

1 *Supplementary Materials*

2 **Metabolic Stability of New Mito-Protective Short-Chain Naphthoquinones**

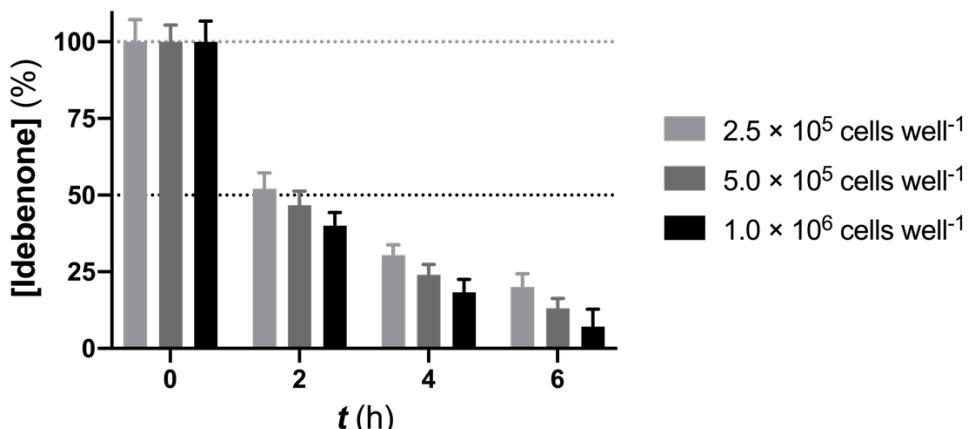
3 **Zikai Feng ^{1,2,3} , Jason A. Smith ² , Nuri Gueven ³ , and Joselito P. Quirino ^{1,2,*} **

4 ¹ Australian Centre for Research on Separation Sciences (ACROSS), School of Natural Sciences-Chemistry,
5 College of Science and Engineering, University of Tasmania, Hobart, TAS 7000, Australia

6 ² School of Natural Sciences-Chemistry, College of Science and Engineering, University of Tasmania,
7 Hobart, TAS 7000, Australia

8 ³ Division of Pharmacy, School of Medicine, College of Health and Medicine, University of Tasmania,
9 Hobart, TAS 7000, Australia

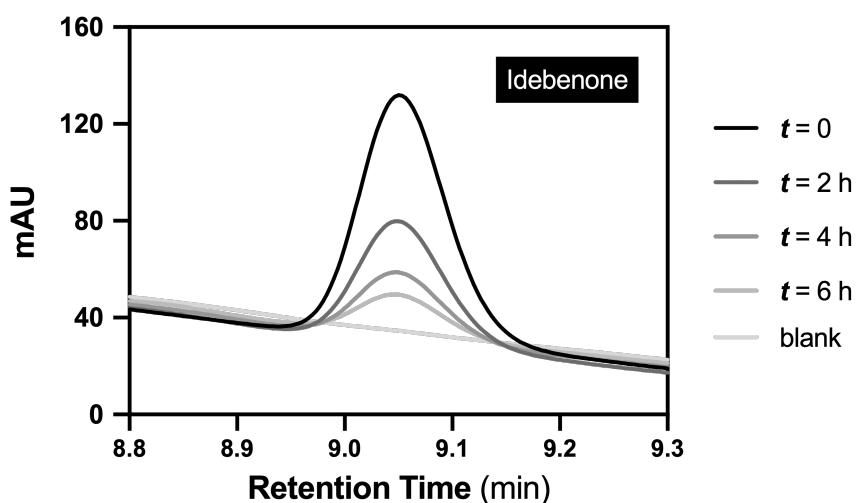
10 * Correspondence: jquirino@utas.edu.au


11

12 **Table S1.** Analytical figures of merit for the RP-LC of 16 new short-chain quinones (SCQs) and the
13 clinical used benzoquinone idebenone for the metabolic stability study.

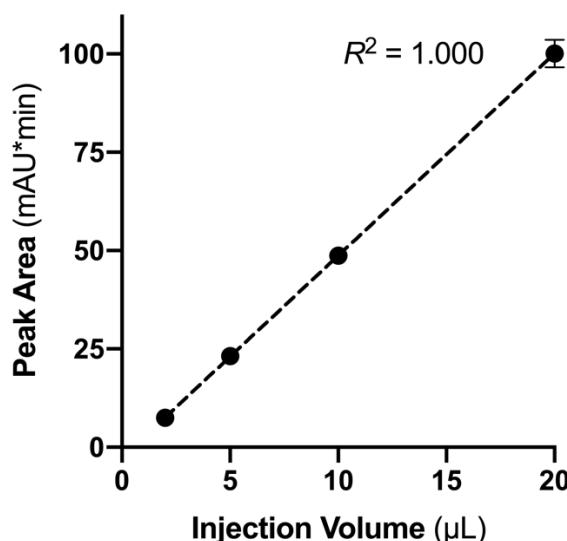
Compound	ID	RT	Equation	R ²	c (μ M) found at <i>t</i> = 0	Recovered %	RSD %
1	UTAS#81	3.75	Y = 0.5063*X - 0.1593	0.996	11.5 ± 0.7	115.1 ± 7.0	6.1
2	UTAS#80	3.75	Y = 0.7420*X - 0.3726	0.999	10.5 ± 0.4	105.2 ± 3.9	3.7
3	UTAS#62	4.18	Y = 1.0500*X - 0.1085	1.000	10.9 ± 0.9	109.4 ± 8.8	8
4	UTAS#78	4.18	Y = 0.2149*X - 0.1450	0.995	11.0 ± 0.4	110.5 ± 4.3	3.9
5	UTAS#37	5.36	Y = 1.0230*X - 0.1533	0.999	11.1 ± 0.1	110.6 ± 1.3	1.2
6	UTAS#72	6.62	Y = 0.8226*X - 0.1267	0.999	11.4 ± 0.3	114.2 ± 3.2	2.8
7	UTAS#74	4.30	Y = 0.6179*X + 0.0429	0.999	8.7 ± 0.3	86.7 ± 3.4	3.9
8	UTAS#88	5.10	Y = 0.4251*X + 0.0593	1.000	9.7 ± 0.5	96.6 ± 4.7	4.9
9	UTAS#89	6.73	Y = 0.1286*X - 0.0725	0.982	11.6 ± 1.1	116.2 ± 4.9	4.2
10	UTAS#54	5.14	Y = 0.6036*X - 0.0735	1.000	9.5 ± 0.2	94.9 ± 2.0	2.1
11	UTAS#77	4.79	Y = 0.9435*X - 0.0502	1.000	10.5 ± 0.2	105.0 ± 1.9	1.8
12	UTAS#91	5.67	Y = 0.2690*X - 0.0253	0.996	10.8 ± 0.2	107.8 ± 2.5	2.3
13	UTAS#95	6.94	Y = 0.3125*X - 0.1449	0.998	10.9 ± 0.4	109.1 ± 3.9	3.9
14	UTAS#61	3.00	Y = 1.0490*X + 0.0349	1.000	10.9 ± 0.8	109.5 ± 7.9	7.2
15	UTAS#43	3.21	Y = 0.5825*X - 0.0804	0.999	9.7 ± 0.8	96.7 ± 7.8	8.7
16	UTAS#46	4.52	Y = 0.9530*X + 0.0376	0.985	11.1 ± 1.1	111.1 ± 10.8	9.7
Idebenone		9.05	Y = 0.8976*X - 0.0881	1.000	9.9 ± 1.1	99.1 ± 10.5	10.6

14 Standards were prepared at 10 μ M in 25% ACN and 20 μ L was injected. Other conditions are described in Section
15 2.2, 2.3 and main text. Linear regression of peak area (A) and concentration of standards were generated using
16 GraphPad Prism 8.2.1 with coefficient of determination (R²) calculated. LOQ = 1 μ M. 1 mL cell culture media
17 containing 40 μ M compounds at *t* = 0 were 1:1 precipitated with ACN, vortexed and centrifuged. 1 mL
18 supernatant was 1:1 diluted with purified water, filtered, degassed prior to immediate RP-LC analysis.
19 Recovered% was calculated by dividing the concentration found at *t* = 0 by 10 μ M \times 100%. Data was expressed
20 as mean \pm standard deviation (SD) (n \geq 3). The repeatability (RSD%) was calculated by dividing the absolute SD
21 by the mean.


22

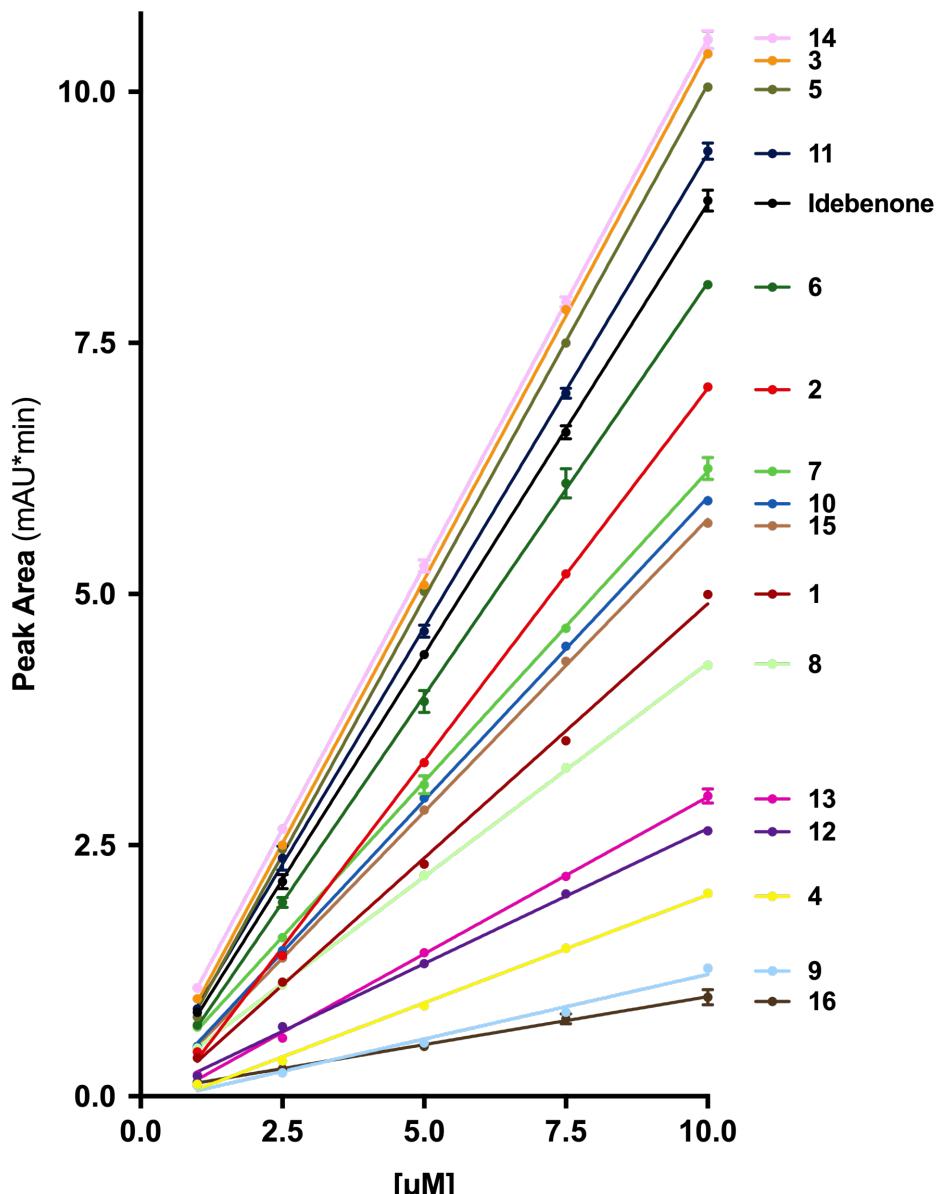
23

24
25


Figure S1. Metabolic conversion of the reference SCQ idebenone over 6 h by different cell densities. Data was expressed as mean \pm SD from one experiment, with 3 data points each.

26

27


Figure S2. Exemplary chromatograms of SCQ peaks detected after 2, 4 or 6 h metabolism.

28

29
30

Figure S3. Linear responses of idebenone to injection volumes between 2–20 μL . Data was expressed as mean \pm SD from one experiment, with 3 data points each.

31

32

33

34

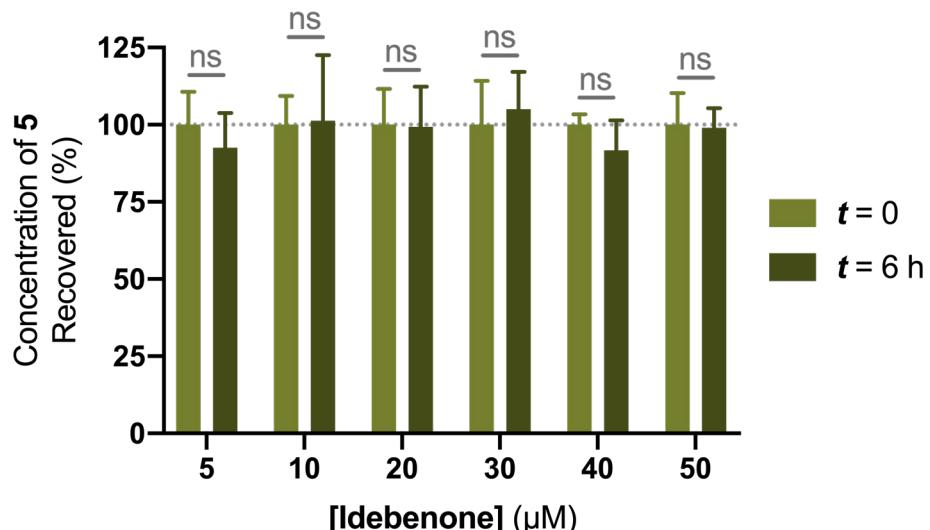

35

Figure S4. Linear responses of 16 new SCQs and the reference benzoquinone idebenone between 1–10 μM . Data was expressed as mean \pm SD from three independent experiments, with 3 data points each.

36

37 **Figure S5.** Exemplary mass spectrometry chromatograms for the metabolic conversion from the *L*-
 38 phenylalaninol derivative **3** to the *L*-phenylalanine derivative **5**. The detection and quantitation of **5**
 39 were performed using a H-Class UPLC-MS/MS system coupled to a XEVO TQ triple quadrupole mass
 40 spectrometer (Waters, NSW, AU). Analytical separation was carried out on a Waters Acquity UPLC
 41 BEH C18 column (2.1 × 100 mm, particle size 1.7 μ m) at 30 °C. Mobile phases were 0.1% formic acid
 42 in purified water (A) and acetonitrile (B) with a flow rate of 0.3 mL min⁻¹. The final conditions included
 43 a gradient flow of mobile phase B: 40 % for 1 min, 40-90 % for 4 min, 90 % for 1 min, 90-40 % for 0.5
 44 min, 40 % for 3 min (total run $t = 9.5$ min, including column post-conditioning). The mass spectrometer
 45 was operated in positive ionization mode, using electrospray ionization source (ESI). The tuning
 46 parameters of **5** were optimized by using a standard solution containing 8.11 ng mL⁻¹ **5** (20 nM in
 47 acetonitrile) with a flow rate of 20 μ L min⁻¹ to the mass spectrometer. Cell culture media collected
 48 (containing 40 μ M **3**) was precipitated by mixing 1:1 with acetonitrile, followed by 1:1000 dilution of
 49 the supernatant in acetonitrile to reach a theoretical concentration of 7.83 ng mL⁻¹ **3** (20 nM) for
 50 analysis. The standards and metabolized samples were detected by monitoring the precursor to
 51 product ion transition using Multiple Reaction Monitoring (MRM) scan mode with 78 ms dwell time
 52 for each transition. The selected transitions were m/z 406.3 > 197.1 and 406.3 > 241.2 for **5**. The source
 53 temperature was 130 °C, desolvation temperature was 450 °C, desolvation nitrogen gas flow was 950
 54 L h⁻¹ and cone gas flow was 50 L h⁻¹. The capillary voltage was set at 2.85 kV, while the cone voltage
 55 values for **5** were optimized at 27 V. The multiplier was set at 528 V and argon was used as collision
 56 gas. The optimized collision energies were 24 eV (392.2 > 152.1) and 16 eV (392.2 > 197.1), respectively.
 57 All data were required using MassLynx software (version 4.0, Waters, NSW, AU).

58

59

60
61

Figure S5. Superior metabolic stability of the *L*-phenylalanine derivative **5** over 6 h in combination with all concentration series of the reference SCQ idebenone. Data was expressed as mean \pm SD from three independent experiments, with 4 data points each.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

62

