

1 Article

2 **The Determination of Snow Albedo from Satellite**
3 **Measurements Using Fast Atmospheric Correction**
4 **Technique**

5

6 **Alexander Kokhanovsky¹, Jason E. Box², Baptiste Vandecrux², Kenneth Mankoff², Maxim**
7 **Lamare³, Alexander Smirnov⁴, and Michael Kern⁵**

8 ¹ VITROCISSET, Bratustrasse 7, D-64293 Darmstadt, Germany; a.kokhanovsky@vitrocisetbelgium.com

9 ² Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark

10 ³ Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, France

11 ⁴ Science Systems and Applications, Inc., Lanham, Maryland, USA, and Biospheric Sciences Laboratory, NASA
12 GSFC, Greenbelt, Maryland, USA

13 ⁵ ESTEC/ESA, Science, Applications and Climate Department (EOP-SME), Noordwijk, The Netherlands

14

15 A.Kokhanovsky, a.kokhanovsky@vitrocisetbelgium.com

16 J. E. Box, jeb@geus.dk

17 B. Vandecrux, bav@geus.dk

18 K. Mankoff@geus.dk

19 M. Lamare, maxim.lamare@meteo.fr

20 A. Smirnov, alexander.smirnov-1@nasa.gov

21 M. Kern, Michael.Kern@esa.int

22

23

24 * Correspondence: a.kokhanovsky@vitrocisetbelgium.com

25

26 **Abstract:** We present a simplified atmospheric correction algorithm for the snow/ice albedo retrieval
27 using single view satellite measurements. The validation of the technique is performed using Ocean
28 and Land Colour Instrument (OLCI) on board Copernicus Sentinel - 3 satellite and ground spectral
29 or broadband albedo measurements from locations on the Greenland ice sheet and in the French Alps.
30 Through comparison with independent ground observations, the technique is shown to perform
31 accurately in a range of conditions from a 2100 m elevation mid-latitude location in the French Alps
32 to a network of 15 locations across a 2390 m elevation range in seven regions across the Greenland
33 ice sheet. Retrieved broadband albedo is accurate within 5% over a wide (0.5) broadband albedo
34 range of the (N = 4,155) Greenland observations and with no apparent bias.

35

36 **Keywords:** snow characteristics; optical remote sensing; snow albedo; PROMICE; Sentinel 3, OLCI;
37 atmospheric correction; Arctic aerosol

38

39 **1. Introduction**

40 There is a decreasing trend in both the extent and reflective power of the terrestrial cryosphere with
41 important feedbacks amid global warming [1-4]. The solar light reflectance from snow and ice has a
42 bi-directional nature. It depends on the direction of illumination and also on the observation direction
43 which can be measured using ground, airborne, and satellite optical instruments. Climate models
44 utilize snow spectral plane albedo, which provides total reflected solar light power for a given
45 wavelength and a given solar incidence angle, which depends on the location and time. Satellite

46 measurements, of particular importance for studies of polar environment [4], are usually performed
47 with a fixed observation geometry. Therefore, special procedures are needed to convert satellite –
48 measured reflectance to a planar albedo [5, 6]. The broadband plane albedo (BBA) can be derived
49 using various parameterizations or by integration of the spectral plane albedo with account for the
50 spectral snow irradiance at the snow surface [7]. The optical signals measured by satellite are
51 influenced not just by light reflected from the surface but by atmospheric extinction, i.e., scattering
52 and absorption processes. Therefore, atmospheric effects must be removed for a useful surface
53 retrieval. Similarly, the remote sensing of the atmosphere requires removal of the surface contribution
54 to the observed signal. Atmospheric remote sensing of the atmosphere is more readily made in cases
55 of dark underlying surfaces, such as the ocean. In polar regions, the retrievals of atmospheric aerosol
56 load over bright snow and ice surfaces are challenging and often hardly possible because the signal
57 is dominated by the surface properties and not by atmospheric aerosol, which have a much smaller
58 loading as compared to aerosols over lower latitude land surfaces covered by vegetation and bare
59 soil.

60 A key task of this study is to provide an accurate determination of spectral and broadband plane
61 albedo of snow and ice using satellite observations given the challenge of atmospheric absorption by
62 ozone, molecular light scattering and light scattering and absorption by atmospheric aerosols. It is
63 assumed that aerosol optical properties are known *a priori*, e.g., from aerosol climatology, forecasts
64 or ground measurements for the case of polluted snow/atmosphere. In the case of clean snow and
65 atmosphere, we do not rely on any *a priori* information on atmospheric aerosol loading and
66 properties in our snow and ice albedo retrieval technique. In any case, the generally low polar aerosol
67 loading [4] reduces the influence of the aerosol contribution to the retrieved surface albedo. Although
68 in many cases the atmospheric contribution cannot be neglected. In the case of polluted snow, the
69 retrievals are performed outside strong atmospheric absorption bands (e.g., O_2 and H_2O). The ozone
70 absorption effects are fully accounted in the retrieval framework. While the algorithm is easily
71 portable to other multi-spectral instruments observing the cryosphere from space, we present an
72 application to data from the Ocean and Land Colour Instrument (OLCI) on board the European
73 Union Copernicus Sentinel-3A satellite. The theoretical modelling of spectral snow reflectance is
74 performed as in [6]. The earlier atmospheric correction used in [6], that appears in OLCI Snow
75 Properties module incorporated in the ESA SeNtinel Application Platform (SNAP), can be biased in
76 case of strong atmospheric pollution episodes (Arctic haze, etc.) because it neglects scattering and
77 absorption by liquid and solid particles suspended in atmosphere. This shortcoming of the previous
78 algorithm as presented in [6] is eliminated in this study.

79

80 2. Materials and methods

81 2.1 Theory

82 We perform the retrievals using separate retrieval chains for the clean snow (Case 1 clean snow) and
83 for polluted snow (Case 2 polluted snow). Here, we use the analogy with the classification of Case 1
84 and Case 2 water as proposed in [8] (see also [9]). Case 1 water corresponds to relatively clean water
85 where most of the absorption is due to phytoplankton and Case 2 water contains other impurities
86 including mineral particles. In our application, we define Case 1 as the situation where snow
87 properties are determined just by snow grains without significant interference from impurities or
88 living matter (cells, algae, etc.). The clean snow Case 1 is often met in Antarctica – far from any
89 significant aerosol sources and limited algal populations. The areal extent of the clean dry snow areas
90 on the Greenland and Antarctica ice sheets make the Case 1 snow dominant on a global scale.
91 Additionally, a simplified atmospheric correction is possible in this case [6].

92

93

94 Case 1 clean snow

95 The simplified atmospheric correction for Case 1 snow is described in [6] and summarized below. It
 96 is based on the fact that the pure snow spherical albedo can be accurately parameterized using the
 97 following equation:

$$98 \quad r_s = \exp \left(-\sqrt{\alpha(\lambda)l} \right), \quad (1)$$

99 where $\alpha(\lambda)$ is the bulk ice absorption coefficient known from laboratory experiments for a
 100 given wavelength λ and l is the effective absorption length (EAL). The snow spectral reflectance R_s
 101 is related to the snow spherical albedo, which is three dimensional integral of R_s with respect to the
 102 solar and viewing zenith angles and relative azimuthal angle (RAA)[6], via the following
 103 approximate equation [6]:

$$104 \quad R_s = R_0 r_s^x, \quad (2)$$

105 where x is a geometrical correction coefficient depending on R_0 and on the angular function u [6]
 106 evaluated at the cosine of the solar zenith angle (SZA) μ_0 and at the cosine of the viewing zenith
 107 angle(VZA) μ :

$$108 \quad x = \frac{u(\mu_0)u(\mu)}{R_0} \quad (3)$$

109 and we use the following approximation for the angular function [6]:

$$110 \quad u(z) = \frac{3}{7}(1 + 2z). \quad (4)$$

111 The value of R_0 gives the non-absorbing underlying surface reflectance ($r_s = 1$). One can use OLCI
 112 measurements at 865 and 1020nm to determine both EAL and R_0 from Eqs. (1), (2) under assumption
 113 that the atmosphere does not affect the satellite signal at these channels.

114 The determined value of EAL makes it possible to derive the snow spherical albedo at any
 115 wavelength using Eq. (1). The plane albedo r_p is defined via the integral of the plane albedo with
 116 respect to the solar zenith angle[6]. As a matter of fact, r_p can be derived from the spherical albedo
 117 using the following simple approximation [6]:

$$118 \quad r_p = r_s^{u(\mu_0)} \quad (5)$$

119 or with account for Eq. (1):

$$120 \quad r_p = \exp \left(-u(\mu_0)\sqrt{\alpha(\lambda)l} \right) \quad (6)$$

121 Also one can derive the underlying snow spectral reflectance function using Eqs. (1) and (2).
 122 Therefore, the procedure for the determination of Case 1 spectral albedo from space is
 123 straightforward. It has been validated in [6]. Generally, the errors in the retrieved albedo are below
 124 1-3% depending on the wavelength λ .

125 Case 2 polluted snow

126 The retrievals for the Case 2 snow are more complicated. In this case, the satellite measurements of
 127 snow spectral reflectance in the visible are influenced by various pollutants or living matter (cells,
 128 algae, etc.). Therefore, there is no way to estimate snow spectral reflectance/albedo in the visible using
 129 measurements in the near infrared as it is done for the Case 1 clean snow (see above). Then we use
 130 yet another approach described below.

131 The top-of-atmosphere reflectance for atmosphere-underlying snow system can be presented in the
 132 following way [10, 11]:

$$133 \quad R_{meas} = R_{ag} + \frac{T_{ag}r_s}{1-r_{ag}r_s}, \quad (7)$$

134 where R_{ag} is the atmospheric contribution to the measured signal, r_{ag} is the spherical albedo of the
 135 atmosphere, r_s is the bottom-of-atmosphere snow spherical albedo, T_{ag} is atmospheric transmittance

136 from the top-of-atmosphere to the underlying surface and back to the satellite position. In the case of
 137 Lambertian underlying surfaces, the underlying surface reflectance does not depend on solar and
 138 viewing observation directions and Eq. (7) is valid with $r_s = R_s$, where R_s is underlying Lambertian
 139 surface reflectance. The snow is not exactly Lambertian reflector, therefore, we replace r_s in the
 140 numerator of Eq. (7) by the snow reflectance (see Eq. (2)). Then it follows:

$$141 \quad R_{meas} = R_{ag} + \frac{T_{ag}R_0r_s^x}{1-r_{ag}r_s}. \quad (8)$$

142 The reflectance of nonabsorbing snow R_0 in Eq. (8) can be calculated using simple analytical
 143 approximation as discussed in [6].

144 We shall use channels not influenced by water vapor and oxygen absorption effects. Although we
 145 account for the ozone absorption effects. Eq. (8) is very general and valid outside and inside molecular
 146 absorption bands. We account for the ozone absorption in a simplified way. Namely, we derive free
 147 of ozone absorption top-of-atmosphere reflectance R_c using the following equation: $R_c = \frac{R_{meas}}{T_{O3}}$,
 148 where T_{O3} is the atmospheric transmittances with account for the ozone absorption (see Appendix).
 149 Then Eq. (8) is transformed to a simplified approximation:

$$150 \quad R_c = R_a + \frac{T_aR_0r_s^x}{1-r_ar_s}, \quad (9)$$

151 where the functions R_a , r_a , T_a (see Appendix) have the same meaning as R_{ag}
 152 r_{ag} , T_{ag} , respectively, except for atmosphere not influenced by gaseous absorption processes (e.g.,
 153 ozone absorption). The spherical albedo of underlying snow surface can be found from Eq. (9)
 154 providing that the aerosol model is known. In this case the snow spherical albedo r_s is the only
 155 unknown parameter in Eq. (9) and can be readily calculated solving the transcendent Eq. (9) with
 156 respect to r_s . For the wavelengths, where the aerosol contribution is low and can be neglected, $R_a \sim 0$,
 157 $T_a \sim 1$, and an analytical solution of Eq. (9) is possible:

$$158 \quad r_s = \left(\frac{R_c}{R_0} \right)^{1/x}, \quad (10)$$

159 where the analytical expression for R_0 is given in [6]. The functions R_a , T , and r_a depend on aerosol
 160 and molecular scattering parameters and can be stored in look-up-tables for various aerosol models.
 161 Because, aerosol load is weak in Arctic and Antarctica, various approximations for the functions
 162 mentioned above can be used. In particular, we calculate these functions in the framework of
 163 approximations described in Appendix. We solve the transcendent Eq. (9) with respect to r_s for all
 164 OLCI wavelengths free of water vapor and oxygen absorption in the Case 2 snow.

165 The broadband albedo (BBA), either plane or spherical, is calculated from the spectral plane or
 166 spherical albedo using the integration between the wavelengths λ_a and λ_b as shown below [7]:

$$167 \quad \bar{r}_{p,s}(\lambda_1, \lambda_2) = \frac{\int_{\lambda_a}^{\lambda_b} r_{p,s}(\lambda) F(\lambda) d\lambda}{\int_{\lambda_a}^{\lambda_b} F(\lambda) d\lambda}. \quad (11)$$

168 where $F(\lambda)$ is the incident solar flux at the snow surface, $r_{p,s}(\lambda)$ is plane (p) or spherical (s) albedo
 169 depending on whether plane or spherical BBA $\bar{r}_{p,s}(\lambda_a, \lambda_b)$ is to be calculated. The indices a and b
 170 signify the wavelengths λ used. We assume that the incident solar flux can be approximated by the
 171 following analytical function:

$$172 \quad F(\lambda) = f_0 + f_1 \exp(-\psi\lambda) + f_2 \exp(-\gamma\lambda), \quad (12)$$

173 where we ignored rapid oscillations of $F(\lambda)$, which are due to gaseous absorbers. This is possible
 174 because $r_{p,s}(\lambda)$ is a continuous function, which acts as a filter of high frequencies. The coefficients in
 175 Eq. (12) are derived from the fit of $F(\lambda)$ calculated using the Santa Barbara DISORT Radiative Transfer
 176 (SBDART) code [12] to Eq. (12) in the spectral range 0.3-2.4 μm . They are given in Table 1. The
 177 calculations of $F(\lambda)$ have been performed at the parameters listed in Table 2 for the rural aerosol

178 model [13]. The spectral snow albedo needed as input for SBDART has been calculated assuming
 179 clean snow with the effective diameter of spherical ice grains equal to 0.25mm. Generally, the results
 180 are only weakly sensitive to the variation of the function $F(\lambda)$ [7]. We, therefore, assume solar flux
 181 independent from the location of the retrieval and from solar zenith angles.

182 **Table 1. The coefficients of approximation given by Eq. (12)**

f_0	f_1	f_2	ψ , 1/microns	γ , 1/microns
3.238e+1	-1.6014033e+5	7.95953e+3	1.778e+3	2.489e+1

183

184 **Table 2. The parameters of calculations performed using SBDART**

Parameter	Value
Water vapor column	2.085g/m ²
Total ozone column	350 DU
Tropospheric ozone	34.6DU
Aerosol optical thickness at 550nm	0.1
Altitude	825m
Solar zenith angle	60 degrees

185

186 *For the Case 1 snow*, the broadband albedo is calculated numerically using Eqs. (11), (1), (5), (12) in the
 187 spectral range 0.3-2.4 micrometers. Also other limits of integration can be used (say, to derive visible
 188 or near-infrared BBA).

189 *For the Case 2 snow*, the spherical albedo is known only for selected OLCI channels as derived from
 190 Eq. (9). Therefore, we use interpolation to get the spherical albedo between the measurement points
 191 needed for the evaluation of integral (11). For the spectral range below 865 nm, we use:

192
$$r_s = c\lambda^2 + b\lambda + a. \quad (13)$$

193 While for wavelength larger than 865 nm we use:

194
$$r_s = \sigma \exp(-\epsilon\lambda). \quad (14)$$

195 The coefficients (a, b, c) are found separately for the intervals 400-709nm and 709-865nm using the
 196 following wavelength triplets: (400, 560, 709nm) and (709, 753, and 865nm), respectively.

197 The coefficients (ϵ, σ) are derived from OLCI measurements at 865 and 1020nm at the value of
 198 $R_{meas}(1020nm) < 0.5$. Otherwise, Eq. (1) (and not Eq. (14)) is used at $\lambda > 865nm$ with the EAL derived
 199 from the value of spherical albedo at 1020nm.

200 Integral (11) for the spherical broadband albedo with account for Eqs. (12) - (14) can be evaluated
 201 analytically. The answer is:

202
$$\bar{r}_s(\lambda_a, \lambda_b) = \bar{r}_{s1}(\lambda_a, \lambda_1) + \bar{r}_{s2}(\lambda_1, \lambda_2) + \bar{r}_{sd}(\lambda_2, \lambda_b), \quad (15)$$

203 where

$$\begin{aligned}
 204 \quad \bar{r}_{sj}(\lambda_a, \lambda_b) &= a_j + (b_j K(\lambda_a, \lambda_b) + c_j L(\lambda_a, \lambda_b))/J(\lambda_a, \lambda_b), \\
 205 \quad \bar{r}_{sd}(\lambda_a, \lambda_b) &= M(\lambda_a, \lambda_b)/J(\lambda_a, \lambda_b), \\
 206 \quad J(\lambda_a, \lambda_b) &= f_0 j_0 + f_1 i_1(\psi) + f_2 i_1(\gamma), \\
 207 \quad K(\lambda_a, \lambda_b) &= f_0 k_0 + f_1 i_2(\psi) + f_2 i_2(\gamma), \\
 208 \quad L(\lambda_a, \lambda_b) &= f_0 l_0 + f_1 i_3(\psi) + f_2 i_3(\gamma),
 \end{aligned} \quad (16)$$

209

$$M(\lambda_a, \lambda_b) = \sigma(f_0 i_0(\epsilon) + f_1 i_0(\epsilon + \psi) + f_2 i_0(\epsilon + \gamma)).$$

210 Here the coefficients a_j, b_j, c_j are the same as presented in Eq. (13) with $j=1$ for the first spectral interval
 211 (0.3-0.709 microns) and $j=2$ for the second spectral interval (0.709-0.865 microns), $\lambda_a = 0.3\mu m, \lambda_1 =$
 212 $0.709 \mu m, \lambda_2 = 0.865\mu m, \lambda_b = 2.4 \mu m, J(\lambda_a, \lambda_b)$ is the integral given in the dominator in Eq. (11)
 213 (evaluated analytically with account for Eq. (12)) and

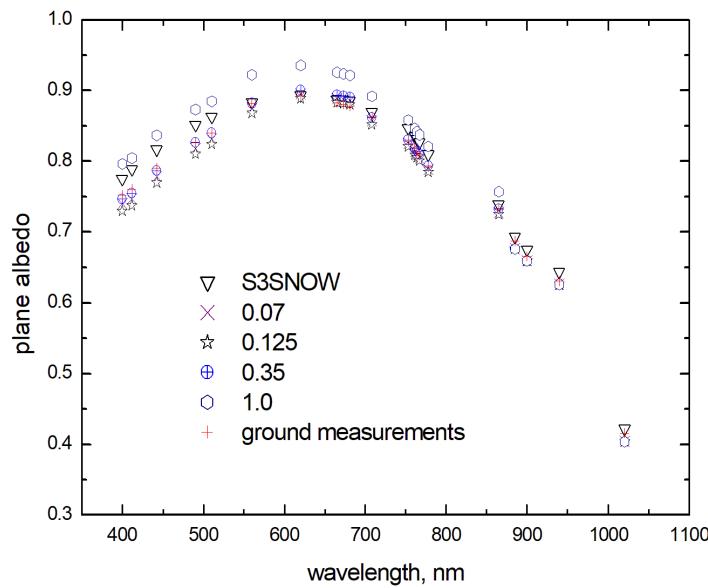
214 $j_0 = \lambda_b - \lambda_a, k_0 = (\lambda_b^2 - \lambda_a^2)/2, l_0 = (\lambda_b^3 - \lambda_a^3)/3,$

215 $i_1(v) = (\exp(-v\lambda_a) - \exp(-v\lambda_b))/v,$

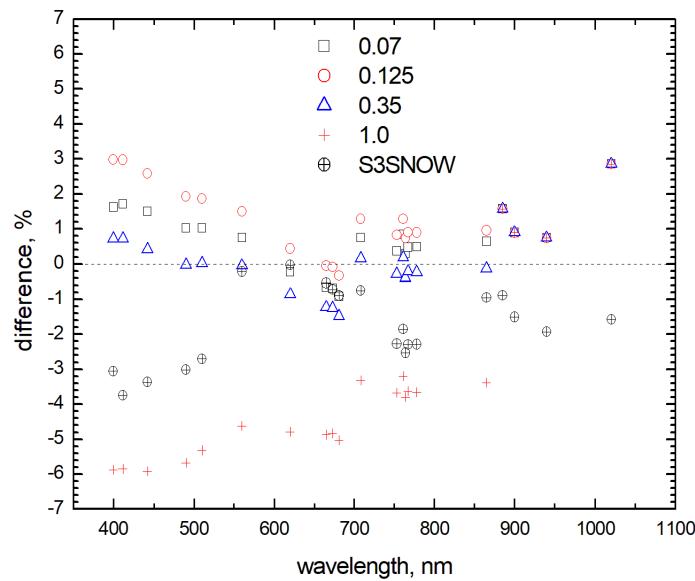
216 $i_2(v) = (\frac{1}{v^2} + \frac{\lambda_a}{v})\exp(-x\lambda_a) - (\frac{1}{v^2} + \frac{\lambda_2}{v})\exp(-v\lambda_b), \quad (17)$

217 $i_3(v) = (\frac{2}{v^3} + \frac{2\lambda_a}{v^2} + \frac{\lambda_a^2}{v})\exp(-v\lambda_a) - (\frac{2}{v^3} + \frac{2\lambda_b}{v^2} + \frac{\lambda_b^2}{v})\exp(-v\lambda_b).$

218 At the of $R(1020nm)$ equal or above 0.5, the analytical expression for the BBA can not be derived
 219 (because one accounts for Eq. (1) (not Eq. (13)) in Eq. (11)). Then the numerical integration procedure
 220 is followed.


221 The broadband plane albedo is calculated in a similar way as a broadband spherical albedo using
 222 Eq.(5) for the transformation of spherical to plane albedo.

223 This concludes the description of this new fast radiative transfer Snow and ICE surface albedo
 224 retrieval (SICE) that accounts for atmospheric scattering and absorption effects. The SICE algorithm
 225 can be considered as an update of the previous version of the algorithm (called S3Snow[6]) that
 226 appeared in the Snow Properties module of SNAP.


227 *2.2 Validation*

228 *2.2.1 Snow spectral albedo*

229 The validation of spectral albedo for the case of clean snow has been reported in [6], where a detailed
 230 description of the ground and satellite measurements, not repeated here, may be found. In the case
 231 of polluted snow, we follow a different procedure than that suggested in [6]. Here, we use the
 232 improved atmospheric correction, which explicitly accounts for molecular/aerosol light scattering
 233 and absorption effects. The results for the French Alps, Col du Lautaret validation site (45.041288N,
 234 6.410557E, 2100 m a.s.l) on April 17, 2018 (Fig.1a) confirm that the current SICE planar albedo retrieval
 235 has a higher accuracy as compared to the earlier S3Snow algorithm [6] for the cases studied. Also
 236 unlike the S3Snow retrievals, there is a possibility to vary aerosol load in the framework of the
 237 updated retrieval, which is currently not the case for S3Snow plane albedo retrieval results. As it
 238 follows from Fig.1b, the variation of AOT (500nm) in the range 0.07-0.35 does not change the plane
 239 albedo retrieval accuracy (above 3% for the case studied). Note that the AOT(500nm) obtained from
 240 the Copernicus Atmospheric Monitoring Service near-real-time forecast product
 241 (<https://www.ecmwf.int/en/about/what-we-do/environmental-services/copernicus-atmosphere-monitoring-service>) was 0.125 for the case studied. We conclude that the precise information on the spectral
 243 aerosol optical thickness is not needed for the accurate snow spectral albedo retrievals for the low
 244 aerosol load characteristic for the Col du Lautaret validation site located at 2100m a.s.l. [4]. It should
 245 be pointed out that the discrepancy of satellite and ground plane albedo measurements is not solely
 246 due to the retrieval but also partially due to surface spatial inhomogeneity (local scale effects vs much
 247 broader scale satellite pixel effects), time difference between satellite and ground measurements, and
 248 influence of 3-D effects from surrounding mountains.

249
250
251
252 Fig.1a The plane albedo of dust laden snow retrieved from satellite measurements and measured on
253 ground on April 17, 2018 at the Col du Lautaret validation site in the French Alps. In the
254 retrieval process, four values of aerosol optical thickness (AOT) at 500nm were applied (0.07, 0.125,
255 0.35, and 1.0). The retrievals using S3Snow are also shown.
256

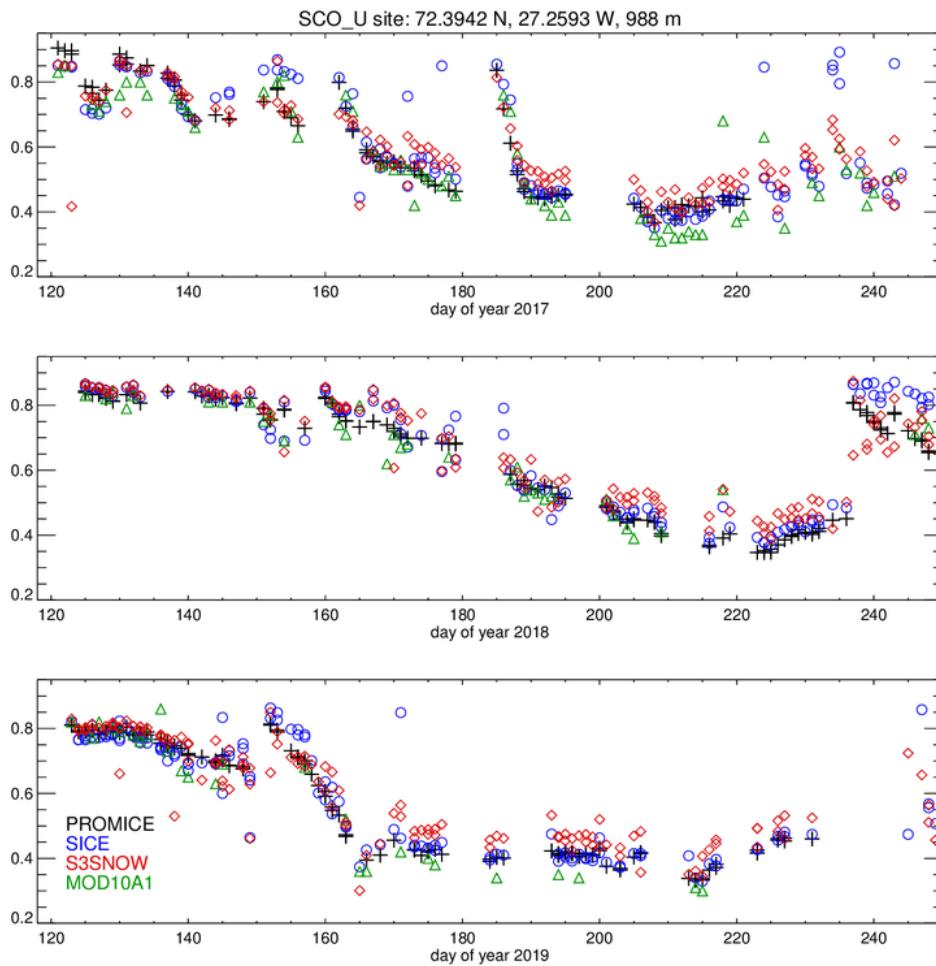
257
258 Fig.1b The differences in spectral plane albedo of dust laden snow retrieved from satellite
259 measurements and measured on ground on April 17, 2018 at the Col du Lautaret validation
260 site in the French Alps. In the retrieval process, four values of aerosol optical thickness (AOT) at
261 500nm in the framework of SICE have been assumed (0.07, 0.125, 0.35, and 1.0). The differences of
262 satellite retrievals and ground measurements of plane albedo using S3Snow are also presented.
263
264


265 2.2.2 *Snow broadband albedo*

266 We validate broadband albedo (BBA) measured in the 0.3-2.4 micron wavelength range using ground
267 measurements from fifteen Programme for the Monitoring Greenland Ice Sheet (PROMICE)
268 automatic weather stations described further in [6]. The closest hourly observations are considered
269 producing occasional more than one comparison each day for northern sites. A total of 4146
270 individual comparisons are made here. The PROMICE BBA data include a correction for
271 measurement platform obstruction of the radiometer field of view [14] that increases average
272 PROMICE BBA by 0.034. Clear sky conditions are estimated from downward longwave irradiance
273 data [6].

274

275 At the PROMICE SCO_U location (Figs. 2-3, Table 3) on the eastern ice sheet, where clear sky
276 conditions are common, we observe in three May – September years (2017, 2018, 2019) over a wide
277 (0.52) BBA range (from 0.85 indicative of dry snow cover and 0.33 when snow cover has completely
278 ablated to expose impurity rich bare ice) a very similar temporal pattern in the ground observations
279 and from the OLCI retrievals.


280

281

282 Fig. 2. The SCO_U PROMICE automatic weather station with radiometer on main station in
283 background. The photo is from 4 August, 2017 under typical late-ablation season surface conditions
284 with a surface comprised of mineral dust and biologically polluted bare ice as opposed to brighter
285 seasonal snow cover.

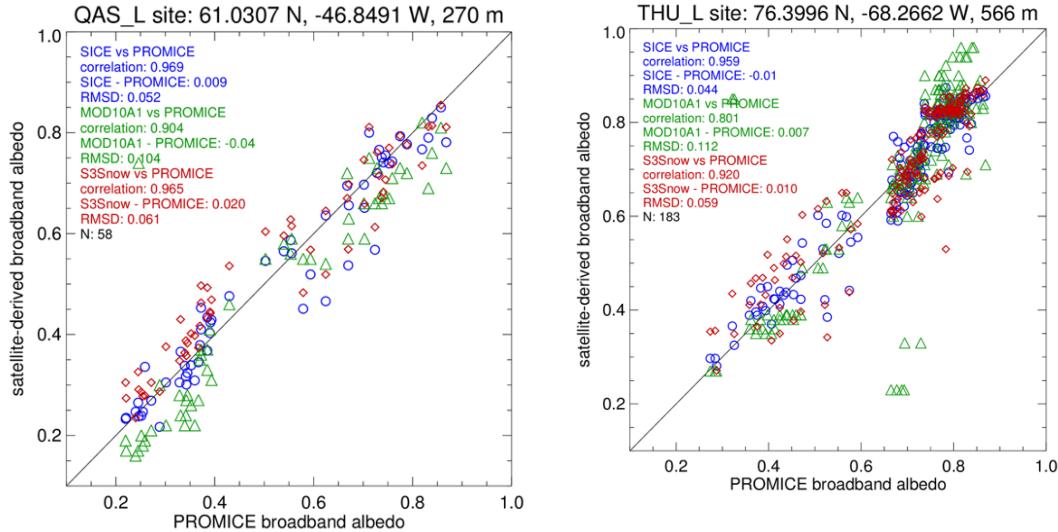
286

287
 288 Fig.3. Example of the broadband albedo (BBA) time series from the SCO_U PROMICE automatic
 289 weather station site (Table 3) in comparison to the BBA retrievals from the current retrieval (SICE),
 290 the earlier OLCI retrieval after [6] (S3SNOW) and for the NASA MODIS MOD10A1 product [15].
 291

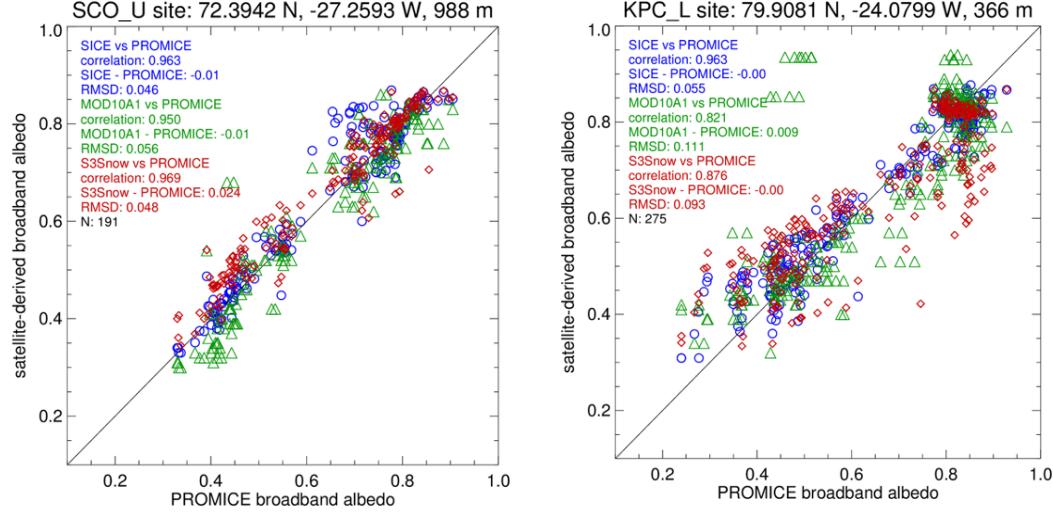
292 Among the fifteen PROMICE locations, spanning a wide spatial scale (2076 km north-south (18.9°
 293 latitude) and 2390 m in elevation), SICE BBA agreement is as high as is realistic to expect with
 294 unattended observatories spanning three years (Table 3). We find regression slopes averaging
 295 insignificantly from unity, an average correlation coefficient of 0.861 and an average root-mean-
 296 square difference (RMSD) of 0.072. The average bias (-0.045) being higher than one standard
 297 deviation (0.029) suggests the measurement frame correction (+0.034) may be counter - productive.
 298 Clearly, the results with low correlation coefficients (see, e.g., EGP site in Table 3) not always mean
 299 bad retrievals. This is especially the case, when the BBA variability at the site (e.g., at the PROMICE
 300 EGP site) is low. We point out that the average bias at the EGP site located at 2660m above sea level
 301 is equal to the average (-0.045) although the correlation coefficient is just 0.659. If we do not account
 302 for the PROMICE station frame correction, the bias is just -0.011 for this site, which is an excellent
 303 retrieval result. One may expect that the PROMICE station frame correction may depend on the site
 304 location and time of year. This variability is not accounted for in our validation scheme.
 305

306 The current approach, advanced from that reported in [6] by the improved atmospheric correction,
 307 has increased agreement with the PROMICE data, and an apparent accuracy that also exceeds that in
 308 the comparison with the NASA MODIS MOD10A1 albedo product (Figs. 4 – 5). Examples are made
 309 for the southern Greenland ice sheet QAS_L PROMICE location and the northwestern ice sheet
 310 THU_L PROMICE location (Fig. 4, right).
 311

312 Table 3. Validation statistics for broadband albedo at fifteen PROMICE Greenland ice sheet ground
 313 stations. Here, N is the number of closest hourly observations.


PROMICE station name	latitude, degrees north	longitude, degrees	elevation, m above sea level	regression slope	regression constant	correlation coefficient	mean SICE BBA-PROMICE BBA	RMSD	N
KPC_L	79.908	-24.080	366	0.828	0.147	0.958	-0.044	0.073	447
KPC_U	79.833	-25.163	865	0.768	0.191	0.800	-0.009	0.043	431
SCO_L	72.223	-26.818	459	1.071	0.000	0.958	-0.035	0.063	268
SCO_U	72.394	-27.259	988	1.061	0.011	0.971	-0.046	0.063	349
QAS_L	61.031	-46.849	270	1.017	0.017	0.972	-0.024	0.054	126
QAS_U	61.099	-46.833	621	0.987	0.143	0.865	-0.136	0.157	153
QAS_M	61.175	-46.820	892	0.842	0.130	0.961	-0.039	0.071	122
NUK_L	64.482	-49.538	527	0.584	0.190	0.743	-0.056	0.073	196
NUK_U	64.510	-49.271	1119	0.883	0.093	0.750	-0.016	0.103	192
KAN_L	67.095	-49.953	664	1.000	0.026	0.863	-0.026	0.038	194
KAN_U	67.000	-47.027	1842	0.462	0.455	0.686	-0.031	0.042	177
UPE_L	72.893	-54.295	211	1.465	-0.223	0.884	-0.044	0.089	241
UPE_U	72.887	-53.585	929	1.149	-0.021	0.886	-0.075	0.100	264
THU_L	76.400	-68.266	566	1.073	0.006	0.970	-0.051	0.069	346
THU_U	76.420	-68.146	761	1.053	-0.003	0.846	-0.035	0.066	329
EGP	75.625	-35.973	2660	0.591	0.369	0.659	-0.045	0.046	320
		average	859	0.927	0.096	0.861	-0.045	0.072	260
		st.dev.	620	0.248	0.161	0.106	0.029	0.030	102

314


315

316

317

318 Fig.4. Examples of satellite derived and ground observations of snow and bare ice albedo. The left
 319 figure includes both the S3 Snow and the current processing results for the site QAS_L. The
 320 comparison uses cases only when all retrievals are available, i.e. including those from MODIS
 321 MOD10A1. The right figure is the same except for the site THU_L.
 322
 323

324 Fig.5. Same as Fig. 4 but for the SCO_U location (also illustrated in Fig. 3) (left) and for a northeastern
 325 location (KPC_L).
 326

327 3. Discussion

328 Standard underlying surface albedo retrieval algorithms based on single view observations can be
 329 corrected for surface anisotropy effects using multiple day observations of reflected solar light for a
 330 given site to cover necessary illumination/ observation geometries needed for the respective
 331 integration procedures with respect to the corresponding zenith, viewing and relative azimuth
 332 angles. In our approach, we use the analytical relationship between the top-of-atmosphere reflectance
 333 and spherical albedo for clean snow underlying surface (Eqs. (1), (2)) in the near infrared (865 and
 334 1020 nm), where atmospheric contribution to the signal as registered on a satellite is small, to derive
 335

336 the snow spherical albedo from measurements at a fixed illumination/observation geometry.
337 Therefore, multiple day observations for the same site are not required and the snow albedo for a
338 given place can be derived in one hour or so after the satellite acquisition time. In the case of polluted
339 snow the spherical albedo is found from Eq.(9) for an assumed aerosol model. The technique also
340 incorporates the calculation of plane spectral and broadband albedo. We have found that the errors
341 of the Case 1 snow are usually in the range 1-2% in the visible as compared to the ground
342 measurements [6]. They can increase to 3-5% for the spectral albedo in the near IR and also for
343 polluted snow.

344
345 Water exists in three thermodynamic phases (liquid, solid, gas) both in atmosphere and underlying
346 surface. The separation of clean (Case 1) and polluted (Case 2) waters has been useful in oceanic
347 remote sensing using spaceborne observations. We show that a similar separation of satellite
348 retrievals for clean and polluted snow areas (Case 1 and Case 2 snow) useful in remote sensing of
349 snow from space. Actually, a similar separation of cases is of importance in cloud remote sensing,
350 where modern cloud remote sensing algorithms are based on the assumption of clean (Case 1) clouds.
351 The polluted (Case 2) clouds exist but up to now their study is much less advanced.

352
353 In this paper we propose fast snow albedo retrieval techniques both for Case 1 and Case 2 snow. The
354 results for the clean snow are more accurate and robust. The retrievals for the Case 2 snow are less
355 accurate and are based on the simplified atmospheric correction procedure specified in Eq. (9) and
356 general relationship between reflectance and albedo given by Eq. (10). We have found that influence
357 of the aerosol load on the retrieval of the snow surface albedo is weak in the case of small atmospheric
358 aerosol optical thickness characteristic for Arctic and alpine areas . As a matter of fact, Eq. (10)
359 performs well not only for snow but also for other types of weakly absorbing and strongly scattering
360 media such as clean and polluted bare ice. Therefore, the technique proposed here can be used to
361 study also the albedo of terrestrial bare ice surfaces as demonstrated in Fig. 3-5, where low albedo
362 values correspond actually not to snow but ice underlying surfaces.

363

364

365 **4. Conclusions**

366 Through comparison with independent ground observations, the proposed fast atmospheric
367 correction technique is shown to perform accurately in a range of conditions from a 2100 m elevation
368 mid-latitude location in the French Alps to a Greenland ice sheet network of 15 locations spanning a
369 2076 km north-south, 18.9 degrees latitude and 2390 m in elevation. It should be pointed out that
370 snow albedo satellite retrievals are often biased due to the *assumed* shapes of ice grains (spheres,
371 columns, fractal particles, etc.) used in the retrieval process. We have used the notion of the effective
372 absorption length in this work. It makes it possible to include all shape-dependent constants in the
373 value of EAL determined from the satellite measurements themselves. This reduces the snow grain
374 shape effect on the retrievals (at least in the OLCI spectral range). The atmospheric correction is
375 performed assuming the aerosol model and aerosol optical thickness ahead of retrievals. The
376 associated errors do not lead to considerable errors in the retrieved snow albedo in case of low
377 aerosol load as demonstrated in Fig.1.

378

379 The current approach, advanced from that reported in [6] by the improved atmospheric correction,
380 has increased agreement with ground observations, and an apparent accuracy that also exceeds that
381 of the NASA MODIS MOD10A1 broadband albedo product.

382

383 A next step is to process the full OLCI catalogue from Sentinel-3A and B satellites over 100% snow or
384 ice covered areas of our planet using this new algorithm. The product would offer the climate
385 research community a new enhanced quality snow and ice albedo product, which will lead to the
386 advancement of our knowledge of snow albedo effects on the terrestrial climate change [1, 2].

387 **Author Contributions:** Conceptualization, A.K., J. B.; methodology, J. B., A. K., A. S.; software, A. K., J. B., K.
 388 M.; validation, B. V., A. K., J. B., M. L.; formal analysis, A. K., A. S., J. B.; resources, J. B; data curation, J. B., K. M.,
 389 B. V.; writing—original draft preparation, A. K., J. B.; writing—review and editing, A. K., J. B., M. L., B. V., A. S.;
 390 visualization, A.K., J. B., supervision, M. K., J. B.; project administration, M. K., J. B.; funding acquisition, J. B., A.
 391 K.

392 **Acknowledgments:** Agency (ESA) studies; the Scientific Exploitation of Operational Missions (SEOM) Sentinel-
 393 3 Snow (Sentinel-3 for Science, Land Study 1: Snow), ESRIN contract 4000118926/16/I-NB and the ESRIN contract
 394 4000125043 - ESA/AO/1-9101/17/I-NB EO SCIENCE FOR SOCIETY. Additional support came from The Program
 395 for the Monitoring of the Greenland Ice Sheet (PROMICE), part of the Danish Energy Agency through the
 396 DANCEA program. The authors thanks M. Dumont and G. Picard for providing snow spectral albedo data used
 397 in this work for validation purposes and also V. Rozanov for providing data given in Table A1. The authors are
 398 grateful to the AERONET staff, PIs and site managers.

399 **Conflicts of Interest:** The authors declare no conflict of interest.

400 **Appendix. Atmospheric radiative transfer: simple approximations**

401 The top of atmosphere reflectance R_a for a clear atmosphere can be presented in the following way
 402 using the Sobolev approximation[16]:

$$403 \quad R_a = R_{ss} + R_{ms}, \quad (A.1)$$

404 where single scattering contribution

$$405 \quad R_{ss} = M(\tau)p(\theta) \quad (A.2)$$

406 and multiple light scattering contribution is approximated as

$$407 \quad R_{ms} = 1 + M(\tau)q(\mu_0, \mu) - \frac{N(\tau)}{4+3(1-g)\tau}, \quad (A.3)$$

408 where

$$409 \quad M(\tau) = \frac{1-e^{-m\tau}}{4(\mu_0+\mu)}, \quad N(\tau) = f(\mu_0)f(\mu), \quad (A.4)$$

$$410 \quad f(\mu) = 1 + \frac{3}{2}\mu + \left(1 - \frac{3}{2}\mu\right)e^{-\frac{\tau}{\mu}}, \quad m = \mu_0^{-1} + \mu^{-1}, \quad (A.5)$$

$$411 \quad q(\mu_0, \mu) = 3(1+g)\mu_0\mu - 2(\mu_0 + \mu). \quad (A.6)$$

412 Here, μ_0 is the cosine of the solar zenith angle (SZA), μ is the cosine of the viewing zenith angle
 413 (VZA), θ is the scattering angle defined as

$$414 \quad \cos \theta = -\mu_0\mu + s_0 s \cos \varphi, \quad (A.7)$$

415 φ is the relative azimuthal angle (equal to 180 degrees minus OLCI relative azimuthal angle), s_0 is
 416 the sine of the SZA, s is the sine of the VZA, τ is the atmospheric optical thickness, $p(\theta)$ is the phase
 417 function, g is the asymmetry parameter. It is determined by the following expression:

$$418 \quad g = \frac{1}{2} \int_0^\pi p(\theta) \sin \theta \cos \theta d\theta. \quad (A.8)$$

419 The approximate account for aerosol absorption effects is performed multiplying R_{ss} (see Eq. (A2) by
 420 the single scattering albedo ω_0 [17]. The accuracy of Eqs. (A1)-(A3) can be further improved using the
 421 truncation approximation as discussed in [16].

422 The transmission function $T(\mu_0, \mu)$ is approximated as follows:

$$423 \quad T(\mu_0, \mu) = t^m, \quad (A.9)$$

424 where t is calculated using the following approximation[16]:

$$425 \quad t = e^{-B\tau}. \quad (A.10)$$

426 Here,

$$427 \quad B = \frac{1}{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} p(\theta) \sin \theta \cos \theta d\theta \quad (A.11)$$

428 is the so – called backscattering fraction. The atmospheric spherical albedo r_a is found using the
 429 approximation proposed in [11]:

$$430 \quad r_a = \left(M e^{-\frac{\tau}{\varsigma}} + N e^{-\frac{\tau}{\kappa}} + D \right) \tau. \quad (A.12)$$

431 The coefficients of polynomial expansions of all coefficients ($M, N, D, \varsigma, \kappa$) in Eq.(A.12) with respect
 432 to the value of g are given in [11].

433 One can see that the reflection function depends on the atmospheric optical thickness, which can be
 434 presented in the following form:

435 $\tau(\lambda) = \tau_{mol}(\lambda) + \tau_{aer}(\lambda)$. (A.13)

436 The molecular optical thickness can be approximated as [18,19]:

437 $\tau_m(\lambda) = q\lambda^{-v}$, (A.14)

438 at the normal pressure p_0 and temperature t_0 . Here, $q = 0.008735$, $v = 4.08$, and the wavelength is

439 in microns. We derive the value of molecular optical thickness at another pressure level p using the

440 following expression: $\tau_{mol}(\lambda) = \hat{p}\tau_m(\lambda)$, where $\hat{p} = \frac{p}{p_0}$, p is the site pressure, $p_0 = 1013.25\text{mb}$. The

441 site pressure is calculated using the following equation: $p = p_0 \exp\left(-\frac{z}{H}\right)$. Here z is the height of the

442 underlying surface provided in OLCI files and $H=7.64\text{km}$ is the scale height.

443 It follows for the aerosol optical thickness (AOT)[4]:

444 $\tau_{aer}(\lambda) = \beta \left(\frac{\lambda}{\lambda_0}\right)^{-\alpha}$, (A.15)

445 where $\lambda_0 = 0.5\mu\text{m}$, the pair (α, β) represents the Angström parameters. We did not make an attempt

446 to derive the pair (α, β) over snow. These values must be assumed ahead of retrievals (e.g., using

447 aerosol climatology [20], ground measuremnets or aerosol forecasts). The statistical results for the

448 values α, β over various Greenland AERONET [21] stations are given in Figs. A1, A2. It follows that

449 over Greenland the value of $\beta = \tau_{aer}(\lambda_0)$ is in the range 0.02-0.12 on average (see Fig.A1). For our

450 BBA albedo retrievals reported in this paper we assume that $\beta = 0.07$ independently on location and time. The AERONET monthly statistics shows that α is in the the

451 range 1.0-1.6 over Greenland (see Fig. A2). Therefore, we assume the value of $\alpha = 1.3$ in our retrievals.

452 The phase function can be presented in the following form:

453
$$p(\theta) = \frac{\tau_{mol}p_{mol}(\theta) + \tau_{aer}p_{aer}(\theta)}{\tau_{mol} + \tau_{aer}}$$
, (A.16)

454 where

455
$$p_{mol}(\theta) = \frac{3}{4}(1 + \cos^2 \theta)$$
 (A.17)

456 is the molecular scattering phase function and $p_{aer}(\theta)$ is the aerosol phase function. We shall

457 represent this function as:

458
$$p_{aer} = \frac{1 - g_{aer}^2}{(1 - 2g_{aer} \cos \theta + g_{aer}^2)^{\frac{3}{2}}}$$
. (A.18)

459 Therefore, it follows for the asymmetry parameter:

460
$$g = \frac{\tau_{aer}}{\tau_{mol} + \tau_{aer}} g_{aer}$$
. (A.19)

461 The parameter g_{aer} varies with the location, time, aerosol, type, etc. We shall assume that it can be

462 approximated by the following equation:

463
$$g_{aer} = g_0 + g_1 e^{-\frac{\lambda}{\lambda_0}}$$
. (A.20)

464 The coefficients in this equation (as derived from multiple year AERONET observations over

465 Greenland, see Fig.A3) are as follows:

466
$$g_0 = 0.5263, g_1 = 0.4627, \lambda_0 = 0.4685\mu\text{m}$$
. (A.21)

467 The parameter B for the Henyey-Greenstein can be represented via the complete elliptic integral of

468 the first kind $K(g)$ as follows [24]:

469
$$B(g) = \frac{1-g}{2s(g)}$$
, (A.22)

470 where

471
$$s(g) = \frac{g}{2(1+g)K(g)/\pi-1}$$
, (A.23)

472

473

474

475

476

477

478 It follows from Eq. (A.24) that $K(0)=\pi/2$ and, therefore, $s(0)=1$, $B(0)=1/2$ as it should be for isotropic

479 (and Rayleigh) scattering. The function $s(g)$ can be approximated by the following analytical

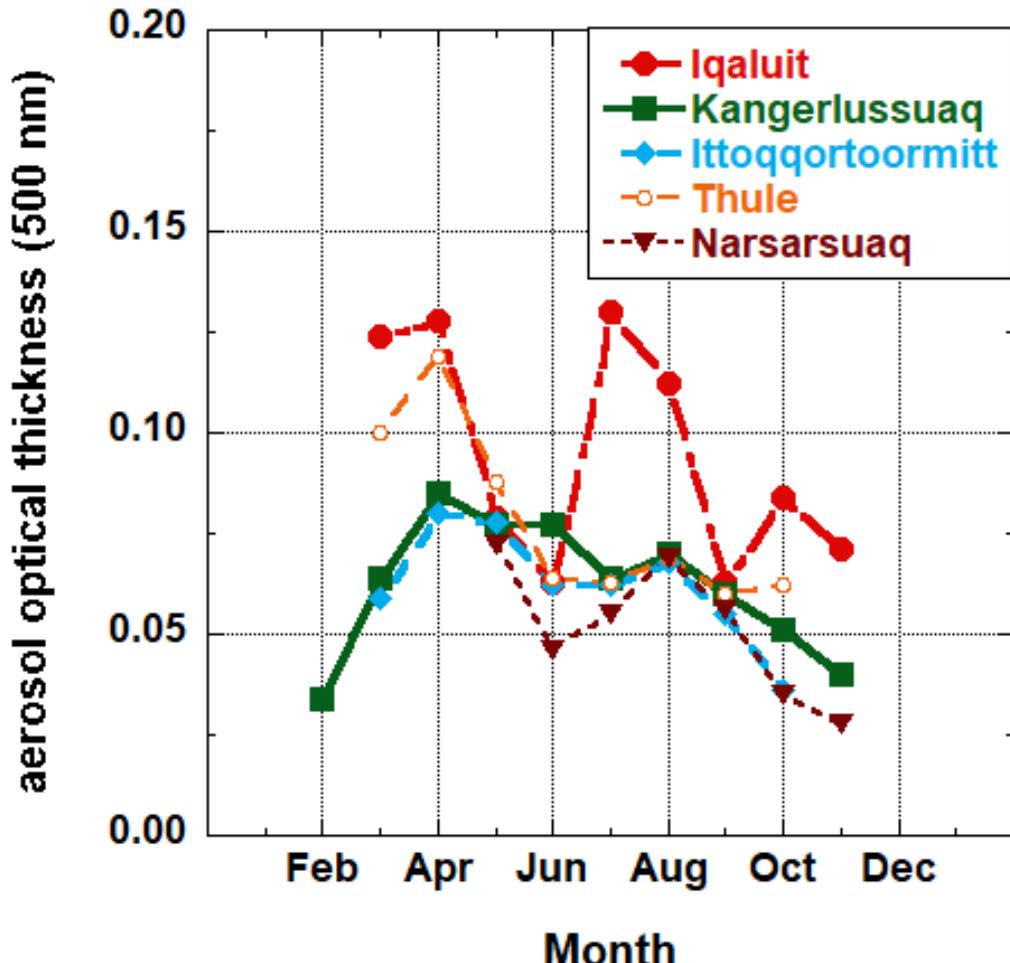
480 expression:

481
$$s(g) = v + \frac{\zeta}{1 + \exp((g - \zeta)/\kappa)}$$
, (A.25)

482 where $v = -6.7012$, $\zeta = 7.8049$, $\zeta = 2.1978$, $\kappa = 0.51656$. The accuracy of Eq. (A.25) is better than 1.5%
483 at $g \leq 0.9$.

484 It should be pointed that the system of equations given above enables the calculation of underlying
485 snow-atmosphere reflectance as a function of the aerosol optical thickness for a known value of the
486 snow spherical albedo (see Eq. (9)).

487 As far as gaseous transmission is of concern, we propose to use the following exponential
488 approximation [25]:

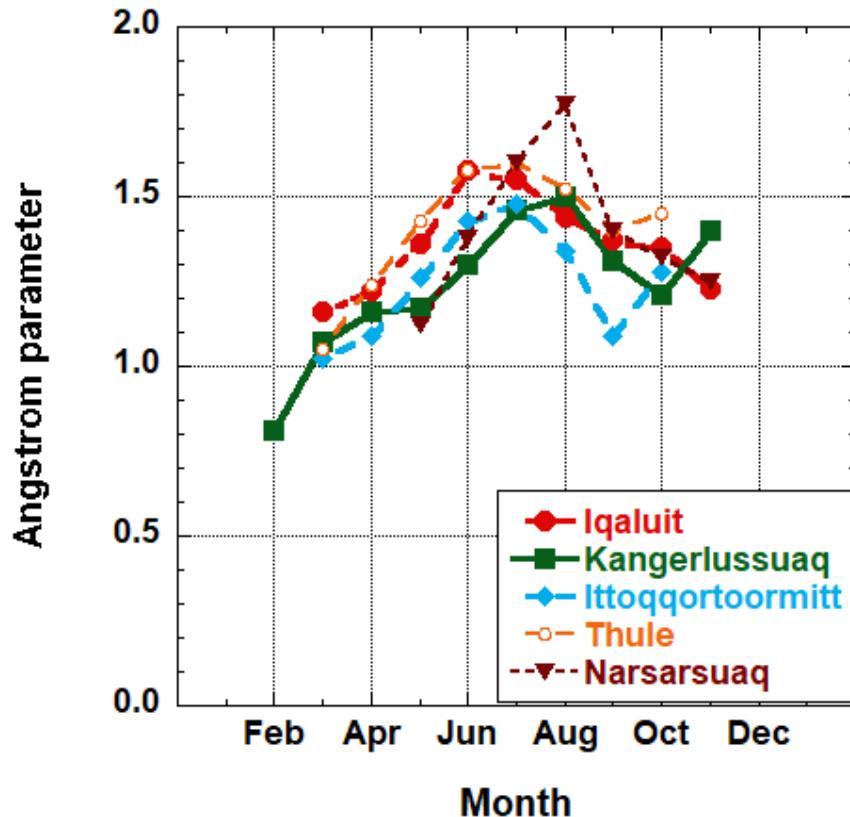

489
$$T_{\text{ozone}} = \exp(-m\gamma\tau_{\text{ozone}}), \quad (\text{A.23})$$

490 where

491
$$\gamma = \frac{c_{\text{O}_3}}{c}. \quad (\text{A.24})$$

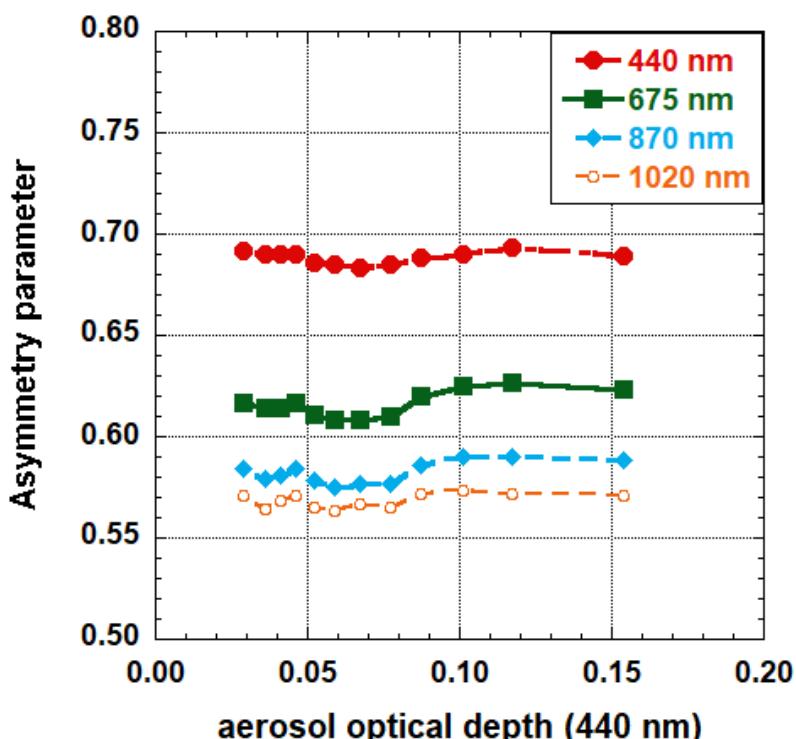
492 Here, c_{O_3} is the ozone concentration provided in the OLCI satellite file (with account for
493 units) and τ_{ozone} is the vertical optical depth of ozone at the concentration $c = 405 \text{ DU}$. In particular,
494 to transfer from OLCI O₃ units (kg/m^2) to Dobson Units (DU), we multiply OLCI O₃ concentration
495 by a constant factor equal to 4.6729×10^4 . Therefore, the total ozone load 300 DU corresponds to 6.42×10^{-3}
496 kg/m^2 . The values τ_{ozone} calculated for all OLCI channels at $c=405$ DU with account for the
497 instrument response function are given in Table A1.

498



499

500


501 Fig. A1. The statistical properties of the aerosol optical thickness at 500nm over various AERONET
502 stations in Greenland. The results are derived from Level 2 (Verison 3 [22]AERONET data) for years
503 2007-2017.

504

505
506
507
508
509

Fig. A2. The statistical properties of the Angstroem parameter for atmospheric aerosol over various AERONET stations in Greenland. The results are derived from Level 2 (Verison 3 [22]AERONET data) for years 2007-2017.

510
511
512
513
514

Figure A3. The asymmetry parameter climatology (2007-2017) for five considered sites in Greenland (version 3 [23]) data, Level 1.5 retrievals with the residual error <5%, and AOT (440 nm) <0.20). Total number of retrievals is 5316 divided in 12 groups with 443 asymmetry parameters in each group.

515 Table A1. The spectral dependence of ozone vertical optical thickness τ_{ozone} in terrestrial atmosphere
516 at the ozone load equal to 405 DU. The results are derived assuming particular shapes of temperature,
517 pressure, and ozone concentration vertical distribution as discussed in [25]. We have found that the
518 variation of profiles does not change the value of τ_{ozone} significantly.

	λ, nm	τ_{ozone}
520	400.00000	1.378170469E-004
521	412.50000	3.048780958E-004
522	442.50000	1.645714060E-003
523	490.00000	8.935947110E-003
524	510.00000	1.750535146E-002
525	560.00000	4.347104369E-002
526	620.00000	4.487130794E-002
527	665.00000	2.101591797E-002
528	673.75000	1.716230955E-002
529	681.25000	1.466298300E-002
530	708.75000	7.983028470E-003
531	753.75000	3.879744653E-003
532	761.25000	2.923775641E-003
533	764.37500	2.792211429E-003
534	767.50000	2.729651478E-003
535	778.75000	3.255969698E-003
536	865.00000	8.956858078E-004
537	885.00000	5.188799343E-004
538	900.00000	6.715773241E-004
539	940.00000	3.127781417E-004
540	1020.00000	1.408798425E-005
541		
542		

543

544 **References**

545 [1] Vinnikov, K. Y.; Robock, A., Stouffer, R.J., et al. Global warming and Northern Hemisphere sea ice
546 extent. *Science* **1999**, 286, 1934-1937.

547 [2] Hansen, J.; Nazarenko, L. Soot climate forcing via snow and ice albedos. *Proc. Natl. Acad. Sci.* **2004**,
548 101, 423-428, doi:10.1073/pnas.2237157100.

549 [3] Stroeve, J.; Box, J. E.; Wang, Z., Schaaf, C., Barrett, A. 2013: Re-evaluation of MODIS MCD43 Greenland
550 albedo accuracy and trends. *Remote Sensing of Environment* **2013**, 138, 199-214.

551 [4] Kokhanovsky and Tomasi, eds. *Physics and Chemistry of Arctic atmosphere*, **2020**. Berlin: Springer, in press.

552 [5] Schaaf, C. B.; Gao, F.; Strahler, A.H., et al. First operational BRDF, albedo and nadir reflectance products from
553 MODIS. *Remote Sens. Env.* **2002**, 83, 135-148.

554 [6] Kokhanovsky, A. A.; et al. Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour
555 Instrument. *Remote Sensing* **2019** 11(19), 2280; <https://doi.org/10.3390/rs11192280>.

556 [7] Dang, C.; Brandt, R. E.; Warren, S. G. Parameterizations for narrowband and broadband albedo of pure
557 snow, and snow containing mineral dust and black carbon. *J. Geophys. Res.* **2015**, 120, doi:10.1002/2014JD022646.

558 [8] Morel, A.; Prieur, L. Analysis of variations in ocean color. *Limnol. Oceanogr.*, **1977**, 22, 709-722.

559 [9] Mobley, C.D.; Stramski, D., Bissett, W.P.; Boss, E. Optical modeling of ocean waters: Is the Case 1 - Case 2
560 classification still useful? *Oceanography* **2004**, 60-67.

561 [10] Liou, K.-N. *An introduction to Atmospheric Radiation* **2002**, N. Y.: Academic Press.

562 [11] Kokhanovsky, A.; Mayer, B.; Rozanov, V.V. A parameterization of the diffuse transmittance and reflectance
563 for aerosol remote sensing problems. *Atmospheric Research* **2005**, 73, 37-43.

564 [12] Ricchiazzi, P. ; Yang, S. ; Gautier, C. ; Sowle, D. SBDART, A research and teaching tool for plane-
565 parellel radiative transfer in the Earth's atmosphere, *Bul. Am. Meteorol. Soc.* **1998**, 79, 2101-2114.

566 [13] Shettle, E. P.; Fenn, R. W. Models for the aerosols of the lower atmosphere and the effects of
567 humidity variations on their properties. Report AFGt-TR-79-O21 **1979**, Air Force Geophysical
568 Laboratory, USA.

569 [14] Aoki, T.; Kuchiki, K.; Niwano, M.; Kodama, Y.; Hosaka, M.; Tanaka, T. Physically based snow albedo model
570 for calculating broadband albedos and the solar heating profile in snowpack for general circulation models. *J.
571 Geophys. Res. Atmos.* **2011**, 116.

572 [15] Hall, D.K. & Riggs, G.A. 2016: MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. Greenland
573 coverage. National Snow and Ice Data Center, NASA Distributed Active Archive Center, Boulder, Colorado
574 USA. <http://nsidc.org/data/MOD10A1/versions/6>, accessed December 2016.

575 [16] Sobolev, V. V. *Light scattering in planetary atmospheres*, M.: Nauka, **1972**.

576 [17] Katsev, I. L.; Prikhach, A. S.; Zege, E. P.; Grudo, J. O.; Kokhanovsky, A. A.: Speeding up the aerosol optical
577 thickness retrieval using analytical solutions of radiative transfer theory. *Atmos. Meas. Tech.* **2010**, 3, 1403-1422,
578 <https://doi.org/10.5194/amt-3-1403-2010>.

579 [18] Leckner, B. The Spectral Distribution of Solar Radiation at the Earth's Surface-Elements of a Model. *Sol.
580 Energy* **1978**, 20, 143-150.

581 [19] Iqbal, M. An Introduction to Solar Radiation **1983**, Academic Press: New York, pp. 114-115.

582 [20] Kinne, S. The MACv2 Aerosol Climatology. *Tellus B*, **2019**, 71, 1-21 (data: [ftp://ftp-
projects.zmaw.de/aerocon/climatology/MACv2_2018/](ftp://ftp-
583 projects.zmaw.de/aerocon/climatology/MACv2_2018/)).

584 [21] Holben, B.N.; et al., An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET,
585 *J. Geophys. Res.* **2001**, 106, 12,067-12,097.

586 [22] Giles, D.M.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database
587 – Automated near real-time quality control algorithm with improved cloud screening for Sun
588 photometer aerosol optical depth (AOD) measurements, *Atmos. Meas. Tech.* **2019**, 12, 169-209,
589 <https://doi.org/10.5194/amt-12-169-2019>.

590 [23] Sinyuk, A.; et al. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and
591 comparisons to Version 2. *Atmos. Meas. Techniques* **2020**, to be submitted.

592 [24] Wiscombe, W.J.; Grams, G. W. The backscattered fraction in two-stream approximations, *J. Atmos.
593 Sciences* **1976**, 33, 2240-2451.

594 [25] Kokhanovsky, A.A.; et al., 2020: The retrieval of total ozone over snow using Ocean and Land
595 Colour Instrument, J, Quantitative Spectroscopy and Radiative Transfer**2020**, in preparation.

596

597