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Abstract: In this review, special emphasis will be placed on red grape polyphenols for their
anti-oxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways
responsible for activation of oxidative systems and expression and release of pro-inflammatory
cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by
polyphenols will be illustrated with special reference to the activation of T regulatory cells which
support a tolerogenic pathway at intestinal level. Furthermore, the effects of red grape polyphenols
will be analyzed in obesity, as a low grade systemic inflammation. Also, possible modifications of
inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol
administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to
cross the blood-brain barrier has been exploited to investigate their neuroprotective properties. In
cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported
about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated
in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols
are endowed with a great anti-oxidant and anti-inflammatory potential but some issues, such as
polyphenol bioavailability, activity of metabolites and interaction with microbiota, deserve deeper
studies.
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1. Introduction

Polyphenols are phenolic compounds largely spread in the vegetal kingdom where they play a
protective role coping with several environmental insults (e.g., ultraviolet lights, free radicals and
temperatures). For further details, readers are referred to [1-3]. For instance, in the Mediterranean
area olives and grapes have been demonstrated to increase polyphenol production due to their high
sensitivity to stressors [4]. In nature, more than 8,000 different polyphenols exists as major
components of fruits, vegetables, cereals and their derivatives (wine, extra virgin olive oil, chocolate,
juices) [1-3]. Human beings acquire polyphenols trough diet as in the case of Mediterranean-type
diet (Med) [5,6]. Dietary flavonoids are the most common polyphenols which exert healthy effects in
terms of metabolism, weight, chronic disease and neuroendocrine immune control [7-9]. Chemically,
flavonoids are based on a common structure composed by two aromatic rings which are bound by
three carbon atoms, finally, forming an oxygenated heterocycle [10]. On the other hand, stilbenes
and, especially resveratrol (RES), represent a class of polyphenols that are present in low amounts in
human diet. Chemically, they are composed by two phenyl rings bound together by two carbon
methyl bridges [1,2]. RES is largely present in grapes and is endowed with potent anti-oxidant and
anti-inflammatory activities [11,12]. Lignans are fiber-associated polyphenols largely present in olive
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oil. Chemically, they are based on a 2,3-dibenzylbutane structure, derived from the dimerization of
two cinnamil acid residues [13]. Finally, thyrosol-derived compounds, such as oleuropein and
hydroxytyrosol, are the main polyphenols in olive oil, thus, contributing to the anti-oxidant and
anti-inflammatory properties of this food ingredient [14-16]. Chemically, thyrosols are represented
by a phenethyl alcohol moiety with a hydroxyl group at the fourth position of the benzene group.
Polyphenol activity depends on their absorption rate and bioavailability of derivative metabolites. In
particular, once ingested, polyphenols interact with other nutrients such as proteins, sugars, fats,
fibers and the intestinal microbiota, thus, leading to the generation of active metabolites [17].
Polyphenol absorption is a quite complex process since the majority of them are present as
glycosides, i.e, conjugated with sugars. While anthocyanins are absorbed intact, others are
converted into aglycones via hydrolysis by the small intestine brush border (via hydrolase) or within
epithelial cells (via cytosolic B-glucosidase or lactase phlorizin) [18,19]. In turn, aglycones pass to the
circulation under conjugated forms, such as sulphate, glucuronide and/or methylated metabolites,
this occurring within epithelial cells and in the liver [20]. Of note, the most of polyphenols are
absorbed in the colon where are processed by enzymes present in the microbiota and, then,
converted into aglycones [20]. Finally, aglycones undergo ring fixation with production of bioactive
metabolites, such as phenolic acids and hydroxycinnamates, which can be detected in the plasma
after 12-48 h from polyphenol ingestion. Dietary polyphenols and fruit-derived polyphenol
supplements contain a large array of different polyphenols and, therefore, the mechanism of
ingestion and metabolite production are more complex, also depending on individual variations of
microbiota composition [21].

For space limitations, here emphasis will be mostly placed on red grape polyphenols. For
instance, wine polyphenols represent an important dietary source with flavonoids accounting for
>85%, 1= g/L of total phenolics [22]. A minor component is represented by derivatives of carboxylic
acids, hydroxycinnamate, tannins and RES [23]. Flavonoids are extracted from grape skin, seeds and
stem, while tannins are present in oak barrels during wine storage. RES is present in the grape as a
result of several insults, such as mechanical trauma, infections with fungi and ultraviolet light
radiations [24]. The healthy properties of red wine have been emphasized in the context of the
French paradox since in France (e.g., Bordeaux region) the low incidence of cardiovascular disease
has been attributed to the moderate consumption of red wine in comparison to other western
countries [25-27]. However, other authors have confuted the French paradox claiming that reported
healthy effects originate from MeD adoption and not only from red wine intake [28-30].

Aim of the present review will be to describe and discuss the effects of red grape polyphenols in
experimental and clinical settings with special reference to their anti-oxidant and anti-inflammatory
properties.

2. Anti-oxidant and anti-inflammatory activities exerted by red grape polyphenols

There is a wealth of information on the ability of dietary polyphenols to exert anti-oxidant
functions, scavenging reactive oxygen species (ROS), as well as anti-inflammatory activities, altering
the expression of genes like pro-inflammatory cytokines, lipoxygenase (LOX), nitric oxide synthase
(NOS) and cyclo-oxygenase (COX) [31-36]. ROS production is associated with oxidative stress and
protein oxidation which, in turn, account for induction of the inflammatory pathway [37,38].
Therefore, interruption of the oxidative process (e.g., ROS generation) attenuates triggering of the
inflammatory cascade. Polyphenols have been shown to exert anti-oxidant activity scavenging
radicals and chelate metal ions (e.g., quercetin chelates iron ion) [39]. Polyphenol-induced metal ion
chelation reduces the formation of O:* in Chlamydia-primed THPI1-monocytes, also protecting
endothelial cells from oxidative insults [40,41]. Other anti-oxidant mechanisms elicited by
polyphenols are represented by blockade of the mitochondrial respiratory chain and adenosine
triphosphatase and xantine oxidase [42-44]. Finally, curcumin and epigallocatechin gallate (EGCG)
are able to activate anti-oxidant enzymes, such as superoxide dismutase, catalase and glutathione
peroxidase, thus, leading to ROS detoxification [45,46]. With special reference to red grape
polyphenols, RES could inhibit COX, peroxisome proliferator activated receptor-y and endothelial
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NOS in vitro and in vivo experiments with murine and rat macrophages [47-49]. In this context,
polyphenols extracted from red grape were able to inhibit either in vitro or in vivo release of nitric
oxide (NO) from human monocytes of patients with nickel (Ni)-mediated contact allergic dermatitis
(CAD) [50,51]. Quercetin and EGCG, other flavonoids present in red grapes, are able to inactivate
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) in human epithelial cells and
human monocytes [52,53], thus leading to inhibition of pro-inflammatory cytokines, chemokines,
adhesion molecules and growth factor release [54]. Particularly, by using quercetin the molecular
mechanisms implicated in deactivation of NF-xB nuclear translocation have been elucidated. This
flavonoid, prevented the nuclear translocation of p50 and p65 subunits of NF-kB, as well as the
phosphorylation of IxB kinase (IkB)a proteins in macrophages [55,56]. Also in human mast cells,
quercetin blocked the activation of NF-kB through the above cited mechanisms, thus, decreasing
release of tumor necrosis factor (TNF)-a, interleukin (IL)-1f3, IL-6 and IL-8 [57]. In mouse BV-2
microglia treated by lipopolysaccharides (LPS) and interferon (IFN)-y, quercetin hampered the
binding of NF-kB to DNA, thus, preventing release of pro-inflammatory cytokines [58]. In sum,
flavonoids are able to regulate NF-kB activation either at early phases, inhibiting Ikk activation or at
late stages, preventing binding of NF-xB to DNA [59-61]. The mitogen-activated protein kinases
(MAPKSs) regulate gene transcription and transcription factor activities implicated in inflammation.
Among them, extracellular signal-related kinases (ERKs)-1, -2, c-Jun amino-terminal kinases (JNK)-
1/2/3, p-38-MAPKs and ERK-5 are able to interact with NF-«B, thus, suggesting the intricacy of
MAPK pathway. Evidence has been provided that both quercetin and EGCG interfere with the
MAPK signaling system reducing production of TNF-o and IL-12 in immune and non-immune cells
[62,63]. The above cited anti-inflammatory mechanisms mediated by catechin and quercetin have
also been reported to occur in mouse skin [64], and in human coronary endothelial cells [65], thus
indicating the protective role of these compounds in inflammation. Among other mechanisms of
anti-inflammation promoted by polyphenols, inhibition of arachidonic acid (AA) pathway plays a
paramount role. AA is released by membrane phospholipids following phospholipase A (PLA)2
cleavage. In turn, AA is metabolized by COX and LOX with generation of prostaglandins (PGs) and
thromboxane A2 by COX and leukotrienes (LTs) by LOX [66]. Polyphenols are able to reduce release
of PGs and LTs via inhibition of PLA2, COX and LOX, as experimentally seen with quercetin, red
wine and EGCG [67-69]. Quite interestingly, some polyphenols share structural and functional
similarities with anti-inflammatory drugs as in the case of oleocanthal, which mimics the activity of
ibuprofen, inhibiting COX-1 and COX-2 [70].

Major anti-oxidant and anti-inflammatory effects exerted by red wine polyphenols are
illustrated in Table 1.
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Table 1. Red grape polyphenol-induced anti-oxidant and anti-inflammatory activities

Polyphenol Activity
Inhibition of: COX, PPARY,
Quercetin eNOS, in rodent macrophages
[47-49]
Inhibition of:

-NF-kB translocation and
phosphorylation of IxBa
proteins in macrophages and
microglia [52, 53, 55, 56, 58];
-MAPK pathway with reduced
release of TNF-a and IL-12 in
immune and non immune cells
[62,63]

Quercetin,
epigallocatechin-gallate

Inhibition of arachidonic acid

Quercetin, pathway via reduction of
epigallocatechin-gallate, prostaglandin and leukotriene
red wine release, inhibiting PLA2, COX
and LOX [66]

Abbreviations: COX, cyclo-oxygenase, eNOS, endothelial nitric oxide synthase, IL, interleukin, LOX,
lipoxygenase, MAPK, Mitogen-activated protein kinases, NF-kB, Nuclear factor kappa-light-chain-enhancer of
activated B cells, PLA2, Phospholipase A2, PPAR, peroxisome proliferator activated receptor, TNF, tumor

necrosis factor.

3. Regulation of immune functions by polyphenols

There is a large body of evidence that polyphenols can regulate immune functions via binding
to various receptors. Aryl hydrocarbon receptor (AhR) is located on the cytoplasm of several
immune and non-immune cells in association with heat shock protein 90 and the co-chaperone 23
[71]. At intestinal level, AhR has been found in the cytoplasm of intraepithelial lymphocytes, innate
lymphoid cells, dendritic cells (DCs), macrophages and T helper (h)-17 cells. Then, dietary
polyphenols binding to AhR may modulate gut immune response. For instance, dietary naringenin
induces T regulatory (Treg) cells binding to intestinal AhR [72]. Furthermore, EGCG is able to bind
to the 67 kDa laminin receptor, the zeta-chain-associated 70kDa protein (ZAP-70) and the retinoic
acid-inducible gene (RIG)-I, respectively [73,74]. Neutrophils, monocytes/macrophages, mast cells
and T cells express ZAP-70 [75,76]. Inhibition of ZAP-70 by EGCG regulates CD3-mediated T cell
receptor signaling in leukemic cells [77]. EGCG also suppresses signaling by the dsRNA innate
immune receptor RIG-I [78]. Specific protein 1 is a transcription factor expressed on many cancer
cells and its inhibition by RES suppresses growth of human mesothelioma cells [79]. Other receptors,
such as Toll-like receptor (TLR)-4, T cell receptor-af and surface IgM B cell receptor are common
binding sites for baicalin, a flavone glycoside [80], thus leading to innate and adaptive immune
response modulation.

As reported by in vitro and in vivo studies, polyphenols contained in red grapes and red wine
are able to perform a potent immunomodulation. Quercetin treatment of DCs led to reduced
production of pro-inflammatory cytokines and chemokines with a decrease in Major
Histocompatibility Complex class II and co-stimulatory molecules in the context of the
immunological synapsis [81]. Consequentially, evidence has been provided that quercetin-induced
deactivation of LPS-stimulated DCs down-regulates T cell response to specific antigens [82]. Similar
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results have been obtained in vitro treating peripheral human monocytes from healthy donors with
red wine-derived polyphenols, even including quercetin [83]. Particularly, co-incubation of
monocytes with polyphenols and LPS abrogated the LPS-mediated activation of NF-kB likely by a
phenomenon of steric hindrance. As a result of such an inhibitory mechanism, the storm of
pro-inflammatory cytokines released by human monocytes was noticeably attenuated [84]. In the
same direction, in vitro quercetin treatment of peripheral blood mononuclear cells from multiple
sclerosis patients reduced release of IL-1p and TNF-a and this effect was potentiated in the presence
of IFN-B [85]. Fisetin, is a flavonoid contained in a number of plants and fruits, even including
grapes. Fisetin has been shown to in vitro inhibit production of Thl and Th2-related cytokines and
modify the ratio CD4+/CD8+ T cells [86]. This effect seems to depend on the down-regulation of
NF-kB activation and nuclear factor of activated T cell signaling. In vivo, fisetin suppressed murine
delayed-type hypersensitivity reactions, thus, supporting its inhibitory role on T cells [86]. RES
exerts anti-inflammatory and immunomodulating functions through activation of sirtuin-1 (Sirt-1)
[87]. Sirt-1 operates by disrupting the TLR-4/NF-«B/signal transducer and activator of transcription
(STAT) pathway with decreased production of cytokines, platelet activating factor and histamine
[88,89]. Sirt-1, as a deacetylase, plays an important role in immune tolerance and its abrogation leads
to a spontaneous development of autoimmune disease [90,91]. RES binding to Sirt-1 enhances its
attachment to p65/RelA substrate [92], which, as a member of the NF-xB pathway, activates
leukocytes and the pro-inflammatory cytokine pathway [93]. Then, Sirt-1 activation by RES hampers
RelA acetylation with decrease of NF-kB-induced expression of TNF-a, IL-1p, IL-6, metalloproteases
(MMPs) and COX-2 [93]. As recently reviewed by Malaguarnera [94], RES induces AMP-activated
protein kinase which, in turn, controls Sirt-1 activity, regulating the cellular levels of nicotinamide
adenine dinucleotide (NAD+). The, NAD+-induced Sirt-1 activation leads to deacetylation and
activation of peroxisome proliferator-activated receptor y coactivator-la.

Quite importantly, the anti-inflammatory activity mediated by RES wvia activation of Sirt-1 is
abrogated by genetic deletion of Sirt-1 or its inhibitors such as sirtinol [95-97]. Furthermore, RES is
able to modulate macrophage function acting upon TLR-4 and TRAF5-mediated inflammatory
responses, deactivating LPS-dependent NF-kB activation and COX-2 expression [98,99].

Nucleotide oligomerization domain-like receptors (NLRs) belong to the pattern recognition
receptor family and their activation is involved in the development of inflammatory diseases. In this
respect, evidence has been provided that RES inhibits the increase of o-tubulin-mediated assembly
of the NLR pyrin domain containing 3 (NLRP3) inflammasome [100]. Therefore, RES may represent
an important therapeutic tool in the management of NLRP3-inflammasome-induced disease.

Several reports have demonstrated the ability of RES to modulate cytokine production, e.g.,
inhibiting release of granulocyte-macrophage colony-stimulating factor, IL-1 and IL-6, thus,
attenuating low grade chronic inflammation as well as atheroma formation [101-104]. With special
reference to T cells, RES exerts anti-inflammatory effects, reducing numbers of Th17 cells and
production of IL-17, an inflammatory cytokine, in murine collagen-induced arthritis [105]. On the
other hand, it is well known that RES mediates T cell tolerance via upregulation of Sirt-1 in activated
T cells [106]. In the same direction, another report has demonstrated that RES increased release of
IL-10, an anti-inflammatory cytokine produced by Treg cells [107]. Similar results were attained
stimulating human healthy peripheral blood lymphocytes with polyphenols from fermented grape
marc (FGM), thus, leading to induction of FoxP3+ Treg cells and enhanced release of IL-10 [108].
However, other data have reported a RES-mediated suppression of CD4+CD25+ cells with decreased
production of transforming growth factor (TGF)-p and enhanced expression of IFN-y in CD8+ cells
[109]. With special reference to natural killer (NK) cells, RES has been shown to enhance their killing
activity against leukemia and lymphoma cells [110]. In another study, evidence has been provided
on the capacity of RES to up-regulate perforin expression on NK cells, thus, supporting the
enhancement of their lytic activity [111]. Also in an infectious model of acute pneumonia in rats, RES
treatment increased NK cell activity which correlated with a decreased bacterial burden and
mortality [112].

Polyphenol-mediated immunomodulation is described in Table 2.
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Table 2. Red grape polyphenol-induced immunomodulation

Polyphenol Activity
Quercetin, red Inhibition of DC and monocyte function with
wine-derived reduced production of pro-inflammatory
polyphenols cytokines and chemokines [82, 83]

-Inhibition of Th1 and Th2-related cytokines
in vitro [84];
-Suppression of murine delayed-type
hypersensitivity in vivo [86];

Fisetin

-Activation of Sirt-1 with disruption of the
TLR-4/NF-xB/STAT pathway and decreased
production of cytokines, PAF and histamine

[87-89];

-Induction of AMP-activated protein kinase
with increased levels of NAD+ which, in turn,
activates Sirt-1 [94];

-Inhibition of the NLRP3 inflammasome [100];
RES -Inhibition of the GM-CSF, IL-1§ and IL-6 in

the context of atheroma [101-104];
-Inhibition of IL-17 release by Th17 cells and
increase of IL-10 by Treg cells [105-107];
-Increase of NK cell activity against leukemia
and lymphoma cells via up-regulation of
perforin expression and decrease of bacterial
burden and mortality in acute pneumonia in
rats [110-112]

Abbreviations: DC, dendritic cell, GM-CSF, granulocyte-macrophage colony stimulating factor, IL, interleukin,

MAPK, mitogen-activated protein kinases, NAD, nicotinamide adenine dinucleotide, NF-«xB, nuclear factor
kappa-light-chain-enhancer of activated B cells, NK, natural killer, NLRP3, NLR pyrin domain containing 3,
PAF, platelet activating factor, ROS, reactive oxygen species, Sirt-1, sirtuin-1, STAT, signal transducer and
activator of transcription, Th, T helper, TLR, Toll-like receptor, TNF, tumor necrosis factor, Treg, T regulatory
cells.

4. Polyphenol-mediated immune responses in pathological conditions

For space limitations, in this review the illustration of anti-oxidant and anti-inflammatory effects
exerted by polyphenols will be restricted to major pathologies such as obesity, inflammatory bowel
disease (IBD), cancer, neurodegeneration and allergy/autoimmunity.

4.1 Obesity

Overweight/obesity is pandemic and affects more than 2.5 billion adults, even including those
living in developing countries [113,114]. Of importance, obesity leads to the outcome of metabolic
syndrome, such as type 2 diabetes, cardiovascular disease, neurodegeneration and cancer [115].
Obesity can be defined as a low grade chronic inflammation maintained by the visceral adipose
tissue, as a continuous source of inflammatory mediators [116,117]. In particular, obesity is
characterized by an exaggerate lipolysis with secretion of free fatty acids, which, in turn, trigger
inflammatory responses, production of ROS and insulin resistance [118,119]. On these grounds, a
number of experimental and clinical studies have been focused on the effectiveness of polyphenols
to attenuate the oxidative/inflammatory status in obesity. Gallic acid, as a component of red grape
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polyphenols, is able to decrease body weight in obese rodents, inhibiting lipid droplet formation in
the liver or adipose tissue, as well as reducing serum levels of triglycerides and low density
lipoproteins and improving glucose tolerance [120-123]. There is evidence that gallic acid controls
glucose and lipid metabolism regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT) and AMPK signaling pathways [124]. In obese people, clinical trials based on the
administration of gallic acid have been quite controversial. Two studies failed to demonstrate weight
loss or reduction of markers associated to obesity upon administration of gallic acid, as reported by
[118]. On the other hand, other investigations documented that administration of gallic acid reduced
waist circumference, body mass index (BMI) and visceral fat in pre-obese individuals, also
decreasing oxidative and inflammatory markers [125-128]. Red grape polyphenols extracted from
Nero di Troia cultivar were in vitro used to stimulate peripheral lymphomonocytes isolated from
obese people. This treatment was able to reduce the inflammatory status of obese
lymphomonocytes, decreasing release of IL-17 and IL-21 (an inducer of Th17 cells), while enhancing
production of IL-10 [129]. At the same time, also release of IL-1p and TNF-a dramatically dropped.
These data indicate the pro-inflammatory attitude of peripheral immune responses in obese people
and the ability of polyphenols to revert to normality inflammatory biomarkers. Childhood obesity is
another emerging clinical problem worldwide [130]. Unhealthy dietary habits predispose to
childhood obesity, as demonstrated by Vitale and associates [131]. Then, one year follow-up of
normal weight children under a MeD regimen led to the following conclusion. Those children, who
disattended dietary advice, shifting to a junk food diet, increased BMI, salivary levels of IL-17 and
decreased salivary IL-10 amounts, while in children who attended MeD IL-10 levels increased with a
decrease of IL-17 salivary levels. These results indicate that MeD, based on polyphenols, unsaturated
fatty acids, vitamins and oligoelements can prevent overweight/obesity in early childhood [131].

Diabetes is very often associated to obesity and evidence has been provided that polyphenols
(e.g., quercetin, epicatechins) can also correct diabetic complications [132-135]. In particular,
experiments with insulin releasing cell lines and isolated pancreatic islets have demonstrated that
polyphenols protect B-cell survival, inhibiting NF-«xB activation, triggering the PI3K/AKT pathway
and inhibiting ROS generation [136].

Major effects of polyphenols on obesity/diabetes are expressed in Table 3.

Table 3. Effects of red grape polyphenols on obesity/diabetes

Polyphenols Disease Activity

-Reduction of body weight
in rodents with inhibition
of lipid droplet formation

Gallic acid Obesity in the liver or adipose
tissue, and normalization
of lipid profile [125-128]
-In vitro experiments
Red grape polyphenols demonstrated inhibition of
from Nero di Troia red Obesity IL-21/IL-17, IL-1f and

TNF-a release from obese
lymphomonocytes with
increase of IL-10 [129]
Protection of 3-cell
survival with inhibition of
NF-«B activation and ROS
generation [136]

grape cultivar

Quercetin, epicatechins Diabetes

Abbreviations: IL, interleukin, NF-xB, nuclear factor kappa-light-chain-enhancer of activated B cells, ROS,

reactive oxygen species, TNF, tumor necrosis factor.
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4.2 Inflammatory bowel disease

IBD are chronic pathologies of the intestinal mucosa with a multiple pathogenesis since genetic
factors, abnormal functions of the immune response, alteration of the intestinal barrier and dysbiosis
contribute to disease outcome and maintenance [137-140]. With special reference to polyphenols, it
has been reported that these compounds are able to modulate either in vitro or in vivo experimental
colitis [141,142]. For instance, red grape polyphenols extracted from FGM were able to attenuate
dextran sulphate sodium (DSS) murine colitis when orally administered [143]. This experimental
regimen abrogated shortening of intestine length and reduced content of IL-f and TNF-o in
intestinal homogenates from treated mice. In a recent paper, administration of bronze tomatoes,
enriched in flavonols, anthocyanins and stilbenoids, as well as red grape skin reduced intestinal
damage in the course of DSS-induced experimental colitis with improvement of stool consistency,
fecal blood content and weight loss [144]. RES has been investigated in experimental and human
colitis. In a rat model of 2,4,6-trinitrobenzenesulfonic acid, RES mitigated intestinal inflammation
decreasing PG production, COX-2 expression, neutrophil recruitment and TNF-a secretion [145]. In
a rat model of DSS-induced colitis, a low dose of dietary RES was able to regulate genes involved in
IL-6 signaling, apoptosis, mitochondria fatty acid oxidation and Wnt-signaling [146]. In a similar
model of DSS-induced murine colitis, oral administration of RES inhibited inducible NOS
expression and NF-kB activation, thus, preventing the onset of intestinal inflammation [147]. The
IL-10- mouse model represents a suitable model of IBD [148]. In these mice, administration of RES
induced activation of myeloid-derived suppressor cells (MDSCs), thus, attenuating mucosal and
systemic inflammation [149]. As recently reviewed by Nunes and associates [150], RES
administration to mice with DSS-induced ulcerative colitis (UC) decreased inflammatory and
oxidative markers, also ameliorating clinical symptoms (loss of body weight, diarrhea and rectal
bleeding) [151], and reducing rate of mortality [152]. In another study dealing with a DSS-induced
murine model of UC, RES was able to modulate Th17/Treg cell ratio, decreasing number of the
former and up-regulating number of the latter [153].

With special reference to clinical trials, Samsami-Kor and associates [154] evaluated the effects
of RES supplementation (0.5 g/day for 6 weeks) in a group of patients affected by UC. C-reactive
protein (C-rp), TNF-a and NF-«xB levels decreased with an improvement of clinical colitis activity
index score. Finally, in RES-treated patients superoxide dismutase and total anti-oxidant capacity
increased, while malondialdehyde levels decreased.

In Table 4 effects of polyphenols on IBD are illustrated.

Table 4. Effects of red grape polyphenols on inflammatory bowel disease

Polyphenols Disease Activity

-Abrogation of intestine length
shortening [143];

Fermented grape DSS-induced murine
.\ -Decreased content of
marc colitis . . .
inflammatory cytokines in
intestinal homogenates [143]

-Improvement of: stool

Bronze tomatoes DSS-induced murine p
) .. consistency, fecal blood

red grape skin colitis

content and weight loss [144]
Reduction of: PG, COX-2
expression, neutrophil
recruitment and TNF-a release
[145]

Decrease of: IL-6 expression,

DSS-induced murine apf)ptos'is, rTlitochondT‘ion f.atty

RES colitis/UC acid oxidation, Wnt signaling,
iNOS expression and NF-xB
activation in murine colitis;

Rat-induced colitis
RES (2,4,6-trinitrobenzene
sulfonic acid model)
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Up-regulation of Treg cells
and amelioration of clinical
symptoms [146,147]
IL-10- mouse model of Activation of myeloid deriv‘ed
RES BD suppressor cells and reduction
of inflammation [148,149]

Abbreviations: COX-2, ciclo-oxygenase-2, DSS, dextran sulphate sodium, IBD, inflammatory bowel disease, IL,
interleukin, iNOS, inducible nitric oxide synthase, NF-kB, nuclear factor kappa-light-chain-enhancer of
activated B cells, PG, prostaglandin, RES, resveratrol, TNF, tumor necrosis factor, Treg, T regulatory cells, UC,

ulcerative colitis.

4.3 Neurodegeneration

Among neurodegenerative disorders, Alzhemeir’s disease (AD) and Parkinson’s disease (PD)

are increasing also in relation to life style changes, aging, environmental and genetic risk factors.
Quite interestingly, several evidences have been provided on the ability of polyphenols to cross the
blood brain barrier (BBB) and accumulate into the brain. Then, polyphenols have been experimented
in vitro and in vivo models of AD and PD. In an in vitro model, penetration of methylated conjugates
of polyphenols trough the BBB was higher than that of sulphated or glucuronidated molecules
[155,156]. Another report demonstrated catechin and epicatechin transport across BBB [157]. In vivo
studies have shown the ability of RES, EGCG, quercetin, cathechins and curcumin to accumulate
into the central nervous system [158-162]. There is also evidence that persistent intra-gastric
administration of EGCG led to an elevated concentration of the aglycone form (5-10% of plasma
concentrations) in various organs, even including brain [159].
Another important aspect of the neuroprotective effects of polyphenols is their capacity to act
synergistically. Combinations of RES and catechins exhibited a synergistic protective activity against
amyloid (A)B toxicity, oxidative stress and oxygen-glucose deprivation in vitro [163-166]. Synergy
has also been shown between polyphenols, drugs and hormones. For instance, a potentiation of
effects on neurite outgrowth has been reported, in vitro using the combination brain-derived
neurotrophic factor and catechins [167]. In a murine model of PD, rasagiline, an inhibitor of
dopamine metabolizing monoamine oxidase B, synergized with polyphenols in promoting survival
of the dopaminergic nigrostriatal pathway [168-170]. In this context, a Vitis vinifera red grape seed
and skin extract (GSSE) exhibited in vitro and in vivo neuroprotective activity in a mouse model of
PD [171]. GSSE protected dopamine neurons from neurotoxin 6-hydroxydopamine (6-OHDA)
damage, reducing apoptosis, ROS production and inflammatory markers. Also motor function was
improved in the same model of 6-OHDA-induced PD.

As recently reviewed by Azam and associates [172], TLRs are involved in the pathogenesis of
neurodegenerative disorders. For instance, quercetin loaded into nanoparticles prevented AD
progression via inhibition of TLR-4 signaling [173]. In addition, it decreased expression of TLR-4 and
TLR-2, thus, hampering pro-inflammatory cytokine production [174]. RES was shown to attenuate
LPS and AB-mediated microglia neuroinflammation, inhibiting the TLR-4/NF-xB/STAT pathway
[175]. EGCG was able to abrogate LPS-impaired adult hippocampal neurogenesis, silencing the
TLR-4 signaling in mice [176-178].

Until now, a few clinical trials have been conducted to evaluate the efficacy of polyphenols in
human neurodegeneration. RES administration has been found to attenuate neuroinflammation,
cognitive decline and reduce liquoral levels of AP40 in AD patients [179,180]. Prolonged
administration of RES and cocoa flavonols increased dentate gyrus-related cognitive functions and
hippocampal memory [181-183]. The PROMESA-protocol is a phase Il clinical testing based on daily
oral treatment of 400 mg EGCG for 48 weeks in multiple system atrophy (MSA) patients [184]. MSA
is a rare neurodegenerative disease where aggregation of a-synuclein in oligodendrocytes and
neurons has been found. The above indicated treatment did not modify disease progression in MSA
and hepatotoxicity was reported in a few cases [185].
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In Table 5, effects of polyphenols on neurodegeneration are described.

Table 5. Effects of red grape polyphenols on neurodegeneration

Polyphenols Disease Activity

Protection of neurons against
6-OHDA-induced damage with

R .
ed grape skin Murine PD decrease in apoptosis, ROS

E
and GSS production and inflammatory

markers [171]
Inhibition of TLR-4 signaling
Quercetin Murine AD and reduced expression of
TLR-4 and TLR-2 [173,174]

LPS and
RES ApB-mediated Inhibition of TLR-4/NF-xB/STAT
microglia pathway [175]
neuroinflammation
LPS-impaired adult
EGCG hippocampal Inhibition of TLR-4 [176]
neurogenesis
Decrease in neuro-inflammation
and in liquoral levels of AB40
RES AD (clinical trial) and increasein
dentate-gyrus-related cognitive
functions and hippocampal
memory [179,180]
EGCG MSA (clinical trial) No effects [185]

Abbreviations: AB, Amyloid B, AD, Alzheimer’s disease, EGCG, epigallocatechin gallate, GSSE, grape seed and
skin extract, 6-OHDA, 6-Hydroxydopamamine, IBD, inflammatory bowel disease, LPS, lipopolysaccharide,
MSA, multiple system atrophy, NF-«kB, nuclear factor kappa-light-chain-enhancer of activated B cells, PD,
Parkinson’s disease, RES, resveratrol, ROS, reactive oxygen species, STAT, signal transducer and activator of
transcription, TLR, Toll-like receptor.

4.4 Cancer

Immune escape mechanisms evoked by cancer cells have extensively been explored and readers
are referred to pertinent reviews for further details [186-188]. Particularly, immune suppression in
cancer is mediated by Treg cells, MDSCs and tumor associated macrophages (TAMs) [186,189,190].
Here the effects of polyphenols on these suppressive cells in cancer will be described. With special
reference to Treg cells, RES administration could decrease frequency of these cells in mice bearing
renal carcinoma [191]. In a model of Eg7 (syngenic lymphoma)-bearing C57BL/6 mice RES treatment
led to a dramatic reduction of Treg cell percentage and TGF-f production, while intra-nodal CD8+
cells increased release of IFN-y [192]. In a clinical trial based on the oral administration of EGCG for 6
months to chronic lymphocytic leukemia patients Rai stage O, a sharp decrease of Treg cells and of
IL-10 and TFG-B in serum was detected [193]. Despite the above cited examples of Treg cell
suppression by polyphenols, other reports have demonstrated absence of effects on Treg cells in
response to polyphenol administration either in vitro or in vivo [194,195]. As far as TAMs are
concerned, these cells resemble M2 macrophages which promote tumor progression [196]. Strong
evidence has been provided on the ability of RES to inhibit TAM activation via suppression of
STAT3. This has been demonstrated in a lung cancer xenograft model where RES inhibited
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proliferation and expression of p-STAT-3 [197]. In another study, RES inhibited lymphangiogenesis
in the context of a tumor, suppressing differentiation and activation of M2 macrophages [198].
Effects of polyphenols on MDSCs have also been demonstrated with other polyphenols such as
curcumin. In mice bearing 4NQO-induced oral squamous carcinoma and in mice challenged with
B16F10 melanoma cells lines, curcumin administration led to a dramatic reduction of MDSCs
[199,200]. In large-cell carcinoma lung cancer model administration of curcumin reduced MDSCs in
spleen and tumor infiltrates, increasing frequency of CD4+ and CD8+ cells, while decreasing IL-6
levels [201]. Other few studies have been focused on the effects of red wine extract (RWE) on cancer
cell progression [202]. In BALC/c mice, RWE reduced growth of C26 cancer, suppressing
angiogenesis and promoting apoptosis [203]. In preclinical studies, mice administered with RWE
underwent a dramatic reduction of pre-cancerous lesions in the colon [204,205]. In particular,
reduction of fecal excretion of nitrosyl iron seems to play a fundamental role in the above model of
inhibition of pre-cancerous lesions [205]. Furthermore, evidence has been provided that muscadine
grape skin extract was able to induce an unfolded protein response-mediated autophagy with
apoptosis of prostate cancer cells [206]. In this framework, Liofenol™ a RWE enriched in
polyphenols, reduced colon cancer cell growth with an increase in p53 and p21 protein expression
[207].

Polyphenol effects on cancer are summarized in Table 6.

Table 6. Red grape polyphenol effects on cancer

Polyphenols Effector cells Activity

Decrease in Treg cell
frequency in murine renal
carcinoma, and Eg-7 (syngenic
RES Treg cells lymphoma) with reduced
release of TGF- and increased
production of IFN-y by
intra-nodal CD8+ cells [192]

Decrease of Treg cells and
serum levels of IL-10 and
TGEF-p [193]

Human chronic lymphocytic

EGCG leukemia (clinical trial)

Suppression of STAT3,
inhibition of
RES TAM cells (murine cancer) lymphangiogenesis and
deactivation of M2
macrophages [198]
Suppression of angiogenesis
and induction of apoptosis,
reduction of pre-cancerous
lesions [203-205]

RWE Murine cancer

Muscadine grape Induction of autophagy with
. Prostate cancer .
skin extract apoptosis of cancer cells [206]

Arrest of cell growth with
Liofenol™ (RWE) Colon cancer cells increase in p53 and p21 protein
expression [207]
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Abbreviations: EGCG, epigallocatechin gallate, IFN, interferon, IL, interleukin, RES, resveratrol, RWE, red wine
extracts, STAT, signal transducer and activator of transcription, TAM, tumor associated macrophages, TGF,

transforming growth factors, Treg, T regulatory cells.

4.5 Allergy and autoimmune diseases

Nowadays, allergic and autoimmune diseases are increasing, thus, likely depending on
environmental factors and/or modifications of skin, lung and intestinal microbiota [208].
Polyphenols are under experimentation for evaluating their effects on allergic and autoimmune
clinical manifestations [209]. Studies conducted with FGM from red grapes have demonstrated the
ability of these compounds to in vitro inhibit IgE binding to rat basophilic leukemia cells and to
reduce human basophil degranulation in vitro [210,211]. Polyphenols extracted from seeds of red
grape (Nero di Troia cultivar), when in vitro incubated with peripheral blood lymphomonocytes
from patients with Ni-mediated CAD, reduced release of NO, IL-17 and IFN-y, while enhancing
IL-10 production, thus, exerting anti-oxidant and anti-inflammatory activities [51]. In a clinical trial,
oral administration of Nero di Troia red grape polyphenols to patients with Ni-mediated CAD
confirmed in vitro experiments in that they decreased serum levels of IFN-y, IL-4, IL-17, NO and
pentraxin 3, while levels of IL-10 were augmented [212]. This nutraceutical regimen led to an
amelioration of CAD cutaneous manifestations. In addition, the flavonoid polymer oligomeric
proanthocyanidins reduced airway inflammation, Th2 cytokine release and antigen presentation in a
mouse model of asthma [213]. In another series of reports, evidence has been provided that flavones,
such as luteolin and tetramethoxyluteolin acted on mast cells, decreasing release of histamine and
PGD2, which are mediators implicated in asthma pathogenesis [214,215]. The above described
inhibitory mechanisms have been demonstrated to depend on blockade of intracellular calcium and
inhibition of NF-xB [215]. Quercetin, a flavonoid contained in red grapes as well as in onions,
broccoli and apples, reduced recruitment of eosinophils and production of IL-4 and IL-5 in the
bronco-alveolar fluid from mice with experimental asthma [216,217]. Cyanidin, another
anthocyanidin, was able to reduce the binding of IL-17 to the IL-17RA subunit of the IL-17 receptor
in a murine model of asthma [218]. Neutralization of IL-17 activity decreased inflammation and
hyper-reactivity.

Food allergy is an adverse reaction to food which is mediated by IgE upon activation of Th2
cells. Dietary isoflavones have been demonstrated to suppress co-stimulatory molecules (CD83 and
CD80) on DCs, thus, hampering activation of Th2 cells in a murine model of peanut allergy [219].
Also, in an intestinal cell model of food allergy, quercetin was able to suppress IgE-mediated allergic
inflammation [220].

Autoimmune diseases encompass many pathological events sharing a common mechanism of
action such as the immune attack against self components of the body [221-225]. Then, several
factors contribute to autoimmune disease pathogenesis and, among them, genetic, epigenetic and
environmental conditions should be stressed out. In view of their anti-oxidant and
anti-inflammatory activities, polyphenols have been used for the treatment of autoimmune
disorders [226,227]. EGCG was shown to be effective in a murine model of human Sjogren’s
syndrome, attenuating the TNF-o induced damage of salivary acinar cells [228]. RES could mitigate
rheumatoid arthritis, blocking p38 and JNK pathways with decrease in ROS and inflammatory
markers in rat RSC-364 synovial cells [229]. In an experimental model of rat autoimmune
myocarditis, quercetin afforded cardioprotection, decreasing phosphorylated forms of ERK1/2 and
P38 [230]. RES has been shown to be very effective in type 1 diabetes either in vitro or in vivo studies
[231] via increased expression of Sirt-1 [232]. In animal studies, oral or subcutaneous administration
of RES to non obese diabetic mice, led to a decreased traffic of Thl cells and macrophages from
periphery to pancreas, thus, attenuating insulitis [233]. Also in a model of streptozotocin-induced
diabetes in rats, RES administration by gavage prevented islet destruction [234].

In animal models of IBD, RES administration was very effective in reducing mucosal
inflammation, inhibiting malondialdehyde and increasing glutathione peroxidase activity;
decreasing neutrophil infiltration and pro-inflammatory cytokine release and augmenting number
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of bifidobacteria and lactobacilli; diminishing expression of COX-2, PGD2, PGE synthase-1 and
lowering TGF-B1 and fibrosis of the intestinal wall [235-240].

RES has been experimented either in vitro or in vivo in rheumatoid arthritis. Using human
fibroblast-like synoviocytes, RES mitigated NADPH oxidase activity and ROS generation, increased
Sirt-1 mRNA and inhibited release of MMPs and receptor activator of NF-xB ligand [241-244]. In
rabbit arthritis, intra-articular injection of RES dramatically reduced cartilage destruction [245]. On
the other hand, in various models of experimental arthritis oral administration of RES reduced
severity of disease, dampening pro-inflammatory cytokines, even including IL-17 [246-248].

RES has been experimented in psoriasis mainly characterized by hyper-proliferation of
keratinocytes and production of IL-23 and IL-17 with inflammatory infiltrates in the dermis [249]. In
vitro studies have demonstrated that RES induced apoptosis of HaCaT keratinocytes via Sirt-1
activation [250]. Furthermore, evidence has been provided that RES inhibited proliferation of normal
human keratinocytes, hampering aquaporin 3 activation [251]. In a murine model of psoriasis-like
skin inflammation RES attenuated skin damage decreasing mRNA expression of IL-17 and IL-19
[252].

As far as clinical trials are concerned, patients affected by multiple sclerosis were administered
with 600 mg/day of EGCG for 12 weeks [253]. At rest, metabolic responses were determined in
treated patients in comparison to those with placebo. Results demonstrated that expenditure of
post-prandial energy, glucose oxidation and supply as well as adipose tissue perfusion were
reduced in men but were more elevated in women. During exercise, post-prandial energy
expenditure was reduced in the EGCG group when compared to placebo.

Quercetin has been found to be beneficial in sarcoidosis patients, decreasing oxidative and
inflammatory markers (TNF-a and IL-8), when administered at a dose of 4x500 mg within 24 h [254].

In a double-blind trial supplementation of RES to UC patients (500 mg/day for 6 weeks)
reduced NF-«kB expression in peripheral blood mononuclear cells, TNF-a and C-rp plasma levels
were detected [255].

The effects exerted by polyphenols on allergy and autoimmune diseases are synthesized in Table 7.

Table 7. Effects of grape polyphenols on allergy and autoimmune diseases

Polyphenols Effector cells/disease Activity
. . Inhibition of IgE binding to cells
R hilic 1 11
FGM at basophilic leukemia cells (210,211]

Polyphenols extracted Peripheral blood In vitro decrease of: NO, IL-17 and
from seeds of red grape lymphomonocytes from IFN-y release with increase of IL-10
(Nero di Troia cultivar) Ni-mediated CAD release [51]

Polyphenols extracted In vivo decrease of: serum levels of
from seeds of red grape Ni-mediated CAD HFN-y, IL-4, IL-17, NO and

pentraxin 3 with increase of serum

(Nero di Troia cultivar) IL-10 [212]

Decrease of histamine and PGD2

Flavones Murine asthma mast cells [214,215]
Reduction of eosinophil
it t and IL-4 and IL-5
Quercetin Murine asthma recruitment an an

levels in bronchoalveolar fluid
[216,217]

Decrease of IL-17 binding to the
Cyanidin Murine asthma IL-17RA subunit of the IL-17
receptor [218]



https://doi.org/10.20944/preprints201912.0030.v1
https://doi.org/10.3390/antiox9010035

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2019

d0i:10.20944/preprints201912.0030.v1

Isoflavones

Quercetin

EGCG

RES

Quercetin

RES

RES

RES

RES

RES

RES

Murine model of peanut
allergy

Food allergy

Murine Sjogren’s syndrome

Rat RSC-364 synovial cells

Rat autoimmune myocarditis

T1D

IBD

Rheumatoid arthritis

Rheumatoid arthritis

Psoriasis

Psoriasis

Suppression of co-stimulatory
molecules (CD83 and CD80) on
DCs with reduced activation of Th2
cells [219]

Suppression of IgE-mediated
allergic intestinal inflammation
[220]

Decrease in TNF-o-induced
damage of salivary acinar cells
[228]

Blockade of p38 and JNK pathways
and decrease of ROS and
inflammatory markers [229]

Cardioprotection via decrease of
phosphorylated ERK1/2 and p38
[230]

-Decrease of in vitro apoptosis via
increased Sirt-1 expression [232];
-In vivo, in an obese model
attenuation of insulitis due to
diminished traffic of Th1 cells and
macrophages from periphery to
pancreas and prevention of islet
destruction [233]
Reduction of mucosal
inflammation via decrease of:
malondialdehyde, COX-2,
PGE-synthase 1, TGF-f, neutrophil
infiltration and increase of:
glutathione peroxidase activity,
Bifidobacteria and Lactobacilli
[235-240]

In vitro, using, fibroblast-like
synoviocytes, decrease in: NADPH
oxidase activity, MMP release,
RANKL and ROS generation with
increase in Sirt-1 mRNA [241-244]

In experimental models, reduction
of IL-17 and reduction of cartilage
destruction [245]

In vitro induction of keratinocyte
apoptosis via Sirt-1 activation and
keratinocyte inhibition via decrease
of aquaporin 3 activation [250-251]
In an in vivo model of murine
psoriasis decrease in mRNA
expression of IL-17 and IL-19, thus,
mitigating skin damage [252]



https://doi.org/10.20944/preprints201912.0030.v1
https://doi.org/10.3390/antiox9010035

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 December 2019 d0i:10.20944/preprints201912.0030.v1

Abbreviations: CAD, contact allergic dermatitis, COX-2, cyclo-oxygenase-2, DCs, dendritic cells, EGCG,
epigallocatechin gallate, ERK, extracellular signal-related kinases, FGM, fermented grape marc, IBD,
inflammatory bowel disease, IFN, interferon, IL, interleukin, JNK, c-Jun amino-terminal kinases, MMP,
metalloproteinases, NADPH, nitrate reductase, Ni, nickel, NO, nitric oxide, PG, prostaglandin, RANKL,
receptor activator of nuclear factor kappa-B ligand, RES, resveratrol, ROS, reactive oxygen species, Sirt-1,
sirtuin-1, T1D, type 1 diabetes, TGF, transforming growth factors, Th, T helper cells, TNF, tumor necrosis factor,
Treg, T regulatory cells.

5. Discussion

The effects of polyphenols either as a dietary source or as supplements have intensively been
investigated. Molecular studies have revealed major signaling pathways elicited by these
compounds on various cell types, on the one hand. On the other hand, different cell receptors for
polyphenol binding have been characterized, thus, indicating their capacity to modulate endocrine,
metabolic and immune functions. Among several activities they may exert, polyphenols are
endowed with anti-oxidant and anti-inflammatory functions which justify their employment in
different human diseases, as discussed in the present review. Nevertheless, there is still a lack of
knowledge about the exact polyphenol concentration in foods and drinks, their degree of absorption
as well as metabolism in human body. Another issue to be clarified is the assessment of which
compound accounts for a given function, since a plethora of polyphenols are absorbed via dietary
source. It seems that a combination of polyhenols rather than a single compound may lead to
beneficial effects. Quite importantly, evidence has been provided on the effects of grape and red
wine polyphenols on gut microbiota [256]. On the other hand, gut microbiota may account for the
formation of a number of polyphenolic metabolites that may contribute to human health effects.
However, due to the individual variations in microbiota composition, more studies are needed for a
better understanding of the mutual interaction between polyphenols and gut microbiota. Finally,
one should take into consideration that polyphenols, when used as nutraceuticals and/or
cosmeticals, raise problems of safety and toxicity in view of their increased bioavailability and
biological activity. In fact, some dietary supplements contain concentrations of polyphenols 100
times more elevated than those related to a western diet [257]. In a number of studies, administration
of anti-oxidants has caused severe side effects such as mortality or stroke [258-261]. In this context,
the possible interaction between polyphenols and drugs requires more intensive studies to
understand the existence of synergism or neutralization in relation to their therapeutic activity.
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Abbreviations

AA Arachidonic acid

AP Amyloid

AD Alzhemeir’s disease

AhR Aryl hydrocarbon receptor
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AKT Protein kinase B

BBB Blood brain barrier

BMI Body mass index

CAD Contact allergic dermatitis

COX Cyclo-oxygenase

C-reactive protein ,C-rp

DCs Dendritic cells

DSS Dextran sulphate sodium

EGCG Epigallocatechin gallate

ERK Extracellular signal-related kinases
FGM Fermented grape marc

GSSE Grape seed and skin extract

IBD Inflammatory bowel disease

IFN Interferon

IxB IkB kinases

IL Interleukin

JNK c-Jun amino-terminal kinases

LOX Lipoxygenase

LPS Lipopolysaccharide

LTs Leukotrienes

MeD Mediterranean-type diet

MMPs Metallproteases

MSA Multiple system atrophy

NAD Nicotinamide adenine dinucleotide
NF-«B Nuclear factor kappa-light-chain-enhancer of activated B cells
NLRs Nucleotide oligomerization domain-like receptors
NLRP3 NLR pyrin domain containing 3
Ni Nickel

NK Natural killer

NO Nitric oxide

NOS Nitric oxide synthase

MAPK Mitogen-activated protein kinases
MDSC Myeloid-derived suppressor cell
MeD Mediterranean-type diet

RES resveratrol

REW Red wine extract

RIG-I Retinoic A acid-inducible

6-OHDA 6-Hydroxydopamamine

PD Parkinson’s disease

PGs prostaglandins

PI3K Phosphatidylinositol 3-kinase

PLA Phospholipase A

ROS Reactive oxygen species

Sirt-1 Sirtuin-1

STAT Signal transducer and activator of transcription
TAM Tumor associated macrophages
TGF Transforming growth factor

Th T helper

TLR Toll-like receptor

TNF Tumor necrosis factor

Treg T regulatory

UC Ulcerative colitis

ZAP-70 Zeta chain-associated 70 kDa protein
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