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Abstract: This paper presents a new numerical method for multiscale modeling of composite 

materials. The new numerical model, called DECM, consists in a DEM (Discrete Element Method) 

approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. 

In particular, it offers the same degree of detail as the CM, on the microscale, and manages the 

discrete elements individually such as the DEM—allowing finite displacements and rotations—on 

the macroscale. Moreover, the DECM is able to activate crack propagation until complete 

detachment and automatically recognizes new contacts. Unlike other DEM approaches for 

modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of 

the failure position. Furthermore, the DECM solves the problems in the space domain directly. 

Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For 

the sake of example, the paper shows the results offered by the DECM for axial and shear loading 

of a composite two-dimensional domain with periodic round inclusions. The paper also offers some 

insights into how the inclusions modify the stress field in composite continua. 

Keywords: Discrete Element Method (DEM); Cell Method (CM); multiscale modeling; periodic 

composite materials; nonlocality 

 

1. Introduction 

The most commonly used numerical techniques for modeling the behavior of composite 

materials make use of the Finite Element Method (FEM) [1]. The main limitation of these 

computational methods is to describe the problem on a macro- or meso-scale, idealizing the material 

as a continuum with some homogenization technique [2,3]. Therefore, they are not useful for 

modeling phenomena up to the scale of single inclusions or interfaces between sub-domains. In 

particular, although it is possible to introduce a discontinuity if known in advance, they cannot 

simulate the distinct property of the discontinuity, which is necessary to describe the large 

displacements of particles in geomaterials. 

The Cell Method (CM) is a direct algebraic method [4] that uses global variables instead of the 

FEM field variables. Since the global variables involved in obtaining the direct algebraic formulation 

need not necessarily be differentiable functions, the range of applicability of the algebraic formulation 

has no restrictions, while that of the differential formulation used in FEM models is restricted to 

regions without material discontinuities or concentrated sources. In fact, the global variables are 

continuous across the interface of two different media, while their variations—hence also the field 

variables—can be discontinuous [5]. This allows the CM to model domains made up of different 

materials without requiring any homogenization technique [6–8]. 

Unlike the FEM and the CM, the Discrete Element Method (DEM)—also called the Distinct 

Elements Method—models the materials as an assembly of separate particles, allowing the 

simulation not only of geomaterials, but also of any particulate matter, such as powders or granules 

[9]. The particles (rigid or deformable [10]) move according to Newton’s second law of motion and 

interact by contact constitutive laws (rigid or deformable). The simulation of geomechanical 

problems is rather simple with a DEM approach and the results are quite accurate, although they 
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may require too much computation time for current computer technology [11]. Also for this reason, 

the range of applicability of the DEM in its early formulation [12]—derived from Cundall’s studies 

on discontinuum mechanics [13]—is limited to the micro-scale. 

Although the main task of the DEM is to model discontinuities, it is also possible to use a DEM 

code to model the continuum [14–19], through particular contact constitutive relations. In the specific 

case of materials consisting of a matrix that cements aggregates not in direct contact, these 

constitutive relations establish interactions between the aggregates when they are within an 

interaction range greater than the distance between the centroids of the aggregates [18]. This allows 

the study of damage in homogeneous materials such as ceramics [20] and heterogeneous materials 

such as concrete [21–23], rock [24], or composites with a brick and mortar architecture (both natural 

[25,26] and man-made composites, such as brick masonry). The identification of adequate cohesion 

laws between particles in direct contact is of fundamental importance to obtain an accurate modeling 

of the continuity of matter [27]. Some recent DEM approaches describe the cohesive bonds using a 

cohesive beam model based on Euler/Bernoulli theory, also including coupling terms between 

bending and tangential effects [28]. In 3D domains, this results in a six-component vector of the 

generalized forces acting as attractive internal forces between two particles in contact: one normal 

component to counteract the relative normal displacement in traction, two tangential components to 

counteract the relative tangential displacements, and three moment components to prevent both 

bending and twisting effects. The cohesive beam model also provides more realistic crack patterns 

[27,29,30] than previous spring models [31,32] and is suitable for modeling the heat-induced damage 

in composites [33,34]. 

This paper provides the basic principles and shows some numerical results of the DECM 

(Discrete Elements Cell Method), a new numerical approach that is the first attempt to pair the DEM 

with the CM, to obtain a multi-scale analysis of the continuum, in general, and of periodic composite 

continua, in particular. The DECM code (written in Matlab by the author) is completely parametric 

and allows the user to define the number, geometry, and arrangement of the discrete elements. 

In order to provide the reader with a complete overview on the subject, Section 2 frames the 

DECM in the wider field of DEM models and highlights some similarities and differences between 

the new numerical method and previous DEM approaches. Section 3 deals with an early CM code, 

in which all the main features of a DECM approach for crack propagation problems in multi-material 

domains are already clearly recognizable, even if not explicitly framed in the context of a DEM 

approach. In that early numerical model, the interfaces between different materials define the 

geometry of the distinct elements and the code models the overall behavior as a contact problem 

between bodies made of different materials. The DECM approach proposed in Section 4 overcomes 

this way of considering discrete elements, since the new discrete elements are not necessarily 

homogeneous and can include one or more sub-domains of different materials. Therefore, the contact 

points do not necessarily separate domains of different materials. This new approach allows a multi-

scale modeling of periodic composite continua. 

The main advantage of a DECM approach over a CM approach is to reduce the computation 

time. In fact, as for FEM, the computation time in both the CM and the DECM is directly associated 

with the degrees of freedom of the model, which depend on the size of the discretization mesh. 

Therefore, the number of grid-points being equal, by dividing the domain into discrete elements and 

performing the static/dynamic analysis on the single discrete elements taken individually, the 

degrees of freedom and the dimensions of the stiffness matrices decreases with the number of discrete 

elements used, which takes less time to calculate. Moreover, if the structure of the numerical model 

allows the use of a number of processors to perform the static/dynamic analysis simultaneously on 

several discrete elements, the calculation time can decrease further, even drastically. 

2. DEM, CM, and DECM approaches to model the continuum 

In DEM models for continuous media, a geometric form reproduces the shape of the continuum 

and the user or a specially generated code fills the geometrical form with particles. However, the 

difficulty in forming the geometry of the model is one of the major disadvantages of DEM analyses 
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of continua. Furthermore, since large-scale problems require excessive computation times, even in 

the case of continuous media the numerical simulations allowed by a DEM are generally small-scale. 

In addition, discrete modeling usually requires a time-consuming calibration phase to match the 

micro- and macro-scale parameters. 

It is worth noting that, since the calibration depends on the specific geometry as well as on the 

macroscopic properties, it is necessary to perform it only once for each type of test. This allows the 

user to avoid performing the calibration every time, taking advantage of some numerical abacuses 

that provide the microscopic properties corresponding to the desired macroscopic behavior. 

However, the computation time related to the calibration process remains undoubtedly one of the 

major concerns in DEM analyses. Lastly, since the ideal particle size is similar or proportional to the 

actual grain size but it is neither practical nor possible to model each particle, the model needs a 

particle scaling process and this may require additional time-consuming calibrations. 

Although originally developed for geomechanics, the DEM numerical codes also found 

applications in civil engineering, in particular for the modeling of masonry structures [35,36]. 

Actually, masonry is a particular type of periodic composite continuum, obtained from the regular 

arrangement of bricks (inclusions) and mortar (matrix). 

There are at least two possibilities to model unreinforced masonry (URM) with a DEM numerical 

code. The first possibility is a micro-modeling approach and consists in modeling a masonry element 

by means of distinct blocks and joints, represented by face-to-face contacts through assigned contact 

points. The blocks can be rigid or, in more refined analyses, deformable [37–39]. In the second case, 

the DEM model solves the problem in large displacements for the joints and small deformations for 

the blocks. This second approach requires a preliminary assessment of the minimum number of 

contact points to obtain the correct solution. Furthermore, the finite elements used for the internal 

mesh of the deformable blocks are poorly performing [2]. Therefore, the DEM models with 

deformable blocks are not useful for studying the stress field within the blocks. This does not prevent 

the method from correctly capturing the collapse mechanisms due to sliding, rotation and impact. 

However, being a micro-modeling approach, this method is appropriate for the detailed analyses of 

small masonry models and not of entire structures, apart from the cases of very simple structural 

geometries. 

The second possibility starts from the experimental observation to obtain a meso- and macro-

modeling of masonry structures. In fact, traditional URM buildings usually respond to seismic 

actions with the activation of recurring damage mechanisms, which depend on the building typology 

[40,41]. These damage mechanisms divide the URM structures into macro-elements, generally 

following the interfaces between mortar and bricks. Whenever the masonry blocks that are most 

likely to form are clearly identifiable for the different loading conditions, a DEM approach is more 

suitable than a FEM approach to model the interaction between the macroscopic blocks and their 

separation [42,43]. The equations of the problem are still the differential equations of motion, 

integrated in the time domain even for static and quasi-static loads. 

The DEM codes belonging to the second strategy consider the macroscopic masonry blocks as 

rigid bodies in equilibrium with each other, which interact through unilateral elasto-plastic contact 

elements that follow a Coulomb slip criterion to simulate contact forces. However, although ignoring 

the deformability of the blocks may be appropriate for granular materials [44], things can be different 

for non-granular materials, where the deformability of large blocks can modify the collapse 

mechanism. In the specific case of real masonry buildings, a numerical analysis performed on 

macroscopic rigid blocks is not appropriate whenever the building has a box-type behavior [45–47], 

which allows the redistribution of stresses between structural elements of different stiffness and 

strength. In particular, a DEM analysis with macroscopic rigid blocks could underestimate the 

strength capabilities of a real building, predicting collapse conditions not confirmed by the 

experimental results [48]. 

It is worth noting that the misevaluation of the stress not only characterizes DEM analyses with 

macroscopic rigid blocks, but also the 3D modeling of the continuous medium with a dense granular 

packing and a cohesive beam model. Indeed, in the latter case the local stress field is highly 
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heterogeneous even in the case of a theoretically homogeneous field. This leads to an overestimation 

of the local stress, triggering an early crack initiation and accelerating crack propagation. A successful 

technique to reduce the heterogeneity of the stress field is to evaluate the stress of each discrete 

element (DE) taking into account the contributions of the DEs contained in an appropriate meso-scale 

neighborhood—called the Halo [49]—of the DE. However, since this technique requires a number of 

DEs per Halo of the order of 103 to achieve convergence in the stress values, the Halo approach is not 

suitable for use with macroscopic rigid blocks. 

A further micro-modeling approach that has proved to be suitable for modeling 

matrix/inclusions interactions is the CM [5–8,50–53]. As far as the modeling of URM structures is 

concerned, the CM treats the masonry as a bi-material consisting of mortar and bricks and provides 

descriptions up to the scale of the individual bricks [52]. This allows an accurate investigation of the 

interaction between mortar and bricks, showing that the vertical stress of bricks subjected to the 

masonry’s own weight is greater near the vertical mortar joints and decreases passing from the bricks 

to the mortar of the adjacent vertical joint (Figure 1a). In other words, the mortar of the vertical joints 

exerts an effect on the bricks on the left and on the right similar to the negative skin friction (NSF), 

exerted by soft soils on concrete piles [54,55]. The cause of the negative skin friction on the bricks is 

not the consolidation over time, as for soft soils, but the different stiffness of the two materials (mortar 

and brick) that undergo the same vertical displacements when subjected to a vertical load. 

 

Figure 1. Isolines of the normal stress y  (the y-axis runs vertically): a) With and b) Without the 

arrangement of the bricks in the foreground (stress values in 2N mm  and linear measurements in 

mm). 

As already highlighted in Section 1, the ability of the CM to model domains made up of different 

materials without requiring any homogenization technique derives from the direct algebraic 

formulation of the CM. It is worth noting that the purely algebraic approach of the CM is a direct 

algebraic approach in the sense that it is not induced by the differential formulation, as instead 

happens for the so-called discrete formulations. In fact, the latter make use of one of the various 

discretization methods to derive the finite formulation from the differential formulation. In particular, 

the CM shares some features with the lattice models—such as the Delaunay/Voronoi dual tessellation 

used in some lattice models for two-dimensional problems [56–58]—but, unlike them, the CM 

provides a direct finite formulation of field equations, without taking the differential formulation as 

a starting point (for details on the equations used by the CM for elastostatics in two-dimensional 

domains, see [59]). 

The micro-scale analysis allowed by the CM makes the CM useful for providing detailed 

descriptions of discrete elements, assembled in complex geometries as for the Universal Distinct 

Element Code (UDEC) [60]. This gives rise to the DECM, the new numerical approach presented in 

this paper for the first time. Compared to a DEM analysis, the DECM has the advantage of taking 

into account the deformability of the discrete elements without incurring problems of poor 
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performance of the internal mesh, since the mesh used by the CM allows the description of the stress 

field inside the blocks. 

3. Basic principles of the Discrete Elements Cell Method (DECM) 

According to the original definition proposed by Cundall and Hart [61], a discrete element 

method is any numerical technique that allows finite displacements and rotations of discrete bodies—

including complete detachment—and recognizes new contacts automatically, as the simulation 

progresses. In this definition, Cundall and Hart made no reference to the type of solving equations. 

Therefore, the CM simulations of the pullout test (in particular of the Lok-Test [62]) and thermal 

debonding of tiles in radiant heat floors [63] are early examples of Discrete Element modeling with 

the CM, even if they do not use the explicit, time domain solution of the original equations of motion 

(not the transformed, modal equations), typical of the DEM models. In fact, differently from any other 

DEM approach, the static solution of the DECM is a direct achievement and not the result of a 

dynamic relaxation technique, which consists in introducing viscous damping to obtain steady state 

solutions of a dynamic problem [64,65]. Incidentally, it is worth noting that the explicit time stepping 

DEM algorithms are quite effective just for quasi-static analyses, whereas in dynamic analyses the 

time steps are often very small due to numerical stability requirements (impossibility to apply mass 

scaling) [66]. Actually, the maximum stable time step depends on the minimum Eigen period of the 

total system. However, since it is not practical to perform Eigen value analyses in DEM simulations, 

determining the critical time requires some approximations [11]. 

In both [62] and [63], the DECM provides a static numerical solution in the space domain by 

enforcing both equilibrium and compatibility between the sub-domains, which are the equivalent of 

the DEM blocks. In this early formulation of the DECM, the boundaries of the sub-domains are the 

interfaces of discontinuity of the constitutive properties (Figure 2c and Figure 3).  

 

Figure 2. The Lok-Test: a) Geometric characteristics of the insert and counter-pressure ring for pullout 

test; b) Shape of the extracted portion in concrete solids; c) Shape of the modeled domain. 

 

Figure 3. CM modeling of temperature variation in the sub-base of a radiant heat floor: shape of the 

sub-domains a) Before and b) After restoring compatibility between the sub-domains. 

Therefore, a DECM analysis addresses the static problem between sub-domains of different 

materials as a static contact problem [67], which is easy to manage with the Cell Method, while it is 

not trivial in the differential formulation [68–75]. 

As for the DEM and contrary to the Finite Element (FE) micro-models, the DECM does not 

require definition of joints or interface elements, but uses a point contact approach. Compared to the 
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use of joints or interface elements, the point contact approach is more versatile and facilitates the 

analysis in the large displacement range [76]. In fact, it allows taking into account the variations in 

the connectivity of the system in large displacements, periodically updating the type, location, and 

orientation of contacts. 

A typical drawback of DEM approaches is that the accuracy of the distribution of contact stresses 

depends on the number of contact points. In fact, a low number of contact points can give results that 

deviate from the correct solution. On the other hand, however, the computational cost of a dynamic 

relaxation technique for static problems can increase significantly with the number of contact points. 

This requires finding a compromise between reasonable computation time and required level 

accuracy [37]. 

In the DECM, conversely, the use of a direct static solution does not impose serious limitations 

on the number of contact points. Therefore, in building the discretization mesh along the block 

interfaces, the numerical model generates pairs of opposite nodal points (twin nodes), each of which 

is a contact point. This allows the numerical model to provide the same solution obtained in the case 

of material continuity, that is, when no relative displacements occur along the interfaces. 

Consequently, at the interfaces between sub-domains in direct contact, the DECM offers the same 

degree of detail as a CM analysis (performed on a single domain, also consisting of several materials). 

In particular, similarly to what happens in the CM model of [52], in the DECM model of [63] the 

condition of perfect adherence together with the difference in stiffness between the inclusions (the 

tiles) and the matrix (the grouting) force the tiles to lengthen the grouting along the vertical interfaces, 

while the grouting compresses the tiles along the vertical interfaces (Figure 4a,b). Consequently, both 

the principal stresses in the grouting of the vertical joints are positive (tensile stresses), while the 

vertical principal stress in the tiles is negative (compression stress) (Figure 4b). Furthermore, the 

tile/grouting interaction at the corners of the tiles modifies the principal directions of stress in both 

the grouting and the subbase (Figure 4b), providing a description of the corner effect [77,78]. 

 

Figure 4. Modeling of radiant heat floors: a) Detail of a modeled joint; b) Plot of the vertical stresses 

(positive stresses in warm colors and negative stresses in cool colors); c) Principal directions of stress. 

The good agreement between the results provided by the CM on a single domain and by the 

DECM on a domain composed of several discrete elements is a proof that the reaction forces of the 

twin nodes are suitable for adequately modeling the continuity of matter, without having to 

introduce additional cohesion laws. 

The failure criterion discussed in Subsection 3.2 then allows the numerical model to activate 

crack propagation in the sub-domains (Figure 5) or nodal relaxation of the contact points on the 

interfaces between sub-domains (Figure 6). Since both crack propagation and nodal relaxation 

modify the geometry of the sub-domains and can generate new sub-domains, the DECM model 

updates the geometry and number of the blocks at each iteration. Consequently, unlike the DEM 

meso- and macro-approaches for masonry structures, a DECM model does not require a preliminary 

knowledge of the shape and number of all the blocks generated by the damage and failure 

mechanisms. The detection of eventual contact points along the new surfaces generated by the 
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propagation of the cracks takes place according to the same contact detection algorithm used for the 

blocks of the initial geometry (Subsection 3.1). 

 

Figure 5. Shape of the domain modeled for the Lok-Test simulation: a) At the beginning of the 

computation and b) After several steps of crack propagation. 

 

Figure 6. Details of the detachments on the joints of the tiles, due to temperature variation. 

3.1. Contact detection algorithm 

As in the DEM models and unlike what happens in the FEM models, the DECM sub-domains 

can lose existing contacts and create new ones. Actually, the contact detection algorithm is the most 

challenging and time-consuming part of the discrete element codes [79,80]. Even in DECM the 

computation time depends sensitively on this algorithm. 

The contact detection algorithm of DECM is the same used in the former CM codes, originally 

developed to model strain softening in concrete elements [59]. The need to use a contact detection 

algorithm in an interface problem arises whenever the displacements along the interface occur in 

Mixed Mode loading [81]. In plane problems, this means that the opposite edges of the interface move 

in Mode I (opening mode, Figure 7) for a portion of the interface while, for the remaining part, they 

move in Mode II (sliding mode, Figure 7). In the absence of a contact detection algorithm, the two 

opposite edges that are in Mode II would overlap, leading to the unrealistic situation of matter 

compenetration. Actually, the absence of contact forces along the edges in Mode II also causes matter 

compenetration in a part of the interface that is in Mode I and, precisely, in the part that is closer to 

the point of separation between Mode I and Mode II. 

Evaluating the contact forces along the edges in Mode II is not easy from the numerical point of 

view, because the point of separation between the two modes of propagation is an unknown of the 

propagation step. Therefore, the contact detection algorithm must identify the point of separation for 

each calculation step, which differs from the previous one for the value of impressed displacement 

or impressed load (the numerical model can work in both displacements control and load control). 

The identification of the separation point occurs in an iterative way, through a stabilization procedure. 
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At the beginning of the stabilization for a given calculation step, the forces on the nodes of the 

interfaces are the same as in the previous calculation step (they are equal to zero for the first 

calculation step). Then, the contact detection algorithm calculates the relative displacements for all 

twin nodes: a positive value of relative displacement means that the twin nodes are not in contact 

and a negative value of relative displacement means that the two opposite edges of the interface are 

overlapping. Thus, a negative value of relative displacement is a measure of matter compenetration. 

 

Figure 7. The three modes of propagation in fracture mechanics. 

The number of twin nodes that compenetrate in this calculation phase provides a first estimate 

of the number of nodes in Mode II. The code modifies the displacements of these nodes to align them 

along the deformed interface. This involves the introduction of constraints along the direction 

orthogonal to the deformed interface, while a friction law regulates the displacements along the 

deformed interface. The constraints introduced along the interface together with the law of friction 

allow the opposite edges of the interface to interact, establishing a contact constitutive law for the 

twin nodes in Mode II. The DECM contact constitutive law is the algebraic equivalent of the FEM 

contact elements used to describe the sliding contact with the differential formulation [82–84]. 

The phase of node alignment along the deformed interface is the most delicate of the entire 

procedure, since the nodes that are actually in Mode II are only a subset of the nodes that 

compenetrate at the beginning of the stabilization procedure. Therefore, if the code simultaneously 

aligns all the overlapping nodes of the first estimate, the numerical solution may not converge. 

In order to avoid numerical instabilities, the code operates on a pair of twin nodes at a time, 

starting from the pair with the maximum overlap. To be precise, the code imposes first attempt 

displacement components on a single node of the pair (introducing the appropriate constraints), 

calculates the reaction forces for the same node, and applies balancing forces on the second node of 

the pair. However, since the displacement imposed on the first node of the pair is only a first estimate 

of the actual displacement, the reaction forces of first estimate are not equal to the actual contact 

forces. Therefore, if the balancing forces on the second node were equal and opposite to the reaction 

forces of first estimate on the first node, the numerical solution may not converge again. 

Consequently, the code uses a bisection technique to estimate the balancing forces, calculates the new 

positions of the nodes, adjusts the position of the constraints along the interfaces, and modifies the 

balancing forces iteratively (Figure 8), until the difference between reaction and balancing forces is 

less than or equal to a prefixed value. The iterative updating of forces and displacements allows the 

code to provide a numerical solution that respects both the compatibility of displacements and the 

equilibrium of forces for each pair of nodes in Mode II, along the interfaces. At the end of the 

stabilization procedure, the contact forces equal the reaction forces of the introduced constraints. 

Enforcing both compatibility and balance could cause the DECM contact detection algorithm to 

look similar to an implicit FEM analysis. However, unlike an implicit FEM analysis, the DECM code 

does not enforce equilibrium after compatibility, at a later stage (for example, through expensive 

Newton-Raphson iterations). Actually, as widely explained in [4,59], the CM uses two meshes of 

discretization (Subsection 4.2) and enforces compatibility and balance simultaneously, on the 

geometric elements of the two meshes. In particular, the first mesh is a simplicial cell complex and 

contains one node of the second cell complex. The CM associates the configuration variables 

(geometric and kinematic) with the elements of the first mesh and the source variables (static and 
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dynamic) with the elements of the second mesh. Therefore, the CM enforces the conservation laws 

on the geometric elements of the second mesh in the same stage in which it computes the 

displacements for the nodes of the first cell complex. 

Furthermore, it is worth noting that the DECM stabilization procedure, outlined in Figure 8, is 

very similar to the iterative DEM calculation scheme, called the “calculation circle”. Actually, the only 

other difference apart from the use of the matrix stiffness method that replaces the law of motion lies 

in the variable, which is the time instant for the DEM and the difference between reaction and 

balancing forces for the DECM. 

After each alignment, the code again calculates the relative displacements for the pairs of twin 

nodes, since the alignment of a single pair can reduce the total number of nodes in Mode II. At the 

end of the alignment procedure, there are no forces applied to the nodes in Mode I and the forces on 

the nodes in Mode II are equal to the contact forces. Figure 9 shows the nodes in Mode I and Modes 

II, identified on the two vertical interfaces of the pullout problem by the contact detection algorithm. 

 

Figure 8. The DECM stabilization procedure to take into account both the compatibility and the 

equilibrium on the interfaces. 

 

Figure 9. Deformed configuration and detail of the identified boundary conditions for the pullout test: 

a) On the thickness of the disc and b) On the rod. 

The number of contact points changes at each step of the calculation, depending on how the 

boundary conditions modify. 

In the case of crack propagation through a sub-domain (Figure 5), the contact detection 

algorithm also identifies the points of separation between Mode I and Mode II along the cracks. Even 

in this second case, the number of interactions depends on the boundary conditions. 

3.2. Direction of crack propagation 

The CM and DECM codes evaluate the condition for crack extension and the direction of crack 

propagation in the Mohr/Coulomb plane. The limit domain used for brittle materials is the domain 
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of Leon, a parabolic approximation of the envelope of the limit Mohr’s circles constructed for any 

three-dimensional state of stress at a point. Compared to the linear Mohr’s envelope—consisting of 

the two common tangents to the two limit Mohr’s circles for uniaxial compression and uniaxial 

tension—the limit domain of Leon is better suited to the actual envelope of the limit Mohr’s circles in 

triaxial traction. The equation of the limit domain of Leon in the Mohr/Coulomb plane is: 

2 tb

n n

c c

fc

f f
 

 
= + 

 
, (1) 

where n  and n  are, respectively, the normal and shear stresses on the attitude normal to the line 

n , c  is the cohesion, cf  is the compressive strength, and tbf  is the tensile strength. 

Since the CM enforces the conservation laws on the Voronoi polygons—whose vertices are the 

circumcenters (Figure 10) or the barycenters of a Delaunay triangular mesh—to evaluate n  and n  

near the crack tip, the CM generates a regular Voronoi polygon on the crack tip. By computing the 

stresses for the nodes of the Voronoi mesh, the CM identifies the largest Mohr’s circle in the finite 

neighborhood of the crack tip. For low external loads, the Mohr’s circles lie within the limit domain 

of Leon, with the radii of the circles increasing with increasing loads. When the largest Mohr’s circle 

for the finite neighborhood of the crack tip becomes tangent to the limit domain of Leon, the crack 

extends. If the Mohr’s circle is completely contained in the positive half-plane of n , as in Figure 11, 

there is only one point of tangency between the largest circle and the limit surface, that is, the vertex 

of Leon’s parabola [85]. Otherwise, the points of tangency are two [62]. In the first case, the direction 

of crack propagation is the direction of the line joining the Mohr’s pole (also called the origin of planes) 

to the point where the Mohr’s circle is tangent to the limit domain (Figure 11). In the second case, the 

possible propagation directions are two: which of the two actually activates depends on the constraint 

conditions along the directions. 

 

Figure 10. The regular Voronoi polygon generated on the crack tip. 

 

Figure 11. Limit domain of Leon in the Mohr/Coulomb plane. 

The concrete plate of Figure 12a—with two tensile loads 0xp kp=  (parallel to the x-axis) and 

0yp p=  (parallel to the y-axis) applied at infinity and an initial straight crack of length 02l  inclined 
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by an angle 0  with respect to the x-axis—belongs to the first case. The crack propagation mode of 

a cracked plate subjected to tensile loading at infinity is brittle, with the Mohr’s pole moving along 

the Mohr’s circle [86]. This modifies the propagation direction at each propagation step. 

The parametric analysis for variable values of k  and 0  shows that the crack trajectory tends 

to approach an asymptote inclined by an angle   (with respect to the x-axis) that depends on k , 

while it does not depend on the inclination 0  of the initial straight crack [87]. Moreover, the 

asymptotes of the crack trajectory for a given k  and its reciprocal value, 1 k , are symmetric with 

respect to the bisector of the first quadrant in Figure 12a (Figure 12b): 

( )
1

2
k

k


 
 

= − 
 

. (2) 

 

Figure 12. Concrete plate in biaxial tensile load: a) Geometric characteristics and b) Crack trajectories 

for a given k  and 1 k . 

3.3. Constitutive assumptions 

The material parameters required for the DEM analysis of a continuum are the micro-mechanical 

parameters that define the behavior of a single particle, not directly related to the mechanical 

behavior of the continuum itself. Indeed, by modeling the continuum as an assembly of discrete 

particles that interact trough a contact constitutive law, the DEM approach separates the micro- from 

the macro-scale. From the numerical point of view, this is one of the typical disadvantages of using a 

DEM approach to model the behavior of continua, as it requires a preliminary numerical calibration 

to match the micro- and macro-scale parameters [88]. On the other hand, however, the assembly of 

discrete particles allows us to take into account the discontinuous nature of matter on the micro-scale. 

Furthermore, what the experimenters usually neglect when performing material 

characterization tests is the damage suffered by a specimen during the test. Damage develops 

throughout the duration of a material characterization test, not just at the end of the test. 

Consequently, the specimen is a discontinuous medium and behaves on a macro-scale according to 

laws that are not constitutive in the strict sense, as they depend on the crack pattern generated by the 

damage. This means that identifying the constitutive properties of a material as the normalized 

macroscopic properties of a specimen made of that material is purely utopian [89]. 

Unfortunately, the technical standards on how to perform material characterization tests have 

not yet implemented this level of accuracy in the processing of experimental data and the constitutive 

properties of the materials continue to be confused with the average properties. This is the main cause 

for which the FEM models for cohesive materials use complex constitutive relationships, with a 

number of required parameters that increases with the complexity of the model. These parameters 

require calibration on the individual test and, at times, do not have clear physical meanings [90]. 

Furthermore, some specific problems are impossible to deal with the FEM approach even after an 

accurate calibration of the parameters. For example, it is impossible to model the softening effect with 

the FEM without running into problems of numerical instability. Conversely, the intrinsic separation 

between micro- and macro-scale of the DEM allows the identification of the elastic micro-properties 

that capture the softening effect on the macro-scale, in both uniaxial compression and uniaxial tension 

[18]. 
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Starting from a different viewpoint, even the DECM introduces a separation from the micro- and 

the macro-scale. Actually, unlike the DEM and similarly to the FEM, it is possible to introduce the 

laws of the continuous mechanical behavior directly into the DECM formulation. Therefore, with the 

DECM it is no longer necessary to identify the microscopic interaction laws from the mechanical 

behavior of the continuum. However, the DECM does not use the same constitutive laws as the FEM, 

precisely because it takes into account the discontinuities induced by the damage. 

Being unable to perform the DEM calibration on the micro-mechanical parameters, the DECM 

uses the results provided by the identification procedure of the effective law [91]. For brittle 

heterogeneous materials, this procedure identifies monotone strictly nondecreasing material laws, 

called “effective laws”, making use of a microseismic damage parameter, D , which allows the 

quantification of damage during the uniaxial compression tests [92]. Specifically speaking, using two 

probes for micro-seismic analyses glued on two diametrically opposite points of the middle cross-

section of a cylindrical specimen and acquiring the velocity of the micro-seismic signal for the whole 

duration of a uniaxial compression test, the variation of the micro-seismic velocity provides a 

measure of the damage parameter for each instant of time [93]: 

= −
0

1
V

D
V

, (3) 

where 0
V  is the micro-seismic velocity at the beginning of the test and V  is the micro-seismic 

velocity in the generic instant of time. Since V  decreases during the test, D  variates from 0 (no 

damage at the beginning of the test) to 1 (specimen crushing at the end of the test). 

The procedure of the effective law uses the damage parameter provided in Eq. (3) to identify the 

law of variation of the resistant area, res
A , defined as the portion of the middle cross-section that 

bears the external load: 

( )= −1
res n

A A D , (4) 

where n
A  is the nominal area of the specimen. 

The resistant area is smaller than the nominal area due to the propagation of macro-cracks, 

which gradually reduce the load-bearing capacity of the specimen throughout the uniaxial 

compression test. 

The effective stress, 
eff

, is the ratio of the external load, N , to the resistant area, res
A : 

 = = n
eff

res res

AN

A A
, (5) 

where   is the average stress: 

 =
n

N

A
. (6) 

Given the effective stress, Reference [91] provides a detailed description of how to identify the 

effective strain, 
eff

, also shown in Figure 13. 

 

Figure 13. Identification of the effective properties starting from the average properties. 
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In conclusion, the procedure of the effective law identifies the micro-mechanical properties 

directly from the experimental data and not through a numerical calibration (as instead happens in 

the DEM). The main merit of this procedure is that the effective laws are size- and shape-effect 

insensitive [91], which means that there are no material parameters to calibrate on the individual test. 

Furthermore, unlike the traditional procedures to identify the constitutive laws, the identification 

procedure of the effective law does not introduces a mere scale factor between the load/displacement 

and the stress/strain curves, which therefore do not have the same shape. In particular, although the 

load/displacement curves—and consequently the average stress/average strain curves—are softening, 

the effective stress/effective strain curves are not (Figure 13). 

The CM modeling of the uniaxial compression test showed that the monotone effective laws 

together with the crack propagation criterion discussed in Subsection 3.2 are able to model the 

softening effect in the load/displacements curves of concrete specimens [94]. Furthermore, although 

the effective law is size- and shape-effect insensitive, the crack propagation modeling with the CM 

provides load/displacement curves in good agreement with the experimental results on cylindrical 

specimens of different slendernesses in uniaxial compression [95], as well as on specimens of different 

shapes [96]. 

It is worth noting that the long-range interaction [18] and the Halo approach [49]—both used to 

model the macroscopic behavior of composite continua—characterizes the DEM as a nonlocal model 

[97–103], in a broad sense. In fact, in nonlocal continua the stress at a certain point is a function of the 

strain distribution over a certain representative volume of the material centered at that point and not 

a function of the strain at the same point [104]. This is equivalent to abandoning the principle of the 

local action of classical continuum mechanics [105]. Well, the algebraic formulation of the CM also 

provides a simplification of the constitutive assumptions necessary to take into account nonlocality. 

Indeed, the main consequence of avoiding the limit process at every stage of the algebraic formulation 

is that the length scales are associated with the CM variables, which are global variables. This 

provides the CM with an intrinsic nonlocal nature [53,106]. Therefore, the CM does not require any 

nonlocal constitutive law—not even a nonlocal contact constitutive law—to model nonlocality in 

continua. The numerical modeling with the CM is nonlocal in any case. 

From the mathematical point of view, the algebraic formulation is similar to performing non-

standard calculus, the modern application of infinitesimals—in the sense of non-standard analysis—

to differential and integral calculus [50]. In fact, non-standard analysis extends the real line, ¡ , to 

the hyperreal line, *¡ ,where each real number has a collection of numbers (hyperreals) infinitely 

close to it. The name given to a collection of hyperreals is “monad”, or “halo” (not to be confused 

with the Halo of the Halo approach [49]). Since the standard part function associates to a finite 

hyperreal, x , the unique standard real number 0x  which is infinitely close to it, by performing the 

standard part function we lose information about the halo in the same way we lose information about 

the curvature when we calculate a derivative. Therefore, the extension to the hyperreal line provides 

the real numbers with an additional structure of infinitesimal lengths, which is then lost with the 

standard part function. Following the mathematical analogy, we can conclude that both the long-

range interaction and the Halo approach are attempts to enrich the DEM formulations with length 

scales, just as the nonlocal approaches enrich the FEM formulations. The enrichment with the length 

scales is actually mandatory to model continua correctly in the context of a differential formulation, 

due to the higher order information lost in performing the limit process of the derivatives. The 

algebraic approach, on the contrary, does not need any enrichment because it is to the differential 

formulation as non-standard calculus is to calculus. 

4. DECM for periodic composite continua 

From the numerical point of view, the code for periodic composite continua is a generalization 

of the numerical models used for the pullout test and the thermal debonding of tiles in radiant heat 

floors. In fact, even in the latter case the domain is composed of several sub-domains that interact 

through the contact points on the interfaces. However, unlike previous DECM models, crack 

propagation does not necessarily initiate at the interface between domains made with different 
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materials. This changes the philosophy behind the DEM approach, since the use of discrete elements 

is now justified by the need to compensate for the extremely large number of degrees of freedom 

when the structure increases in size and complexity, in order to make the CM micromodel useful for 

the global analysis of entire buildings. To this end, the structure of the new DECM model has parallel 

processing capabilities, to reduce computation times further. 

In order to show how the DECM uses the discrete elements to model periodic composites in 

two-dimensional problems, Subsection 4.1 deals with the simplest case of the absence of crack 

propagation. This choice derives from the need to illustrate in detail how the new numerical approach 

works and does not represents a limitation for the DECM. In fact, since the DECM is an improvement 

of the CM, the new numerical approach shares the tools for crack propagation with the codes already 

developed for the CM. See for example Reference [52], where the CM code self-identifies the position 

of crack initiation, manages the propagation of several cracks that elongate simultaneously, and 

estimates whether or not one or more cracks bifurcate. 

4.1. How to deal with two-dimensional problems 

Due to the periodic nature of the composite continuum, it is possible to treat each unit of the 

periodic pattern as a single discrete element. Based on this idea, the DECM idealizes the two-

dimensional continuum as a two-dimensional array of rectangular discrete elements, arranged in 

rows and columns. Along the common sides of adjacent discrete elements, the DECM code generates 

a series of twin nodes, which are pairs of nodes with the same coordinates (one node of the pair is on 

a discrete element and the other node of the pair is on the adjacent discrete element). On the twin 

nodes, the adjacent discrete elements share the same boundary conditions in terms of both 

displacements and loading conditions. As explained in Section 3, this enforces material continuity 

between the discrete elements and generates the same numerical solution obtained for the non-

discretized two-dimensional domain. Since the twin nodes can also relax, they behave like the contact 

points of the DEM models, with the advantage that the reaction forces of the twin nodes make the 

use of cohesive models at the interfaces between discrete elements no longer necessary to model the 

continuity of matter. Therefore, the reaction forces of the DECM twin nodes play the same role as the 

generalized forces in the cohesive beam model of the DEM approaches [28]. 

The DECM code examines the discrete elements iteratively and forms stiffness matrices for each 

of them, storing the stiffness matrices and performing the static analyses in separate workspaces. 

Therefore, unlike the FEM, the DECM code does not assemble the stiffness matrices of the single 

elements to construct a global stiffness matrix for the entire domain, but works on the single 

workspaces iteratively, updating the boundary conditions on the common sides up to numerical 

stabilization. Despite the need for numerical stabilization on the common sides, the use of small 

stiffness matrices leads to a significant reduction in computation time compared to a CM analysis on 

the whole domain. Moreover, different processors can work on different workspaces in parallel, 

further reducing computation time. 

In order to enforce both equilibrium and compatibility on the common sides, the DECM code 

operates on the single discrete elements performing stabilization cycles on both the rows and the 

columns. In particular, the DECM code processes the elements of each row twice. The first time, the 

code processes the elements of the row from left to right (that is, with increasing value of the column 

index), while, the second time, it processes the same elements from right to left (with decreasing value 

of the column index). In the iteration with increasing value of the column index, the code imposes 

the forces on the left sides of the elements and calculates the forces on the right sides (where the 

displacements are known). In the iteration with decreasing value of the column index, the code 

imposes the displacements on the right sides and calculates the displacements on the left sides (where 

the forces are known). A stabilization cycle then enforces both equilibrium and compatibility between 

the cn  elements of the same row. Specifically speaking, in each stabilization iteration the code uses 

a bisection technique for the imposition of both the forces and the displacements on the cn  elements: 
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• The forces imposed on the nodes of the left side of the ( )1j + -th  element, with 1 cj n  , are 

half the differences (semi-differences) between the forces already present on the nodes and the 

forces calculated for the twin nodes on the right side of the j-th  element; 

• The displacements imposed on the nodes of the right side of the ( )1j − -th  element, with 

1 cj n  , are half the sums (semi-sums) of the displacements already calculated for the nodes 

and the displacements calculated for the twin nodes on the left side of the j-th  element. 

The bisection technique for the forces uses a semi-difference instead of a semi-sum because the 

forces calculated for the nodes on the right side of the j-th  element are reaction forces, which the 

code applies with opposite sign on the left side of the ( )1j + -th  element to comply with the action–

reaction principle. 

The two-dimensional domain in Figure 14 consists of a single row of 3 square elements, with 

displacements constrained in both directions on the nodes of the lower sides. Although the DECM 

uses the non-linear elastic relationships identified by the procedure of the effective law (Subsection 

3.3), to show how the DECM handles the discrete elements in the left-to-right-to-left procedure we 

will now consider the simplest case of linear elasticity: the Young’s modulus and Poisson’s ratio of 

the material are 7 22 10E =  N m  and 0.3 = , respectively. Furthermore, the loading condition 

consists of a point load to emphasize the ability of the CM to handle concentrated forces easily, unlike 

the differential formulation. In particular, the point load is a horizontal force 500F =  N , applied to 

the upper left node of the first element from the left in Figure 14. 

 

Figure 14. Geometry of a two-dimensional domain consisting of 1 row of 3 square elements (linear 

measurements in mm). 

Figure 15 illustrates the deformed configurations of the 3 elements of Figure 14 at the end of the 

first iteration from left to right. In this first iteration, the displacements of the nodes on the right sides 

are equal to zero for all the elements apart from the last of the row (the third from the left in Figure 

15). By means of the bisection technique described above, the reaction forces that nullify the 

displacements on the right side of the j-th  element, with 1, 2j = , provide a first estimate of the 

forces applied to the left side of the ( )1j + -th  element. 

 

Figure 15. First iteration from left to right: the j-th  element generates the forces on the left side of 

the ( )1j + -th  element, with 1,2j =  (thin line: undeformed configurations; thick line: deformed 

configurations; amplification factor of the displacements: 200k = ). 
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In the iteration from right to left, the code uses the bisection technique to improve the estimate 

of the displacements for the nodes on the right side of the ( )1j − -th  element, with 3,2j = . The new 

estimate of the displacements modifies the boundary conditions for the nodes of the right sides in the 

subsequent stabilization iteration. At the end of the stabilization cycle on the discrete elements, the 

left-to-right-to-right iterations guarantee both equilibrium and compatibility on the inner vertical 

sides. This restores the continuity between the discrete elements of the same row. 

Figure 16 shows the displacements of the discrete elements at the end of the first iteration from 

right to left, while Figure 17 provides the deformed configurations of the discrete elements for the 

first 8 left-to-right-to-left iterations. 

 

Figure 16. First iteration from right to left: the j-th  element generates the displacements on the right 

side of the ( )1j − -th  element, with 3,2j =  (thin line: undeformed configurations; thick line: 

deformed configurations; amplification factor of the displacements: 200k = ). 

 

Figure 17. Stabilization cycle on the elements of the same row: deformed configurations provided by 

the -thjk  left-to-right-to-left iteration, for 1 8jk   (thin line: undeformed configurations; thick 

line: deformed configurations; amplification factor of the displacements: 200k = ). 
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When the two-dimensional domain consists of more than one row, the DECM code performs 

the left-to-right-to-left stabilization on the rows twice (Figure 18): the first time from top to bottom 

(with increasing value of the row index) and the second time from bottom to top (with decreasing 

value of the row index). 

 

Figure 18. Deformed configurations and stress analysis on the constrained sides (the y-axis runs 

vertically) for the first top-to-bottom-to-top stabilization cycle on the rows: a) In the first iteration 

from top to bottom, the i-th  row generates the forces on the upper sides of the ( )1i + -th  row, with 

1,2i = ; b) In the first iteration from bottom to top, the i-th  row generates the displacements on the 

lower sides of the ( )1i − -th  row, with 3,2i =  (thin line: undeformed configurations; thick line: 

deformed configurations; amplification factor of the displacements: 200k = ). 

In the iteration with increasing value of the row index, the code imposes the forces on the cn  

upper sides of the rows and calculates the forces on the cn  lower sides (where the displacements 

are known). In the iteration with decreasing value of the row index, the code imposes the 

displacements on the cn  lower sides and calculates the displacements on the cn  upper sides 

(where the forces are known). A further stabilization cycle then enforces both equilibrium and 

compatibility between the rn  rows, using a bisection technique to estimate both the forces and the 

displacements: 
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• The forces imposed on the nodes of the cn  upper sides of the ( )1i + -th  row, with 1 ri n  , 

are half the differences (semi-differences) between the forces already present on the nodes and 

the forces calculated for the twin nodes on the cn  lower sides of the i-th  row; 

• The displacements imposed on the nodes of the cn  lower sides of the ( )1i − -th  row, with 

1 ri n  , are half the sums (semi-sums) of the displacements already calculated for the nodes 

and the displacements calculated for the twin nodes on the cn  upper sides of the i-th  row. 

Even in this second case, the bisection technique for the forces uses a semi-difference instead of 

a semi-sum to comply with the action–reaction principle. 

For a two-dimensional domain made of 3 rows and 3 columns, with displacements constrained 

in both directions for the lower nodes of the third row and a horizontal force 500F =  N  applied to 

the upper left node of the first row ( 7 22 10E =  N m  and 0.3 = ), the first iteration from top to 

bottom provides the deformed configurations in Figure 18a. In this first iteration, the displacements 

of the nodes on the lower sides are equal to zero for all the rows. 

By means of the bisection technique for the rows, the reaction forces that nullify the 

displacements on the cn  lower sides of the i-th  row, with 1,2i = , provide a first estimate of the 

forces applied to the cn  upper sides of the ( )1i + -th  row. In the first (Figure 18b) and subsequent 

iterations from bottom to top, the code then uses the bisection technique for the rows to improve the 

estimate of the displacements for the nodes on the cn  lower sides of the ( )1i − -th  row, with 

3,2i = . The new estimate of the displacements modifies the boundary conditions for the nodes of the 

lower sides, useful for the subsequent stabilization iteration. At the end of the stabilization cycle on 

the rows, the top-to-bottom-to-top iterations guarantee both equilibrium and compatibility on the 

inner horizontal sides. This restores the continuity between the rows (Figure 19). 

 

Figure 19. Deformed configurations of the 9 discrete elements and stress analysis on the lower 

constrained sides (the y-axis runs vertically), after 15 top-to-bottom-to-top stabilization cycles on the 

rows (thin line: undeformed configurations; thick line: deformed configurations; amplification factor 

of the displacements: 200k = ). 

The values of normal stress, y , and shear stress, xy , on the lower sides in Figure 19 are greater 

(in absolute value) than those of the third row in Figure 18 because the stresses propagate 

progressively from the upper application point to the lower constraint as the stabilization procedure 

proceeds. The final distribution of y  on the lower constraint is skew-symmetric—as it must be for 
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equilibrium reasons, to comply with the loading condition (no external load along the y-axis)—while 

the 
xy  are symmetric. 

The DECM code also provides the values of the three stress components within the discrete 

elements. Subsection 4.2 shows the comparisons between the values of x , y , and 
xy  obtained 

for the deformed configurations in Figure 19 and the stress values given by the DECM for an array 

with the same geometric characteristics and one round inclusion within each discrete element. 

It is worth noting that the stabilization cycles for both the elements (of the same row) and the 

rows are “while” loops, which end when the maximum relative displacement between twin nodes 

becomes less than a predetermined value. Since the displacement estimate for a given stabilization 

iteration is better than for the previous iteration, the number of (internal) iterations needed for the 

stabilization of the elements (of the same row) decreases at each (external) iteration on the rows. This 

increases the stabilization speed at each external iteration. 

For large two-dimensional domains, it is possible to arrange the discrete elements in two-

dimensional arrays of two-dimensional arrays (the internal arrays) and use different processors to 

perform the computation on different (internal) arrays simultaneously. By using a bisection technique 

for the twin nodes of adjacent (internal) arrays, this allows parallel computing with the DECM. 

4.2. The effect of the inclusions for shear loads 

Each discrete element can be non-homogeneous or made up of different materials. In the case of 

a two-dimensional domain consisting of a matrix with uniformly distributed inclusions, the discrete 

element that generates the entire domain is a rectangular element with one inclusion in the center. 

The square element of side 50L =  mm  in Figure 20 contains a round inclusion with radius 

25R =  mm , centered on the barycenter of the square element. The Young’s modulus and Poisson’s 

ratio of the matrix in Figure 20 are the same as in the example of Subsection 4.1 ( 7 22 10E =  N m , 

0.3 = ), while the mechanical properties of the round inclusion are 10 22 10E =  N m , 0.3 = . 

Figure 21 shows the first 12 top-to-bottom-to-top iterations for a 3 3  array, generated by the 

discrete element with round inclusion in Figure 20. 

 

Figure 20. Generation of the second mesh, using a) The circumcenters and b) The barycenters. 

Since the inclusion introduces a discontinuity in the material properties, to improve the 

numerical solution it is convenient to refine the mesh along the contour of the inclusion (Figure 20). 

The DECM uses an adaptive mesh generator that allows both the refinement and the coarsening of 

the mesh (for details on the adaptive mesh generator, see [59]). Furthermore, the mesh generator also 

provides a second mesh, linked to the first mesh by a relationship of geometric duality. In fact, as 

already pointed out in Subsection 3.1, the CM requires the generation of two meshes, since it enforces 
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the compatibility on the elements of the first mesh and the equilibrium on the elements of the second 

mesh. 

 

Figure 21. Stabilization cycle on the rows: deformed configurations provided by the -thik  top-to-

bottom-to-top iteration, for 1 12ik   (thin line: undeformed configurations; thick line: deformed 

configurations; amplification factor of the displacements: 200k = ). 

The first mesh used by the CM is the triangular mesh of Delaunay (Figure 20). For the second 

mesh, there are various generation criteria, depending on the duality relation chosen to link the two 

meshes. One possibility is to use the circumcenters of the Delaunay mesh and the midpoints of the 
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Delaunay sides to generate the nodes of the second mesh. This gives rise to the mesh of Voronoi 

(Figure 20a). Another possibility is to use the barycenters and midpoints of Delaunay (Figure 20b). 

The second possibility is preferable to the first one because, for very complex domain geometries, the 

mesh generator cannot guarantee that all Delaunay triangles are acute. This is a problem from the 

numerical point of view, because the circumcenter of an obtuse triangle is outside the triangle, 

causing a sign error for that triangle. 

Since the main target of this work is to provide a first exploratory analysis on the ability of the 

DECM approach to model composite continua by using a series of discrete elements, the possible 

debonding phenomena at the interface between matrix and inclusions are outside the interests of this 

paper. Therefore, this Section presents the results of the DECM static analysis in the assumption of 

perfect interface between matrix and inclusions, leaving future studies on the DECM the task of 

dealing with interface debonding in composites. Nevertheless, as already pointed out in Section 4, 

the DECM uses the same numerical tools as the CM, even those developed for crack propagation. 

This means that the DECM can take into account the interface debonding by means of the failure 

criterion in the Mohr/Coulomb plane used in [63] to study tile detachments in radiant heat floors. 

The presence of stiff inclusions does not cause stabilization problems in restoring continuity 

between the discrete elements. Actually, the code reaches the numerical convergence in almost the 

same number of iterations with respect to the case of absence of inclusions. 

Figures 22-24 use a discrete color map to facilitate the comparison of stress values between the 

two-dimensional domains with and without inclusions. Furthermore, the color ranges are not equally 

wide, since the ranges of the maximum and minimum stresses are wider than the other ranges. This 

allows us to identify the areas in which, most likely, the material yields due to the point load. Since 

the elastic solution provided by the model is no longer valid in the yielding areas, the non-uniform 

subdivision of the color ranges focuses on the elastic areas. 

As shown in Figures 22-24, the stress field does not show evident discontinuities in crossing the 

boundaries of adjacent discrete elements. This means that, after restoring continuity, the set of 

individual discrete elements actually provides the same stress field obtained for the non-discretized 

two-dimensional domain. This is a remarkable result since the use of only local stiffness matrices 

without ever performing the static analysis on the assembled domain does not guarantee at all the 

continuity of the stress field in the whole domain. 

 

Figure 22. Normal stresses y  (the y-axis runs vertically) in the discrete elements of a 3 3  array 

subjected to shear load: a) Without inclusions and b) With round inclusions, stiffer than the matrix. 
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Figure 23. Normal stresses 
x  (the x-axis runs horizontally) in the discrete elements of a 3 3  array 

subjected to shear load: a) Without inclusions and b) With round inclusions, stiffer than the matrix. 

 

Figure 24. Shear stresses xy  in the discrete elements of a 3 3  array subjected to shear load: a) 

Without inclusions and b) With round inclusions, stiffer than the matrix. 

Figures 22-24 also shows how the inclusions modify the stress field: due to the greater stiffness 

of the inclusions with respect to the matrix, the stresses tend to concentrate within the inclusions, 

unloading the areas close to them. This is particularly evident in Figure 25, the plot of the shear stress 

for the discrete element 2i = , 2j =  (second row and second column). 

The high stress values reached within the inclusions can cause damage to the inclusions. In 

particular, the high values of shear stress can split the inclusions into two parts, as actually happens 

in many experimental shear tests. Furthermore, in Figures 22b, 23b, and 24b the stresses of the 
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inclusions tend to increase (in absolute value) near the boundaries of the inclusions. This makes the 

interfaces between matrix and inclusions particularly vulnerable and explains the interface 

detachments, observed experimentally very often. 

 

Figure 25. Detail of the shear stress xy  for the discrete element 2, 2 i j= =  (colors equally ranged 

between the extreme values of shear stress for the element). 

Lastly, Figures 22-24 show that the inclusions reduce the maximum value of the normal stress 

in the matrix (for both x  and 
y ), at the same time increasing the maximum value of the shear 

stress, 
xy . Therefore, although the inclusions improve the strength of the composite material, they 

can increase the vulnerability to shear loads. 

4.3. The effect of the inclusions for axial loads 

4.3.1. Comparison with the results of a previous CM analysis 

In the spirit of comparison between the DECM and the CM, we will now compare the results of 

the DECM model with those of a previous numerical analysis with the CM. Actually, as mentioned 

in Section 1, the parametric structure of the DECM code allows the operator to choose both the elastic 

properties and the geometric characteristics of the problem, as well as the loading condition. In 

particular, the code asks the operator to define: 

• Young’s modulus of both the inclusion and the matrix; 

• Poisson’s ratio of both the inclusion and the matrix; 

• Length of the base of the discrete element; 

• Height of the discrete element (not necessarily equal to the base); 

• Shape of the inclusion (no inclusion, round inclusion, polygonal inclusion with randomly 

generated shape [107], or straight crack that form a random angle with the -axisx ); 

• Radius of the round inclusion, which also serves to generate the polygonal inclusion [107]; 

• Coordinates of the center of the inclusion; 

• Number of subdivisions of the base (to generate the mesh); 

• Number of subdivisions of the height (to generate the mesh); 

• Number of subdivisions of the circular contour (in the case of round inclusion); 

• Number of rows of the array; 

• Number of columns of the array; 
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• Loading condition (concentrated force or distributed load); 

• Position of the load (one of the two unconstrained corners or one of the midpoints of the three 

unconstrained sides, in the case of concentrated forces; one of the three unconstrained sides, in 

the case of distributed loads); 

• Intensity of the load. 

This allows direct comparison between the DECM and previous CM analyses on composite 

continua consisting of a single element with one inclusion, setting both the number of rows and the 

number of columns equal to 1. 

The reference CM results are those obtained in [5] for an elastic cantilever beam with round 

inclusion (Figure 26, geometric parameters of the CM model in Table 1). The elastic properties used 

in [5] for the matrix and the inclusion are the same as those of the element in Figure 20. 

Figure 27 gives the axial stresses x  identified in [5] for a tensile load 210 kN mxp p= = , 

uniformly distributed along the right side. Along the bi-material cross-sections in Figure 27, x  

increases where the local stiffness is higher and decreases where the local stiffness is lower. The CM 

numerical solution also provides non-zero values of 
xy , which are higher close to the left constraint 

and along the boundary of the inclusion, outside of inclusion (Figure 28). 

 

Figure 26. Geometry and loading condition of the elastic cantilever beam with round inclusion. [5] 

Table 1. Geometric parameters used in [5] to model the beam of Figure 26. 

Symbol Description Value 

L  Base 4 m  

D  Height 1 m  

R  Radius of the round inclusion 0.4 m  

1L  Distance of the center C from the left side 2.11 m  

1D  Distance of the center C from the lower side 0.5 m  

L

divn  Number of subdivisions of the base 32 

D

divn  Number of subdivisions of the height 8 

crf

divn  Number of subdivisions of the circular contour 80 

 

 

Figure 27. CM static analysis: normal stresses 
x  plotted on the deformed configuration (thin line: 

undeformed configuration; thick line: deformed configuration; amplification factor of the 

displacements: 500k = ). [5] 
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Figure 28. CM static analysis: shear stresses xy  plotted on the deformed configuration (thin line: 

undeformed configuration; thick line: deformed configuration; amplification factor of the 

displacements: 500k = ). [5] 

The deformed configurations in Figures 27 and 28 are consistent with the effect of the Poisson’s 

ratio on a bi-material: since the Poisson’s ratio is the negative of the ratio of the (signed) transverse 

strain, 
y , to the (signed) axial strain, x , the transverse strain 

y  is negative for uniaxial traction 

and reaches its maximum absolute value where x  is maximum. Therefore, the shrinkage of the 

cross-section is greater for the higher values of x , which in turn depends inversely on the local 

stiffness. In Figures 27 and 28, the cross-sections actually shrink more where the local stiffness is 

lower, that is, outside of inclusion. 

The DECM analysis for a 1 1  array is in all respects identical to the CM analysis on a single 

element with one inclusion. In fact, since there is only one discrete element in the 1 1  array, the 

DECM code does not activate the iterative procedure described in Subsection 4.1 and performs a 

single static analysis with the CM. 

By changing the number of both the rows ( rn ) and the columns ( cn ) from 3 to 1 and choosing a 

load distributed on the upper side instead of a point load on the upper left corner, the DECM code 

modifies the 3 3  array of Subsection 4.2 into an 1 1  array that allows direct comparison between 

the DECM and CM analyses, after exchange of the x and y directions. In particular, for the geometric 

parameters in Table 2 and an axial load 210yp p= =  kN m , the DECM code provides the geometric 

model in Figure 29a and the axial stresses y  in Figure 29b. The maximum value of y  in Figure 

29b differs from the maximum value of x  in Figure 27 by a factor of the order of 410−  (percentage 

difference equal to 0.057%). This small difference depends on the two discretization meshes, which 

are slightly different in the shape despite the same number of subdivisions along the sides of the two 

discrete elements and along the two circular contours. Furthermore, the axial stress reaches its 

maximum value on the constraint—due to the concentration of the stresses at the ends of the 

constraint—while the axial stresses on the loaded sides actually have the same value in the two cases 

( 210 kN m ), as shown by the 3D plot of the axial stresses interpolated on a regular grid (Figure 30). 

Table 2. Geometric parameters of the discrete element used in the DECM analysis. 

Symbol Description Value 

L  Base 1 m  

D  Height 4 m  

R  Radius of the round inclusion 0.4 m  

1L  Distance of the center of the inclusion from the lower side 2.11 m  

1D  Distance of the center of the inclusion from the left side 0.5 m  

L

divn  Number of subdivisions of the base 8 

D

divn  Number of subdivisions of the height 32 

crf

divn  Number of subdivisions of the circular contour 80 
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Figure 29. DECM static analysis for the 1 1  array generated by the discrete element with the 

geometric characteristics defined in Table 2: a) Array geometry and loading conditions; b) Normal 

stresses y  plotted on the deformed configuration (thin line: undeformed configuration; thick line: 

deformed configuration; amplification factor of the displacements: 500k = ). 

 

Figure 30. 3D plots and isolines of the axial stresses for: a) The numerical results of the CM model and 

b) The numerical results of the DECM model for 1rn =  and 1cn = . 

The use of a third axis in Figure 30a and Figure 30b allows us to appreciate the substantial 

equivalence between the two numerical solutions in more detail. It is worth noting that the lack of 

some data along the contours of the 3D plots in Figure 30 depends on the size of the regular grid used 

to interpolate the numerical solutions, to build the 3D surfaces. Actually, as shown in Figure 27 and 

Figure 29b, both the CM and the DECM provide the stress values in the whole domain. 

The thick line curves on the 3D surfaces in Figure 30 are the plots of the axial stresses at 

predetermined distances id  from the constraint, with 1, 2,..., 8  i = : 

• 1 0.5 md =  (stresses calculated along a line at a distance equal to 1/8 of the longest side); 

• 2 1 md =  (stresses calculated along a line at a distance equal to 1/4 of the longest side); 

• 3 1.71 md =  (stresses calculated along a line tangent to the inclusion, on the constraint side); 

• 4 2.11 md =  (stresses calculated along a line that passes through the center of the inclusion); 

• 5 2.51 md =  (stresses calculated along a line tangent to the inclusion, on the opposite side of the 

constraint); 
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• 
6 3 md =  (stresses calculated along a line at a distance equal to 3/4 of the longest side); 

• 7 3.5 md =  (stresses calculated along a line at a distance equal to 7/8 of the longest side); 

• 8 4 md =  (stresses calculated on the loaded side). 

In particular, Figure 31 shows the interpolation along the line that passes through the center of 

the inclusion (
4 2.11 md = ) of the axial stresses calculated by the CM and the DECM. Also in the latter 

case, the lack of data for the points on the contour depends on the interpolation grid. 

 

Figure 31. Axial stresses calculated at a constant distance from the constraint, along a line that passes 

through the center of the inclusion for: a) The numerical results of the CM model and b) The numerical 

results of the DECM model for 1rn =  and 1cn = . 

4.3.2. DECM results for a periodic composite specimen 

Let us now consider the 6 4  array generated by the discrete element with round inclusion of 

Figure 20 and subjected to a uniaxial traction 210yp p= =  kN m  (Figure 32). 

 

Figure 32. Geometry and loading condition of the 6 4  array with round inclusions (linear 

measurements in mm). 

The 3/2 ratio between rn  and cn  allows the stress field of the central rows not to depend on 

the effect of the constraint and the stress distortion on the loaded side. 

Figures 33 and 34 show that the DECM is actually able to reproduce the same results obtained 

with the CM, on a greater scale. In particular, Figure 33a provides the deformed configuration of the 
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6 4  array in Figure 32 taking into account the Poisson effect and the reciprocal constraints between 

discrete elements. In fact, since the discrete elements prevent the adjacent elements of the same row 

from freely shrinking or expanding in the transverse direction, on the vertical inner sides in Figure 

34a the DECM code identifies positive and negative normal stresses x  that would not be present 

in the continuum in the absence of inclusions. 

Moreover, the difference in stiffness between the matrix and the inclusions leads the normal 

stresses x  to concentrate above and below the inclusions, close to the interfaces. 

The numerical field of x  in Figure 34a is symmetric with respect to the longitudinal axis, as it 

must be to comply with the equilibrium conditions in the direction of the -axisx  (no horizontal force 

in the direction of the -axisx ). 

The difference in stiffness between the matrix and the inclusions is also the main cause of the 

shear stresses that arise along the boundaries of the inclusions (Figure 34b), as already observed in 

the elastic cantilever beam (Figure 28). Actually, the elastic solution of De Saint Venant for a 

homogeneous material subjected to axial load returns zero values for both x  and 
xy . The 

numerical field of the shear stresses in Figure 34b is skew-symmetric with respect to the longitudinal 

axis. This nullifies the resultant of the shear stress on each cross-section, as it must be to comply with 

the equilibrium conditions. 

The concentration of stresses x  and 
xy  near the constraint on the lower sides can damage 

the continuum and be the cause of an early crack initiation. Moreover, in Figure 34a,b the constraint 

modifies the stress field up to a distance almost equal to half the length of the constraint (twice the 

side of the discrete elements). In real tensile test, this is the reason for the use of dog bone specimens, 

which have a shoulder at each end and a gauge section in the central part. The shoulders are wider 

than the gauge section to avoid early failure at the ends and ensure a greater probability that the 

sample breaks in the midsection. 

 

Figure 33. Elastic modeling of the 6 4  array subjected to uniaxial traction: a) Deformed 

configuration (amplification factor of the displacements: 400k = ) and b) Normal stresses y . 
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Figure 34. Stress fields in the 6 4  array subjected to uniaxial traction: a) Normal stresses 
x  and 

b) Shear stresses xy . 

The normal stresses 
y  in Figure 33b follow the general behavior of the axial stresses in Figure 

27: the low deformability of the inclusions leads the material enclosed between the inclusions of the 

same column to stretch more than the remaining areas of the matrix. As a result, these areas bear 

normal stresses 
y yp  , greater than the average axial stress of the matrix (Figure 35). The low 

deformability of the inclusions also leads the material to the right and left of the inclusions to stretch 

less than the remaining areas of the matrix. Consequently, these areas—in particular those close to 

the inclusions—bear normal stresses 
y yp  , lower than the average axial stress of the matrix. This 

is the same effect, similar to the negative skin friction, already observed in [52] for brick masonry 

walls (Section 2). Similarly to what happens for the stresses x , even the numerical field of the y  

is symmetric with respect to the longitudinal axis, in accordance with the equilibrium conditions. 

Lastly, the 3D plot of y  (Figure 35) allows us to appreciate the behavior of the axial stresses 

on the loaded sides ( 300 mmy = ), where y  is equal to the applied load: 210 kN my yp = = . 

 

Figure 35. 3D plot and isolines of the normal stresses y . 
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The combination of stresses 
x  and 

y  above and below the inclusions makes the interfaces 

between matrix and inclusions particularly vulnerable. Therefore, the upper and lower interfaces are, 

most likely, sites of enucleation of the cracks, which originate as disconnections between matrix and 

inclusions. As already pointed out, after crack enucleation the DECM code can estimate the 

propagation direction as the CM, in the Mohr/Coulomb plane (Subsection 3.2). In particular, Figure 

36 shows the flow chart of a CM code in displacement control, where d  is the distance between the 

largest Mohr’s circle and the limit domain of Leon (when 0d   the circle intersects the limit domain, 

which means that the material has reached its maximum strength). 

 

Figure 36. Flow chart of a CM code for the analysis of crack propagation in displacement control. 

5. Future developments 

Further improvements of the DECM code presented in this paper consist in the analysis of the 

stress field for composite continua with random shaped inclusions [107] and/or randomly distributed 

inclusions. The code structure also allows the substitution of the solid inclusions with straight cracks 

that form a random angle with the -axisx . Both the solid inclusions and the straight crack can cause 

local disconnections, which propagate through the composite continuum. Considering crack 

propagation is not a problem with the DECM, as it uses the tools already developed for the CM 

(Subsection 3.2). Furthermore, regardless of the shape of the inclusions and the possible presence of 

cracks that propagate, the storage of the stiffness matrices in separate workspaces allows different 

processors to perform the static analysis on different elements simultaneously. The most appropriate 

parallelization technique for the DECM is still under evaluation [108]. However, in the author’s 

opinion, it is reasonable to assume that the advantage of the parallelization will be proportional to 

the number of discrete elements used to model the continuum, since this number is equal to the 

number of required workspaces and, consequently, of processors that can run the numerical analyses 

simultaneously. 

Lastly, the static solution of the DECM allows an easy extension to dynamic problems. Actually, 

the CM is also useful for solving problems in the time domain, using the same explicit finite difference 

solution scheme of the DEM. In fact, the CM associates even the global variables in time with the 

elements of a cell-complex, which has dimension 1 and generalizes the time-axis (Figure 37). The time 

elements of the CM are two: the time instant, I , and the time interval, T . They are the nodes and 
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sides, respectively, of the one-dimensional cell-complex that represents time (Figure 37). According 

to the nomenclature of algebraic topology, the time instants are the boundaries, or the faces, of the 

time intervals. 

 

Figure 37. The two time elements of the CM, represented as elements of a one-dimensional cell-

complex. 

Even for the time elements, the CM uses a second cell-complex (the dual cell-complex), linked 

to the first cell-complex (the primal cell-complex) by a relationship of geometric duality. In one-

dimensional spaces, the dual (orthogonal complement) of a point is a line segment and the dual of a 

line segment is a point. Therefore, the nodes of the dual cell-complex are the middle points of the 

primal sides (Figure 38). Consequently, by denoting with   the constant time step, the two cell-

complexes in time are staggered of 2 . The geometric duality between the elements of the two cell-

complexes in time extends to their orientations (Figure 38). 

 

Figure 38. Time elements in the primal and dual cell-complexes. 

A dual time interval, °T , is to the enclosed primal instant, I , as an influence region is to its 

inner node. Analogously, the primal time interval, T , is the influence region of its dual instant, I%. 

The CM computes the displacements at instants I  of the primal cell complex. Let n

hu  and 
1n

h

+
u  be the displacements of node h  at instants 

nI  and 
1n+I , respectively, then the velocity 1 2n

h

+
v%  

and the linear momentum 1 2n

h

+
p%  of node h  in the time interval 1 2n+T  of boundaries 

nI  and 
1n+I  

are associated with the dual instant 
1 2n+I% : 

( )1 2 11n n n

h h h


+ += −v u u% , (7) 

( )1 2 1n n nh

h h h

m



+ += −p u u% , (8) 

where hm  is the mass of node h . 

Lastly, the total force acting on node h  in the dual time interval ° nT  of boundaries 
1 2n−I%  and 

1 2n+I%  is associated with the primal instant 
nI : 

( )1 2 1 21n n n n

h h h h


+ −+ = −T F p p% % , (9) 

where n

hT  and n

hF  are the surface and volume forces acting on node h . 

6. Conclusions 

This paper describes the structure of the DECM, a multiscale numerical method introduced here 

for the first time and specifically dedicated to the modeling of periodic composite continua. The new 

numerical method stems from the need to extend the accurate description provided on the micro-

scale by the Cell Method (CM) to the macro-scale. The key idea of the DECM is to reduce the typical 

computation time of a macro-scale analysis with the CM by subdividing the domain into sub-
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domains and performing the static analysis on each sub-domain independently of the other sub-

domains, on a lower scale. This is a revolutionary idea for the CM, as it is the first attempt to extend 

the CM to the macro-scale by performing only local analyses with few degrees of freedom, without 

having to use a global stiffness matrix for the whole domain. The result is an approach with distinct 

discrete elements, which connotes the new numerical method as a DEM in the broad sense, as it 

conforms to the original definition of DEM proposed by Cundall and Hart. 

The set of discrete elements exactly reproduce the continuum. Therefore, the DECM does not 

require filling a geometric form with particles to reproduce the shape of the continuum. This allows 

us to avoid one of the most delicate DEM phases, namely the generation of the model geometry, 

which also involves time-consuming calibrations and scaling processes. 

Since the boundary conditions on the sub-domains are unknown at the beginning of the 

computation, the DECM code identifies them through stabilization cycles on the displacements, 

which restore the continuity between the discrete elements. The stabilization algorithm arranges the 

discrete elements into ordered arrays, which improves the efficiency of the algorithm while keeping 

computation times low. 

The most important advantage of the DECM concerns the use of the CM, which—being an 

algebraic approach—overcomes some of the typical drawbacks of the differential formulation. 

Specifically speaking, the CM can easily treat any type of singularity, including concentrated forces 

and discontinuities in the rheological properties. Therefore, unlike the Finite Element Method (FEM), 

the CM provides descriptions up to the scale of single inclusions and interfaces between different 

materials. This is precisely the main reason to use the CM on the micro-scale, leaving the DECM to 

manage the discrete elements to capture the behavior on the macro-scale. 

Another interesting feature of the CM is its intrinsic nonlocality, which means that the global 

variables naturally include the length scales. This means that, unlike the DEM, the DECM does not 

require particular contact constitutive relations to establish interactions between the aggregates not 

in direct contact, when they are within a predetermined interaction range. In fact, the nonlocal nature 

of the variables allows the DECM to take into account the medium- and long-range interactions 

automatically. 

Compared to other DEM methods, the DECM does not obtain the static solution as a steady state 

solution of a dynamic problem, but performs the computation directly in the space domain. This 

entails two other advantages, from the numerical point of view: 

• The DECM does not require the calibration of the stable time step, as instead needed by the DEM 

to allow the convergence of the numerical solution; 

• The DECM does not require a preliminary assessment of the minimum number of contact points 

to obtain the correct solution, as instead happens in the case of the DEM with deformable 

discrete elements to limit the computational cost of the dynamic relaxation technique. 

Furthermore, unlike the DEM approaches with deformable blocks, the DECM has an internal 

mesh with satisfactory performance. Therefore, the DECM is useful for studying the stress field 

within deformable blocks and in particular, as already mentioned, within deformable blocks with 

inclusions of different materials. 

To allow for parametric analyses, the DECM code presented in this paper has a fully parametric 

structure, which means that it lets the user to define the geometry of the discrete elements, of the 

inclusion, and of the array, as well as the elastic properties of the bi-material composite and the type 

of load. For the sake of example, this paper provides the results of some DECM numerical analyses 

for shear and axial loads on periodic composite continua with round inclusions, stiffer than the matrix. 

The numerical results highlight how a difference in the deformability between adjacent bodies 

causes adjacent bodies to interact with each other, in terms of both displacements and stresses. In fact, 

due to the difference in the deformability, bodies consisting of different materials interact with a 

reciprocal degree of constraint on the displacements, which gives rise to stress components not 

explained by the elastic solution of De Saint Venant for homogeneous materials. 

Moreover, the DECM analysis shows that the stresses concentrate within the inclusions of the 

periodic composite continua, modifying the state of stress with respect to the case without inclusions 
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for both loading conditions. Lastly, the DECM identifies some critical stress states close to the 

boundaries of the inclusions. In particular, the critical stress states are located within the inclusions 

for the shear load and outside the inclusions for the axial load. 

The stress concentration within the inclusions can split the inclusions, while the critical stress 

state along the boundaries of the inclusions can detach the inclusions from the matrix. The 

experimental tests for shear and axial loads provide extensive descriptions of both splitting and 

detachment of the inclusions in cementitious continua with aggregates. These failure mechanisms 

now find a numerical justification. 

Like the CM codes, the DECM code is able to identify the points of enucleation of the cracks and 

simultaneously manage the propagations of different cracks, even in the event of crack bifurcation. 

The non-necessity to know in advance the positions of crack enucleation is a further feature that 

distinguishes the DECM from the DEM codes for the analysis of composite continua, in particular 

from those for the modeling of traditional URM (unreinforced masonry) buildings with rigid blocks. 

The DECM analysis of the pattern of crack propagation in periodic composite continua will be the 

subject of future work. 
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