
=

∩
ν∈I∗

n
Tg (Og,ν) holds for any index

set I∗n ⊂ I∗∞ such that n <∞, then Tg is called a quasi Tg-space [Cs8].
In the Tg-space Tg, the operator intg : P (Ω) −→ P (Ω) carrying each Tg-set

Sg ⊂ Tg into its interior intg (Sg) = Ω− clg (Ω \Sg) ⊂ Tg is called a ”Tg-interior
operator;” the operator clg : P (Ω) −→ P (Ω) carrying each Tg-set Sg ⊂ Tg into
its closure clg (Sg) = Ω− intg

(
Ω \Sg

)
⊂ Tg is called a ”Tg-closure operator.” The

classes Csub
Tg

[Sg]
def
=

{
Og ∈ Tg : Og ⊆ Sg

}
and Csup

¬Tg
[Sg]

def
=

{
Kg ∈ ¬Tg : Kg ⊇

Sg

}
, respectively, denote the classes of Tg-open subsets and Tg-closed supersets

of the Tg-set Sg ⊂ Tg relative to the g-topology Tg. That Csub
Tg

[Sg] ⊆ Tg (Ω) and
¬Tg (Ω) ⊇ Csup

¬Tg
[Sg] are true for the Tg-set Sg ⊂ Tg in question are clear from

the context. To this end, the Tg-closure and the Tg-interior of a Tg-set Sg ⊂ Tg

in a Tg-space define themselves as

intg (Sg)
def
=

∪
Og∈Csub

Tg
[Sg]

Og, clg (Sg)
def
=

∩
Kg∈Csup

¬Tg
[Sg]

Kg.(A.2)

We note in passing that, clg (·) 6= cl (·) and intg (·) 6= int (·), because the resulting
sets obtained from the intersection of all Tg-closed supersets and the union of all Tg-
open subsets, respectively, relative to the g-topology Tg are not necessarily equal to
those which would be obtained from the intersection of all T -closed supersets and
the union of all T -open subsets relative to the topology T [BKR13]. Throughout
this work, by clg ◦ intg (·), intg ◦ clg (·), and clg ◦ intg ◦ clg (·), respectively, are meant
clg (intg (·)), intg (clg (·)), and clg (intg (clg (·))); other composition operators are
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defined in a similar way. Also, the backslash Ω \ Sg refers to the set-theoretic
difference Ω−Sg. Finally, for convenience of notation, let P∗ (Ω) = P (Ω) \

{
∅
}

,
T ∗

g = Tg \
{
∅
}

, and ¬T ∗
g = ¬Tg \

{
∅
}

.

Definition A.2 (g-Operation). Let Tg = (Ω,Tg) be a Tg-space. Then, a mapping
opg : P (Ω) −→P (Ω) on P (Ω) ranging in P (Ω) is called a ”g-operation” if and
only if the following statements hold:(

∀Sg ∈P∗ (Ω)
)(
∃ (Og,Kg) ∈ T ∗

g × ¬T ∗
g

)[(
opg (∅) = ∅

)
∨
(
¬ opg (∅) = ∅

)
(A.3)

∨
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)]
,

where ¬ opg : P (Ω) −→ P (Ω) is called the ”complementary g-operation” on
P (Ω) ranging in P (Ω) and, for all Tg-sets Sg, Sg,ν , Sg,µ ∈P∗ (Ω), the following
axioms are satisfied:

• Ax. i.
(
Sg ⊆ opg (Og)

)
∨
(
Sg ⊇ ¬ opg (Kg)

)
,

• Ax. ii.
(
opg (Sg) ⊆ opg ◦ opg (Og)

)
∨
(
¬ opg (Sg) ⊇ ¬ opg ◦¬ opg (Kg)

)
,

• Ax. iii.
(
Sg,ν ⊆ Sg,µ −→ opg (Og,ν) ⊆ opg (Og,µ)

)
∨
(
Sg,µ ⊆ Sg,ν ←−

¬ opg (Kg,µ) ⊇ ¬ opg (Kg,ν)
)
,

• Ax. iv.
(
opg

(∪
σ=ν,µ Sg,σ

)
⊆

∪
σ=ν,µ opg (Og,σ)

)
∨
(
¬ opg

(∪
σ=ν,µ Sg,σ

)
⊇∪

σ=ν,µ ¬ opg (Kg,σ)
)
,

for some Tg-open sets Og, Og,ν , Og,µ ∈ T ∗
g and Tg-closed sets Kg, Kg,ν , Kg,µ ∈

¬Tg.

The formulation of Def. A.2 is based on the axioms of the Čech closure operator
[Boo11] and the various axioms used by many mathematicians to define closure
operators [MHD83].

Definition A.3 (opg-Elements). Let Tg = (Ω,Tg) be a Tg-space. Then, the class
Lg [Ω]

def
=

{
opg,ν =

(
opg,ν ,¬ opg,ν

)
: ν ∈ I03

}
⊆ L ω

g [Ω]×L κ
g [Ω], where

opg ∈ L ω
g [Ω]

def
=

{
opg,0, opg,1, opg,2, opg,3

}
(A.4)

=
{
intg, clg ◦ intg, intg ◦ clg, clg ◦ intg ◦ clg

}
,

¬ opg ∈ L κ
g [Ω]

def
=

{
¬ opg,0, ¬ opg,1, ¬ opg,2, ¬ opg,3

}
(A.5)

=
{
clg, intg ◦ clg, clg ◦ intg, intg ◦ clg ◦ intg

}
,

stands for the class of all possible pairs of g-operators and its complementary g-
operators in the Tg-space Tg.

The use of opg =
(
opg,¬ opg

)
∈ Lg [Ω] on a class of Tg-sets will construct a new

class of g-Tg-sets, just as the use of L [Ω]
def
=

{
opν =

(
opν ,¬ opν

)
: ν ∈ I03

}
on the

class of T-sets have constructed the new class of g-T-sets. But since clg 6= cl and
intg 6= int, in general, it follows that opg,ν 6= opν for some ν ∈ I03 and therefore,
the new class of g-Tg-sets that will be obtained from the first construction will,
in general, differ from the new class of g-T-sets that had been obtained from the
second construction. Employing the set-builder notations, the notion of g-Tg-set of
category ν may then be defined as thus:
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Definition A.4. Let (Sg,Og,Kg) ∈ Tg × Tg × ¬Tg and let opg,ν ∈ Lg [Ω] be a
g-operator in a Tg-space Tg = (Ω,Tg). Suppose the predicates

Pg

(
Sg,Og,Kg;opg,ν ;⊆,⊇

) def
= Pg

(
Sg,Og;opg,ν ;⊆

)
∨ Pg

(
Sg,Kg;opg,ν ;⊇

)
,

Pg

(
Sg,Og;opg,ν ;⊆

) def
=

(
∃
(
Og, opg,ν

)
∈ Tg ×L ω

g [Ω]
)[

Sg ⊆ opg,ν (Og)
]
,

Pg

(
Sg,Kg;opg,ν ;⊇

) def
=

(
∃
(
Kg,¬ opg,ν

)
∈ ¬Tg ×L κ

g [Ω]
)

(A.6) [
Sg ⊇ ¬ opg,ν (Kg)

]
be ”Boolean-valued functions” on Tg × (Tg ∪ ¬Tg)×Lg [Ω]×

{
⊆,⊇

}
, then

g-ν-S [Tg]
def
=

{
Sg ⊂ Tg : Pg

(
Sg,Og,Kg;opg,ν ;⊆,⊇

)}
,

g-ν-O [Tg]
def
=

{
Sg ⊂ Tg : Pg

(
Sg,Og;opg,ν ;⊆

)}
,(A.7)

g-ν-K [Tg]
def
=

{
Sg ⊂ Tg : Pg

(
Sg,Kg;opg,ν ;⊇

)}
,

respectively, are called the classes of all g-Tg-sets, g-Tg-open sets and g-Tg-closed
sets of category ν in Tg.

Thus, Sg ⊂ Tg is called a g-Tg-set of category ν if and only if there exist a pair
(Og,Kg) ∈ Tg×¬Tg of Tg-open and Tg-closed sets and a g-operator opg,ν ∈ Lg [Ω]
of category ν such that the following statement holds:

(∃ξ)
[
(ξ ∈ Sg) ∧

((
Sg ⊆ opg,ν (Og)

)
∨
(
Sg ⊇ ¬ opg,ν (Kg)

))]
.

Clearly,

g-S [Tg]
def
=

∪
ν∈I0

3
g-ν-S [Tg] =

∪
ν∈I0

3

(
g-ν-O [Tg] ∪ g-ν-K [Tg]

)
=

( ∪
ν∈I0

3

g-ν-O [Tg]

)
∪
( ∪

ν∈I0
3

g-ν-K [Tg]

)
def
= g-O [Tg] ∪ g-K [Tg] ,

then, defines the class of all g-ν-Tg-sets as the union of the classes of all g-ν-Tg-open
and g-ν-Tg-closed sets, defined by g-O [Tg] and g-K [Tg] respectively.

It is interesting to view the concepts of open, semi-open, preopen, semi-preopen
sets [And86, And84, CM64, Lev63, MEMED82, Nj5] as g-T-open sets of categories
0, 1, 2, and 3, respectively; likewise, to view the concepts of closed, semi-closed,
preclosed, semi-preclosed sets [And96] as g-T-closed sets of categories 0, 1, 2, and
3, respectively. These can be realised by omitting the subscript ”g” in all symbols
of the above definitions. The remark follows.

Remark A.5. Observing that, for every ν ∈ I∗3 , the first and second components
of the g-vector operator opg,ν =

(
opg,ν ,¬ opg,ν

)
∈ Lg [Ω] are based on Tg × ¬Tg,

respectively, it follows that opg,ν = opν
def
= (opν ,¬ opν) ∈ L [Ω] if based on

T × ¬T , respectively. In this way, op : P (Ω) ×P (Ω) −→ P (Ω) ×P (Ω) is
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called a g-vector operator in a T -space T = (Ω,T ). Accordingly,

op ∈ L ω [Ω]
def
=

{
op0, op1, op2, op3

}
(A.8)

=
{
int, cl ◦ int, int ◦ cl, cl ◦ int ◦ cl

}
,

¬ op ∈ L κ [Ω]
def
=

{
¬ op0, ¬ op1, ¬ op2, ¬ op3

}
(A.9)

=
{
cl, int ◦ cl, cl ◦ int, int ◦ cl ◦ int

}
,

and, Lg [Ω]
def
=

{
opg,ν =

(
opg,ν ,¬ opg,ν

)
: ν ∈ I03

}
⊆ L ω

g [Ω] ×L κ
g [Ω] stands for

the class of all possible pairs of g-operators and its complementary g-operators in
the T -space T = (Ω,T ).

By virtue of the above remark, if (S ,O,K ) ∈ T × T × ¬T and opν ∈ L [Ω]
in a Tg-space Tg = (Ω,Tg), then the predicates

P
(
S ,O,K ;opν ;⊆,⊇

) def
= P

(
S ,O;opν ;⊆

)
∨ P

(
S ,K ;opν ;⊇

)
,

P
(
S ,O;opν ;⊆

) def
=

(
∃ (O, opν) ∈ T ×L ω [Ω]

)[
S ⊆ opν (O)

]
,

P
(
S ,K ;opν ;⊇

) def
=

(
∃ (K ,¬ opν) ∈ ¬T ×L κ [Ω]

)[
S ⊇ ¬ opν (K )

]
(A.10)

are obviously ”Boolean-valued functions” on T× (T ∪ ¬T )×L [Ω]×
{
⊆,⊇

}
and,

g-ν-S [T]
def
=

{
S ⊂ T : P

(
S ,O,K ;opν ;⊆,⊇

)}
,

g-ν-O [T]
def
=

{
S ⊂ T : P

(
S ,O;opν ;⊆

)}
,(A.11)

g-ν-K [T]
def
=

{
S ⊂ T : P

(
S ,K ;opν ;⊇

)}
,

respectively, are called the classes of all g-T-sets, g-T-open sets and g-T-closed sets
of category ν in T. Therefore, S ⊂ T is called a g-T-set of category ν if and only if
there exist a pair (O,K ) ∈ T ×¬T of T -open and T -closed sets and a g-operator
opν ∈ L [Ω] of category ν such that the following statement holds:

(∃ξ)
[
(ξ ∈ S ) ∧

(
(S ⊆ opν (O)) ∨ (S ⊇ ¬ opν (K ))

)]
.

Evidently,

g-S [T]
def
=

∪
ν∈I0

3
g-ν-S [T] =

∪
ν∈I0

3

(
g-ν-O [T] ∪ g-ν-K [T]

)
=

( ∪
ν∈I0

3

g-ν-O [T]

)
∪
( ∪

ν∈I0
3

g-ν-K [T]

)
def
= g-O [T] ∪ g-K [T] ,

then, defines the class of all g-ν-T-sets as the union of the classes of all g-ν-T-open
and g-ν-T-closed sets, defined by g-O [T] and g-K [T] respectively.

Similar to the definitions of g-S [Tg] = g-O [Tg] ∪ g-K [Tg] in Tg and g-S [Tg] =
g-O [Tg] ∪ g-K [Tg] in T, those standing for S [Tg] = O [Tg] ∪ K [Tg] in Tg and
S [Tg] = O [Tg] ∪K [Tg] in T are defined as thus:

Definition A.6. If Tg = (Ω,Tg) be a Tg-space and T = (Ω,T ) be a T -space,
then:
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• i. O [Tg]
def
=

{
Sg ⊂ Tg : Pg

(
S ,Sg;opg,0; =

)}
and K [Tg]

def
=

{
Sg ⊂ Tg :

Pg

(
Sg,Sg;opg,0; =

)}
denote the classes of all Tg-open and Tg-closed sets,

respectively, in Tg, with S [Tg] = O [Tg] ∪K [Tg];
• ii. O [T]

def
=

{
S ⊂ T : P

(
S ,S ;op0; =

)}
and K [T]

def
=

{
S ⊂ T :

P
(
S ,S ;op0; =

)}
denote the classes of all T-open and T-closed sets, re-

spectively, in T, with S [T] = O [T] ∪K [T].

Remark A.7. Since

Pg

(
Sg,Sg,Sg;opg,0; =,=

) def
= Pg

(
Sg,Sg;opg,0; =

)
∨ Pg

(
Sg,Sg;opg,0; =

)
,

it is plain that S [Tg]
def
=

{
Sg ⊂ Tg : Pg

(
Sg,Sg,Sg;opg,0; =,=

)}
; likewise, since

P
(
S ,S ,S ;opg,0; =,=

) def
= P

(
S ,S ;op0; =

)
∨ P

(
S ,S ;op0; =

)
,

it follows that S [T]
def
=

{
S ⊂ T : P

(
S ,S ,Sg;opg,0; =,=

)}
.

Definition A.8 (g-Tg-Separation, g-Tg-Connected). A g-Tg-separation of category
ν of two nonempty Tg-sets Rg, Sg ⊆ Tg of a Tg-space Tg = (Ω,Tg) is realised if and
only if there exists either a pair (Og,ξ,Og,ζ) ∈ g-ν-O

[
Tg

]
× g-ν-O

[
Tg

]
of nonempty

g-Tg-open sets or a pair (Kg,ξ,Kg,ζ) ∈ g-ν-K
[
Tg

]
× g-ν-K

[
Tg

]
of nonempty g-Tg-

closed sets such that:( ⊔
λ=ξ,ζ

Og,λ = Rg tSg

)∨( ⊔
λ=ξ,ζ

Kg,λ = Rg tSg

)
.(A.12)

Two nonempty Tg-sets Rg, Sg ⊆ Tg of a Tg-space Tg = (Ω,Tg) which are not
g-Tg-separated of category ν are said to be g-Tg-connected of category ν.

Thus, a Tg-set Sg ⊂ Tg in Tg is g-Tg-connected if and only if Sg ∈ g-Q [Tg] =∪
ν∈I0

3
g-ν-Q [Tg] and g-Tg-separated if and only if Sg ∈ g-D [Tg] =

∪
ν∈I0

3
g-ν-D [Tg]

where,

g-ν-Q [Tg]
def
=

{
Sg ⊂ Tg :

(
∀
(
Og,λ,Kg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
× g-ν-K

[
Tg

])
[
¬
( ⊔

λ=ξ,ζ

Og,λ = Sg

)∧
¬
( ⊔

λ=ξ,ζ

Og,λ = Sg

)]}
;(A.13)

g-ν-D [Tg]
def
=

{
Sg ⊂ Tg :

(
∃
(
Og,λ,Kg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
× g-ν-K

[
Tg

])
[( ⊔

λ=ξ,ζ

Og,λ = Sg

)∨( ⊔
λ=ξ,ζ

Kg,λ = Sg

)]}
.(A.14)

The following remark marks the end of this pre-preliminaries section.

Remark A.9. For each, ν ∈ I03 , the dependence of g-ν-Q
[
Tg

]
and g-ν-D

[
Tg

]
on both g-ν-O

[
Tg

]
and g-ν-K

[
Tg

]
is clear from their definitions. Thus, to de-

fine the pairs
(
ν-Q

[
Tg

]
, ν-D

[
Tg

])
,
(
g-ν-Q

[
T
]
, g-ν-D

[
T
])

, and
(
ν-Q

[
T
]
, ν-D

[
T
])

,
respectively, it suffices to let them be dependent on the pairs

(
ν-O

[
Tg

]
, ν-K

[
Tg

])
,(

g-ν-O
[
T
]
, g-ν-K

[
T
])

, and
(
ν-O

[
T
]
, ν-K

[
T
])

. Further, in defining g-ν-Q [Tg] and
g-ν-D [Tg], it is clear that by the statement

(
Og,λ,Kg,λ

)
λ=ξ,ζ

∈ g-ν-O
[
Tg

]
×
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g-ν-K
[
Tg

]
is meant a pair of nonempty g-Tg-open and g-Tg-closed sets. Further-

more, by Ω ∈ g-ν-Q [Tg] or Ω ∈ g-ν-D [Tg] is meant a g-Tg-connection of category
ν or a g-Tg-separation of category ν of the Tg-space Tg = (Ω,Tg) is realised.

References
[And84] D. Andrijević, Some properties of the topology of α-sets, Math. Vesnik 36 (1984),

1–10.
[And86] , Semi-preopen sets, Mat. Vesnik 38 (1986), no. 1, 24–32.
[And96] , On b-open sets, Mat. Vesnik 48 (1996), 59–64.
[AON09] A. Al-Omari and M. S. M. Noorani, On b-closed sets, Bull. Malays. Sci. Soc. 32

(2009), no. 1, 19–30.
[BKR13] S. Bayhan, A. Kanibir, and I. L. Reilly, On functions between generalized topological

spaces, Appl. Gen. Topol. 14 (2013), no. 2, 195–203.
[Boo11] C. Boonpok, On generalized continuous maps in Čech closure spaces, General Math-

ematics 19 (2011), no. 3, 3–10.
[Boo18] , (ζ, δ (µ))-closed sets in strong generalized topological spaces, Cogent Math-

ematics & Statistics 5 (2018), no. 1517428, 1–45.
[Cam19] J. F. Z. Camargo, Some properties of beta hat generalized closed set in generalized

topological spaces, International Journal for Research in Mathematics and Statistics
5 (2019), no. 3, 1–8.

[CJK04] M. Caldas, S. Jafari, and M. M. Kovár, Some properties of θ-open sets, Divulgaciones
Matemáticas 12 (2004), no. 2, 161–169.

[CJS05] M. Caldas, S. Jafari, and R. K. Saraf, Semi-θ-open sets and new classes of maps,
Bulletin of the Iranian Mathematical Society 31 (2005), no. 2, 37–52.

[CM64] H. H. Corson and E. Michael, Metrizability of certain unions, Illinois J. Math. 8
(1964), 351–360.

[Cs7] Á. Császár, Generalized open sets, Acta Math. Hungar. 75 (1997), no. 1-2, 65–87.
[Cs8] , On the γ-interior and γ-closure of a set, Acta Math. Hungar. 80 (1998),

89–93.
[Cs2] , Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002),

no. 4, 351–357.
[Cs5] , Generalized open sets in generalized topologies, Acta Math. Hungar. 106

(2005), no. 1-2, 53–66.
[Cs6] , Further remarks on the formula for γ-interior, Acta Math. Hungar. 113

(2006), no. 4, 325–332.
[Cs8] , Remarks on quasi-topologies, Acta Math. Hungar. 119 (2008), no. 1-2, 197–

200.
[CYWW13] C. Cao, J. Yan, W. Wand, and B. Wang, Some generalized continuities functions

on generalized topological spaces, Hacettepe Journal of Mathematics and Statistics
42 (2013), no. 2, 159–163.

[DB11] W. Dungthaisong and C. Boonpok, Generalized closed sets in bigeneralized topolog-
ical spaces, Int. Journal of Math. Analysis 5 (2011), no. 24, 1175–1184.

[Dix84] J. Dixmier, General topology, Springer Verlag New York Inc., 1 (1984), X, 141.
[DM99] J. Dontchev and H. Maki, On θ-generalized closed sets, Internat. J. Math. & Math.

Sci. 22 (1999), no. 2, 239–249.
[Don97] J. Dontchev, On some separation axioms associated with the α-topology, Mem. Fac.

Sci. Kochi Univ. Ser. A, Math. 18, pp. (1997), 31–35.
[GS14] A. Gupta and R. V. Sarma, ps-regular sets in topology and generalized topology,

Journal of Mathematics 2014 (2014), no. 274592, 1–6.
[GS17] A. Gupta and R. D. Sarma, A note on some generalized closure and interior oper-

ators in a topological space, Math. Appl. 6 (2017), 11–20.
[JJLL08] Y. B. Jun, S. W. Jeong, H. J. Lee, and J. W. Lee, Applications of pre-open sets,

Applied General Topology, Universidad Politécnica de Valencia 9 (2008), no. 2, 213–
228.

[JN19] S. M. Jung and D. Nam, Some properties of interior and closure in general topology,
Mathematics (MDPI Journal) 7 (2019), no. 624, 1–10.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2019                   doi:10.20944/preprints201912.0064.v1

https://doi.org/10.20944/preprints201912.0064.v1


44 KHODABOCUS M. I. AND SOOKIA N. U. H.

[Kal13] N. Kalaivani, Operation approaches on α-β-open sets in topological spaces, Int.
Journal of Math. Analysis 7 (2013), no. 10, 491–498.

[KN12] K. Kannan and N. Nagaveni, On β̂-generalized closed sets and open sets in topolog-
ical spaces, Int. Journal of Math. Analysis 6 (2012), no. 57, 2819–2828.
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