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Abstract: An ion exchange dialysis (IED) is used in the recovery of aluminium from residue. In this 

papers, the face-centered central composite design (FC-CCD) of the response surface methodology 

(RSM) and desirability approach is used for experimental design, modelling and process 

optimization of a counter flow IED system. The feed concentration, feed flowrate, sweep flowrate 

and sweep concentration are selected as the process variables, with the Al-transport across a Nafion 

117 membrane as the target response. A total of 30 experimental runs were conducted with 6 center 

points. The response obtained was analysed by analysis of variance (ANOVA) and fitted to a 

second-order polynomial model using multiple regression analysis. The actual R2 and standard 

deviation of the model are 0.9548 and 0.2932 respectively.  The influences of significant variables 

are plotted on 3D surface and contour plots. The designed variables were numerically optimized by 

applying the desirability function to achieve the maximum Al-transport. The optimised condition 

values were found to be feed concentration (1600 ppm), feed flowrate (61.76%), sweep flowrate 

(37.50%) and sweep concentration (0.75 N)  for the 80% target response at 32hrs. Overall, the model 

can be used to effectively predict Al-recovery using the designed system. 

Keywords: Aluminium; nafion; ion exchange dialysis; response surface methodology (RSM); 

desirability; enrichment. 

 

1. Introduction 

Water is very essential to life and the proper functioning of ecosystems on earth. Due to the 

global economic drive associated with population growth, water withdrawal pressures from 

households, industries and agriculture is expected to escalate. The challenge of meeting and efficient 

distribution across competing water demand from the various sectors can therefore not be an issue 

of availability, rather availability and quality. The major task of water treatment plants (WTPs) are 

therefore to meet allowable limits on standards set for water quality parameters. 

Coagulation is an important step in urban water treatment schemes that is relatively easy to 

design, simple to operate and has low energy utilization [1]. The process requires dosing coagulants 

to coalesce impurities into large masses for subsequent removal by other treatment processes. 

Common coagulants such as aluminium sulphate, aluminium chloride, poly aluminium chloride, 

sodium aluminate, ferric chloride and ferric sulphate are used to achieve this physicochemical 

process in water treatment [2,3]. Aluminium sulphate has been the most widely used coagulant by 

WTPs. It is known to generate a large amount of water treatment residue. As such, the recovery and 

utilization of the residue can serve as a secondary source of the coagulant. However, large scale 

implementation of coagulant recovery by acidification and reuse of the leachate in the 1970’s was 

withdrawn [4]. Similar to alkaline leaching, the process lacks specificity and non-selectiveness. While 

recovery by pressure driven membrane technique on water treatment residue is faced with fouling 

issues and high energy demand, the bane of ion exchange resins are fouling by organic compounds 

and resin regeneration [5,6].  
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Ion exchange membranes (IEMs) are used in water/wastewater treatment, chemical synthesis 

and energy harvest and storage [7–9]. These plastic films are classified into cation exchange 

membranes (CEM) and anion exchange membranes (AEM). The CEMs are embedded with fixed 

negative charges, and thus permeates ions of opposite charge-counter ions and excludes ions of the 

same charge- coions. Anion exchange membranes (AEM) have fixed positive charge groups. Their 

functionality is a combination of membrane permeability and electrochemical properties of ion 

exchange resins. The CEMs and AEMs are composed of hydrophilic ionic groups and anchored by 

hydrophobic polymer chains. Notable amongst the hydrophilic functional moieties in CEMs are SO3−, 

PO3H−,–COO−, PO32−, C6H4O− and NH3+, NRH2+, NR2H+, NR3+ and PR3+ for AEMs [10–12].  

Ion exchange dialysis (IED), popularly known as Donnan dialysis (DD) employs IEMs for 

selective transport, removal, and separation of ions of interest. The technology is an electrochemical 

potentially driven process that separates and concentrates ions from aqueous solutions by the 

stoichiometric counter transport of ions across the IEM. Ions of interest diffuse from the donor or feed 

phase to the acceptor or sweep phase. An exchanging electrolyte in the acceptor phase with a higher 

concentration of the same charge as the ion of interest permeates into the donor phase. The 

fundamental principle of Fredrick. G Donnan’s 1924 study establishesd the donnan equilibrium from 

the electrostatic repulsion of co-ions from the phases [13]. Electrolytic solutions are at equilibrium 

when the electrochemical potential difference across the membrane equates to the donnan potential 

of the membrane [14]. The IED or DD process is not prone to fouling and has a low energy 

consumption. Another functional primacy of the simple and cost effective IED system is their 

insignificant electrochemical altering of analyte and enrichment of analyte [15]. These characteristics 

make it a potentially useful green treatment technology for removal, separation, purification and 

concentration. 

Different commercial IEMs have been used in IED studies including CEMs such as Pall ICE-450 

(SA3S and SA3T), Neosepta (CMS, CMX), Selemion (CMV), Ultrex CMI 7000 and Nafion (417 and115) 

[16–21]. Notable AEMs such as Neosepta (ACS, AMX, AFN and AEX), Ionics (AR204-UZRA and 

AR103-QPD), Polymerchemie-PC(SA, 100D, acid 60 and acid 100), Fumasep (FTAM and FAB), Jam-

1 and Selemion (AMV) have been reported [22–29]. Nafion 117 CEM has been used in the kinetic 

studies of  monovalents such as K+, Na+,Cs+ and divalent Ca2+ and Mg2+ transport [30–33].  Further 

records on application of IED using Nafion 117 for  Al3+ has shown a high recovery of >70% [34]. 

Despite the high Al-recovery, there is limited information on the effect of process variables on Al-

transport through Nafion 117 CEM. A comparative study on the effect of sweep concentration and 

different membranes (homogeneous Nafion 117 and heterogeneous Ionac 3470) on the recovery was 

performed using a one-factor at a time (OFAT) approach [35].  

As standardization of process variables is quite essential for effective Al-transport, the limitation 

incorporated with the classical OFAT technique is its incapability in optimizing the overall process 

in a short time with a lower number of experimental runs for a multivariate system. These 

inadequacies can be eliminated via a computed statistical standardization viz. Response surface 

methodology (RSM). The Response surface methodology is a systematic methodology that consists 

of a group of mathematical and statistical techniques for experimental design, independent and 

interdependent analysis, model development and exploitation [36,37]. The empirical model 

(Equation (1)) is a relationship between process variables and the expected response to understand 

the process mechanism and to optimize the process using minimal experimental runs [38]. Important 

areas of RSM application are product design, development and formulation and improvement of 

existing products [39].  

𝑦 = 𝛽𝑜 + ∑ 𝛽𝑖
𝑛
𝑛=1 𝑥𝑖 + ∑ 𝛽𝑖𝑖

𝑛
𝑖=1 𝑋𝑖

2 + ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘𝑗,𝑘
𝑖<𝑗,𝑘
𝑖 +  𝜀 (1) 

where y is the transmittance function; 𝛽o is a constant coefficient; 𝛽i, is a linear coefficient 𝛽ii,is the 

quadratic coefficient, 𝛽ijk is the interaction coefficient, 𝜀 is the random error and k is the number of 

variables studied. 

Most commonly used RSM for 3 to a maximum of 6 factors is the central composite design 

(CCD). This design was originally developed by Box-Wilson. The CCD uses an incomplete full 
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factorial or fractional factorial to develop the second order polynomial model. For efficient evaluation 

of first and second order terms and the estimation of curvatures, the CCD arguments the full or 

factorial design with axial points and replication of center point. The axial points are symmetrical 

with the center points on the coordinate system at a distance ‘α’, from the design center.  The CCD 

is made up of the face centered (FC), central composite circumscribed (CCC) and central composite 

inscribed (CCI).  The CCC has axial points that are the same distance ‘α’, from the center points and 

the ‘α’ are used to establish the extremes for low and high limits of each variable. On the other hand, 

CCI is a scaled down CCF that the limits for each variable as the main limits, uses the limits as the 

axial points and creates a factorial or fractional factorial design within the limits. However, in the FC, 

the ‘α’ is ± 1 such that the axial points are at the center of each face of the factorial space [40,41].   

With an industrial concept for aluminium recovery in mind, authors have designed a counter 

flow IED system for this study. In this present work, the multivariable interactive effect of feed 

concentration, feed flowrate, sweep concentration and sweep flowrate on Al-permeation using the 

face centred CCD (FC-CCD) approach is reported. Authors option of the FC-CCD was to operate the 

process in the extreme region at the corners of the square at three levels for each variable settings. 

Hence, investigation of the aforementioned parameters within the RSM context allows the evaluation 

of statistical significance of the variables by a mathematical model equation via F-test for analysis of 

variance (ANOVA). Mobility of Al with respect to two different time intervals are compared 

statistically. This therefore provides a basis for the prediction of effects for the target Al-transport at 

different time zones. Most of the papers on DD or IED have not used the RSM approach and this sets 

a precedence generally in this field and specifically Al-recovery.  

2. Materials and Methods  

2.1 Materials and Chemicals 

Al2 (SO4)3.18H2O (≥ 97%) and HCl (32% w/w) was supplied by Lichro Chemicals, South Africa. 

Demineralized water [17.5 MΩ/cm, Purite-HP+BOOST 030773] was used. These reagents were used 

without further purification. The Nafion 117 with an equivalent weight of 1100 g, thickness 177.8 µm, 

ion exchange capacity of 0.94 meq/g was used for this experiment. This membrane is a long side chain 

thermoplastic resin made by the copolymerization of hydrophobic tetrafluorothylene and 

perfluorovinyl ether which is terminated at the end with a sulfonyl fluoride (S02F). Preceding acid 

treatment (3%wt HCl, 90oC, 1hr), the CEM was soaked in demineralized water for 15 mins, heated at 

60oC in 3wt% H2O2, and rinsed with demineralized water. Further treatment steps included pre and 

post rinsing with demineralized water after another acid conditioning (1% wt HCl, 25 oC, 180 mins) 

for 15 mins. 

2.2 Experimental design and statistical analysis 

Design Expert version 11.1.2 software (State-Ease Inc., Minneapolis, USA) was used for the 

design, evaluation, mathematical modelling and optimization Figure 1. The independent variables 

used in this study were: feed concentration (Al; X1), feed flowrate (%; X2), sweep flowrate (%; X3) and 

sweep concentration (HCl; X4). The Al3+ transport (Y1) was considered as the dependent factor 

(response). Performance of the counter flow IED system was evaluated by analysing the Al in the 

feed and sweep chambers.  

The four independent variables were converted into a dimensionless form - X1, X2, X3 and X4. 

Three different normalized levels of each variable were designated according to the FC-CCD coding 

as -1, 0, 1 respectively. Conversion of the selected independent variables into dimensionless codified 

values is to ensure comparison of factors of different natures with different units and to decrease the 

error in the polynomial fit according to Equation (2) for the statistical analysis. 

𝑥𝑖 =
𝑋𝑖−𝑋0

∆𝑋
 𝑖 = 1,2, … , 𝑘                                        (2) 
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where xi is the dimensionless coded value of the i-th independent variable, Xi is the un-coded 

value of the i-th independent variable, Xi is the real value of the independent variable, X0 is the value 

of Xi at the center point and ∆X is the step change value of the variable i.  

The system’s behaviour is defined by the empirical second-order polynomial model [42]. Table 

1 shows the independent variables and their respective levels for the FC-CCD used in the present 

study. The design consists of a first order 2k factorial portion augmented by 2k axial points and 

accentor runs (cp), where k is the number of variables. Information about the response system and 

evaluation of the significance of the factors is mostly achieved at the first order design,  [40]. 

According to the FC-CCD matrix, Table (1), a total of 30 (= 2k + 2k + cp) runs comprising of 16 factorial 

points, 8 axial points and 6 centre points is required. The remaining five are centre point replication 

to get a good estimation of the experimental error via the sum of squares. Furthermore, the proposed 

matrix by the software was randomized in order to prevent systematic error.  

 

Table 1. Coded and actual values of variables of the design of experiments for overall Al-transport 

optimization. 

Symbol Variable 
Coded levels of variables 

-1 0 1 

X1 Feed concentration (ppm)     100 1050 2000 

X2 Feed flowrate (%) 25  55 85 

X3 Sweep flowrate 25 55 85 

X4 Sweep concentration (N) 0.25 0.625 1 

2.3 Ion exchange dialysis set-up 

The IED process was conducted using a laboratory flat sheet dialytic set-up equipped with the 

CEM (Figure 1) with a working area of 205 cm2. The process involved recirculation of the feed and 

sweep with a pump of maximum flowrate of 2.6 mLs-1. Pump calibration was performed using a 

randomized complete block design in order to reduce residual error and controlling nuisance factors. 

The volume ratio of the feed to the sweep was 2:1. The feed and sweep electrolyte solutions were 

prepared as provided in Table 1 and homogeneity was ensured during the experiment with the aid 

of magnetic stirrers. Previous work done by the authors expounds on the choice of the ranges for the 

variables of concern [43]. All experiments were performed in an air-thermostated room between 22-

25 oC.  The data obtained was evaluated in terms of Al-transport (%) from the feed solution as 

follows:  

𝑌 (𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡)(𝐴𝑙) =
[𝐴𝑙]𝑓𝑒𝑒𝑑(𝑜) −[𝐴𝑙]𝑓𝑒𝑒𝑑(𝑡)

[𝐴𝑙]𝑓𝑒𝑒𝑑(𝑜)
× 100%     (3) 

where [Al]feed(0) and [Al]feed(t) denote, respectively, the aluminium concentrations at the time at 

the time t = 0 and at an elapsed time, t, in the feed compartment. 

Common sources of leaks that could hinder experiment integrity such as tears in tubes, 

membrane and inner tubing of peristaltic pumps were checked. Peristaltic pump tubing was replaced 

periodically to check inner wearing that could be due to the concentration of solutions used. A 

schematic flow of the experiment for Al-transport is shown in Figure 2. 
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Figure 1. Conceptual design of IED rig. 

2.4 Analytical 

The Al transport from the feed phase to the sweep phase was measured using the Agilent micro-

plasma atomic emission spectrophotometer (MP-AES, MY 18379001). Samples collected from the two 

phases were diluted (5-100 times) with 1% wt HNO3 to volume. The total loss of feed and sweep 

solution due to sampling was between 3% and 4% of the total volume [43].  

 

Figure 2. Schematic flow for Al-transport study. 

3. Results  

The results from the experimental design matrix presented in Table 2 in the randomized order. 

The Al-recovery at different time intervals showed the effect on each variable at their different 

interactional levels. Statistical analysis of the response is performed using the various response 

obtained. 
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Table 2. Experimental design matrix and observed responses at different time zones. 

Run 

Order 

Variable Level Response (%) 

X1 X2 X3 X4 24 hrs 32 hrs 

1 1 -1 -1 -1 28.55 35.95 

2 1 1 1 -1 33.35 45.65 

3 -1 1 -1 -1 75.90 84.10 

4 1 -1 1 1 61.6 71.85 

5 -1 -1 -1 1 70.2 78.25 

6 0 0 0 0 79.1 86.00 

7 1 1 -1 1 64.25 73.45 

8 -1 -1 1 -1 58.15 61.60 

9 -1 1 1 1 86.95 93.55 

10 0 0 0 0 78.82 86.05 

11 -1 1 -1 1 87.50 94.85 

12 0 0 0 0 78.36 85.96 

13 0 0 0 0 78.62 85.85 

14 1 1 1 1 51.60 63.85 

15 -1 1 1 -1 81.40 90.00 

16 -1 -1 1 1 57.95 68.75 

17 1 1 -1 -1 32.55 32.85 

18 1 -1 -1 1 56.95 66.95 

19 -1 -1 -1 -1 58.80 65.85 

20 1 -1 1 -1 30.25 34.50 

21 0 0 0 0 78.98 86.01 

22 0 -1 0 0 52.57 60.52 

23 -1 0 0 0 78.55 84.98 

24 0 0 0 1 84.81 90.19 

25 0 1 0 0 72.19 80.71 

26 0 0 1 0 66.95 77.33 

27 0 0 0 0 78.99 87.12 

28 0 0 -1 0 75.90 81.90 

29 0 0 0 -1 48.71 54.48 

30 1 0 0 0 50.65 58.75 

4. Discussion 

4.1. Regression models and statistical testing 

 Statistical analysis of the present Al mobility was performed with analysis of variance 

(ANOVA). In ANOVA, a comparison was performed for variation due to change in the levels of 

variables with variations associated to random errors inherent in the measurement of the response 

(Al-transport). The proportion of influence of a set of variables was therefore assessed towards 

adequacy and validation of the regression model according to the Fisher test (F-test) and the 

probability value (p-value at 95% confidence level). As such, the highest order polynomial with 

significant terms that showed the correlation between variables well and normally (not aliased) 

would be selected. As shown in Table 3, a high F-value was found with the quadratic vs two factor 

interaction (2FI) and followed by the linear vs block source. While there was an observed distortion 

for the cubic vs quadratic model, their F-value and that of 2FI vs linear was insignificant. The model 

selection was therefore found between quadratic and 2FI. Subsequently, the model selected was 

based on the low standard deviation (Std. Dev)  and the high value of the actual regression 

coefficient (act-R2 ) [44] 

Table 3. Sequential model sum of squares for model generation at 32-hrs. 

Source Sum of squares Df Mean Square F value p-value (prob>F) 

Mean vs Total 2130.42 1 2130.42   

Linear vs Block 24.49 4 6.12 12.09 <0.0001 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 November 2019                   doi:10.20944/preprints201911.0370.v1

Peer-reviewed version available at Processes 2020, 8, 160; doi:10.3390/pr8020160

https://doi.org/10.20944/preprints201911.0370.v1
https://doi.org/10.3390/pr8020160


 7 of 15 

 

2FI vs Linear 4.74 6 0.7899 1.94 0.1316 

Quadratic vs 2FI 5.79 4 1.45 16.72 <0.0001 

Cubic vs Quadratic 0.7625 8 0.0953 1.32 0.3974 

Residual 0.3623 5 0.0725   

Total 2166.56 28    

As shown in Table 4, despite the lower standard deviation and high act-R2 recorded for cubic 

model (0.27, 0.99 respectively), the quadratic model showed a better correlation than the cubic, linear 

and 2FI models. The efficiency of variability in the actual response values can be expounded on by 

the experimental value and their interactions as given by the act-R2. However, the acceptable 

difference between the act-R2 and the adj.R2 should be less than 0.2 [39]. Statistically, a high adj.R2 

(>0.75) is acceptable [45]. 

Table 4. Statistical analysis of the models at 32-hrs. 

Response Source 
Standard 

deviation 
Actual R2 Adjusted R2 Predicted R2 

 

Al3+ 

transport 

Linear 0.7117 0.6776 0.6216 0.4387 

2FI 0.6376 0.8088 0.6963 0.3961 

Quadratic 0.2941 0.9689 0.9354 0.8034 

Cubic 0.2692 0.9900 0.9459 -3.6866 

 

The selected model in terms of the coded and actual values are provided in Equations (4) and (5) 

respectively. The coded equation (Equation 4) can be used to make a response prediction for the given 

coded levels (Table 1) of each process variable. By comparing the coefficients of the terms, the coded 

equation becomes useful for identifying the relative impact of the terms. The synergetic effect of the 

model terms are represented by their positive signs (X2, X4 and X1X4) while the negative signs (X1, 

X1X2, 𝑋1
2, 𝑋2

2 and𝑋4
2) indicates the antagonistic effect. The actual values of the model terms in their 

specified units can be fitted into Equation (5) to predict the Al3+ transport at 32-hrs.  

Coded equation: 

√𝑌𝐴𝑙 = +9.20 − 0.8414(𝑋1) + 0.3718(𝑋2) + 0.7170(𝑋4) − 0.2779(𝑋1𝑋2) 

                    +0.4334(𝑋1𝑋4) − 0.4093(𝑋1
2) − 0.4693(𝑋2

2) − 0.4120(𝑋4
2)          

  (4) 

 

In terms of actual values, the model terms are given by; 

 

√𝐴𝑙(%) =  5.26811 − (0.000157 ∗ 𝑓𝑒𝑒𝑑𝑐𝑜𝑛𝑐. ) + (0.079990 ∗ 𝑓𝑒𝑒𝑑 𝑓𝑙𝑜𝑤) + (4.29677 ∗

𝑆𝑤𝑒𝑒𝑝 𝑐𝑜𝑛𝑐. ) − (9.75258𝐸 − 06 ∗ 𝑓𝑒𝑒𝑑 𝑐𝑜𝑛𝑐.∗ 𝑓𝑒𝑒𝑑𝑓𝑙𝑜𝑤) +  (0.001217 ∗ 𝑓𝑒𝑒𝑑 𝑐𝑜𝑛𝑐.∗

𝑠𝑤𝑒𝑒𝑝 𝑐𝑜𝑛𝑐. ) − (4.53502𝐸 − 07 ∗ 𝑓𝑒𝑒𝑑 𝑐𝑜𝑛𝑐.2 ) − (0.000521 ∗ 𝑓𝑒𝑒𝑑 𝑓𝑙𝑜𝑤2) − (2.92973 ∗

𝑠𝑤𝑒𝑒𝑝 𝑐𝑜𝑛𝑐.2 )      (5)                  

                                                              

Unlike the synergetic effect of feed concentration in the simplified model developed in the 

previous work at 24 hrs [43], the feed concentration in the actual model for 32 hrs contributed 

antagonistically to the Al-recovery. Furthermore, while the quadratic term of sweep concentration 

was significant at 32 hrs, vice versa was observed at 24 hrs. 

4.1.1 Analysis of variance (ANOVA) 

The independent variables in the selected model and the impact of each variable were then 

evaluated. For this purpose, the adequacy of the quadratic model was evaluated using several 

assessments such as the coefficient of determination, adjusted coefficient and the coefficient of 

variation (CV). The value of act-R2 indicates the percentage of the variation in the response that is 
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attributed to the input variables [46].  In Table 5, the indicated act -R2 of 0.9548 was close to 1. This 

represented 95.48% variability of the predicted response value (Al3+ transport), which is a function of 

the four process variables. Also, the adj. R2 (0.9358) represents 0.0642 of the variations in the response 

that cannot be attributed to the significant independent terms. The clear exemption of statistically 

insignificant terms in the model was through the forward screening method under the condition (p-

value≤ α = 0.05). 

Table 5. ANOVA for reduced quadratic model at 32-hours. 

Source Sum of squares Df Mean Squares F-value p-value prob>F 

Regression model 34.51 8 4.31 50.18 <0.0001 

X1-Feed conc. 12.74 1 12.74 148.28 <0.0001 

X2-Feed flow 2.49 1 2.49 28.95 <0.0001 

X4-Sweep conc. 9.25 1 9.25 107.66 <0.0001 

X1X2 1.24 1 1.24 14.38 0.0012 

X1X4 3.01 1 3.01 34.97 <0.0001 

𝑋1
2

 0.4585 1 0.4585 5.33 0.0323 

𝑋2
2 0.6027 1 0.6027 7.01 0.0159 

𝑋4
2 0.4645 1 0.4645 5.40 0.0313 

Residuals 1.63 19 0.0859   

Pure Error 0.0018 3 0.0006   

Standard deviation = 0.2932; Mean= 8.43; CV %= 3.48;  

Actual R2= 0.9548; Predicted R2=0.8736 ;Adjusted R2= 0.9358; Adequate Precision = 22.8386 

 

The ANOVA in Table 5 revealed that the first order (X1, X2, X4), two way interaction (X1X2 and 

X1X4) and pure quadratic effect (𝑋1
2, 𝑋2

2 and𝑋4
2) were highly significant for Al3+ transport.  More so, 

the F-value of 50.18 implied the model term was statistically significant and there was only 0.01% 

chance that the large F-value could be due to noise.  F-values of the independent variables X1, X2 and 

X3 were 148.28, 28.95 and 107.66 respectively.  Considering the F-values, the effect of independent 

variables on Al3+ mobility was therefore high for variables with high F-value. The calculated CV of 

3.48% further assented to the reliability of the model. A measure of the relative dispersion with 

respect to the mean provides information on the reproducibility, repeatability and precision of the 

model, where; CV<10% [47,48].  Also, the adequate relationship between the signal–to-noise ratio 

must exist to inform that the model can be used to navigate the design space. The signal to noise 

ration given by the adequacy precision, was 22.839 and that was > 4. Therefore the noise level did not 

compete with useful information from the model.  

4.1.2 Diagnostic plots 

The predicted versus actual normality probability of residuals and the residuals versus run plot 

are used to evaluate the goodness-of-fit of the model. The good correlation between the actual and 

predicted mobility is depicted by the well distribution of the actual values to the predicted value line. 

The model pred-R2 and adj. R2 within 20% was found to be significantly acceptable. Meloun and 

Militky [49], suggested that a model could be used after a residual analysis has been performed, 

whereby the residual analysis is used to investigate outliers and detect influential observations. In 

Figure 3a, the diagnostic plot of the model with the predicted R2 of 0.8736 showed that data points 

were close to the diagonal line. Likewise in Figure 3b, the data points of the residuals followed a 

normal distribution as maximum plots are interlocked with the straight line.  Furthering the residual 

analysis, Figure 3c showed a conformance to a random non-linear scattering trend along the run 

number and absence of outliers. As such, there was no time related variable lurking at the 

background.  While the negative residual implies an over prediction, a positive residual indicates a 

low prediction. A plot close to the estimated regression line at zero (0) expounded on the exactness 

of prediction.  
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Figure 3. (a) Predicted versus actual values plot; (b) Normal probability plot; (c) Residual versus total 

run plot. 

4.2 Combined effects of operating parameters on the response 

Interpretation of the parametric interaction among the process variables was evaluated as 

combined effects of feed concentration and feed flowrate (X1X2); and feed concentration and sweep 

concentration (X1X4). The three dimensional plots (3D-plots) of the regression model were used for 

the graphical explanation of the interactions. Corresponding response surface plots (RSM) obtained 

from the Equation (5) are presented in Figures 4(a-c) and 5(a-c). The degree of curvature on the 3D-

plots depicts the levels of uncertainties attributed to the parametric interactions. Decision making 

using the RSM must take into accounts the variable effects on the response and the economic 

implications. For any good decision, there must be a balance between the considerations. 

Comparative Al-transport at 24-hrs (Figure 4c and Figure 5c) and 32-hrs was undertaken using 

contour plot studies.   

The concentration polarization effect due to bulk ion distribution at the membrane layer is 

dominant at high feed concentration. Such an effect reduces selectivity and transmembrane flux [50]. 

In Figure 4a, increasing flowrate increased Al3+ transport at a decreasing feed concentration.  At 

higher flowrates > 55%, the Al-transport ranged between 80 and >90% for a feed range of 100 ≤ X1 

≤1070 ppm at 32-hrs study period. An estimated 55-62% transport (Figure 4c) was also observed for 

decreasing feed concentration from 2000 ppm to about 1740 ppm at 24hrs. As such, a higher feed 

flowrate does not translate to high mass transport at high feed concentration. Recirculation of feed 

for a longer time increased the transport as long as the potential difference across the feed and sweep 

ends existed. A low transport of < 60% was therefore reported between 1930-2000 ppm for a >75% 

flowrate at 32-hrs (Figure 4b). Under low to mid flow scheme (35-55%), one should expect an 
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estimated 65- >78.5% Al3+ transport from the feed phase with an operating feed concentration of 

17450-1340 ppm in 32-hrs.  

 

Figure 4. (a) Response surface plot for the interactive effect of feed flow and feed concentration at 32-

hrs; (b-c) contour plots of Al-transport as a function of feed flow and feed concentration at 32-hrs and 

24hrs respectively. 

The potential gradient to draw Al3+ increased with increasing sweep concentration. However, 

the negative impact of the increasing feed concentration was observed again in Figure 5a as the 

steepest point towards 2000 ppm. The mid to lowest Al-transport occurred at a lower sweep strength 

for sweep concentration of 0.25-0.38 N HCl. At that sweep concentration range, a transport of 42-54% 

was observed for feed regions of 1800- >1950 ppm. While attribution of the low Al-transport to the 

drawing potential of the acid is valid, the bulk distribution at the membrane boundary at high feed 

concentration could also be a great contributor to the reduced stoichiometric ion exchange.  Above 

0.48 N HCl, a feed range of 100-1550 ppm resulted in 70- >90% target ion mobility (Figure 5b). 

Increasing operating concentration above 1N to maximize transport is not advisable. This can result 

in osmotic dehydration of membrane structure, loss of solute across sweep phase and osmotic 

transport [51]. The peak point on the curvature of Figure 5a, which reflected as the oval shape in 

Figure 4b expounds on the high transport (93%-94.1%) being in the region of 0.7-0.81 N HCl for feed 

concentration ≤ 500 ppm. Observing Figure 5c at 24-hrs, an Al-mobility of 60-68% for a 0.72-0.84 N 

and 1750-1980 ppm acid and acidic salt solutions respectively. The high points (83-86%) for transport 

at 24-hrs occurred for a sweep concentration of 0.7-0.84 N and feed concentration of 120- 640 ppm. 

Therefore, any model generated for 24-hrs would predict within the range of response for Figures 4c 

and 5c observed (max= 90%). Interactions with sweep flowrate, which singularly has a linear-

horizontal effect and others such as X1X3 was excluded due to p>0.05.  
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Figure 5. (a) Response surface plot for the interactive effect of sweep concentration and feed 

concentration at 32-hrs; (b-c) contour plots of Al-transport as a function of feed flow and feed 

concentration at 32-hrs and 24hrs respectively. 

4.3 Enrichment Effect 

The enrichment effect of IED and its ability of the process concentrate transporting feed in the 

final sweep solution sets it apart from other processes. A good idea of the enrichment at the sweep 

phase is clearly depicted by dividing Al in sweep by initial Al-concentration of the feed. Using 2- 4 

N sulfuric acid, and 3:1 feed to sweep volume ratio, 2.4- 3 times enrichment has been reported for Al-

recovery from water treatment residue using Nafion 117 [34,35]. Similarly, the enrichment of Al-

species at the feed and sweep phase was compared for 24 hrs and 32 hrs respectively for 2:1 feed to 

sweep phase volume in Figure 6 (a-b). Depending on the other interactions (feed flow and sweep 

flow), a low feed concentration and low sweep concentration recorded an enrichment factor between 

0.95-1.38 and 1.14-1.55 at 24-hrs and 32-hrs respectively. Enrichment for a medium feed and sweep 

concentration was between 1.24-1.61 for 24-hours and 1.41-1.65 at 32-hrs.  Generally, the lower 

enrichments, < 1.02 was within operating conditions of medium feed- low sweep, high feed- low 

sweep and high feed-medium sweep concentrations. Furthermore, an observed lowest enrichment 

factor (0.47), was observed at a high feed and a low sweep concentration. Expectedly, high sweep 

concentration should translate into high Al-enrichment. However, comparing the enrichment ranges 

at 24-hrs and 32-hrs for low feed-low sweep concentrations and low feed-high sweep concentrations, 

dilution of final sweep was evident at the high sweep concentration with enrichments of 1.13-1.39 at 

24-hrs and 1.16-1.43 at 32-hrs. A seemingly progressive Al-enrichment with respect to increasing acid 

(0.25-1 N) ensued at 2000 ppm. Without an overlapping enrichment at each time zone, Al3+ highs at 

0.25, 0.625 and 1 N were 0.63, 0.90 and 1.19 for 24-hrs and 0.70, 1.01 and 1.33 for 32-hrs respectively.  
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Figure 6. a) Enrichment factor plot for 24 and 32hrs b) Enrichment plot based on feed concentration. 

4.4. Desirability 

Desirability method is one of the most widely used non-linear programming techniques used to 

realize multi-objective optimization due to its simplicity and flexibility approach for each response.  

Responses (yi) are transmuted into individual scale free desirability with a value range of 0≤ di ≤ 1. A 

dimensionless desirability value of 0 indicates the response is outside of an acceptable region and the 

quality of the response is therefore undesirable. Having the response at its goal or target signifies that 

di = 1. In Design expert 11.0 worksheet, the goals of the desirability functions of the response are 

structured into minimum or maximum, within range or target and none. The goals of the factors only 

are set to exact values.  The design variables are then chosen to maximize the overall desirability 

[52]: 

𝐷 = (𝑑1 × 𝑑2 × … 𝑑𝑛)
1

𝑛 = (∏ 𝑑𝑖
𝑛
𝑖=1 )

1

𝑛  (6) 

where n is the number of responses in the measure. 

The feed concentration, feed flowrate, sweep flowrate and sweep concentration vary in the 

design range. In this numerical optimization of the counter flow IED system, the input variables were 

assessed to obtained a desired target Al-transport >75%.  Equal importance (3) and weight (1) are 

assigned for all the process variables and intent. Figure 6 shows the goals (in range for process 

variables), lower and upper limit (Ll and Lu), optimal value (red dotted for process variables and blue 

dotted for response) and desirability of the process variables and response. Out of a total of 51 

solutions, the optimal parameters to achieve Al-transport for feed concentration, feed flowrate, sweep 

flowrate and sweep concentration was 1600 ppm, 61.74%, 43.83% and 0.75 N respectively. The 

optimum results for maximum Al-transport is desirable with a combined desirability of 0.964 which 

is close to 1. To validate the results and performance of the counter flow IED system, five 

experimental runs were conducted with optimal values of the process variables. An Al-transport of 

77.13% ± 4.19 was observed as compared to the set target of 80% and 78.81% predicted by the model. 
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Figure 7. Objective optimization and optimal evaluation for 32hrs Al-transport. 

4. Conclusion 

The individual and combined effects of four process variables (feed concentration, feed flowrate, 

sweep flowrate and sweep concentration) on Al- transport in a Nafion 117 membrane was studied 

using the FC-CCD model of RSM. The desirability approach was developed to carry out Al-transport 

and optimization. The significant influences of counter flow IED system variables on Al-transport are 

tested statistically by ANOVA. High adequacy precision ratio (22.839), act. R2 (0.955) and adj. R2 

(0.936) values indicates the model at 32hrs has a better goodness-of-fit and can navigate through the 

design space. The regression model for Al-transport is obtained. A strong relation between the 

experimental and predicted results is shown by the 0.874 pred.R2 and a standard deviation of 0.29. 

The interactive influence of the IED variables are illustrated and assessed in 3D surface and contour 

plots. Increase in feed concentration has a negative effect on Al-transport. Positive impacts are 

observed with feed flowrate and sweep concentration. The impact of the sweep flowrate is not 

significant. Enrichment by Nafion 117 on the 2:1 by volume of the counter flow IED system is between 

0.47 and 1.65. The optimized parameters of the IED system are obtained to achieve the target 

transport using the desirability approach. Comparing the validated results to the predicted values by 

RSM, the optimized IED produces a ± 4.19 and shows that the RSM and desirability approach are 

reliable. The outcome of this research serves as a baseline to Al-transport study for independent and 

interacting variables to determine operational periods for optimum recovery at the different times 

zones of 24 hrs and 32 hrs. Acidification of residue for optimum recovery is reported at different pH 

and it should be of a future interest to investigate the effect of varied pH and other process variables 

on Al permeation. 
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