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Abstract: In this review, we discuss novel natural products discovered within the last decade that 22 
are reported to have antifungal activity against pathogenic species. Nearly a hundred natural 23 
products were identified that originate from bacteria, alga, fungi, sponges and plants. Fungi were 24 
the most prolific source of antifungal compounds discovered during the period of review. The 25 
structural diversity of these antifungal leads encompasses all the major classes of natural products 26 
including polyketides, shikimate metabolites, terpenoids, alkaloids and peptides.  27 
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1. Introduction 30 

The global increase in antimicrobial resistance among pathogenic bacteria, viruses, fungi and 31 
parasites is a serious concern for human healthcare. In the case of fungi, more than one billion 32 
individuals worldwide are affected by fungal infections and the associated mortality, over 1.5 million 33 
deaths each year, is equivalent to that caused by tuberculosis and more than triple that of malaria [1]. 34 
Although relatively rare in healthy individuals, the incidence of superficial and invasive fungal 35 
infections has dramatically risen in recent years. This is due to a growing ‘at-risk’ population with 36 
impairments in their immune system, breaches in physical barriers to fungal entry or an altered 37 
microbiome. Skin mycoses are predominantly caused by Trichophyton, Microsporum and 38 
Epidermophyton genera while Candida, Cryptococcus, Aspergillus and Pneumocystis genera, and 39 
Mucorales are the most common invasive fungal pathogens [2]. Meanwhile, emerging pathogenic 40 
fungi that are either new species such as the recently described Candida auris [3] or well-known 41 
species spreading in their ecological distribution represent additional threats to human health. 42 

The growing challenges posed by fungal diseases are further heightened as antifungal treatment 43 
is mainly limited to the azoles and echinocandins. The azoles are the most widely used antifungals 44 
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and are synthetic compounds that reversibly inhibit cytochrome P450-dependent lanosterol or 45 
eburicol 14-demethylase with moderate specificity for the fungal enzyme over the human 46 
counterpart [4]. Nevertheless, they suffer from off-target toxicity as well as issues with fungistatic 47 
rather than fungicidal activity in yeast that promotes the development of resistance. The 48 
echinocandins are fungal lipopeptide natural products (Figure 1) that are non-competitive inhibitors 49 
of 1,3‑β-glucan synthase, an enzyme involved in fungal cell wall biosynthesis. While the natural 50 
products are not optimal in terms of pharmacokinetics, three semi-synthetic derivatives are approved 51 
for clinical use: anidulafungin prepared from echinocandin B, caspofungin prepared from 52 
pneumocandin Bo and micafungin prepared from FR901379 [5]. Although the selectivity of the 53 
echinocandin target for fungi provides a good safety profile, these compounds are large peptides, 54 
requiring intravenous administration. In addition to the azoles and echinocandins, the polyenes and 55 
pyrimidines are two other classes approved for antifungal therapy. The natural product polyenes 56 
(Figure 2) are macrolides isolated from various Streptomyces strains. The prototypical amphotericin B 57 
has been in clinical use for the treatment of systemic fungal infections since the 1950s and is still an 58 
important option in critical cases. Several additional polyenes -nystatin, natamycin, hamycin and 59 
filipin- have received regulatory approval. As a class, the polyenes have significant nephrotoxicity 60 
due to their relatively nonselective mechanisms of ergosterol binding and pore formation within the 61 
cell membrane [6,7]. Finally, synthetic pyrimidine antimetabolites such as flucytosine interfere with 62 
nucleic acid biosynthesis but resistance restricts their application to combination therapy [8]. 63 

 64 
Figure 1.  Semi-synthetic derivatives of the echinocandin family of natural products approved for 65 
antifungal therapy. 66 
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 67 
Figure 2.  Polyene natural products approved for antifungal therapy. 68 

 69 
In summary, the current drugs have numerous limitations including toxicity, drug-drug 70 

interactions, poor pharmacokinetics, narrow spectrum of activity and fungistatic versus fungicidal 71 
action. These inherent liabilities are exacerbated in immunocompromised patients since their 72 
immune system cannot effectively assist in the eradication of the infection, thus requiring complex 73 
and prolonged treatment regimens [9]. A further alarming trend is the rising incidence of fungal 74 
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clinical isolates that are resistant to the currently used antifungals [10,11]. The scale of the problem is 75 
highlighted by the fact that the newest class of approved antifungals, the echinocandins, were 76 
actually discovered fifty years ago. The American Food and Drug Administration (FDA) has 77 
recognized the need for new antifungals by placing Candida and Aspergillus on their list of qualifying 78 
pathogens [12]. Therapies directed against these species will benefit from incentives including an 79 
additional five-year marketing exclusivity besides eligibility for designation as a fast-track drug. 80 

2. A pipeline of antifungal natural product leads 81 

While antifungal agents with novel mechanisms of action are in various stages of clinical 82 
development, their number is relatively small compared to other therapeutic indications [13]. A 83 
pipeline of additional preclinical leads is clearly needed, and natural product screening is an 84 
important contributor in this regard. One unique feature of natural products is their high structural 85 
diversity, sampling areas of chemical space that are difficult to access through purely synthetic 86 
compounds [14,15]. Natural products are also well validated to possess biological activity, with many 87 
examples approved as therapeutic agents either in their native form or as semi-synthetic derivatives 88 
[16]. For this review, we searched Natural Product Updates for publications that reported novel natural 89 
products with antifungal activity within the last decade January 2010 - November 2019. From the 90 
publications, we selected novel natural products that were active against human pathogenic fungi 91 
with a MIC < 10 μg/mL or IC50 < 10 μM. In the discussion, we include any information on additional 92 
biological activity observed or mechanistic studies on the mode of action. The compounds are 93 
classified below according to the type of producing organism. 94 

2.1 Natural product antifungal leads from bacteria and algae 95 

Actinomycetes are the most prolific source of bacterial natural products, and this remains the 96 
case for recently discovered antifungal leads (Figures 3-6, 1-29). In addition, there were three 97 
examples isolated from non-actinomycete species (Figure 7, 30-35) and two from algae (Figure 8, 36-98 
37). A strain of Streptomyces albolongus YIM 101047 isolated from elephant dung produced a number 99 
of bafilomycins in laboratory fermentation. The new example 21-deoxybafilomycin A1 (1) and the 100 
sesquiterpene (1β,4β,4aβ,8aα)-4,8a-dimethyloctahydronaphthalene-1,4a(2H)-diol (2) displayed 101 
antifungal activity against Candida parapsilosis with a MIC of 3.2 g/mL while being inactive against 102 
other species [17]. Genome sequencing of the strain suggested the presence of forty-six putative 103 
biosynthetic gene clusters [18]. In the course of biosynthetic labelling experiments, it was discovered 104 
that supplementation by acetate produced new metabolites in a Streptomyces hyaluromycini MB-PO13 105 
strain. Among these, rubromycin CA1 (3) was active against Gram-positive bacteria and Candida 106 
albicans NBRC 1594 with a MIC of 6.3 g/mL whereas an analogue with an additional alcohol was 107 
inactive [19]. A strain of Actinoalloteichus isolated from marine sediment was the source of 108 
neomaclafungins A–I (4-12), a series of macrolides of the oligomycin family of antibiotics. The 109 
neomaclafungins were active against Trichophyton mentagrophytes with MIC values between 1 and 3 110 
μg/mL, compared to 10 μg/mL for oligomycin A [20]. 111 

 112 
Figure 3.  Structures of natural products 1-3 113 
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 114 
Figure 4.  Structures of neomaclafungins A-I 4-12 115 

Fermentation of a Streptomyces sp. isolated from mangrove rhizosphere soil led to the isolation 116 
of a series of azalomycin F natural products (13-20) with MIC values of 1.6-6.3 μg/mL against Candida 117 
albicans as well as having antibacterial and cytotoxic activity [21,22]. Astolides A (21) and B (22) are 118 
polyol macrolides isolated from Streptomyces hygroscopicus collected from alkaline soil [23]. The 119 
compounds have MICs of 1-2 μg/mL against Candida albicans, Candida tropicalis and Aspergillus niger. 120 
Related macrolides caniferolides A-D (23-26) were isolated from the marine-derived Streptomyces 121 
caniferus CA-271066 [24]. Like the astolides, the caniferolides displayed potent antifungal activity 122 
with MICs of 0.5-2 μg/mL against Candida albicans and 2-8 μg/mL against Aspergillus fumigatus, as 123 
well as similar levels of cytotoxicity against human tumor cell lines. Caniferolide A was also shown 124 
to have in vitro activity against targets relevant to Alzheimer’s disease [25]. Enduspeptides A-C (27-125 
29) are depsipeptides that differ in the acyl chain attached to the threonine residue and were isolated 126 
from a Streptomyces sp. The peptides had an IC50 of 2-8 μg/mL against Candida glabrata [26]. 127 

 128 

Figure 5. Structures of azalomycin F macrolides 13-20 129 
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 130 

Figure 6.  Structures of natural products 21-29 131 

Within the period under review, three antifungal leads were isolated from non-actinomycete 132 
bacterial strains. Fermentation of a myxobacterial Nannocyctis sp. led to the isolation of nannocystin 133 
A (30) with a novel macrocyclic scaffold. While the compound inhibited Candida albicans with a MIC50 134 
of 73 nM, it also inhibited human cancer cell lines at a nanomolar level [27]. The mechanism of action 135 
involves binding to the eukaryotic translation elongation factor 1α and SAR has been established 136 
through the total synthesis of analogues [28]. The burkholdines are lipopeptide antifungal agents 137 
previously isolated from Burkholderia ambifaria 2.2N, with three new examples Bk-1119, Bk-1213, and 138 
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Bk-1215 (31-33) displaying potent activity against Candida albicans and Aspergillus niger [29]. Among 139 
the burkholdines, Bk-1119 was the most active against Aspergillus niger with a MIC of 0.1 μg/mL and 140 
also had the best antifungal:hemolytic ratio. Additional analogues were prepared by total synthesis 141 
[30]. The Gram-negative bacteria Chitinophaga pinensis DSM 28390 produces the novel lantibiotics 142 
pinensins A and B (34, 35). Although lantibiotics are typically antibacterial, the pinensins were only 143 
weakly so while having MICs of 2-4 μg/mL against yeasts and filamentous fungi [31]. 144 

 145 
Figure 7.  Structures of natural products 30-35 146 

The marine alga Laurencia is a prolific producer of secondary metabolites. The sesquiterpene 147 
eudesma-4(15),7-diene-5,11-diol (36) isolated from a Red Sea sample of Laurencia obtusa was 148 
antifungal with MIC values of 2-7 μM against Candida and Aspergillus strains [32]. The prenylated 149 
xylene caulerprenylol B (37) was isolated from the green alga Caulerpa racemosa and had MIC80 values 150 
of 4 μg/mL against Candida glabrata and Cryptococcus neoformans while being inactive against 151 
Aspergillus fumigatus [33]. 152 
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 153 
 154 

Figure 8.  Structures of natural products 36 and 37 155 

2.2 Natural product antifungal leads from sponges 156 

Marine sponges are an important source of novel natural products, and more than ten examples 157 
with antifungal activity were described in this period (Figures 9 and 10, 38-55). Extracts from the 158 
symbiotic two-sponge association Plakortis halichondroides−Xestospongia deweerdtae yielded a number 159 
of peroxide natural products, of which plakinic acids I, J, K and L (38-41) were potent against Candida 160 
and Cryptococcus species with MIC ≤ 0.5 μg/mL [34]. Plakinic acid M (42) was active against 161 
Cryptococcus gattii, Cryptococcus grubii and Candida krusei with MIC90 values of 2.4-3.4 μg/mL but less 162 
active against Candida albicans [33]. Extraction from the South China Sea sponge Hippospongia lachne 163 
was the source for hippolachnin A (43), a polyketide with an unprecedented scaffold [36]. The 164 
compound was potently antifungal with a MIC of 0.4 μg/mL against Cryptococcus neoformans, 165 
Trichophyton rubrum and Microsporum gypseum. However, the natural product and analogues 166 
obtained by total synthesis were inactive, suggesting the initial report was in error [37]. Bioassay-167 
guided fractionation of the same extract led to isolation of a racemic sesterterpene hippolide J (44) 168 
[38]. The natural product was resolved into its two enantiomers, and both were highly potent 169 
antifungals with MIC50 of 0.13–0.25 μg/mL against Candida and Trichophyton while weakly cytotoxic 170 
to the human embryonic kidney HEK293 cell line. 171 

 172 
Figure 9.  Structures of natural products 38-44 173 

A new member of the manzamine alkaloids, zamamidine D (45), was isolated from an Okinawan 174 
marine sponge Amphimedon sp. Zamamidine D had an IC50 of 2 μg/mL against Cryptococcus 175 
neoformans but was weakly active against other fungal and bacterial strains tested [39]. From another 176 
Okinawan marine sponge Pseudoceratina sp., ceratinadin A and B (46, 47) were isolated with MIC 177 
values of 4 and 8 g/mL respectively against Cryptococcus neoformans and 2 and 4 g/mL respectively 178 
against Candida albicans [40]. From an extract of the sponge Pseudaxinella reticulata, several crambescin 179 
guanidine containing alkaloids were isolated. Crambescin A2 392 and 406 (48, 49) inhibited 180 
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Cryptococcus neoformans with a MIC50 of 1.2 and 0.9 g/mL respectively while being relatively inactive 181 
against Candida albicans [41]. The enantiomers of two known crambescins, crambescin A2 420 (50) and 182 
Sch 575948 (51) were also isolated with a MIC50 of 1.1 and 2.5 g/mL respectively against Cryptococcus 183 
neoformans. Among metabolites isolated from the marine sponge Agelas, two new diterpene alkaloids 184 
from Agelas citrina, agelasidine E and F (52, 53), were reported to have MIC values of 8 and 4 g/mL 185 
respectively against Candida albicans [42]. Isoagelasine C (54), isolated from Agelas nakamurai, had a 186 
MIC value of 4.7 g/mL against Candida albicans [43]. Ageloxime B (55), isolated from Agelas 187 
mauritiana, had an IC50 value of 5.0 g/mL against Cryptococcus neoformans as well as antibacterial 188 
activity [44]. 189 

 190 
Figure 10.  Structures of natural products 45-55 191 

2.3 Natural product antifungal leads from plants 192 

Plants accounted for nearly ten antifungal leads within the last decade (Figures 11 and 12, 56-193 
64). The flavonoid (E)-6-(2-carboxyethenyl)apigenin (56) was isolated from an extract of Mimosa 194 
caesalpiniifolia Benth., a Brazilian medicinal plant commonly known as “sabiá” or “sansão-do-campo” 195 
[45]. The compound inhibits Candida krusei with an IC50 of 44 nM, although it was inactive against 196 
Candida glabrata. The isoflavonoid vatacarpan (57) with a MIC of 1 μg/mL against Candida albicans 197 
was isolated by bioassay-guided fractionation from the roots of Vatairea macrocarpa (Benth.) Ducke 198 
[46]. The biaryl ether laevicarpin (58) was isolated from leaves of Piper laevicarpu, known as “falsa- 199 
pimenteira” in Brazil [47]. Interestingly, the compound was previously prepared synthetically prior 200 
to this isolation. Laevicarpin had an IC50 of 7.9 M against Cryptococcus gattii, in addition to an IC50 of 201 
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50 M against the trypomastigote form of Trypanosoma cruzi. The dimeric chalcone kamalachalcone 202 
E (59) was isolated from the red dye extracted from whole uncrushed fruits of Mallotus philippinensis 203 
[48]. The chalcone exhibited an IC50 of 4-8 μg/mL against two strains of Cryptococcus neoformans. 204 

 205 
Figure 11.  Structures of natural products 56-59 206 

Investigation of the juvenile leaves of Eucalyptus maideni F. Muell led to the discovery of a 207 
number of phloroglucinol derivatives, among which eucalmaidial A (60) showed antifungal activity 208 
against Candida glabrata with an IC50 of 0.8 μg/mL [49]. A monoterpene indole alkaloid, 16,17-209 
epoxyisositsirikine (61), isolated from the evergreen shrub Rhazya stricta Decne. had an IC50 of 6.3 210 
μg/mL against Candida glabrata but was less active against other Candida species tested [50]. Erchinine 211 
B (62), a monoterpene indole alkaloid with an unusual 1,4-diazepine ring embedded was isolated 212 
from roots of Ervatamia chinensis and had a MIC of 6.3 μg/mL against Trichophyton rubrum, with a 213 
lower MIC of 0.8 μg/mL against the Gram-positive bacteria Bacillus subtilis [51]. An aporphine 214 
alkaloid (63) was isolated from the bark of a Costa Rican sample of Beilschmiedia alloiophylla [52]. The 215 
alkaloid had a MIC of 8 μg/mL against Candida albicans, as well as antileishmanial activity and 216 
inhibition of acetylcholinesterase. The cyclic peptide tunicyclin D (64) was isolated from roots of the 217 
medicinal herb Psammosilene tunicoides W. C. Wu et. C. Y. Wu [53]. The peptide exhibited MIC80 values 218 
of 0.3-16 μg/mL against Candida species and 1.0 μg/mL against Cryptococcus neoformans. 219 

 220 
Figure 12.  Structures of natural products 60-64 221 
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2.4 Natural product antifungal leads from fungi 222 

Within the last decade, fungi were the most prolific source of novel antifungal leads (Figures 13-223 
17, 65-98). An extract of the endophytic species Pestalotiopsis mangiferae obtained from the leaves of 224 
the plant Mangifera indica Linn. yielded an unprecedented epoxyacetal 4-(2,4,7-trioxa-225 
bicyclo[4.1.0]heptan-3-yl) phenol (65) with a MIC of 0.04 μg/mL against Candida albicans strains and 226 
1.3 μg/mL against the bacterium Micrococcus luteus [54]. Two phenalenones, auxarthrone A and D (66, 227 
67) were obtained from fermentation extracts of an Auxarthron pseudauxarthron strain isolated from 228 
rabbit dung [55]. The compounds have MIC values of 3.2 and 6.4 μg/mL against Cryptococcus 229 
neoformans and Candida albicans respectively. Further investigation into these compounds 230 
demonstrated that they are unnatural artifacts, arising from reaction of natural products with ketone 231 
solvents employed during the extraction. Grifolaone A (68) was isolated from the edible mushroom 232 
Grifola frondosa. Interestingly, the hemiketal lactone was obtained in an optically active form and 233 
assigned as the S enantiomer [56]. The furanone was a potent inhibitor, MIC of 0.15 μg/mL, of the 234 
opportunistic human pathogen Pseudallescheria boydii and also had a MIC of 10 μg/mL against 235 
Aspergillus fumigatus. 236 

The tropolone nemanolone B (69) was isolated from fermentation of a Nemania sp. fungus and 237 
displayed antifungal activity with an IC50 of 4.5 μg/mL against Candida albicans, and similar levels of 238 
activity against the parasite Plasmodium falciparum and human tumor cell lines [57]. The quinone 239 
pleosporallin E (70), isolated from a marine-derived Pleosporales sp., inhibited Candida albicans with a 240 
MIC of 7.4 μg/mL [58]. Five new isocoumarins were isolated from fermentation of an endophytic 241 
Pestalotiopsis sp. obtained from Photinia frasery. Among these, pestalactone C (71) inhibited Candida 242 
glabrata with a MIC50 value of 3.5 μg/mL [59]. Aspergillusether D (72), isolated from fermentation of 243 
Aspergillus unguis PSU-RSPG204, inhibited Cryptococcus neoformans with a MIC value of 8 μg/mL, and 244 
inhibited Candida albicans at a lower level [60]. A series of p-terphenyl natural products was isolated 245 
from a strain of Floricola striata inhabiting the lichen Umbilicaria sp., among which the quinones 246 
floricolin B and C (73, 74) displayed MIC80 values of 8 μg/mL against Candida albicans [61]. Further 247 
investigation of floricolin C suggested a fungicidal action through disruption of mitochondria [62]. 248 

 249 
Figure 13.  Structures of natural products 65-74 250 
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Extended fermentation (365 days) of a marine-derived strain of Aioliomyces pyridodomos led to 251 
the appearance of new metabolites, of which onydecalin C (75) had a MIC of 2 μg/mL against 252 
Histoplasma capsulatum [63]. The same strain, in a more conventional fermentation period (25 days), 253 
produced aintennol A (76) with an IC50 of 8 μg/mL against Histoplasma capsulatum [64]. Genome 254 
mining for potential Diels-Alderase enzymes identified a potential candidate in the sequence of 255 
Penicillium variabile. The putative biosynthetic gene cluster was engineered into an Aspergillus nidulans 256 
expression host, enabling the isolation of varicidin A (77) with a MIC50 value of 8 μg/mL against 257 
Candida albicans [65]. The N-demethylated analogue, varicidin B, was two-fold less active. In the same 258 
manner, the ilicicolin H biosynthetic gene cluster including a putative Diels-Alderase from a 259 
producing strain, Neonectria sp. DH2, was heterologously expressed in Aspergillus nidulans. In 260 
addition to ilicicolin H, a shunt metabolite ilicicolin J (78) was isolated with a MIC of 6.3 µg/mL 261 
against Candida albicans [66]. Heterologous expression was also employed to confirm the biosynthetic 262 
gene cluster involved in the production of the burnettramic acids A and B (79 and 80) in Aspergillus 263 
burnettii FRR 5400 [67]. Burnettramic acid A had a MIC value < 1 μg/mL against Candida albicans and 264 
Saccharomyces cerevisiae while burnettramic acid B was slightly less active with values of 1-2 μg/mL.  265 

 266 
Figure 14. Structures of natural products 75-80 267 

 268 
Co-culture of two extremophilic fungal strains of Penicillium fuscum (Sopp) Raper & Thom and 269 

Penicillium camembertii/clavigerum Thom isolated from a single sample of surface water from Berkeley 270 
Pit Lake led to the production of novel metabolites. Berkeleylactone A (81) displayed modest 271 
antifungal activity with an IC50 of 6 μg/mL against Candida glabrata and higher antibacterial activity 272 
[68]. Fermentation of a Saudi strain of Petriella setifera led to the identification of the triterpene 273 
glycoside amnomopin (82) with MIC values of 0.5-2 μg/mL against Candida species [69]. Sclerodol B 274 
(83), a triterpene from extracts of the endophyte Scleroderma UFSM Sc1(Persoon) Fries obtained from 275 
Eucalyptus grandis had a MIC of 6.3 μg/mL against Candida krusei with weaker activity against other 276 
species [70]. A strain of the marine-derived fungus Stachybotrys chartarum produced several novel 277 
diterpenoids, of which atranone Q (84) had a MIC of 8 μg/mL against Candida albicans and weaker 278 
antibacterial activity [71]. 279 

An endophytic Penicillium sp. isolated from grass produced picolinic acid derivatives in 280 
fermentation. Penicolinate B and C (85, 86) had MIC values of 1.5 and 3.7 μg/mL, respectively, against 281 
Candida albicans [72]. The didymellamide series of pyridone alkaloids was isolated from cultures of 282 
the marine-derived fungus Stagonosporopsis cucurbitacearum and Coniochaeta cephalothecoides [73,74]. 283 
Didymellamide A, F and G (87-89) were antifungal with MIC values of 3 μg/mL against Candida 284 
species. The fermentation also yielded (+)-N-hydroxyapiosporamide (90), the enantiomer of the 285 
previously isolated natural product, with a MIC value of 6.3 μg/mL against Candida albicans. 286 
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Fermentation of a Cyathus cf. striatus basidiomycete led to the isolation of the alkaloid pyristriatin A 287 
(91) with a MIC of 8.3 μg/mL against Rhodotorula glutinis and similar levels of activity against Gram-288 
positive bacteria and human tumor cell lines [75].   289 

 290 
Figure 15.  Structures of natural products 81-91 291 

The alkalophilic extremophile fungus Emericellopsis alkalina VKPM F-1428 was the source of the 292 
peptaibol emericellipsin A (92), which exhibited antifungal MIC values of 2-4 μg/mL against Candida 293 
and Aspergillus species as well as activity against Gram-positive bacteria. Bioassay-guided 294 
fractionation of extracts of Colispora cavincola isolated from plant litter led to the discovery of the 295 
linear peptides cavinafungin A and B (93, 94) [76]. The cavinafungins inhibited Candida species with 296 
a MIC of 0.5−4 μg/mL and Aspergillus fumigatus at 8 μg/mL. However, the antifungal effects were lost 297 
in the presence of mouse serum. Cavinafungin A also potently inhibits the Zika and dengue virus, 298 
with the mechanism of action attributed to inhibition of the host signal pepdidase [77]. The antifungal 299 
activity of Phaeosphaeria sp. F-167,953 was ascribed to the lipodepsipeptide phaeofungin (95) with 300 
some structural similarity to the previously known phomafungin [78]. Phaeofungin had a MIC of 4 301 
μg/mL against Trichophyton mentagrophytes and lower activity against other fungi tested. 302 
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 303 
Figure 16.  Structures of natural products 92-95 304 

High-throughput screening by Astellas Pharmaceuticals against a silkworm model of Aspergillus 305 
fumigatus infection led to bioassay-guided fractionation activity of an extract of Acremonium 306 
persicinum MF-347833. The siderophore hexapeptide ASP2397 (96) was discovered as an aluminum 307 
chelate with exceptional potency against Aspergillus fumigatus, with a MIC of 0.2 μg/mL and efficacy 308 
at 3.2 mg/kg in a mouse in vivo model [79]. The metal-free form AS2488059 (97) as well as the 309 
congener AS2524371 (98) were also isolated, and the target was identified as a fungal siderophore 310 
transporter [80,81]. The compound was out-licensed to Vical and renamed VL-2397, reaching Phase 311 
II clinical trials that were recently discontinued. 312 

 313 
Figure 17.  Structures of natural products 96-98 314 
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3. Discussion 315 

Between 2010-2019, we identified nearly a hundred novel natural products reported with 316 
antifungal activity against human pathogens. The compounds originate from a variety of sources 317 
comprising bacteria, alga, fungi, sponges and plants with fungi being the most prolific source of 318 
antifungal compounds. The techniques employed range from classical phytochemical studies with 319 
plants to high-throughput screening of extract collections and modern microbiological strategies such 320 
as co-cultivation and heterologous expression of biosynthetic gene clusters. All the major classes of 321 
natural products including polyketides, shikimate metabolites, terpenoids, alkaloids and peptides 322 
are represented. As the majority of examples in this review involve the initial disclosure of activity, 323 
further investigations are needed to assess the therapeutic potential of highly active compounds as 324 
well as their selectivity as antifungal agents. Meanwhile, it is interesting to observe the 325 
physicochemical space occupied by these natural product leads (Table 1). Although the compounds 326 
are diverse in their structural features, they are largely compliant with the typical guidelines for small 327 
molecule drug-like chemical space. While many of the natural products are large in molecular weight, 328 
resulting in an average of 569, other properties like hydrogen bonding potential, molecular flexibility 329 
and polarity often remain within the recommended limits. 330 

 331 

Compound MW clogP HBD HBA nrot TPSA 

1 607 4.8 3 8 10 115 

2 198 2.1 2 2 2 41 

3 508 2.9 4 12 5 186 

8 751 7.0 5 10 10 155 

17 1123 7.6 13 18 26 312 

21 1580 0.9 15 29 33 472 

28 987 4.7 6 19 11 253 

30 817 4.3 4 12 9 167 

31 1200 -5.7 23 32 36 546 

35 2144 -0.4 26 55 30 876 

36 236 2.4 2 2 3 41 

37 274 3.0 2 2 4 41 

42 419 7.7 1 4 14 56 

44 385 6.2 1 3 9 47 

45 713 8.1 7 7 10 110 

46 667 0.7 6 13 10 188 

48 393 3.1 6 8 13 130 

53 438 5.0 4 6 12 121 

54 423 2.0 2 5 5 61 

55 439 2.3 2 6 5 70 

56 340 1.9 4 7 6 124 

57 423 6.0 2 5 7 68 

58 297 2.7 1 4 1 48 

59 1065 8.0 11 18 23 319 
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60 487 6.5 4 7 12 132 

61 352 3.0 0 5 3 64 

62 370 0.5 0 6 3 51 

63 281 2.5 1 3 2 33 

64 901 -0.1 10 21 9 303 

65 194 1.3 1 4 2 51 

66 358 3.0 3 7 6 121 

68 200 -1.6 1 5 4 73 

69 206 -1.0 2 4 2 67 

70 316 3.5 2 5 5 84 

71 264 0.8 3 6 5 104 

72 427 7.9 3 6 8 96 

74 306 4.7 1 4 4 64 

75 329 6.8 1 3 3 54 

76 327 6.7 2 2 9 41 

77 376 3.3 2 6 5 95 

78 432 5.4 3 5 4 87 

79 770 3.2 8 13 35 218 

81 405 2.3 3 7 6 146 

82 779 6.4 8 13 14 216 

83 457 9.5 1 2 6 30 

84 391 2.7 1 5 3 81 

85 399 5.1 1 6 14 89 

87 444 1.4 3 8 6 128 

90 446 3.5 4 8 7 131 

91 442 3.5 2 6 6 89 

92 1064 4.9 10 20 38 294 

93 792 6.6 5 14 31 200 

95 904 -2.0 13 23 23 368 

97 891 -2.5 11 23 21 339 

Average 569 3.4 5 10 11 155 

 332 
Table 1. Physicochemical properties of antifungal natural products. MW = molecular weight, 333 

clogP = calculated log P, HBD = hydrogen bond donors, HBA = hydrogen bond acceptors, nrot = 334 
number of rotated bonds, TPSA = total polar surface area in Å 2. The values were taken from SciFinder 335 
(https://scifinder-n.cas.org), based on calculations using Advanced Chemistry Development 336 
(ACD/Labs) Software V11.02. In certain cases where the data was absent in SciFinder, values were 337 
calculcated using the Molinspiration website (https://www.molinspiration.com/). 338 

For natural products where a series of related compounds was reported, one representative 339 
example was selected. Shaded cells indicate values above the recommended guidelines for small 340 
molecule drug-like chemical space (MW ≤ 500, Clog P ≤ 5, HBD ≤ 5, HBA ≤ 10, nrot ≤ 10, TPSA ≤ 140).   341 
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