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Abstract: Over the last few decades, many countries, especially Caribbean island ones, have been 

challenged by the devastating consequences of natural disasters, which pose a significant threat to 

human health and safety. Timely information related to the distribution of vulnerable population 

and critical infrastructure are key for an effective disaster relief. OpenStreetMap (OSM) has 

repeatedly been shown to be highly suitable for disaster mapping and management. However, large 

portions of the world, including countries exposed to natural disasters, remain unmapped. In this 

study, we propose a methodology that relies on remotely sensed measurements (e.g. VIIRS, 

Sentinel-2 and Sentinel-1) and derived classification schemes (e.g. forest and built-up land cover) to 

predict the completeness of OSM building footprints in three small island states (Haiti, Dominica 

and St. Lucia). We find that the combinatorial effects of these predictors explain up to 94% of the 

variation of the completeness of OSM building footprints. Our study extends the existing literature 

by demonstrating how remotely sensed measurements could be leveraged to evaluate the 

completeness of OSM database, especially in countries at high risk of natural disasters. Identifying 

areas that lack coverage of OSM features could help prioritize mapping efforts, especially in areas 

vulnerable to natural hazards and where current data gaps pose an obstacle to timely and evidence-

based disaster risk management actions.         
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1. Introduction 

Over the last few decades, many countries have been challenged by the devastating 

consequences of natural disasters which pose a significant threat to human health and safety and 

impact vulnerable communities and critical infrastructure globally. Every year, natural disasters 

impact close to 160 million people worldwide (WHO, 2019), causing destruction of the physical, 

biological and social environments, impacting food security, and causing global losses that amount 

to over 100 billion dollars (FAO, 2019). The frequency of natural disasters has been steadily increasing 

since 1940 [3] and over the next century climate change will likely amplify the number and severity 

of such disasters [4]. By 2030, up to 325 million extremely poor people will live in the 49 most hazard 

prone countries, the majority of them in South Asia and sub-Saharan Africa [5].  

While the impacts of natural disasters are worldwide, some countries have been more vulnerable 

to different types of disasters than others [6]. For example, in 2017 Puerto Rico, Sri Lanka and 

Dominica were at the top of the list of the most affected countries to natural disasters such as 

significant precipitation, floods and landslides. Of the ten most affected countries and territories to 

natural disasters since 1998, eight were developing countries in the low income or lower-middle 

income country group; one was an upper-middle income country (Dominica); and one an advanced 

economy (Puerto Rico) [7]. Caribbean island countries are especially exposed to a wide range of 
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natural disasters, such as tropical cyclones, tsunamis, flooding, volcanic eruptions and earthquakes 

[8] and small island developing states - which are frequently characterized by coastal communities, 

geographic isolation, and limited technical capacity - are among the most vulnerable countries to 

natural disasters and climate change [9].  

Recognizing these trends, there is an increasing need for efficient and well-planned disaster 

management and disaster relief operations. The term disaster risk management refers to the full 

lifecycle of actions aiming to prevent, prepare for, respond to, and recover from disasters. Generally, 

disaster risk management consists of four main phases: (1) Mitigation, i.e. activities that reduce the 

likelihood and expected adverse impacts of a natural disaster event; (2) Preparedness, i.e. plans or 

preparations to strengthen emergency response capabilities; (3) Response, i.e. actions taken to save 

lives and prevent property damage in an emergency situation; and (4) Recovery, i.e. interventions 

aimed at returning communities and infrastructure to a proper level of functionality following a 

disaster.  

Timely geospatial information related to the distribution of vulnerable population and the 

location, availability and functionality of critical infrastructure (e.g. hospitals, shelters, water and 

sanitation facilities, roads and public transportation) is key for an effective disaster relief not only 

during the response phase, but also to support post-event recovery efforts and to guide an effective 

planning in preparation for the next disaster.  

Until recently, governmental agencies and the commercial sector were the primary sources for 

geospatial data for disaster management. In the past decade, however, the public has been 

increasingly recognized as a valuable source for geospatial information for disaster management [10]. 

Recent developments in web mapping technologies have led to disaster management operations that 

are more dynamic, transparent, and decentralized, increasingly with contribution by individuals and 

organizations from both inside and outside the impacted area [11] including by means of geospatial 

information that is contributed by volunteers.  

The term Volunteered Geographic Information (VGI) refers to geographic information collected 

by individuals also known as Volunteer and Technical Communities (VTC) or digital humanitarians 

[12], often on a voluntary basis [10]. The trend of VGIs was recognized by Time magazine in 2006, 

when "You" were chosen as the magazine's Person of the Year. VGIs allow to rapidly collect accurate 

information before, during and following a disaster, making this information open and freely 

accessible [13] and filling deficiencies of traditional mapping technologies and sources of data [14] 

[15]. 

OpenStreetMap (OSM) for Disaster Management 

Created in 2004 by Steve Coast, OpenStreetMap (OSM) is a collaborative project aiming to 

“create a free editable map of the world”. During its first year, most mapping efforts focused on road 

and transportation networks. Today, a variety of geographical features, including buildings and their 

functionality, land use and public transportation information are constantly added to OSM [16]. Such 

data allows local governments and communities to better perform risk assessment and emergency 

planning [17] [18] [19] and is routinely utilized for various disaster risk management applications 

[20] [21]. As of today, there are more than 5.5 million OSM users and one million contributors who 

generate more than 3 million changes every day, as well as specialized groups such as Humanitarian 

OpenStreetMap Team (HOT-OSM) that conduct activities aimed at enriching OSM data to support 

emergency relief operationsi.  

The need for comprehensive up-to-date geospatial information is especially evident during and 

immediately after major disaster events. In the days following a magnitude-7.0 earthquake in Haiti 

(January 12, 2010), there was lack of this fundamental data. In response to the event, numerous 

organizations have released high-resolution satellite imagery under open licensing schemes, 

catalyzing worldwide efforts to map Haiti in order to support the recovery operations. Over 450 OSM 

volunteers from 29 countries relied on this imagery to digitize roads, buildings, and other features in 

the affected areas, creating the most detailed map of Haiti in existence in just a few weeks [22]. Haiti 

has been subject to a wide range of severe disaster events. For example, on October 4, 2016, Hurricane 
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Matthew struck southwestern Haiti, leaving 900 people killed and 28,000 homes damaged. In 

response to the event, significant updates to OSM database occurred especially for four days after the 

hurricane hit the island [23].  

OpenStreetMap (OSM) Data Completeness and Accuracy 

Although OSM road network data is estimated to exceed 80% completeness in relation to the 

world’s roads and streets [24], in general, the coverage and completeness of OSM features (including 

building footprints) varies significantly - not only between countries, but also within countries. For 

example, completeness of coverage of remote areas is often lower than of highly populated urban 

areas, and the coverage of developed countries tends to be lower than of developing countries [25] 

[26] [27] [28] [29]. These differences are due, in part, to societal factors, such as population distribution 

and population density, distance to major cities and the location of contributing users [26] [30] [31] 

[32] [33] [34].  

With the increased utilization of VGIs for disaster preparedness and response, various 

methodologies have been proposed to assess the quality and the accuracy of VGIs [15], for example, 

in terms of data completeness, logical consistency, positional, thematic, semantic and spatial 

accuracy, temporal quality and usability [25] [35] [36] [37] [38] [39] [36].  

In this study, we propose a methodology that utilizes remotely sensed observations to predict 

the coverage of OSM features and to identify gaps in the completeness of OSM building footprints. 

In the past, expensive satellite imagery and limited computational power only allowed analysis of 

small geographical contexts, for example, counting building footprints in a small neighborhood or 

evaluating the volume of live vegetation in a single agriculture field. This model is being replaced 

thanks to the availability of publicly available and free satellite data that capture every location on 

earth every few days and in a spatial resolution of up to a few meters, allowing to understand not 

only the physical characteristics of Earth, but also fundamental socio-economic patterns and 

processes. The availability of daytime (e.g. Sentinel, Landsat) and nighttime (e.g. DMSP-OLS, VIIRS) 

satellite imagery, together with advancements in the capabilities of cloud-based computational 

platforms, now allows for analysis of Land Cover and Land Use (LCLU) characteristics of Earth 

across a greater geographic and temporal scale. Different types of LCLU, including built-up areas 

and built-up structures, hold unique reflectance characteristics that can be differentiated by means of 

remote sensing. Our objective here is to rely on remotely sensed measurements to predict the 

coverage of OSM building footprints. Previous studies have utilized OSM data for different remote 

sensing applications, for example, for classification of urban areas [40] or for semantic labeling of 

aerial and satellite images [41]. Despite significant progress in the field of machine learning and the 

increasing availability of satellite imagery, there is still a scarcity of studies aiming to utilize remotely 

sensed observations to predict the completeness of OSM building footprints. Identifying areas that 

lack coverage of OSM features could help prioritize mapping efforts, especially in areas vulnerable 

to natural hazards and where current data gaps pose an obstacle to timely and evidence-based 

disaster risk management actions. We demonstrate our methodology in the case study of Haiti, one 

of the most vulnerable countries to natural disasters, and where there are still significant gaps in OSM 

completeness. We validate the methodology and our approach in the case of two additional small 

island states: Dominica and St. Lucia. 

The remainder of this article is organized as follows. In Section 2, we discuss the methodology, 

the study area and the data we use to predict the coverage of OSM building footprints. In Section 3 

we present and evaluate the results and in Sub-Section 3.3 we illustrate the applicability of our 

approach in the case of two small island states: Dominica and St. Lucia. In Section 4, we offer a 

concluding discussion. 
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2. Materials and Methods  

2.1. Haiti 

Located on the western side of Hispaniola Island, Haiti (27,750 square kilometers in size, with a 

population of  approximately 11.5 million) is the poorest country in the Western Hemisphere, with 

a Gross Domestic Product (GDP) per capita of US$ 870 [42]. Haiti is highly vulnerable to natural 

disasters; more than 96% of its population is exposed to different types of natural hazards, 

particularly hurricane, coastal and riverine flood, and earthquake [42]. More than half of the 

population lives in cities and towns, a major shift from the 1950s, when approximately 90% of 

Haitians lived in the countryside [43]. Almost all of Haiti‘s 30 major watersheds experience significant 

flood events, due to intense seasonal rainfall, storm surge in the coastal zones, deforestation and 

erosion, and sediment-laden river channels [44]. Furthermore, large portions of Haiti`s population 

(e.g. in the capital Port-au-Prince) live in shanty towns built upon steep and exposed hillsides [45]. In 

2018 alone, some 2.8 million people were considered to be in need of humanitarian assistance valued 

at US$ 252.2 million [46].  

2.2. Data 

2.2.1 OSM data 

As of today, approximately 930,000 buildings (totaling an area of 64.6 square Kilometers) and 

20,948 km of roads have been added to OSM database over Haiti. To assess the current coverage of 

OSM building footprints in the country, we download the most recent dataset from Geofabrik 

(https://www.geofabrik.de/data/download.html) in Shapefile format (data downloaded in July 2019). 

For Dominica and St. Lucia, we download the most recent OSM data using overpass turbo 

(https://overpass-turbo.eu/), a web-based data filtering tool for OpenStreetMap (data downloaded in 

July 2019). We select only OSM features that are labeled “building” (38,619 and 29,412 polygons in 

Dominica and St. Lucia, respectively). 

2.2.2. Predictors 

We create an artificial tessellated grid of cells that spans the entire country, each cell 0.25 Square Km 

in size, (a total of 136,747 cells).  

We predict the area of OSM building footprints in a cell based on several remotely sensed 

measures and geospatial features related to the street network:  

Nighttime lights (VIIRS) : The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the 

key instruments onboard the Suomi National Polar-Orbiting Partnership (Suomi NPP) spacecraft 

(launched in 2011). VIIRS instrument collects visible and infrared imagery and global observations 

of land, atmosphere, cryosphere and oceans. This instrument has significant improvements over the 

capabilities of the former DMSP-OLS [47], notably its availability on a daily basis and higher spatial 

resolution (up to 500m at the equator). First, we record for each pixel the maximum value of all 

overlapping pixels (in the same location) in a stack of 10 monthly composites (Jan – Oct) of 2019. 

Then, for each cell we calculate a Sum of Light (SOL) measure (the sum of the digital number values 

of all overlapping pixels in each cell).  

Sentinel-2 derived spectral indices : The Copernicus Sentinel-2 mission comprises a 

constellation of two polar-orbiting satellites that collect multi-spectral data in 13 spectral bands, with 

four bands at a spatial resolution of 10m and 6 bands at a spatial resolution of 20 m. The revising 

period of Sentinel-2 is 5 days at the equator. We calculate four remotely sensed measures sensitive to 

vegetation and built-up land cover: Normalized Difference Vegetation Index (NDVI) [48], Soil 

Adjusted Vegetation Index (SAVI) [49], Normalized Difference Built-up Index (NDBI) [50] and Urban 

Index (UI) [51] (Table 1). 

Sentinel-1 SAR : Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, 

operating day and night performing C-band synthetic aperture radar imaging, enabling them to 
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acquire imagery regardless of the weather. Sentinel 1 revisit period is every 6 days, with a spatial 

resolution down to 5m. Similarly to [52], we capture the texture of the surface by utilizing Sentinel-

1’s C-band (single co-polarization vertical transmit and vertical receive (VV) acquisition mode). From 

each scene we remove speckle noise and perform radiometric calibration and terrain correction. 

Slope : To capture the topography of the surface, we use the Global SRTM mTPI dataset, where 

a local gradient is calculated for each pixel based on Global SRTM elevation data. 

Forest cover : We estimate the extent of forest cover in 2018 based on the Hansen Global Forest 

Change v1.6 (2000-2018). First, we define a pixel as “forest” in the year 2000 if more than 20% of it 

was covered in 2000 with forest. We record pixels that experienced a major event of forest cover loss 

between 2000 and 2018 and estimate the total area of forest cover in 2018 in each cell.  

Urban footprints : We rely on two remotely sensed derived products signifying urban and 

rural settlements that were produced by the Earth Observation Center at DLR: The Global Urban 

Footprint (GUF) (in a spatial resolution of ~12m) and the World Settlement Footprint (WSF) (in a 

spatial resolution of ~10m) [53] [54] [55].  

OSM transportation network features : We calculate the total length of OSM roads in a cell 

and the total number of junctions in a cell as additional potential predictors of OSM building 

footprints.  

 

Table 1. The predictors used to predict per-cell area of OSM building footprints. 

Predictor Source Per-cell statistics 

Nighttime lights VIIRS Sum of Light (SOL): The sum of DNmax value of 

all pixels in cell, where 𝐷𝑁𝑚𝑎𝑥𝑖  is the maximum 

digital number (DN) value of pixel in location i 

over 12 monthly composites in 2019.  

NDVI 

(NIR-RED)/ (NIR+RED) 

Sentinel-2 The sum NDVI value of all pixels in a cell 

SAVI 

(NIR-RED) / (NIR+RED+L) * (1+L) 

Sentinel-2 The sum SAVI value of all pixels in a cell 

NDBI 

(MIR-NIR)/ (MIR+NIR) 

Sentinel-2 The sum NDBI value of all pixels in a cell 

UI 

(SWIR2-NIR)/ (SWIR2+ NIR) 

Sentinel-2 The sum UI value of all pixels in a cell 

deforestation Hansen Global Forest 

Change v1.6 (2000-2018) 

Total forest cover in a cell (2018) 

Built-up area  GUF Total built up area in a cell 

Built-up area WSF Total built up area in a cell 

Topography (slope)  SRTM Average slope per cell 

Surface texture Sentinel-1 Average texture per cell 

Roads OSM Total length of roads in a cell 

Roads junctions OSM Number of junctions in a cell 

 

3. Results 

3.1. Explanatory variables 

An examination of the 136,747 cells spanning Haiti shows that only 25.1% of the cells have at 

least one mapped building, and only 512 of them have more than 10% of their area covered with 

building footprints (Figure 1 shows a histogram of the distribution of OSM building footprints per 

cell). On average, there are 27.5 buildings in a cell (Std= 83.4); 1,530 of the cells (i.e. only 1.1% of the 

cells spanning Haiti) incorporate more than 100 mapped buildings. In comparison, 8.15% and 6.84% 

of the cells incorporate built-up land cover according to WSF and GUF, respectively.  
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Figure 1. The distribution (histogram) of OSM building footprints area (Sqm) per cell 

As discussed above, a visual examination of the completeness of OSM building footprints over 

Haiti suggests that large portions of the island remain unmapped (Figure 2a). Figure 2c shows, as an 

illustration, the coverage of OSM building footprints in the capital of Haiti, Port-au-Prince, and in the 

adjacent Carrefour commune. While buildings in many areas within these cities have been mapped, 

large portions are still not fully mapped. We observe that densely mapped zones of Port-au-Prince 

co-exist alongside zones that remain entirely unmapped (Figure 2b), a visual pattern that may result 

from episodic engagement of community mapping volunteers and the definition of mapping ‘tasks’ 

on a neighborhood scale through OSM editing tools. Moreover, significant parts in northern Haiti are 

not mapped (Figure 3), including, for example, the cities Gonaïves and Cap-Haitien. 

 

 
Figure 2. OSM building footprints coverage in Haiti (a), in the capital of Haiti, Port-au-Prince (b), 

and in the adjacent Carrefour commune (c) 

 
(a)                            (b) 

Figure 3. OSM building footprints coverage in (a) the city of Cap-Haitien and (b) Gonaïves in 

northern Haiti. 
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A Pearson correlation test indicates a significant (p<0.01) correlation between the total area of 

OSM building footprints in a cell and several of the examined predictors. As expected, there is a 

positive and significant correlation between the area of OSM building footprints in a cell and the total 

area of built-up land cover according to WSF and GUF (r=0.73 and 0.71, respectively, p<0.01) as well 

as with nighttime lights (VIIRS SOL) (r=0.63, p<0.01). We find a significant (p<0.01) correlation 

between OSM building footprints area in a cell with the four Sentinel-2 spectral indices, indicated by 

a positive correlation with UI and NDBI (r=0.59 and r=0.47) and a negative correlation with both SAVI 

and NDVI (r=-0.53).  

We visually assess the completeness of OSM building footprints in Haiti by overlaying the OSM 

building footprint dataset with the most recent high-resolution base map image (provided by ESRI). 

We identify 835 cells where we assess that at least 75% of the buildings are mapped (we choose a 

threshold of 75% because we want to sample cells representing diverse regions and geographies in 

Haiti, many of them have not been fully mapped) (Figure 4 shows examples of cells where more than 

75% of the structures are mapped). The correlation between the area of OSM building footprints in a 

cell and the examined predictors is higher compared to the previous experiment, where all the cells 

where considered (for example, r=0.78 and r=0.65 with WSF and VIIRS and r= 0.61 and r=-0.55 with 

UI and SAVI, respectively) (Table 2). The higher correlation is likely due to the “noise” caused in the 

first experiment due to the incomplete coverage of OSM building footprints within the entire Haiti 

dataset (i.e. cells that incorporate building footprints but that have not been mapped).  

 

 
Figure 4. Examples of cells that have more than 75% of their area mapped with OSM building 

footprints. 

 

Table 2. Pearson correlation test between the area of OSM building footprint in a cell and the 

evaluated predictors (only cells that were assessed as mapped, N=835). 

 VIIRS GUF WSF NDVI NDBI SAVI 

r 0.654* 0.76 0.78 -0.551 0.486 -0.551 

 
UI 

Forest 

Cover 
SE1 Slope  

Road 

length 

OSM 

junctions 

r 0.614 -0.388 0.16 -0.11 0.69 0.60 

Note: *p<0.01 

 

To evaluate the combinatorial effect of the predictors on the completeness of OSM building 

footprints, we perform an Ordinary Least Squares regression (OLS). OLS regression model describes 

the population of a random variable Y and assumes that the observations Yl, Y2, . .. , YT constitute a 

random sample with a linear conditional mean made up of variables X, X2, . .. ,XK. The analysis shows 

that nine of the variables together explain up to 82% of the variation of OSM building footprint area 

in a cell (R2 = 0.82, F(12,822) = 323.20, p < 0.01)(Table 3). We evaluate the contribution of four types 

(groups) of features to the model fit using a stepwise regression analysis: (1) only GUF and WSF; (2) 

with the addition of nighttime lights (VIIRS); (3) with the addition of further remotely sensed 

measures and derived products; (4) with the addition of OSM road network features. The results 

show an improvement of the model fit with the addition of each of the predictive variables groups 

(Table 4). While GUF and WSF together explain 66% of the fit, the addition of nighttime lights 

improves the fit of the model (indicated by explanation of up to 76% of the variation). The addition 
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of further remotely sensed measures (i.e. Sentinel-2-derived spectral indices, slope, texture and forest 

cover) improves the model fit by a further 5% (up to 81% of the variation). Interestingly, the addition 

of OSM transportation network features only improves the fit of the model marginally to around 

82%.  

Table 3. Model fit for the stepwise regression analysis of nine evaluated predictors 

Step Variable R2 Adjusted R2 C(p) AIC RMSE 

1 WSF 0.614 0.613 984.9 18235.2 13332.1 

2 UI 0.705 0.704 559.9 18013.3 11666.7 

3 GUF 0.764 0.763 282.9 17828.1 10435.7 

4 VIIRS 0.799 0.798 120.2 17696.0 9636.3 

5 Road length 0.814 0.813 49.5 17631.2 9264.0 

6 FC area 0.820 0.819 23.4 17605.8 9118.9 

7 NDBI 0.822 0.821 17.0 17599.5 9078.8 

8 Number of junctions 0.823 0.822  13.1 17595.6 9052.3 

9 Median slope 0.614 0.613 11.9 17594.3 9040.2 

 

Table 4. Four regression model outputs showing an improvement of model fit with the inclusion of 

four groups of variables: (1) only GUF and WSF; (2) addition of nighttime lights (VIIRS); (3) 

addition of remotely sensed measures and derived products; (4) addition of OSM road network 

features. 

Step (1) (2) (3) (4) 

GUF 0.115*** 0.124*** 0.127*** 0.138*** 

 (0.010) (0.009) (0.008) (0.008) 

WSF 0.141*** 0.081*** 0.050*** 0.034*** 

 (0.010) (0.009) (0.009) (0.009) 

VIIRS  2,214.671*** 1,276.821** 1,073.838*** 

  (124.738) (127.805) (126.619) 

NDBI   -37.152*** -17.790 

   (11.258) (11.409) 

NDVI   72,452.840** 64,046.550** 

   (30,894.100) (29,957.530) 

SAVI   -48,312.220** -42,708.300** 

   (20,600.640) (19,976.140) 

UI   46.857*** 25.415** 

   (9.751) (10.191) 

Forest cover   0.060*** 0.051*** 

   (0.012) (0.011) 

Slope   179.453 274.377 

   (192.545) (187.222) 

Sentinel-1   -696.229 -295.342 

   (453.517) (442.270) 

Road length    1.470*** 

    (0.543) 
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No. of junctions    60.057** 

    (29.311) 

Constant 0.716 -699.988 30,909.080*** 17,403.480*** 

 (672.122) (573.990) (3,897.596) (4,351.436) 

Observations 835 835 835 835 

R2 0.663 0.756 0.813 0.825 

Adjusted R2 0.662 0.755 0.811 0.823 

Residual Std. Error 12,460.39 10,615.940 9,329.420 9,029.806 

F Statistic 
818.245***  

 

856.591***  

 

357.937***  

 

323.203***  

 

Note:    *p<0.1; **p<0.05; ***p<0.01 

3.2. Prediction of OSM building footprint coverage  

The results above indicate that the area of OSM building footprints in a cell can be explained by 

several of the remotely sensed indicators. To evaluate the potential of these indicators to predict the 

area of OSM building footprints in a cell, we perform a regression with Random Forests. Random 

Forests [57] are tree-based models that include k decision trees and p randomly chosen predictors for 

each recursion. When predicting for an example, its variables are run through each of the k trees, and 

the k predictions are averaged through an arithmetic mean. The learning process of the forest involves 

some level of randomness. Each tree is trained using a subset of examples from the training set, drawn 

randomly with replacement, with each node's binary question determined using a random subset of 

p input variables. We perform the regression with the 835 cells that are visually assessed as relatively 

fully mapped (i.e. more than 75% of the buildings in a cell are assessed as mapped). To evaluate the 

accuracy of the prediction, we adopt a 5-fold cross validation method. In each experiment, the 

examples in one of the data folds are left out for testing and the examples in the remaining 4 folds are 

used to train the model. The performance quality of the trained model is tested on the examples in 

the left-out fold, and the overall performance measure is then averaged over the 5 folds. We assess 

classification accuracy with different number of decision trees: 2, 4, 8, 16, 32, 64, 128, 256 and 512, 

with minimum size of terminal nodes set to 5.  

Random Forest regression predicts up to 89% of the variation of OSM building footprints in a 

cell. Performance improves with the addition of decision trees up to 64 trees, for example, from 81% 

to 89% of the predicted area (with 2 and 64 decision trees, respectively, Figure 5). Figure 6 presents a 

comparison between the actual and the predicted area of OSM building footprints in a cell (regression 

with 64 decision trees) (Figure 6a). The two most important variables to the model are WSF and GUF, 

followed by OSM road network features and Sentinel-2 derived spectral indices (indicated by 

variable importance sensitivity (lncNodePurity), see Figure 6b). 

 

 
Figure 5. The improvement of R2 with the increase from 2 to 64 decision trees in the Random 

Forest model 
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(a)                                         (b) 

Figure 6. Comparison between the (a) actual and predicted area of OSM building coverage in 

each cell (using 64 decision trees) and (b) variable importance sensitivity. 

 

We use the Random Forest model to predict the area of OSM building footprints over the entire 

Haiti dataset (i.e. we train the model with the 835 cells assessed as relatively fully mapped and predict 

for the entire dataset). Figure 7b shows the predicted area of OSM building footprints per cell over 

Haiti. The results highlight large portions in Haiti that have not yet been mapped (e.g. for example, 

the northern cities Gonaives and Cap-Haitien) as well as patches of unmapped cells around major 

cities (e.g. Port-au-Prince). This analysis allows us to identify areas (cells) that are predicted to 

incorporate large areas of building footprints but actually lack coverage (Figure 8).  

A visual examination shows that the predicted coverage of OSM building footprints (Figure 7b) 

corresponds more closely with the distribution of built-up land cover (according to GUF, for 

example) and nighttime lights (VIIRS) (Figures 7c and 7d, respectively) compared to the current 

distribution of OSM building footprints (Figure 7a).  

To further evaluate the accuracy of the model, we perform an Ordinary Least Squares regression 

(OLS) analysis using the entire Haiti dataset (136,747 cells). We find that the remotely sensed 

indicators explain up to 89% of the variation of the predicted area of OSM building footprints in all 

the cells spanning Haiti (R2 = 0.89, F(12,136,734) = 90,690, p < 0.01). In comparison, these indicators 

explain only 48% of the variation of the current area of OSM building footprints in the Haiti dataset 

(R2 = 0.48, F(12,136,734) = 10,330, p < 0.01).  

Finally, in order to identify cells that are predicted to incorporate building footprints but are not 

actually mapped, we calculate the ratio between the actual and the predicted area of OSM building 

footprint in a cell (calculated as the predicted area of OSM building footprints in a cell divided by the 

actual area of OSM building footprints in a cell) (Figure 9a). This analysis allows us to identify cells 

where the ratio between the predicted and the actual area of OSM building footprint in a cell is low, 

highlighting cells that require significant mapping (Figure 9b). 
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Figure 7. Actual (a) and predicted (b) area of OSM building footprints in a cell, compared to 

per-cell (c) area of GUF built-up land cover and (d) VIIRS SOL.   

 

 
Figure 8. Predicted area of OSM building footprints in a cell (Carrefour). Areas shown in 

purple are predicted to include a large area of building footprints.     
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Figure 9. The ratio between the actual and the predicted area of OSM building footprint in a 

cell (calculated as the predicted area of OSM building footprints in a cell divided by the actual area 

of OSM building footprints in a cell) (a, c); Cells with the lowest ratio (lower than 20). Cells shown 

in purple are cells where the actual area of OSM building footprints is much lower than the 

predicted area. 

 

3.3. Evaluation of the method in the case of Dominica and St. Lucia 

The results above suggest the potential of several remotely sensed indicators to predict the 

coverage of OSM building footprints, at least in the case of Haiti. In order to assess the validity of the 

method, we perform additional analysis in the case of two additional Small Island States: Dominica 

(area of 751 km2) and St. Lucia (area of 616 km2) (Figure 10). Dominica (approximately 74,000 people 

[59]) is located approximately 1,200 km southeast of Haiti, with large portions of its population 

residing in the capital Roseau (population 14,700) and Portsmouth (population 5,200) [59]. While 

smaller in size, St. Lucia has more than double the population (approximately 166,000 people [58]) of 

Dominica. A visual examination suggests that the coverage of OSM building footprints in Dominica 

is relatively complete, while large portions of St. Lucia remain unmapped (38,619 and 18,101 

buildings have been mapped in Dominica and St. Lucia, respectively). Areas lacking OSM building 

footprints include parts of the capital, Castries, and the second largest town, Vieux Fort (See Figure 

11).These two areas account for approximately 49% of the population of St. Lucia (64,654 and 16,624 

people respectively [60]). 
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Figure 10. Locations and size comparisons of the three study areas: Haiti, Dominica, and St. 

Lucia 

 

 
                       (a) Vieux Fort           (b) Castries 

Figure 11. Examples of areas missing OSM building footprints in St. Lucia (Vieux Fort (a) and 

the Castries (b)) 

 

Similar to the methodology described in the case of Haiti, we create a fishnet of cells, 0.25 sq. km 

in size, spanning the two islands (totaling 3,861 cells over Dominica and 2,796 cells over St. Lucia). In 

the case of Dominica, we find a high positive and significant correlation between the area of OSM 

building footprints in a cell and two predictors: GUF and VIIRS (r= 0.91 and r= 0.75, respectively, 

p<0.01 for both) and a lower (but significant) correlation with the four Sentinel-2 derived spectral 

indices: NDBI and UI (r=0.38, r=0.35, respectively, p<0.01) and NDVI and SAVI (r=-0.20, p<0.01 for 

both). An OLS regression analysis reveals that together, these variables explain 85% of the variation 

of OSM building footprint area in a cell (R2= 0.85, F(9,3851) = 2424, p < 0.01). Random Forest regression 

(with 64 decision trees) results in similar trends, indicated by a high accuracy rate of around 85% 

(regression accuracy assessed using 5-fold cross validation). In the case of St. Lucia, the correlation 

between the area of OSM building footprints, GUF and WSF ranges between 0.70 and 0.75 (p<0.01). 

The correlation between OSM building footprints area and VIIRS is lower (r=0.58, p<0.01). Together, 

the predictors explain only 66% of the variation is OSM building footprints (R2= 0.66, F(12,2783) = 

464.6, p < 0.01). We relate the lower fit of the model to the fact that large portions of the country have 

not been mapped, resulting in significant “noise”. Thus, we visually assess the completeness of OSM 

building footprints in St. Lucia cells, and identify 180 cells in which more than 75% of their area is 

assessed as mapped. With these visually assessed cells, the fit of the model improves, and together, 

the predictors explain 92% of the variation of OSM building footprint area (R2=92%, F(12,166) = 166.4, 

p < 0.01). Random Forest regression (with 64 decision trees) results in a similar accuracy rate (R2=92%) 

(Table 5).   
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Table 5. Pearson Correlation Test, OLS Regression, and Random Forest Regression for Dominica 

and St. Lucia 

  

 Dominica St. Lucia 

 
Full dataset 

(N=3861) 

Full 

(N=2781) 

Visually assessed cells* 

(N=179) 

(I) Pearson Correlation Test 

GUF r=0.91*  r=0.75*  r=0.89* 

VIIRS r=0.75*  r=0.58* r=0.72* 

NDBI r=0.38*  r=0.30* r=0.30* 

UI r=0.35*  r=0.26* r=0.35* 

NDVI r=-0.20*  r=-0.19*  r=-0.29* 

SAVI r=-0.20* r=-0.19*  r=-0.29* 

(II) OLS 

 
R2=85%  

F(9,3851) = 2424, p = 0.00 

R2=66%  

F(12,2783) = 464.6, p = 0.00 

R2=92%  

F(12,166) = 166.4, p = 0.00 

(III) Random Forest 

 R2=85%  R2=94% 

Note: *p<0.01 

 

4. Discussion 

In recent decades, natural disasters have been responsible for an estimated 0.1% of global deaths, 

killing on average 60,000 people per year [61]. In the last two decades, developing countries have 

accounted for more than half of all reported casualties [62]. Natural disasters often cause significant 

damage to communities, infrastructure and the environment, and require immediate intervention 

and implementation of appropriate measures aiming to save lives. 

Accurate and easily accessible geospatial information is key for an effective disaster risk 

management cycle and for informed decision-making during humanitarian response [63]. The 

increasing availability of geospatial information is revolutionizing disaster research and emergency 

management. Until recently, much of this essential geospatial information was proprietary, scarce 

and in many cases, unavailable during significant disasters. Since the early 2000, however, 

Volunteered Geographic Information (VGI) has been playing a growing role in the support of 

humanitarian relief [63]. OSM, the world’s first openly-licensed geospatial database created by 

volunteers, has repeatedly been shown to be highly suitable for disaster mapping [64] and has 

previously been used for disaster management in numerous major disasters, including the Nepal 

earthquake 2015 [18], the 2010 earthquake in Haiti [22] and 2016 Hurricane Matthew [23]. Recently, 

large corporations including Apple, Microsoft, and Facebook have been hiring editors to contribute 

to the OSM database [20]. 

Despite the continuous efforts to improve completeness of OSM database, large portions of the 

world remain unmapped, including in countries prone to natural hazards, reflecting limited internet 

speed connectivity, limited availability of GPS devices, lack of technical skilled volunteers and 

limited awareness to VGI technologies [19]. Often, when disasters occur, there is a lack of this 

essential information, which results in mapping campaigns, including Mapathons [65] that are 

designed to map the impacted areas. In the context of natural disasters, the coordination of 

volunteers’ mapping efforts is operated by the Humanitarian OpenStreetMap Team (HOT), 

originally formed right after the Haiti earthquake. Other initiatives, such as Missing Maps were 

established in order to “map the most vulnerable places in the world”, where mapping projects are 
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split into small tasks, allowing remote volunteers to work simultaneously on the same overall area 

(as of 2018, there were nearly Missing Maps 60,000 mappers) [66].  

Several methods have been proposed to assess the completeness of OSM database, including 

evaluation of the completeness of street networks [67] [29], land use or buildings [68] [68]. Generally, 

there are pronounced differences in completeness between urban and rural areas, with the latter 

being less well-covered by OSM data [69]. Several tools have also been developed to visually assess 

the relative completeness of OSM mapping features. For example, OSMMatrix [70] provides a web-

based application which portrays the spatial distribution of key attributes derived from the OSM 

dataset. Another tool for gridded estimation of the relative completeness of OSM was proposed by 

Development Seed, comparing OSM building data with WorldPop (population density distribution 

per 100x100m) [71]. Approaches for estimation of OSM completeness include comparison between 

OSM mapped features and other existing datasets, for example, national administrative data [72] [73] 

[74] [75]. Because reference data is often unavailable and varies by countries, there is a need for a 

scalable methodology that would allow to rapidly assess the completeness of OSM features without 

the need for administrative data. The increased availability of free and open source remotely sensed 

data can be utilized to identify locations of built-up land cover- areas that require mapping of built-

up features. To the best of our knowledge, no study has yet evaluated the potential use of remotely 

sensed measurements to predict the completeness of OSM features. In this study, we propose a 

methodology that relies on remotely sensed measurements and classification schemes to predict the 

completeness of OSM building footprints in the case of three small island states (Haiti, Dominica and 

St. Lucia). We find that the combinatorial effects of the predictors explain up to 94% of the variation 

of OSM building footprints completeness. Importantly, we find that the addition of various remotely 

sensed measures to existing classification schemes (i.e. GUF and WSF) as predictors – including 

nighttime lights and Sentinel-2 derived spectral indices - improves the prediction of the area of OSM 

building footprints. As more and more remotely sensed data become available to the research 

community, our study extends the existing literature by demonstrating how they could be leveraged 

to conduct novel, and critical, large-scale assessments of the completeness of OSM database, 

especially in areas at high risk to natural disasters.    

5. Conclusions 

Globally, there has been an increase in the frequency and impacts of major natural disaster 

events and over the next century it is likely that climate change will amplify the number and severity 

of such disasters. While accurate and timely geospatial information is vital for the full cycle of disaster 

risk management, this data is not always available for the disaster management community when 

disasters occurs. Although VGI platforms, specifically OpenStreetMap (OSM), show great potential 

to support humanitarian mapping tasks, gaps in VGI data remains a major concern [76]. There is an 

increasing need for a fully automatic tool that would allow to identify areas that lack a complete 

mapping of OSM features– especially in areas prone to hazard events. W-hile previous studies have 

utilized OSM data as reference for classification of built-up land cover with satellite imagery [77] [78] 

[79] here we show the potential use of publicly available remotely sensed data as predictors of the 

spatial coverage of OSM building footprints.  

With the increase in the frequency and severity of disaster events – especially in developing 

countries – it is essential to ensure the availability, accessibility and accuracy of geographical 

information for disaster management operations. The tool and methodology we present here are time 

efficient and scalable.  

Extension to our approach may improve the accuracy of the prediction of OSM building 

footprints area by adding additional remotely sensed measures. Incorporating additional datasets 

such as newly developed VIIRS nighttime light products, socio-economic variables, additional land 

cover and land use classification schemes may offer opportunities to improve the accuracy of the 

prediction.       
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