Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

Teamwork for Multi-Robot Systems in Dynamic Environments

Requirements and Solutions

Kurt Geihs
EECS Department, University of Kassel, Kassel, Germany
geihs@uni-kassel.de

Abstract: The increasing number of robots around us will soon create a demand for connecting these robots in
order to achieve goal-driven teamwork in heterogeneous multi-robot systems. In this paper, we focus on robot
teamwork specifically in dynamic environments. While the conceptual modeling of multi-agent teamwork has
been studied extensively during the last two decades, related engineering concerns have not received the same
degree of attention. Therefore, this paper makes two contributions. The analysis part discusses general design
challenges that apply to robot teamwork in dynamic application domains. The constructive part presents a
review of existing engineering approaches for challenges that arise with dynamically changing runtime
conditions. An exhaustive survey of robot teamwork aspects would be beyond the scope of this paper. Instead,
we aim at creating awareness for the manifold dimensions of the design space and highlight state-of-the-art
technical solutions for dynamically adaptive teamwork, thus pointing at open research questions that need to
be tackled in future work.

Keywords: Autonomous robots, Multi-robot systems, Teamwork, Coordination, Dynamic environments

1. Introduction and Motivation

Autonomous robots pervade our daily lives. Single autonomous robots for particular tasks are already accepted
and used in private, business, and public environments, for example in application domains such as warehouse
and transportation logistics, search and rescue, smart factories, space exploration, healthcare, smart public
transportation, precision farming, and domestic services. The list of application domains is almost endless
where robots play already or will soon play a major role.

It is an obvious thought that these robots around us will have to talk to each other and work collaboratively
as a team — a trend that one can compare with the evolution of distributed computing by connecting stand-
alone computers. Teams can be more than the sum of their parts. A multi-robot system is able to perform tasks
that exceed the capabilities of a single robot, not only due to workload sharing but also in terms of functionality.
Just like a team of human beings can achieve more than a single individual, the teamwork of autonomous
robots provides opportunities for robots to accomplish tasks that a single robot cannot do alone. In general,
teamwork in multi-robot systems exhibits potential benefits and complexities as any distributed computing
system.

Conceptual teamwork models for multi-agent systems were a subject of intense research approximately
20 years ago. Among the seminal papers at this time were [35], [60], [49], to name just a few out of many. See
the survey in [24] for more information on early research. While the subject since then has never vanished
from the research agenda, lately one notices an increased interest in robot teamwork. This is due to three
concurrent evolution threads. 1) Robot hardware including processing and communication capacity as well as
sensing and actuating technology has reached a level of maturity that enables the use of autonomous robots in
application domains such as Industry 4.0, autonomous driving, transport logistics, and many more. 2)
Algorithmic advances in artificial intelligence, data science and machine learning facilitate data-oriented
applications and thus autonomously acting devices. 3) Software engineering methodology has become
available for building dynamically adaptable and evolvable software for distributed computing applications
including advanced validation and verification techniques such as model checking for improving the reliability
and robustness of ICT systems. Last but not least, one should not forget that the general acceptance of robotic
helpers is increasing slowly but steadily in society, as demonstrated for example in the private sector by the

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:geihs@uni-kassel.de
https://doi.org/10.20944/preprints201911.0385.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

2

increasing number of partially autonomous robots for lawn mowing, vacuum cleaning, window cleaning, and
even for caretaking and medical applications.

Achieving effective multi-robot teamwork raises big research challenges. Our particular focus in this
paper is on the software that enables adaptive teamwork. Comprehensive support for designing the interaction,
coordination and decision-making is essential to exploit the potential of multi-robot teams. For example,
consider a large-scale emergency scenario where robots of different rescue organizations come together and
collaborate spontaneously to search and rescue victims. Clearly, in the first place, we need communication
channels between the robots — just like for the human rescue forces. Based upon the basic communication
capabilities coordination of task assignment, execution, and monitoring is required. In dynamic, error-prone
application environments support for adaptive task allocation and decentralized decision-making is crucial to
determine who does what and when in a team of autonomous robots. Heterogeneity of robot hardware and
software may further add to the complexity. When engineering a software framework for the teamwork of
autonomous robots all of these challenges, and more, have to be addressed and solved.

The goal of this paper is to explore the design space for the engineering of robot teamwork and to present
solution approaches for dynamic application scenarios. We highlight the spectrum of application requirements
and identify challenges for the engineering of teamwork solutions in multi-robot systems. This leads us to
research questions that future research needs to tackle.

The analysis part discusses general design challenges that apply to robot teamwork in dynamic application
domains. The constructive part presents a survey of existing engineering approaches for challenges that arise
with the dynamically changing runtime conditions.

This paper makes two main contributions: (1) Based on requirements originating from different
application domains, we explore the many dimensions of the design space for teamwork engineering models,
methods, and techniques, considering in particular dynamic, adverse runtime environments including noisy
sensors and unreliable communication channels. (2) We review existing engineering approaches for teamwork
focusing on dynamically changing runtime conditions. Thus, we elicit open research challenges that need to
be solved in order to support the systematic development of effective teamwork in multi-robot systems.

Our emphasis in this paper is on software for robot teamwork. We focus neither on the variety of
theoretical models for multi-agent systems nor on mechatronic and hardware design issues. Section 2 presents
definitions and thus clarifies the used terminology. This is necessary because there is no general agreement on
the terminology in the wider robotic community. In Section 3 we present two typical scenarios that show the
breadth of requirements for robot teamwork. Section 4 discusses general design challenges, while Section 5
presents potential solutions and open research questions. Section 6 concludes the paper.

2. Definitions

Let us first briefly define the basic terminology used in this paper. This will help to elaborate on the design
dimensions for robot teamwork.

A robot is a programmable machine capable of carrying out a complex series of actions automatically’.
An autonomous robot is capable of perceiving its environment through sensors, reasoning about the gained
information, making decisions accordingly, and acting upon its environment through actuators, all without
human intervention. These capabilities are also commonly associated with the term agent whereby an agent is
considered a more general term, i.e., a robot is a special kind of agent that is realized as a mechatronic construct.
A robot may adopt a certain role based on its capabilities. It executes tasks that are described in a task plan.
For example, in an autonomous driving traffic scenario, an emergency vehicle has a role that is different from
regular vehicles. It has specific capabilities and rights and executes tasks such as “Switch on the siren and
notify all regular vehicles at an intersection to make way.”

According to Farinelli et al. [24], a multi-robot system is a group of robots operating in the same
environment. The authors point out that there are many different kinds of multi-robot systems. Their taxonomy

! The Oxford English Dictionary, Oxford University Press

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

3

is based on the two general dimensions Coordination and System. The Coordination dimension is subdivided
into Cooperation (Do the robots cooperate to solve a problem?), Knowledge (How much knowledge do the
robots have about each other?), Coordination (How much coordination is enforced?), and Organization (What
kind of decision structure does the multi-robot system employ?). The System dimension consists of
Communication (What kind of communication mechanisms and protocols do the robots use?), Team
Composition (Are the robots homogeneous or heterogeneous?), System Architecture (Does the collective as a
whole deliberately cope with an unanticipated problem or just the directly affected robots), and Team Size
(How scalable is the system in terms of number of robots?). For a more detailed discussion, we refer the reader
to the original publication [24].

Specifically, our emphasis in this paper is on multi-robot systems consisting of autonomous robots that
collaborate in order to achieve a common global goal, perhaps in addition to their own local goals. We call
such a collective of collaborating robots a multi-robot team (MRT) or multi-robot coalition. In dynamic and
unpredictable environments, roles and tasks are allocated dynamically to the members of a MRT according to
their capabilities and current situation [32]. This allocation has been formally modeled and analyzed as an
optimization problem using various optimization techniques [44].

From a conceptual modeling perspective, a MRT is a multi-agent system that has a physical representation
with specific properties determined by the mechatronic nature of the agents. A swarm of robots [11] is an
extreme example of teamwork with very specific characteristics. Typically, the swarm members are rather
simple devices with only basic sensing and actuation capabilities and very limited autonomy. Swarms are not
considered explicitly in this paper. The scenarios described in the following section will make it clear what
kind of robotic applications and teams of autonomous robots we are aiming at primarily.

The main focus of our own research is achieving adaptive goal-driven teamwork in a group of autonomous
robots. Thus, according to the taxonomies in [24] and [21], we are concerned only with cooperative MRTs,
consisting of robots that are aware of their teammates. How cooperation and awareness are achieved may
differ.

Since teamwork is the main subject of this paper, we should briefly discuss the related terminology for
characterizing the type of interaction that the robots employ to achieve teamwork. Unfortunately, we have to
point out that there is neither standardization nor common agreement on the definitions of these terms, i.e.
different authors use different connotations. Parker [50] differentiates between four types of interaction styles:

Collective Entities are not aware of other entities on the team, yet they do share goals, and their
actions are beneficial to their teammates.

Cooperative Entities are aware of other entities, they share goals, and their actions are beneficial to
their teammates.

Collaborative Robots have individual goals, they are aware of their teammates, and their actions do
help advance the goals of others.

Coordinative Entities are aware of each other, but they do not share a common goal, and their actions

are not helpful to other team members.

For more information and examples, we refer the reader to the original paper [50]. Here it should suffice
to note that our focus in respect to goal-driven teamwork is on the two interaction styles cooperative and
collaborative. We rule out the other two because they lack properties that we consider essential for teamwork
in a MRT: collective lacks awareness for other teammates, and coordinative lacks a common team goal and
robots do not act together as a team.

Clearly, as stated by Parker, there is no sharp boundary between the two interaction styles cooperative
and collaborative. For the sake of clarity and simplicity, we view the two terms as synonyms2 in the following
and do not differentiate between the two styles, but combine and denote them as collaborative interaction. It
is important to note here that a collaborative interaction style does not determine immediately the choice of
system architecture, teamwork programming paradigm, communication protocol, decision-making and
agreement protocol, etc. We will come back to this in Section 5.

2 As a side remark: The Merriam-Webster dictionary lists both words as synonyms, see https://www.merriam-webster.com.

https://www.merriam-webster.com/
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

We already mentioned that our viewpoint of robot teamwork is closely linked to mutual awareness in the
robots, i.e. teammates have — in addition to their local knowledge — some knowledge about their colleagues in
the team. This kind of awareness often, but not necessarily, implies the provision of a shared global knowledge
base for the entire team. The global knowledge base, which could be implemented as a distributed replicated
knowledge store, contains the contributed individual and then fused perceptions of the state of the execution
environment. In many works, the individual local view of a robot is called local world model, while the shared
team knowledge base is called a shared world model [46].

3. Scenarios

In this section, we present two application scenarios that are characteristic for teamwork in dynamic MRTSs.
The scenarios are taken from two application domains that currently are receiving increased attention in the
general public. We will use them as running examples to elicit typical design requirements and to illustrate
our presentation throughout the paper. Besides these two scenarios, we occasionally refer to robot soccer as
an example of teamwork in a highly dynamic environment. This is based on our experiences with the RoboCup
competition. We have participated successfully with a team of soccer robots in tournaments of the RoboCup
Middle Size League’. Our team is called Carpe Noctem Cassel. The robot hardware and software have been
designed and implemented completely by ourselves. Robot soccer is not only a lot of fun but poses challenging
problems for teamwork from a research perspective.

3.1. Industry 4.0

A popular definition says4: “Industry 4.0 refers to the fourth industrial revolution ... <where> the Internet of
Things and Services is becoming an integral part of manufacturing”. This implies that not only autonomous
robots and intelligent machines share information and self-organize their collaborative production work but
also workpieces, components and products will make available their properties, requirements, and status to
the production facilities and enterprise IT systems.

Let us consider the following scenario: An autonomous transport vehicle in an intelligent factory breaks
down and its load has to be shifted automatically to one or more (autonomous) replacement vehicles that will
finish the transportation job. Obviously, there is a variable number of agents involved, i.e. the broken transport
vehicle, several transported items, a mobile robot with an arm to move items, and one or more replacement
vehicle(s). Let us assume that all these participants have some processing and communication capabilities.
The transported items know where to go and the replacement vehicles will take them to their destination. Thus,
the participants in this scenario form a temporary team, also called coalition [50], whereby the size of the team,
i.e. the number of participants, is unknown at design time. From the perspective of the application designer,
this is called an open team or open coalition. The duration of the coalition in this specific example is the time
it takes from the breakdown of the vehicle to the delivery of the items at their intended destinations.

A few more constraints are typical for Industry 4.0 scenarios. We can assume that all autonomous robots,
as well as the ‘intelligent’ transport items, are homogeneous from the viewpoint of the software design, i.e.
their coordination software is based on a common software framework that is the foundation for the teamwork
application. Moreover, all team members are familiar with the specific execution environment and aware of
the location, i.e. they have some kind of shared understanding of a map of the factory and — perhaps with the
exception of the transported items — means to determine their location within this map. Also, they are familiar
with the types of agents they might encounter in their environment. This might include human workers and
operators. Their integration into the automated production scenarios is a research field on its own since it poses
many difficult man-machine interface challenges whereby the safety of the “human in the loop” is of
paramount importance.

3 http://www.robocup.org/leagues/6
4 https://english.bdi.eu/article/news/what-is-industry-40

http://www.robocup.org/leagues/6
https://english.bdi.eu/article/news/what-is-industry-40
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

3.2. Autonomous driving

An autonomous car may not be called robot by most people, but actually it satisfies the definition given above,
i.e. it is capable of perceiving its environment through sensors, interpreting the gained information, making
navigation decisions accordingly, and acting upon its environment through actuators, all without human
intervention. Generally, we also assume that an autonomous vehicle is able to communicate with other
equipped cars (car-to-car) and with the traffic infrastructure (car-to-infrastructure). Although the general
acceptance and adoption of autonomous driving is still unclear and probably several years away, many believe
that it has the potential to be a disruptive innovation with major implications for society”.

Let us consider the following scenario: Autonomous cars coordinate their passage through a road
intersection without traffic signs or traffic lights (i.e. a right-before-left intersection) while an (autonomous)
ambulance car with priority approaches the intersection. As in the previous scenario, the number of participants
in the coordination coalition is not known at the design time of the software. In fact, it is difficult to determine
the size of the coalition because not only the cars that are at the intersection but also the cars behind them, the
approaching ambulance vehicle, other unequipped cars and motorcycles, as well as bicycles and pedestrians
are potential members of such an open coalition.

Likewise, the duration of the coalition is unclear and raises the question when does the membership in
such a dynamic coalition begin and when does it end. Certainly, this question relates to the time that it takes
to pass the intersection and leave it behind. Consequently, team membership depends on the position and
driving direction of agents. Agents that have passed the intersection are out of the game.

The assumptions on the communication properties in such a dynamic environment differ from those in the
previous example and raise questions such as: Car-to-car broadcast may be available but does it reach all
involved members of the coalition and how reliable are the communication channels? How would we address
the temporary team as a whole? How would we address individual team members whose identity is a priori
unknown? Most vehicles will have a license plate whose data could perhaps be converted to some kind of
unique address. And how do we — if at all — integrate into an open coalition unequipped traffic participants
that do not have the same kind of communication capabilities, or more precisely, that will have only visual
and acoustical communication facilities as used by drivers of unequipped cars and motorbikes, riders of
bicycles, and pedestrians. Thus, the heterogeneity of the team is inherent, members may have different
properties and capabilities, and they don’t know each other in advance. As to the knowledge about the
environment, participants can be assumed to have some understanding of the location and own position, but
otherwise and contrary to the first scenario the environment may be unknown. All of these requirements need
particular consideration.

A special role in this scenario plays the ambulance vehicle. Its appearance at the intersection completely
changes the coordination situation and requires an immediate behavior adaptation of all other agents in the
coalition. It would be very helpful if the ambulance could broadcast its route across the intersection to the
other participants.

As before, the safety of all involved agents is of paramount importance. In the first place, this demands
correctness and robustness of the team coordination plans and their execution. This is a tough challenge
considering potentially impaired communications and unreliable, distorted sensor input. Clearly, autonomous
cars will need additional emergency-avoiding mechanisms on top of and independent from their autonomous
driving features, such as collision avoidance and automatic brake systems. Moreover, issues such as the
privacy of driver-related data may add to the complexity of the solution.

5 https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-
the-road

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

6

4. Design challenges

In this section, we discuss the spectrum of design concerns that apply to dynamic multi-robot teams in different
application scenarios. The order of the following subsections is more or less arbitrary and does not imply any
kind of priority.

Dynamic coalitions: In open MRTSs in dynamic environments where the team members are not known a
priori at design time, such as the ones described in the examples above, we need support for establishing a
temporary team membership. Participants form temporary coalitions in order to solve a problem and achieve
a common goal. A traffic intersection is an example of a short-lived coalition with continuous team
reconfiguration, while the Industry 4.0 example above would probably imply a longer lasting coalition. Only
members of a coalition should be involved in the teamwork interactions and agents outside of the coalition
should not disturb it. This requires that all agents know precisely about their membership. Moreover, it may
require security measures to protect the interactions of a team.

Organizational structure: The decision-making in a MRT can be organized according to three basic
structural principles, i.e. centralized, hierarchical, and distributed. In a centralized structure, decisions are
made by a central leader or controller. Clearly, such a structure suffers from the vulnerability of a central point
of failure and the potential performance bottleneck. In a hierarchical structure, decisions are made at different
levels by a hierarchy of leaders that have decision authority according to their rank. Such a structure is more
robust than a centralized one because it can potentially react faster to “lower level” events and tolerate partial
failures. Its drawback is the incurred high organizational overhead. In a distributed structure, there is a range
of techniques for team decision-making. We assume that all team members autonomously perceive their own
situation and the state of the surrounding execution environment. Moreover, we assume that team members
are able to communicate and exchange information with their teammates. Then team decisions can be taken
based on different kinds of voting schemes, auctions, games, and more. The reader is referred to [33], [13] and
[1] for detailed discussions of organizational structures and decision-making in multi-agent systems.

A distributed decision structure is an obvious choice if we are concerned about the reliability of the
individual robots and the reliability of the communication network. Likewise, if we deal with temporary
coalitions in highly dynamic environments where swift decisions are required, such as in the autonomous
driving scenario, there will be no time for the execution of a time-consuming leader election algorithm or any
other costly algorithm for building an organizational structure. Thus, a distributed structure is most appropriate
in this case.

Distributed decision-making: Teams need to take team decisions. For example, team members need to
agree on the position of some object or on the allocation of tasks to team members. Decisions are made based
on the given team plan and based on observations about the current context. Generally, decision-making
happens in five steps:

1. agents collect relevant data by observing the environment and their own status;
2. agents form their own opinion based on the outcome of step 1;

3. agents propose their own opinion by replicating it to all team members;

4. the team discusses and resolves conflicting opinions;

5. the team takes a joint decision.

In terms of replication and coordination protocols, there is a choice of protocols depending on the
application needs. This is a concern in particular if the communication overhead counts or communication is
unreliable. The application developer will need to evaluate and judge the required level of agreement for the
decision result as well as the affordable coordination overhead and time.

Both examples in Section 3 involve team decisions. Clearly, the autonomous driving scenario is more
demanding because decisions need to be taken very fast in a dynamic short-lived coalition. Since safety
concerns are paramount, a strict consensus is required for the team decisions. This implies the need for strict
consistency in the collective perception of the locations and intentions of unequipped traffic participants.

Adaptive task allocation: Dynamic environments may not only require dynamic teambuilding but also
the dynamic allocation of tasks to individual team members. A good example is robot soccer. A soccer team

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

7

continuously needs to be aware of the game situation which may change instantaneously. Thus, tasks such as
defending, attacking the ball, dribbling, blocking an opponent, etc. need to be assigned dynamically based on
conditions such as whether the team possesses the ball, proximity of robots to the goal, position of the ball,
distance to opponents, etc. Clearly, dynamic task allocation is a team decision where all team members should
agree on their current duties. However, in the Industry 4.0 scenario task allocation will typically be static.

Robustness: The lack of robustness in dynamic team coordination may be due to various technical causes.
Communication links may be unreliable, i.e. different communication technologies and conditions in the
runtime environment may lead to message loss and network partitions such that standard network and transport
layer protocols cannot provide a guaranteed error-free service. Individual robots may move out of
communication range and be temporarily unreachable. This has implications for the design of the application
level protocols. Centralized configurations are not appropriate in this case since a single point of failure and
performance bottleneck can severely hinder the teamwork and make the whole MRT useless.

Likewise, sensors of team members may deliver different values for the same environment variable. This
raises the question of what level of agreement the application requires for collective perceptions and whether
the fusion of different types of sensor information can help in such a situation to improve the quality of the
information in the shared world model. The amount of overhead for achieving reliable sensor information and
consensus building may be prohibitive in very dynamic environments where swift decisions are more
important than lengthy computation and communication activities.

Unanticipated adaptation: A Kkey ingredient in the robust coordination of a MRT in dynamic
environments is the adaptation of the agent behavior to unforeseen situations. Thus, the team as a whole should
be able to evolve its team plan as well as the plans of the individual team members based on e.g. input from
other agents or machine learning techniques. In general, unanticipated adaptation is a challenging problem
[38], [39], and most adaptive systems assume that the adaptation state space is known completely at design
time [25].

For example, if a new product is to be produced in a smart factory, new behaviors may be required for the
robots involved in the production process. Therefore, it must be possible that a product, e.g. using a smart tag,
will tell the driverless autonomous transport system and the manufacturing station a new behavior at runtime.
The new behaviors would then be integrated into the existing behavior plans of the robots. This requires a
common language with clearly defined semantics as well as some form of shared knowledge base in order to
make such an unanticipated adaptation happen. Besides, processing and communication overheads of the plan
evolution must be acceptable with respect to the capacities of the robots and the timing requirements of the
application.

Reactivity: Timing constraints can have a substantial effect on team interactions. RoboCup soccer is a
very good example. The game situation in the Middle Size League changes very quickly when robots kick or
intercept the ball or when the ball bounces back from the goalpost. Therefore, there is no time for extensive
computations and coordination protocols. Swift reactions within seconds are much more important for
successful teamwork than precision. This has direct influence on the software and protocol design.

Heterogeneity: Heterogeneity in a MRT may refer to the hardware and software features of the individual
team members. Different application domains require different robot functionalities. Thus, capabilities related
to robot mobility (e.g. static, wheels, legs, aerial), sensors (e.g. optical, acoustical, temperature, air quality
parameters, laser, lidar, infrared, etc.) and actuators (e.g. arm, drill, kicker, extension rails, etc.), compute
power, storage capacity, operating system software, communication type and range (e.g. WiFi, Bluetooth,
LoRaWAN), access to cloud computing resources, and many more will be different for different robot types.
In a smart factory, the degree of heterogeneity will probably be limited and known in advance at design time,
while in autonomous driving scenarios we cannot anticipate completely what kind of traffic participants appear
and what their specific properties and capabilities are.

From the perspective of teamwork, robots in a team need to be capable of interacting with other robots.
Not only a common communication architecture has to be in place, but also we need team-wide understood
application level protocols for information exchange, coordination, and decision-making.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

Programming: In order to ease the modeling and implementation of executable plans for robot activities
Domain Specific Languages (DSL) have been proposed. A DSL is a computer programming language of
limited expressiveness focused on a particular domain [26]. The “limited” in this definition should not be seen
as a negative point; instead, it signals that a DSL is targeted at a specific application domain. Typically, a DSL
for developing plans for robots consists of two parts, i.e. a modeling language and an associated execution
engine. While there are a number of DSLs available for programming single robots (e.g. [64], [41], [62], [37],
[20], [6], [22]), only a few DSLs explicitly address teamwork for multi-robot systems (e.g. [66], [59]). We
claim that the complexity of teamwork in dynamic environments requires a high-level abstraction, i.e. a DSL
that enables the developer to concentrate on the teamwork behavior of the distributed robot system. Whether
we need different teamwork DSLs for different application domains is an open question. Ideally, a single DSL
would be suitable for programming a wide spectrum of teamwork scenarios in order to enable reuse of models
and development know-how.

Moreover, MRT plans specified in a DSL should lend themselves to automated verification of desired
MRT properties, such as safety, fairness, freedom from deadlocks and livelocks, no starvation, etc. Preferably,
the verification component should be part of an integrated development environment for teamwork plans.

Human in the loop: Even if a team of robots is able to operate autonomously and perform application
tasks without human intervention, experience with self-adaptive applications has shown that the human user
does not always appreciate being out of the loop [29]. Self-adaptive systems may fail to meet user expectations,
and autonomous actions may be inappropriate in certain user situations. In other words, the user wants to stay
in control in certain situations, or even more important, in safety critical application domains such as
autonomous driving the user must be able to override automatic decisions.

This automation paradox, also called the irony of automation [29], has been known since automated
control systems took over tasks that were previously carried out by human operators. Psychologists identified
human contribution in automated systems not less but more important. The more advanced the automated
system is the more demanding is the interaction with the human user. In case of failures or irregular conditions,
humans should still have a chance to intervene. Clearly, this general insight related to automation applies also
to teams of autonomous robots, especially if the MRT may self-adapt its plans to situations that the designer
did not anticipate.

More socio-technical aspects: In addition to the Human in the loop aspect, concerns about the social
embedding of a MRT application solution arise when a MRT operates in a dynamic environment where users
and a MRT may interact or interfere. Most of the concerns are of a general nature for adaptive systems, such
as transparency of decisions, trust in technology, fairness, privacy of context information, liability, and more.
A team of autonomous robots is a collective adaptive (distributed) system which makes it inherently more
difficult to find the right answers to these socio-technical design questions. While such concerns are less (or
even not at all) relevant in the presented Industry 4.0 and robot soccer scenarios, they play a crucial role in the
acceptance of autonomous driving technology.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

5. Engineering Viewpoint

In the previous chapter, we discussed general requirements and design concerns for teamwork in multi-robot
systems with a focus on dynamic environments. In this chapter, we concentrate on the key engineering
challenges from a software developer’s point of view, and we review solutions that have been presented in the
literature. The reader should note that we do not intend to present a complete review of the vast spectrum of
engineering challenges for multi-robot teamwork. Instead, we focus on those aspects that are specifically
related to dynamic environments where team composition, task allocation, and networking conditions are all
subject to continuous changes. The key question here is: What kind of mechanisms are suitable for multi-robot
teams in order to cope with these changes?

5.1. Model-Driven Engineering

The complexity of teamwork in multi-robot systems in dynamic and adverse environments requires software
architectures and integrated toolchains that support and ease the entire development process. Model-driven
engineering (MDE) allows developers to shift their focus from implementation to modeling in the domain
knowledge space. MDE is expected to promote separation of concerns, efficiency, flexibility, and evolution
in application development. From a practical point of view, MDE demands a toolchain that not only automates
the required model transformations, but should also include simulation as well as formal validation and
verification tools. Depending on the application domain the MDE toolchain for robots could embrace available
development tools and system infrastructures, such as the Robot Operating System6 and the Gazebo simulator’.

At the level of the platform-independent model, an MDE approach for MRT development requires an
appropriate high-level modeling language. Typically, this language is a domain-specific language specifically
targeted at MRT in particular application environments. Let us look at three examples, i.e. STEAM, BITE and
ALICA, whereby we explain ALICA in greater detail in order to provide the reader with a more concrete
understanding about the nature of such models.

Shell for TEAMwork (STEAM) [60] is a modeling approach for implementing teamwork. STEAM builds
on two well-known teamwork theories, i.e. Joint Intentions Theory [41] and Shared Plans Theory [34], and
tries to combine their benefits in order to achieve a coordinated behavior of the team members. In particular,
STEAM assigns sub-teams of agents to a hierarchical shared plan structure. Agents need to establish a joint
intention before acting together. This makes the teamwork susceptible to degraded or failed communication
links.

The Bar Ilan Teamwork Engine (BITE) by Kaminka and Frenkel [36] divides the team modeling into
three structures: Firstly, a tree-like structure similar to hierarchical task networks [61], which represents the
global execution plan of the team. A second structure describes the organizational hierarchy of sub-team
memberships. This results in a hierarchical task structure that provides a team-wide allocation of robots and
sub-teams to behaviors. The third structure describes the social interaction behaviors, i.e., explicit
communication and coordination activities between agents. A major drawback of BITE is the fact that it
requires a successful negotiation before any physical action can take place. As a result, BITE is not appropriate
for domains that require swift reactive behavior.

We have developed a language and execution environment called ALICA (A Language for Interactive
Collaborative Agents) for designing teamwork collaboration. ALICA provides a formally defined modeling
language, tool support for development, and an execution engine for highly adaptive multi-agent team
behavior [58], [59]. The design of ALICA targets dynamic environments with fast changing situations,
imperfect network communication, and possibly diverging sensor data from team members. ALICA was
developed and used originally for robot soccer and then evolved and applied to other application domains such
as collaborative exploration of unknown territories, service robotics, and autonomous driving.

6 hitp://www.ros.org/
7 http://gazebosim.org/

http://www.ros.org/
http://gazebosim.org/
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

10

The team behavior is specified from a global perspective in a single ALICA program which is deployed
to all team members and executed without central control. ALICA uses hierarchically arranged annotated state
machines to model robot tasks. Figure 1 shows an example where agents collaborate to explore territory,
collect objects, and assemble some structure. Note that this plan is not complete; the figure only shows the
highest specification level. A characteristic feature of ALICA is that task allocation to the individual robots is
not static but adaptive to the current context and capabilities of the involved robots. State transitions depend
on the situation at-hand as perceived by a robot. For further information on the syntax and semantics of ALICA,

the reader is referred to [58].
Root

Default Task —— Z

T

| Construct Habitat Explore
Support — £y —— 2 Explore {— Z;
Collect Drive Home Explomne
‘\‘\\ &
Construct — # 2 Construct — £

e Support —— 77
e e Ty Collect

Figure 1. Example ALICA program for an exploration scenario

ALICA adopts the general principle that team decisions, e.g. about task allocation, are taken in a
decentralized fashion. They result from individual decisions of the team members that follow the joint team
plan, observe their environment, and exchange their views with their teammates. Nevertheless, there may be
application situations where the team has to agree unanimously on the value of a certain decision variable.
This might lead to decision conflicts that have to be resolved. For example, to execute a ball passing plan in
robot soccer at least the pass executor and pass receiver have to agree on their own positions, the position of
the ball and the opponents’ positions. Thus, these positions represent joint decision variables. Note that “agree”
in this context may mean different levels of agreement on a spectrum from simple broadcasts of opinions to
strict consensus, as defined in the literature [40]. The developer of the respective ALICA plans must decide
what kind of agreement is appropriate for an application. To facilitate this choice, we provide a specific
decision-making middleware for ALICA. This will be discussed in the following subsection.

Other examples of languages suitable for the specification of MRT behavior are Buzz [53], ISPL [43] and
SCEL [17]. These languages differ in many properties according to their specific application focus and design
paradigms. SCEL is the only language that supports open teams using attribute-based interaction (explained
in Section 5.3 below). See [18] for a detailed comparison of the three languages.

5.2. Middleware support for team decisions

A Multi-Robot System, as any other distributed system, benefits from middleware that hides the complexities
of distributed computing in heterogeneous environments and thus eases the job of the developer of a distributed
application. In general, middleware for robotic applications needs to satisfy the same basic requirements as
any middleware in a distributed computing system, i.e. to simplify the application design by making

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

11

transparent the low-level details of the underlying hardware, software, communication, sensing, and actuating
activities. Moreover, middleware facilitates the integration of new technologies, improves software
maintenance and evolution, as well as software re-use across multiple development efforts, thus reducing
application development costs [23]. Many middleware architectures for multi-robot systems have been
proposed in the literature. We point the reader to surveys such as [18] and [45]. In this paper we present a brief
summary of some well-known approaches, and we go into detail of one approach to make the presentation
more concrete and informative.

There is a variety of models underlying middleware for multi-agent coordination. Frameworks such as
Orocos [12], CLARALty [65], and MIRO [63] use event-based behavior coordination. The events are triggered
by either communication or timer events that are mostly realized as remote procedure calls. This results in an
insufficient decoupling between the initiator and receiver of an event. Orocos and MIRO are relying on the
heavy-weight architectures CORBA [47] and ICE [57], respectively. In contrast, CLARAty which was
developed for communication of NASA rovers, explicitly handles unreliable communication and can operate
in either centralized or decentralized mode.

The most common communication concept of robot middleware is Publish-Subscribe due to its higher
degree of decoupling. Examples are RoboFrame [51], Spica [7], and ROS [54]. RoboFrame and Spica have
been designed explicitly for distributed computing. They are capable to deal with unreliable communication,
as encountered in RoboCup events where standard WiFi communication channels often suffer from bandwidth
limitations and packet losses due to interferences among the many WLANS at the competition site. While the
robot software framework ROS 1 had limited support for distributed multi-robot applications, the new ROS 2
includes a middleware based on the popular Data Distribution Service (DDS) [15].

There is one specific issue in teamwork middleware that is not present in general middleware architectures,
i.e. support for decentralized decision-making among autonomously acting agents. As robots are autonomous
they will be capable of making their own decisions based on their own perception of the environment as well
as on their local knowledge about their own status and assumptions on the team status. However, teamwork
often requires agreement among team members in order to resolve conflicting value proposals. For example,
vehicles need to agree on the speed and direction of a particular vehicle in an autonomous driving scenario, or
soccer robots need to agree on the location of the ball on the field. Actually, agreement can mean different
things in different application scenarios. Some application scenarios may require strict consensus among the
involved robots, e.g. autonomous cars approaching an intersection from different directions must agree on the
trajectory of an unequipped vehicle, while in robot soccer, due to the highly dynamic nature of the game, it
does not pay to spend too much time on finding agreement about the position of an opponent robot because
within seconds it may have moved somewhere else.

Hence, in teams of autonomous robots, we need middleware support for decision-making that is tunable
to different application requirements. The core functionality of such middleware is to support the team
decision-making process in respect to defined decision variables shared by all team members. In the following
we discuss one concrete example for such a middleware.

We integrated the middleware PROVIDE [30] into the ALICA framework to support different ways of
decentralized team decision-making, as appropriate for different application scenarios. PROVIDE offers a
choice of replication protocols for common decision variables. Thus, all team members receive the opinions
of their teammates. The level of replica consistency depends on the specific application requirements in the
face of unreliable communications, temporarily disconnected robots, and diverging sensor readings by the
robots. The replicated values of a decision variable can lead to a situation where a robot has received several
divergent observations from its teammates in addition to its own observed value. Thus, after the replication
phase, a robot needs to decide which value from the set of available opinions it will accept locally as its own
value. This may lead to a situation where the individual team members have accepted different values of the
decision variable as their own individual “view of the world”. Hence, we need a third coordination phase
where the robots agree on a single joint value. Such a decision could be based on majority voting, priorities,
time-stamps or other criteria.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

12

In summary, there are three distinct phases in team decision-making that resemble the typical process of
decision-making in human teams (added in parenthesis):
1. Replication of individually perceived values of the decision variable to teammates.
(Team members learn about diverse opinions in the team.)
2. Team members locally commit to a value. (Team members determine their own opinion.)
3. If needed, conflicting choices are resolved by a specified conflict resolution protocol. (The team
consolidates diverging opinions and arrives at a joint decision.)
In summary, the PROVIDE middleware offers a flexibly configurable middleware support for decision-
making. The application developer can choose from a set of protocols depending on the application scenario
and thus can adapt the quality and overhead of decision-making to the diverse application requirements.

5.3. Attribute-based interaction for open teams

Many communication paradigms achieve interaction among distributed components based on the identities of
the components. Examples are the classical Client/Server model, the Actor model [2], or Named Channels in
channel-based binary communication [55]. On the other hand, broadcast communication [52] may not require
identities depending on the capabilities of the underlying communication system, but loses the ability to
address a selection of individual agents. However, in open teams in dynamic environments the identity of
robots may not be known at design-time, if robots may join and leave a team at run-time. Thus, the concept of
identity is not easy to establish and may even be irrelevant [19]. In such environments we need different ways
to determine team membership and to address team members. Note that a single central team manager that
monitors and controls team membership is out of the question here because we need to avoid a single point of
failure which would be contrary to our requirement that robots may be out of reach temporarily or break down
completely.

Let us look at how dynamic coalitions are handled in human teams. If a specific subgroup of a crowd of
people shall be addressed, group membership often is determined based on some property, such as “persons
older than 65” or “owners of Diesel cars”. Similar concepts are needed for dynamic robot coalitions. In our
Industry 4.0 scenario, we might ask for “components that need to be delivered within the next 15 minutes” or
in autonomous driving we might want to address “vehicles that are capable of autonomous driving and are
closer than 50 meters to the intersection”.

Attribute-based interaction, a variant of publish/subscribe communication, was proposed in [3] and [18]
as a paradigm to address collectives of possibly anonymous agents. It appears to be a viable solution for
anonymous interaction in open coalitions. In attribute-based interaction, robots of a multi-robot system
explicitly expose a set of attributes that are relevant for the application at hand. Interaction between robots is
based on groupcast communication whereby sending and receiving messages is determined by predicates over
the specified attributes. A Send command expresses the intention to deliver a message to all robots satisfying
the Send Predicate. Likewise, a Receive command signals willingness to receive messages from team
members according to the specified Receive Predicate. Thus, attribute-based interaction is a special kind of
publish-subscribe communication with a more fine-grained content-based selection of possible receivers and
senders. Potentially, it allows a more efficient filtering of messages by the distribution infrastructure and
reduces the communication overhead.

Attribute-based interaction has been integrated into the syntax of several programming languages, such as
Erlang [19] and Google Go [5]. It requires a powerful distribution infrastructure, as demonstrated in these
papers.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

13

5.4. Unanticipated adaptation of team plans

Unanticipated dynamic adaptation of software systems at run-time, which was not foreseen by the developer
at design time, generally is a very difficult challenge. Only a few attempts on a general solution for
unanticipated on-the-fly adaptation have appeared in the literature [38], [39].

In teamwork scenarios, a dynamically changing runtime environment can lead to a similar technical
challenge, i.e. on-the-fly adaptation of team plans at runtime. The arrival of new team members with new
capabilities or the departure of team members with specific individual capabilities might require changes in
the team plans. Likewise, the evolution of global team goals and/or individual robot goals might demand a re-
planning. Note that we are not concerned about the generation of the new plans. This may be done manually
by a human developer or automatically by machine learning techniques and planning algorithms. Our emphasis
is on the implications of openness of teams, and thus on the capability for dynamic evolution and interchange
of team plans.

A possible approach to unanticipated adaptation is based on semantic annotations of team plans using a
declarative logic programming language such as Answer Set Programming (ASP) [28], [27]. ASP is a
declarative non-monotonic logic programming language, adhering to a similar programming model as Prolog
[14]. A number of projects have shown that ASP meets the requirements for semantic specifications in a wide
range of application areas in terms of expressiveness, efficiency, dynamic extensibility, and scalability.
Examples are semantic service adaptation [9], dynamic information stream configuration in crisis management
scenarios [46], and service robotics [48]. Thus, by adding semantic annotations to team plans the developer
lays the foundation for re-planning at runtime based on the specified properties and constraints for the robots
and their relationships. The semantic compatibility of annotated team plans can be checked using established
techniques for semantic matching and adaptation [56], [31]. Nevertheless, this still is mostly unchartered
territory where more research and practical experience are needed on the scope and expressiveness of different
paradigms for unanticipated adaptation.

6. Conclusions

The proliferation of robotics is likened often to the introduction of the Personal Computer. Many expect that
- like the PC - autonomous robots, in whatever form, will become everyday assistants that will surround and
support us in all kinds of application domains. Naturally, over the years the increasing number of robots will
lead to “distributed robot systems” where autonomous robots form (temporary) teams and interact to achieve
a common goal. Due to the manifold technical, contextual and situational dependencies, often these teams will
act under dynamically changing conditions, and not all teamwork can be planned and implemented at design
time. Hence, dynamic team building and adaptive team behavior will become important concerns.

In this paper, we have focused particularly on the analysis and engineering of teamwork for multi-robot
systems that operate in dynamically changing environments. Thus, we raised the awareness for crucial issues
for such teamwork, and we reviewed solutions for these issues. Clearly, the diversity of application
requirements is huge and the design space is vast. It seems that the number of open research questions is
(almost) unlimited.

Acknowledgments

Parts of this paper were written while the author was a guest scientist at IMT Lucca (ltaly). Many thanks to
Rocco de Nicola and the members of his group for insightful discussions and contributions. The author
gratefully acknowledges the support from the Banco Santander Chairs of Excellence program and the
insightful collaborations with researchers from Universidad Carlos 111 de Madrid (UC3M) and IMDEA
Networks.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

14

References

[1] Abbas, H. A, Shaheen, S. I., Amin, M. H. (2015). Organization of Multi-Agent Systems: An
Overview, International Journal of Intelligent Information Systems. Vol. 4, No. 3, p. 46-57.

[2] Agha, G. (1986). Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA, USA.

[3] Alrahman, Y. A., De Nicola, R., Loreti, M. (2016). On the Power of Attribute-Based Communication,
36th IFIP WG 6.1 Intern. Conf. FORTE 2016, Springer, LNCS 9688, p. 1-18.

[4] Alrahman, Y. A., De Nicola, R., Loreti, M. (2016). Programming of CAS systems by relying on
attribute-based communication. In: Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques - 7th Int. Symp. ISOLA, Part I, pp. 539-553. Springer (2016)

[5] Alrahman, Y. A., De Nicola, R., Garbi, G. (2018). GoAt: Attribute-based Interaction in Google Go.
Int. Conference ISOLA 2018, Nicosia/Cyprus.

[6] Arda, K. etal. (2013). Hierarchical Finite State Machines for Autonomous Mobile Systems. In:
Control Engineering Practice 21.2, p. 184-194.

[7] Baer, P.A. (2008). Platform-Independent Development of Robot Communication Software. PhD
Thesis, Computer Science. Kassel: University of Kassel. ISBN: 978-3-89958-644-2.

[8] Baraki, H., Geihs, K., Voigtmann, C., Hoffmann, A., Kniewel, R., Macek, B., Zirfas, J. (2015).
Interdisciplinary Design Patterns for Socially Aware Computing, 37th International Conference on
Software Engineering (ICSE), Software Engineering in Society (SEIS) track, ACM/IEEE

[9] Baraki, H. et al. (2018). SAM: A Semantic-Aware Middleware for Mobile Cloud Computing. 11th
IEEE International Conference On Cloud Computing (IEEE CLOUD 2018), San Francisco.

[10] Baldoni, R., De Nicola, R., Prinetto, P. (2018). White Book: The Future of Cybersecurity in Italy:
Strategic project areas, Laboratorio Nazionale di Cybersecurity, https://www.consorzio-
cini.it/images/Libro-Bianco-2018-en.pdf.

[11] Bonabeau, E., Dorigo, M., Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press.

[12] Bruyninckx, H., Soetens, P., Koninckx, B. (2003). The Real-Time Motion Control Core of the Orocos
Project. In: IEEE International Conference on Robotics and Automation. 2003, pp. 2766—-2771.

[13] Bulling, N. (2014). A Survey of Multi-Agent Decision-making, KI - Kinstliche Intelligenz, Springer,
28-3: 147-158.

[14] Clocksin, W. F. et al. (2003). Programming in PROLOG. Springer Science & Business Media.

[15] Data Distribution Service, OMG, https://www.omg.org/spec/DDS/

[16] David, K. et al. (2014). Socio-technical Design of Ubiquitous Computing Systems. Springer.

[17] De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F. (2014). A Formal Approach to Autonomic Systems
Programming. ACM Transactions on Autonomous and Adaptive Systems 9: 1-29.

[18] De Nicola, R., Duong, T., Inverso, O., Trubiani, C. (2017). AErlang: Empowering Erlang with
Attribute-Based Communication, J.-M. Jacquet, M. Massink (Eds.): COORDINATION 2017, LNCS
10319, p. 21-39.

[19] De Nicola, R., Di Stefano, L., Inverso, O. (2018). Towards formal models and languages for
verifiable Multi-Robot Systems, Frontiers of Computer Science, Vol. 5, Springer.

[20] Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M. (2012). Robotml, a domain-specific
language to design, simulate and deploy robotic applications. In: Noda, 1., Ando, N., Brugali, D.,
Kuffner, J.J. (eds.) SIMPAR, Springer Berlin Heidelberg, p. 149-160.

[21] Doran, J., Franklin, S., Jennings, N., Norman, T. (1997). On cooperation in multi-agent systems. The
Knowledge Engineering Review 12, p. 309-314

[22] The Eclipse Foundation: Papyrus. https://www.eclipse.org/papyrus-rt (2018), accessed on 19-04-02

[23] Elkady, A., Sobh, T. (2012). Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography, Journal of Robotics, Volume 2012.

https://www.consorzio-cini.it/images/Libro-Bianco-2018-en.pdf
https://www.consorzio-cini.it/images/Libro-Bianco-2018-en.pdf
https://www.omg.org/spec/DDS/
https://www.eclipse.org/papyrus-rt
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

15

[24] Farinelli, A., locchi, L., Nardi, D. (2004). Multi-Robot Systems: A classification focused on
coordination; IEEETrans. on System, Man and Cybernetics, part B, p. 2015-2028.

[25] Floch J. et al. (2013). Playing MUSIC—building context-aware and self-adaptive mobile applications.
In: Software: Practice and Experience 43-3: 359-388.

[26] Fowler, M. (2010). Domain-Specific Languages, Addison-Wesley.

[27] Gebser M. et al. (2012). Answer Set Solving in Practice. Vol. 6. Morgan & Claypool Publishers.

[28] Gelfond, M. et al. (2014). Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press.

[29] Geihs, K., Evers, C. (2016). User Intervention in Self-Adaptive Context-Aware Applications, 17th
Australasian User Interface Conference (AUIC), Canberra/Australia.

[30] Geihs, K., Witsch, A. (2018). Decentralized decision-making in adaptive multi-robot teams, it —
Information Technology, vol. 60, No. 4, p. 239-248, de Gruyter.

[31] Giunchiglia, F. et al. (2007). Semantic Matching: Algorithms and implementation. In: Journal on data
semantics IX. Springer, 2007: 1-38.

[32] Gerkey, B. P., Mataric, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot
systems, The International Journal of Robotics Research, 23-9: 939-954.

[33] Grossi D. et al. (2005). Foundations of Organizational Structures in Multiagent Systems, Proceedings
of AAMAS’05, ACM, p. 690-697.

[34] Grosz B., Kraus S. (1996). Collaborative plans for complex group action. Artificial Intelligence 1996;
86(2):269-357.

[35] Jennings, N. (1993). Commitments and conventions: The foundation of coordination in multi-agent
systems. The Knowledge Engineering Review 8 (1993): 223-250

[36] Kaminka, G. A., Frenkel, I. (2005). Flexible Teamwork in Behavior-Based Robots. In: AAAI. Ed. by
M. M. Veloso and S. Kambhampati. AAAI Press / The MIT Press, pp. 108-113.

[37] Kammel, S. et al. (2008). Team AnnieWAY’s Autonomous System for the 2007 DARPA Urban
Challenge. In: Journal of Field Robotics 25-9: 615-639.

[38] Keeney, J. (2004). Completely unanticipated dynamic adaptation of software. Computer Science,
Trinity College Dublin, Ph.D. Thesis.

[39] Khan, M., U. (2010). Unanticipated Dynamic Adaptation of Mobile Applications. University of
Kassel, Ph.D. Thesis, Kassel University Press.

[40] Lamport, L. (1998). The Part-time Parliament. ACM Trans. Computer Systems 16-2: 133-169.

[41] Levesque Hector J, Cohen Philip R, Nunes Jos&HT. On acting together. In: Proceedings of AAAI-90,
Boston (MA); 1990. p. 94-99.

[42] Ldzsch M. et al. (2006). XABSL - A Pragmatic Approach to Behavior Engineering. In: Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Beijing, China.

[43] Lomuscio, A., Qu, H., Raimondi, F. (2017). MCMAS: An open-source model checker for the
verification of multi-agent systems. International Journal on Software Tools for Technology Transfer
19: 9-30.

[44] Mosteo, A. R., Montano, L. (2010). A survey of multi-robot task allocation, University of Zaragoza,
Technical Report AMI-009-10-TEC.

[45] Mohamed, N., Al-Jaroodi, J., Jawhar, I. (2008). Middleware for robotics: A survey, IEEE Conference
on Robotics, Automation and Mechatronics, 2008, p. 736-742.

[46] Niemczyk, S. etal. (2017). ICE: Self-Configuration of Information Processing in Heterogeneous
Agent Teams. In: Proceedings of the Symposium on Applied Computing 2017, ACM. p. 417423,

[47] Object Management Group (OMG). (2012) The Common Object Request Broker: Architecture and
Specification (CORBA 3.3). Object Management Group.

[48] Opfer S. etal. (2017). Reasoning for Autonomous Agents in Dynamic Domains. In: ICAART (2)
2017, p. 340-351.

[49] Parker, L. E. (2000). Current state of the art in multi-robot teams, Distributed Autonomous Robotic
Systems, Springer, No. 4, p. 3-12.

https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2019 d0i:10.20944/preprints201911.0385.v1

16

[50] Parker, L. E. (2008). Distributed intelligence: Overview of the field and its application in multi-robot
systems, J. of Physical Agents 2 (2008), 5-14.

[51] Petters, S., Thomas, D., von Stryk, O. (2007). ,,RoboFrame - A Modular Software Framework for
Lightweight Autonomous Robots*. In: Proc. Workshop on Measures and Procedures for the
Evaluation of Robot Architectures and Middleware, IEEE/RSJ IROS. San Diego, CA, USA.

[52] Prasad, K. (1991). A calculus of broadcasting systems. In: TAPSOFT’91. pp. 338-358. Springer.

[53] Pinciroli, C. Beltrame, G. (2016). Buzz: An extensible programming language for heterogeneous
swarm robotics. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, p. 3794-3800.

[54] Robot Operating System, https://index.ros.org/

[55] Sangiorgi, D., Walker, D. (2003). The pi-calculus: a Theory of Mobile Processes. Cambridge
University Press.

[56] Scioni, E. (2016). Online Coordination and Composition of Robotic Skills: Formal Models for
Context-aware Task Scheduling. KU Leuven, Ph.D. Thesis.

[57] Shumko, S. (2009). Ice Middleware in the New Solar Telescope’s Telescope Control System. In:
Astronomical Data Analysis Software and Systems XVIII. Vol. 411.

[58] Skubch, H. (2012). Modelling and Controlling Behaviour of Cooperative Autonomous Mobile
Robots. Ph.D. Thesis, Université Kassel, Springer Vieweg.

[59] Skubch, H., Wagner, M., Reichle, R., Geihs, K. (2011). A Modelling Language for Cooperative Plans
in Highly Dynamic Domains. Mechatronics 21-2: 423-433.

[60] Tambe, M. (1997). Towards flexible teamwork, Journal of Artificial Intelligence Research (JAIR),
vol. 7: 83-124.

[61] Tate, A. (1977). Generating Project Networks. In: Proc. of the 5th Intern. Joint Conf. on Artificial
Intelligence — Vol.2, IJCAT’77. Cambridge, USA: Morgan Kaufmann Publishers Inc., pp. 888-893.

[62] Urmson C. et al. (2007). Tartan Racing: A Multi-Modal Approach to the DARPA Urban Challenge.
CMU TR Urmson-2007-9708.

[63] Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G. (2002). Miro - middleware for mobile robot
applications. IEEE Transactions on Robotics and Automation, 18.4, pp. 493-497.

[64] VermaV. etal. (2005). Plan Execution Interchange Language (PLEXIL) for Executable Plans and
Command Sequences. In: Internat. Symposium on Avrtificial Intelligence, Robotics and Automation in
Space (iISAIRAS).

[65] Volpe, R, Nesnas, I. A. D., Estlin, T., Mutz, D., Petras, R., Das, H. (2000). CLARAty: Coupled
Layer Architecture for Robotic Autonomy. Tech. rep. NASA Jet Propulsion Laboratory.

[66] Zweigle O. et al. (2006). Cooperative Agent Behavior Based on Special Interaction Nets. In:
Proceedings of the 9th International Conference on Intelligent Autonomous Systems - IAS, Tokyo,
Japan, 10S Press, p. 651-659.

https://index.ros.org/
https://doi.org/10.20944/preprints201911.0385.v1
https://doi.org/10.3390/app10041368

