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By using directed dimensional analysis and data fitting, an explicit universal scaling law for the
velocity of dominoes toppling motion is formulated. The scaling law shows that domino propaga-
tional velocity is linearly proportional to the 1/2 power of domino separation and thickness, and
−1/2 power of domino height and gravitation. The study also proved that dominoes width and
mass have no influence on the domino wave traveling velocity. he scaling law obtained in this Letter
is very useful to the dominoes game and will help the domino player to place the dominoes for fast
speed and have a quick estimation on the speed without doing complicated multi-bodies dynamical
simulation.
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INTRODUCTION

The falling of dominoes is a successive toppling of reg-
ularly spaced elements in a periodic array plotted in Fig-
ure 1. The domino effect is not only an interesting game
but also an important physical phenomena, and often be
used to describes some social catastrophe, such as the
cascading consequences of research misconduct [1].

FIG. 1: The dominoes toppling motion.

The mechanics of domino falling has been studied ex-
tensively by number of leading scholars [2–14]. In 1983,
McLachlan et al. [4] found a scaling law for the velocity
v in the limiting case of dominoes with zero thickness
spaced in a straight line. With these assumptions M-
cLachlan et al. [4] the functional relation:

vMcLachlan = v(h, λ, g) =
√

ghf(
λ

h
), (1)

here g is gravitation acceleration, h the height of the
dominoes, λ the spacing between dominoes, and f(x)
an undetermined function of x. Efthimiou and Johnson
[6] proposed a f(x) by complete elliptic integral of the
first kind. Shi et al. [13] developed a precise numerical
model with consideration of multipoint impacts between
dominoes. Shi et al. [14] studies the toppling dynamics

of a mass-varying domino system for which the mass of
the domino changes at an exponential rate of its sequence
number.

Szirtes and Rozsa [6] studied domino by using dimen-
sional analysis [15] for a domino with equal thickness δ,
separation λ and height h. Hence the five variables and
their dimensions are listed in Table I below:

TABLE I: Dimensions of physical quantity

Variables Symbol Dimension

velocity v LT−1

height h L
thickness δ L
separation λ L

gravitational acceleration g LT−2

The dimensional basis used is length (L) and time (T).

Szirtes and Rozsa [6] applied dimensional analysis to
find domino velocity, v = v(h, λ, δ, g). The problem has
five variables and two dimensions (L, T), therefore there
are 5− 2 = 3 dimensionless variables Π as follows:

Π1 =
v√
gh

, Π2 =
λ

h
, Π3 =

δ

h
, (2)

From dimensional analysis, Π1 = f(Π2,Π3), namely

vSzirtes =
√
ghf(

λ

h
,
δ

h
). (3)

This relation is similar to Eq.(1) except the separation
and height ratio δ/h.

Although we have Eq.(1) and Eq.(3), there is no much
useful information can be get from them, because the
function f(λh ,

δ
h ) is still undetermined. In the following,

we will try to decode the function by using directed di-
mensional analysis proposed by Huntley [16] and Siano
[17, 18].
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DIRECTED DIMENSIONAL ANALYSIS

According to the directed dimensional analysis, we can
distinct the length dimension in both x and z direc-
tion. The problem has five variables and three dimen-
sions (Lx, Lz and T) listed in Table II below:

TABLE II: Dimensions of physical quantity

Variables Symbol Dimension

velocity v LxT
−1

height h Lz

thickness δ Lx

separation λ Lx

gravitational acceleration g LzT
−2

The dimensional basis used is length (Lx, Lz) and time (T).

Therefore there are 5 − 3 = 2 dimensionless variables
Π as follows:

Π1 = vhaλbgc, Π2 = δha1λb1gc1 , (4)

where the exponents a, b, c and a1, b1, c1 can be deter-
mined by following dimensionless conditions: dim(Π1) =
dim(Π2) = L0

xL
0
zT

0, namely

dim(Π1) = LxT
−1(Lz)

a(Lx)
b(LzT

−2)c

= L1+b
x T−1−2cLa+c

z . (5)

From dimensionless condition, 1+b = 0, −1−2c = 0 and
a + c = 0, leads to a = 1

2 , b = −1 and c = − 1
2 . Hence,

we have the first dimensionless variable

Π1 =
v

λ

√
h

g
. (6)

Similarly, we have a1 = 0, b1 = −1 and c1 = 0 and the
second dimensionless variable

Π2 =
δ

λ
, (7)

From Buckingham dimensional theorem [15], the domino
velocity v = v(h, λ, δ, g) can be replaced by Π1 = f(Π2)
as follows

v = λ

√
g

h
f(

δ

λ
). (8)

This relation is a universal scaling law of dominoes top-
pling motion, where the function f( δλ ) can be determined
by experiments.
Stronge [9] conducted comprehensive study with high-

velocity photography on toppling of domino array, who
obtained three data for domino dimensions: h =
41.78mm, δ = 7.58mm:
To determined the function f(x), let’s us assume that

it is a power function, ie. f( δλ ) ≈ C( δλ )
α, where the C is

TABLE III: Experimental data from Stronge [9]

height thickness separation velocity

h δ λ v
(m) (m) (m) (m/s)

0.04178 0.00758 0.0219 0.65
0.04178 0.00758 0.02949 0.80
0.04178 0.00758 0.03419 0.86

a constant and α is an exponent, both of them are to be
confirmed with experimental data.

Using the data from the above table, data fitting gives
C = 0.298 and α = 1/2, finally, we have an explicit
velocity of dominoes toppling motion as follows:

v = 0.298λ1/2

√
δg

h
. (9)

This explicit scaling law for the velocity of dominoes top-
pling motion has never been reported in literature before,
which is plotted in Fig 2.

FIG. 2: Scaling law of dominoes toppling motion.

INFLUENCE OF DOMINOES WIDTH AND
MASS ON THE TOPPLING VELOCITY

All previous investigation did not take into account
the dominoes width [3–14]. The reason is perhaps that
the dominoes width has little influence on the velocity of
dominoes toppling motion, the problem is how to justify
this statement.

Let’s us revisit this problem by using directed dimen-
sional analysis. To introduce the domino’s width w into
the formulation, we have to introduce a new dimension
Ly in y direction, hence there are five variables in the
problem, which are listed in Table IV below:

Therefore there are 5 − 4 = 1 dimensionless variables
Π as follows:

Π = vAaλbgcwd. (10)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 February 2020                   doi:10.20944/preprints201912.0017.v3

https://doi.org/10.20944/preprints201912.0017.v3


3

TABLE IV: Dimensions of physical quantity

Variables Symbol Dimension

velocity v LxT
−1

area A LxLz

width w Ly

separation λ Lx

gravitational acceleration g LzT
−2

The dimensional basis used is length (Lx, Ly , Lz) and time (T).

The dimension dim(Π) = L1+a+b
x T−1−2cLa+c

z =
L0
xT

0L0
zL

d
y, hence, a = 1

2 , b = −3
2 , c = − 1

2 and d = 0.
Since the exponent of dominoes width is null, therefore,

the domino’s width has no influence on the velocity of
dominoes toppling motion. The reason behind this is that
there is no other variables has dimension in y direction.
In other words, the weight of dominoes is not a dom-

inate issue, but the cross-section area of dominoes is a
vital parameter affecting the domino velocity.

CONCLUSIONS

In conclusion, an explicit universal scaling law for the
velocity of dominoes toppling motion has been formulat-
ed by using directed dimensional analysis. It is surprised
to see that the domino velocity is not linearly proportion-
al to

√
gh as reported in literature (McLachlan [4] and

Szirtes and Rozsa [6]). This study shown that the domi-
no wave prorogation velocity is proportional to the 1/2
power law of domino’s separation λ and thickness δ. The
domino’s width has no influence to the domino’s velocity
has also been proved. The scaling law obtained in this
Letter is very useful to the dominoes game and will help
the domino player to place the dominoes for fast speed
and have a quick estimation on the speed without doing
complicated multi-bodies dynamical simulation.
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