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Abstract

Several lines of evidence support a relationship between circadian disruption in the onset, 

course, and maintenance of mental disorders. Despite the study of circadian phenotypes 

promising a decent understanding of the pathophysiologic or etiologic mechanisms of 

psychiatric entities, several questions still need to be addressed. In this review, we aimed to 

synthesize the literature investigating chronobiologic theories and their associations with 

psychiatric entities. We first introduced molecular elements and mechanisms of the circadian 

system to promote a better understanding of the chronobiologic implications of mental 

disorders. Then, we comprehensively and systematically reviewed circadian system studies in 

mood disorders, schizophrenia, and anxiety disorders. Current research has demonstrated 

that circadian pathologies, including genetic and neurohumoral alterations, represent the 

neural substrates of the pathophysiology of many psychiatric disorders. However, much more 

work is needed to identify the causal relationship between circadian physiology abnormalities 

and mental disorders, and to develop sound pharmacologic interventions.

Keywords: Biological Clocks, Circadian Rhythm Disorders, Psychiatric disorders, melatonin, 

Hypothalmo-pituitary-adrenal axis
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“There is a time for many words, and there is also a time for sleep.”

Homer, 850 BC

Summations

Sleep and circadian biorhythms are major physiologic functions responsible for 

emotional, cognitive, and somatic responses of the living organism.

Mental disorders are often associated with disruptions in circadian rhythm 

functions. 

Molecular elements and expressions of genes including CLOCK, PER, and CRY, which 

are directly involved in the circadian system, are reported altered in many 

psychiatric disorders, particularly in mood disorders.

Glucocorticoid rhythm supported by the hypothalamus–pituitary–adrenal (HPA) axis 

and melatonergic activity have a crucial role in the regulation of biorhythm, and 

oscillations of tissue and organ systems including the central nervous system, and 

both systems have been demonstrated impaired in major mental illnesses including 

schizophrenia and other psychotic disorders.

Considerations

Despite the review process performed with a detailed searching, selection, and 

summarization practices, the inadequacy of the studies that establish a causative 

link between circadian rythm disruptions and mental disorders hinders 

generalizations on pathophysiologic mechanism.

There is a lack of translational approach to the findings of animal models which 

might provide clearer understanding of pathophysiologic implications of the 

circadian system in mental disorder. 

Despite studies to date suggesting circadian genotypes and phenotypes as promising 

subjects for a better understanding of the pathophysiologic mechanisms of 

psychiatric disorders, a causal relationship between circadian physiology 

abnormalities and mental disorders has yet to be elucidated.
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1. Introduction 

Rhythmicity is a fundamental characteristic of the nature of life. Time as a dynamic and 

complex phenomenon, playing a pivotal role to sustain rhythmicity for the biologic essentials 

and needs of living organisms. Chronobiology aims to define basic principles of vital reactions 

that occur nearly 24 hours per day through circadian rhythms and biologic processes in 

anything from single cells to human beings. The first scientific awareness of circadian rhythms 

started with observations of the mimosa plant (Mimosa pudica) folding independent of 

daylight by the French astronomer Jean Jacques d'Ortous de Mairan, in 1729 (Foster and 

Kreitzman, 2005). In the 1930s,  the German biologist Erwin Bünning subsequently noticed 

that the movement of the bean plant had an intrinsic period that did not change under 

constant light conditions and inferred that such periodic alterations were arranged with an 

endogenous clock (Foster and Kreitzman, 2005). 

The term ‘circadian’ was first used by Franz Halberg in 1959. It means ‘about a day’ and an 

endogenous day slightly shorter or longer than 24 hours (from the Latin term circa: about and 

diem: day) depending on constant conditions, preserved from environmental factors (Halberg 

et al., 2003). Uncovering interactions between molecules and cells within an endogenous day 

was a major advancement in the discovery of the essential mechanism of circadian rhythm, 

which was a remarkable scientific milestone in chronobiology. It had been eagerly attempted 

to explain the further molecular mechanisms of circadian rhythm; however, the oscillation 

process could not be unraveled until 1971. Konopka and Benzer first determined a gene by 

observing the differences of circadian period lengths among three mutant flies (Konopka and 

Benzer, 1971). They demonstrated three mutants, one was arrhythmic, another had a shorter 

period of 19 h, and the third had a longer period of 28 h; flies with neither the short-period 

gene nor the long-period gene or the arrhythmic gene would not produce a normal rhythm. 

They concluded that the same functional gene with a point mutation appeared to be affected 

in all cases. This work inspired Jeffery C. Hall, Michael Rosbash, and Michael Young, 

independently. They cloned and rescued the Drosophila Period gene, which was recognized 

as the first clock gene, found in 1984 (Bargiello, Jackson and Young, 1984; Reddy et al., 1984). 

They defined the transcriptional translational feedback loop (TTFL) model with the analysis of 

Per gene expression and they demonstrated additional genes and proteins in further work. 

The simple genetic model they postulated revealed the generation of an autonomous 
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oscillator, including transcription-translation cycles from interacting positive and negative 

feedback loops that depend on ribonucleic acid (RNA) and protein levels, which is still used to 

understand circadian rhythms. Consequently, they were awarded the Nobel Prize in 

Physiology and Medicine in 2017 for their explanatory findings of molecular mechanisms 

controlling the circadian rhythm (Huang, 2018). 

Despite the fact that the understanding of the neural basis of rhythmicity and central nervous 

system (CNS) involvement in circadian mechanisms is not long-standing knowledge, the 

discovery of the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, which was later 

described as the master circadian pacemaker in mammals, is actually not very recent. The SCN 

was first defined as a cluster of different neurons in the 1880s and was subsequently 

recognized in a number of mammalian species’ brains through comparative studies of the 

hypothalamus by Crosby and Woodburne (Crosby and Woodburne, 1951; Sollars and Pickard, 

2015). However, the discovery of its regulatory function on circadian rhythm occurred nearly 

100 years later. The SCN contains a complex neurochemical organization and its functional 

organization had been revealed with comprehensive experimental studies regarding the 

function of localization, the neuronal mini-network it contains, and its role in the circadian 

system. Consequently, the SCN is recognized as a coordinator of biologic processes regulating 

numerous cellular clocks of the brain and other organ systems.

The findings of considerable studies revealing that a broad range of cell types in the body and 

brain have biologic clocks raised questions regarding the specific function of circadian rhythm 

and its contribution to illnesses. Circadian rhyhthms in peripheral organ systems and their 

impeccable relationship with the SCN and other physiologic and metabolic mechanisms are 

essential for physical and mental health. Disturbances in the central and peripheral clocks due 

to shiftwork or a diversity of clock genotypes have been associated with many illnesses 

including metabolic dysfunctions, obesity, cancer, and mental disorders (Gillette, 2013). 

Circadian disruption, a common manifestation of nearly all psychiatric disorders, is not a 

surprising predisposing factor for mental disorders, because sleep is considered as a cardinal 

psychological and vital function and requires routine evaluation in every mental state 

examination. Studies of human circadian rhythm genes revealed that genetic polymorphisms 

of these genes predisposed to psychiatric disorders (Benedetti et al., 2003; Takao et al., 2007; 

Lee et al., 2010). Therefore, circadian disturbances seem to be the common thread to all these 
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possible underlying mechanisms that contribute to illness onset, maintenance, and even the 

response to treatment. Special attention ought to be paid toward the physiology and 

pathology of circadian rhythm to understand the etiology of psychiatric disorders, and to 

develop appropriate treatment strategies because chronobiology is an essential field of work 

in mental disorders. Related literature provides information on circadian rhythm disturbances 

for certain psychiatric diagnoses such as mood and anxiety disorders. However, we are aware 

of a lack of a comprehensive perspective of molecular and neural substrates to clinical 

manifestations in psychiatric disorders. Therefore, we aimed to provide a general overview 

regarding the reciprocal relationship between circadian rhythm and psychiatric disorders in 

this article.

Searching strategy and selection criteria of reviewed studies

An electronic database search was performed by the authors in the MEDLINE, Embase, 

PsycInfo, and Scopus databases for relevant articles published between January 1990 and 

October 2019. We searched reference lists of relevant reviews. Different combinations of the 

keywords psychiatric disorder, mental disorder, mood disorder, bipolar disorder, depression, 

unipolar depression, major depressive disorder, schizophrenia, psychotic disorders, anxiety 

disorders, circadian rhythms, circadian markers, chronotype, chronobiology, circadian gene, 

clock gene, melatonin, and HPA axis were polled. Articles published only in English were 

reviewed. Unpublished studies, case reports, theses, and conference papers were excluded. 

Several highly cited and regarded comprehensive review articles and meta-analyses are cited 

due to space considerations. Eligible open-access and institutional-access articles were 

recruited. The articles were filtered through an inspection of the abstracts in order to select 

the most suitable articles related to the topic. In addition to database searches, the reference 

lists of the relevant articles were also evaluated manually for additional publications matching 

the scope of our review. The authors avoided incorporating duplicated samples of the key 

papers; however, studies with similar methodology were included when they were of a high-

impact nature (Figure 1).

2. Molecular regulation of the circadian rhythm

We believe that it is noteworthy to briefly summarize the molecular underpinnings of 

circadian science that gave input to the research into neural substrates of rhythmicity. 
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Although the aforementioned discovery of the period gene was a remarkable finding that 

identified a genetic determination of the biological clock, it did not mean comprehension of 

all circadian molecular mechanisms. The circadian rhythm started to be more understandable 

with the determination of alterations in PER protein and period mRNA levels during a day. Hall 

and Rosbash ascertained that levels of period mRNA peaked in the early night, several hours 

earlier than the peak PER protein abundance (Hardin, Hall and Rosbash, 1990). The TTFL model 

emerged with the discovery of further circadian rhythm genes found in subsequent studies. 

According to this model, PER and TIM (a protein encoded by the timeless gene) proteins 

transformed into a heterodimer form in the cytoplasm in order to translocate into the nucleus. 

TIM protein allows nuclear entry of PER (Gekakis et al., 1995). Besides CLOCK and CYCLE 

[orthologues of mammalian CLOCK and BMAL-1 (a protein encoded by the brain muscle ARNT-

like protein-1 (Bmal-1) gene), respectively] constitute a protein couple that supports the 

transcription of period and timeless genes [the equivalent of period 1-3 and cryptochrome 1-

2(Cry)) in mammalian cells] in the nucleus (Allada et al., 1998; Rutila et al., 1998). When the 

PER-TIM heterodimer binds to the CLOCK-CYCLE couple, CLOCK-CYCLE segregates from DNA 

and the transcription of downstream genes related to PER and TIM conclude. In other words, 

the PER and TIM heterodimer terminate their transcription. However, in the event of a 

decrement in PER and TIM protein levels, the CLOCK and CYCLE couple activates their 

transcription once again, and TTFL starts over. All of these biochemical reactions include 

transcription and translation processes that occur rapidly. However, a near 24-h period needs 

a delay period and timeless gene transcriptions. The explanation about the regulation of the 

needed delay comes from the discovery of the doubletime gene, another member of the clock 

genes (Kloss et al., 1998; Price et al., 1998). The doubletime gene’s product casein kinase-1 

(CSNK-Iε; casein kinase 1 epsilon in mammals) phosphorylates PER for degradation. Thus, 

activity of the doubletime gene reduces the stability and accumulation of PER, thereby 

promoting a delay between PER-TIM transcription and PER-TIM nuclear function (Lowrey et 

al., 2000; Huang, 2018). This molecular mechanism occurs both in the SCN and nearly all 

peripheral cells. 

The maestro of chronophysiologic rhythms including body temperature, sleep-wake cycle 

motor activity, and neuroendocrine functions, is located in the SCN of the hypothalamus. The 

clock genes in the peripheral cells such as hepatocytes, adipocytes or epidermal and dermal 

cells have their own rhythmicity; however, cyclic processes in which the SCN is involved 
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provide an integrative organization of the physiologic functions and behavioral outputs of the 

body (Mohawk, Green and Takahashi, 2012; Challet, 2015). The circadian system sustains an 

endogenous rhythmic activity in spite of environmental cues. Regardless of the presence of 

light, the neuronal activity in the SCN occurs at a higher frequency during the day compared 

with the night. The neurons of the SCN tend to be excitable in the day to maintain spontaneous 

activity through persistent Na++ currents, oscillations in chloride pumps, K+ channels, and Ca++ 

pools in the morning. Conversely, hyperpolarized neurons are inhibited and keep the silence 

in the SCN at night (Colwell, 2011). CRY and PER proteins gather in the cytoplasm before 

translocating into the nucleus where they inhibit CLOCK-BMAL-1 activity during the night. In 

other words, CRY and PER proteins terminate their own transcription when they inhibit 

CLOCK-BMAL-1 complex activity. After that, degradation of PER and CRY manages the 

inhibition of CLOCK-BMAL1 toward the morning, followed by resumed transcription of 

period/cryptochrome and other clock genes (Tsang et al., 2016). 

The master clock synchronizes the endogenous rhythm to the external world, mainly in the 

presence of major environmental input – light (Mrosovsky and Hattar, 2003; Dibner, Schibler 

and Albrecht, 2010; Pevet and Challet, 2011). A specialized tract, called the retino-

hypothalamic tract, which starts from the retinal ganglion cells that include the essential 

photoreceptor pigment melanopsin, and terminating at the SCN. This tract aids upregulation 

of clock gene expression and increases neuronal activity in the SCN (Hankins, Peirson and 

Foster, 2008; Amaral et al., 2018). Nevertheless, functions of the SCN, such as synchronization 

by the light/dark cycle, do not only depend on this molecular mechanism. Many inputs of the 

SCN have been determined including melatonin, food intake, blood pressure, and physical 

activity (Buijs et al., 2014; Asher and Sassone-Corsi, 2015; Sabbar et al., 2017; Pfeffer and 

Wicht, 2018). In addition, the SCN receives non-photic timing inputs from the raphe nucleus, 

which means the serotoninergic system plays a substantial role in the regulation of circadian 

rhythm (Zhang et al., 2016). Furthermore, the SCN serves in the excretion of numerous 

neurotransmitters that interact with other hypothalamic structures, hence neuropeptidergic 

signaling maintains circadian rhythm of the SCN. Consequently, the biologic interactions 

between the brain and body are modulated by the SCN, which is critically involved in the 

organism’s adjustment to the environment through the impact of internal signals, which are 

mediated by hormonal rhythms, the autonomic nervous system, and external time indicators 

such as light and food intake (Gillette, 2013).
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Circadian disruption could contribute to a wide range of illnesses including obesity, diabetes 

mellitus, autoimmune disorders, and particularly mental disorders (Buttgereit et al., 2015; 

Duval et al., 2017; Rebecca Robillard et al., 2018; Rébecca Robillard et al., 2018; Saetung et 

al., 2019). Disruption that arises due to a misalignment between inner physiology and the 

external world or a clock gene polymorphism may facilitate the emergence of diseases, 

increased disease severity and worsened prognosis, and heightened risk for poor treatment 

outcomes (Barandas et al., 2015; Charrier et al., 2017). (Table 1)

3. Neurohumoral and hormonal regulation of circadian rhythm

The SCN collects information about the endogenous clocks through nervous projections and 

peripheral hormones. The SCN’s monosynaptic outputs mainly target the pre-autonomic 

neurons of the paraventricular nucleus (PVN) in the hypothalamus. The SCN is directly 

involved in the hypothalamic output to the preganglionic parasympathetic regions of the 

brainstem and to sympathetic preganglionic motor neurons of the spinal cord (Ono et al., 

1978; Kalsbeek et al., 2006; Guilding and Piggins, 2007). These projections allow the SCN to 

command the rhythmic control of hormone release and metabolism of all visceral structures 

through parasympathetic and sympathetic outputs. It has been determined that the SCN could 

increase glucose production from the liver through the sympathetic output to the liver with 

its projections that reach to the PVN (la Fleur et al., 2000). Similarly, the SCN could increase 

corticosterone secretion in the adrenal or support glucose uptake into the muscle cells via 

sympathetic activation (la Fleur et al., 2001; Shimazu and Minokoshi, 2017; Buijs et al., 2019). 

Besides, hormonal signals predominantly controlled by the SCN have a critical role in the 

regulation of internal synchronization (Challet, 2015). Internal synchronization is supplied by 

adrenal glucocorticoids, pineal melatonin, adipocyte-derived leptin, pancreatic insulin or 

stomach ghrelin induced by the SCN. Internal synchronization included many multi-synaptic 

neuronal pathways that modulate behavior. For example, leptin increases during food intake 

in rats, ghrelin increases following a fasting period, and adrenaline increases with locomotor 

activity (Kalsbeek et al., 2001; Shiiya et al., 2002; Buijs et al., 2019). 

Glucocorticoids are produced in the adrenal glands from cholesterol and rhythmically released 

at ultradian (pulsatile) and circadian (daily) scales. Glucocorticoid release peaks typically prior 

to the onset of physical activity and depends on the fluctuations of corticotropin 
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(adrenocorticotropic hormone, ACTH), a polypeptide secreted from the anterior pituitary 

under the control of corticotropin-releasing hormone (CRH), during the day. Glucocorticoid 

levels are regulated by a complex interaction between the adrenal clock and sympathetic 

outputs from the PVN and SCN (Kalsbeek et al., 2012). Furthermore, the daily variation of 

glucocorticoids is influenced by stressful life events that activate the hypothalamus–pituitary–

adrenal (HPA) axis and the autonomous nervous system. Glucocorticoid rhythm has a crucial 

role in the regulation of other hormonal rhythms and peripheral oscillations of metabolic gene 

expressions in the cells of tissues such as liver and white adipose tissue (Kalsbeek et al., 2012). 

On the other hand, adrenal glucocorticoids can modulate the synchronization of the master 

clock to light via serotonergic projections from the raphe nucleus (Van De Kar and Lorens, 

1979). Serotonergic neurons release serotonin in the presence of glucocorticoid and 

locomotor activity. Such neuronal activity ensures transmitting feedback to the SCN in order 

to sustain the functioning of the clock itself (Malek et al., 2007). In other words, serotonergic 

projections stimulated by locomotor activity provide a re-synchronization of the SCN (Buijs et 

al., 2016). Furthermore, brain serotonin synthesis and catabolism have their own circadian 

rhythm, closely related to the SCN. Neuronal serotonin release in the SCN is provided in the 

absence of photic stimulation, and serotonin levels increase in the raphe nucleus after the 

beginning of the dark phase (Pontes et al., 2010). Tryptophan hydroxylase (TpH), the rate-

limiting enzyme in the synthesis of serotonin, is one of the regulators of circadian rhythm in 

the raphe nucleus. It is known that TpH peaks during the dark phase, helping the interaction 

between the serotoninergic system and the SCN through the increment of serotonin levels 

(Pontes et al., 2010). Also, serotonergic neurotransmission alterations could cause phase 

shifts and changes in SCN activity affecting the phosphorylation of CLOCK proteins (Zaki et al., 

2018). 

Melatonin, a member of the class of acetamides, is another hormone related to biologic 

rhythm. It is primarily released by the pineal gland, particularly at night. Melatonin release is 

adjusted by the length of night time and melatonin per se regulates the seasonality of energy 

metabolism and reproduction in photoperiodic species (Pévet, 2003). The nocturnal release 

of melatonin is induced by the SCN input to the PVN noradrenergic (sympathetic) afferents to 

the pineal gland (Buijs et al., 2019). Melatonin accumulates sleep both by setting the SCN and 

inhibiting neural centers such as the locus coeruleus (LC) and raphe nuclei, which mediate 

arousal through the ventrolateral preoptic nucleus of the hypothalamus (VLPO). It has been 
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determined that melatonin receptor agonists increase monoaminergic neuronal activity and 

contribute to the regulation of dopamine and 5-HT neurotransmission (Chenu, El Mansari and 

Blier, 2013). In other words, melatonin has a modulatory role on the monoaminergic activity 

by linking the circadian and monoamine systems. The SCN modulates the release of melatonin 

mainly through γ-aminobutyric acid (GABA) neurons that project from the SCN to the PVN 

(Kalsbeek et al., 1999). The daylight in the morning and the bright light in the evening activate 

the SCN neurons that inhibit the same PVN neurons through GABAergic projections and cease 

the secretion melatonin (Pevet and Challet, 2011). The daily rhythm of melatonin has 

remarkable effects on the molecular clockworks of both the brain and body alongside 

regulating the sleep/wake cycle (Khaldy et al., 2002; Uz et al., 2003). Melatonin receptors 

(MT1 and MT2) are mainly localized in the CNS but also have been detected beyond the CNS 

in a wide range of somatic cells (Macchi and Bruce, 2004). This diversity could be interpreted 

as melatonin having an integrative role in the light-induced circadian rhythms controlled by 

the SCN in the whole organism. 

4. Circadian rhythm and its implications on psychiatric disorders

At the core of any psychiatric disorder is an abnormality in neurotransmitter signaling. It is 

well known that the disruption of circadian physiology has widespread effects on all aspects 

of neural and neuroendocrine function, which leads to psychiatric disorders. The 

aforementioned information regarding neural substrates of biologic rhythm is frequently 

reported impaired in many mental disorders. Following the comprehensive conceptual 

framework of neural substrates of chronobiologic processes mentioned above, we will next 

discuss the reciprocal associations between circadian rhythm disturbances and psychiatric 

disorders, and draw a clinical picture for common diagnoses (Table 2).

4.1. Mood disorders

In 1681, Robert Burton defined the autumn as the most melancholic season in his best-known 

classic, The Anatomy of Melancholia (Burton, 1621). Circadian rhythm abnormalities in mood 

disorders have been pointed towards by the observers of melancholia for sixty years (Richter, 

1965; Atkinson, Kripke and Wolf, 1975; Souêtre et al., 1989). A wide range of body functions 

such as body temperature, blood pressure, pulse rate, and hormones such as plasma cortisol 

levels, thyroid-stimulating hormone, and melatonin have been found disturbed in patients 
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with manic depression and depression compared with people without a mental disorders 

(Atkinson, Kripke and Wolf, 1975; Souêtre et al., 1989). Moreover, mood and other symptoms 

of the disorder have been previously reported to show diurnal variation in depression (Hall, 

Spear and Stirland, 1964). Disordered sleep/wake cycle is considered as another clue for 

physicians in patients with bipolar disorder (BD) and major depressive disorder (MDD) (Hall, 

Spear and Stirland, 1964). In addition, it was recognized that disrupted rhythms were re-

synchronized after antidepressant or mood-stabilizing treatment (Wehr and Wirz-Justice*, 

1982). Another significant feature is that mood episodes recur seasonally and previous studies 

showed that there could be an association between light and the emergence of mood states 

(Zung and Green, 1974; Eastwood and Peacocke, 1976; Milstein et al., 1976; Frangos et al., 

1980; Berkol et al., 2017). Thus, all of these findings suggested the possibility of circadian 

rhythm disturbance in mood disorders. Consequently, the earliest mention of seasonality took 

place in the Diagnostic and Statistical Manual of Mental Disorders Third Edition, Revised 

Version (DSM-III-R), and seasonal pattern was defined as a specifier in the affective disorders 

section (Spitzer et al., 1990). 

Chronotype is another concept associated with mental disorders, particularly with affective 

disorders, and resembles individual physiologic functions and activities such as sleeping, 

eating, or hormone release. Chronotype has usually been used to denote sleep habits: 

morning and evening types. The relationship between chronotypes and several psychiatric 

disorders has been studied to date and the evening chronotype has been related to a 

vulnerability to depression and increased alcohol and stimulant drug use (Iasevoli et al., 2016). 

Although sleep/wake cycle alteration, which is considered as a consequence of circadian 

system disruption, had been the best-known contributor to the pathophysiology of mood 

disorders for years, today, it is well-recognized that circadian rhythm is entangled with a wide 

range of molecular and cellular processes that are hypothesized to lead to mood disorders 

(McClung, 2013). Accordingly, below we discuss in detail internal and external factors that 

may play a role in the emergence of mood disorders through various psychophysiological 

mechanisms within the circadian rhythm processes. 

4.1.1. Major depressive disorder
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As a cardinal element of chronobiologic processes, sleep behavior and its disturbances have 

received the strongest spotlight regarding research into their undisputed etiologic and 

prognostic association with mood disorders. The concomitance of sleep disruption and 

depression had been the main focus of research into the contribution of circadian rhythm 

disruption to depression development since the 1970s (Wirz-Justice, Pühringer and Hole, 

1976; Wirz-Justice et al., 1981; Wehr et al., 1983). The relationship between sleep and mood 

could easily be observed even in healthy individuals  exposed to jet lag or shiftwork (Simon, 

2012). The presence of sleep disruption may cause negative effects, irritability, and fatigue. 

Sleep behavior changes, such as difficulties in initiating/maintaining sleep or early morning 

awakening have been determined in 90% of patients with MDD (Wulff et al., 2010). Sleep-

wake disruptions are among the criteria for the diagnosis of depression, and comorbid 

parasomnias are associated with poor treatment outcomes, increased suicidality, and greater 

relapse risk in depression (Iasevoli et al., 2016; Stubbs et al., 2016; Vadnie and McClung, 2017; 

Vargas et al., 2019). Sleep architecture alterations including shortened latency of the initial 

rapid eye movement (REM) sleep, prolonged first REM period, increased total REM time, 

increased REM density and proportion of REM sleep, and decreased non-REM sleep have been 

demonstrated in depression (Kupfer and Foster, 1972; ‘The application of EEG sleep for the 

differential diagnosis of affective disorders’, 1978; Kupfer et al., 1984; Rush et al., 1986; Giles 

et al., 1987; Monteleone and Maj, 2008; Pillai, Kalmbach and Ciesla, 2011). It should be 

considered that sleep has multiple regulators related with homeostatic mechanisms along 

with the circadian rhythm.

Melatonin output and the timing of its release have been found closely associated with other 

rhythms as mentioned above. Numerous studies have been conducted to show alterations of 

melatonin release and its phase to determine circadian misalignment in patients with mood 

disorders (De Berardis et al., 2015). Melatonin secretion peaks a few hours before sleep or at 

the time of minimal vigilance propensity, and decreases as wakefulness approaches under 

normal conditions (Reiter, 1993). In contrast, core body temperature reaches the highest 

degree during the day and has a nocturnal decline related to the melatonin peak (Cagnacci, 

Elliott and Yen, 1992). This inverse relationship between melatonin and core body 

temperature is organized by the SCN. To date, the most consistent results suggested lower 

nocturnal melatonin levels, delayed melatonin secretion onset, and offset in patients with 

depression (De Berardis et al., 2015). Besides, the length of the interval between melatonin 
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secretion and sleep onset has been found related to depression severity (Emens et al., 2009). 

In addition, elevated nocturnal body temperature and daily mean temperature degrees are 

observed in patients with depression and these higher values normalized with antidepressant 

treatment (Iasevoli et al., 2016). However, several studies were unable to explain the causal 

association between body temperature abnormalities and the melatonin increase in 

depression (Shafii et al., 1996; Hasler et al., 2010). 

There is an irrefutable association between circadian genes and mood regulation. Even though 

mood disorders are not directly related to clock gene mutations, findings suggest that 

individual genetic polymorphisms of clock genes may influence the clinical features of the 

disorder, such as age at disease onset and treatment response (Wirz-Justice, 2006; Kishi et al., 

2009). Genetic studies have implicated clock, timeless, cryptochrome-1 (Cry-1), period-2,3 

(Per-2,3), Bmal-1,2, neuronal pas domain protein 2 (Npas-2), nuclear receptor subfamily-1, 

group d, member 1 (Nr1d-1), retinoid-related orphan receptor a (Rora), CSNK-Iε, D site of 

albumin promoter binding protein (Dbp), acetylserotonin methyltransferase (Asmt), melatonin 

receptor 1b (Mtnr1-B), arylalkylamine n-acetyltransferase (Aanat) genes in unipolar 

depression (Kennaway, 2010; Lavebratt et al., 2010; Soria et al., 2010; Etain et al., 2011; 

Melhuish Beaupre, Brown and Kennedy, 2018). However, most of these studies have small 

sample sizes and need to be replicated in larger groups. 

Glucocorticoids are adrenal steroid hormones and have multifunctional roles in the body and 

brain such as metabolism, immunity, arousal, neuronal survival, and neurogenesis (Herbert et 

al., 2006). Glucocorticoids have their own circadian rhythm and an important role in 

synchronizing peripheral clocks and the SCN. In addition, they have anti-inflammatory 

properties and regulate the immune system response (Dumbell, Matveeva and Oster, 2016). 

Since Carroll defined the resistance of the dexamethasone suppression test in patients with 

depression in 1968 (Carroll, Martin and Davies, 1968), hypothalamic-pituitary-adrenal (HPA) 

axis dysregulation has been one of the most consistent findings in mental disorders, 

particularly in depression (Carroll, Martin and Davies, 1968; McClung, 2013). 

Hypercortisolemia-flattened HPA axis circadian rhythm and disrupted response of the HPA 

axis to glucocorticoid feedback are commonly observed in patients with depression (Gold, 

2015; Keller et al., 2017). Dehydroepiandrosterone (DHEA), is another adrenal steroid that has 

a neuroprotective role and modulates corticosteroid-induced cell death. An increased 

cortisol/DHEA ratio, which assesses the degree of ‘functional’ hypercortisolemia, is seen in 
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adults and adolescents with depression (Goodyer, Herbert and Altham, 1998; Gallagher and 

Young, 2002; Markopoulou et al., 2009). Glucocorticoid receptor hypofunction has also been 

found in peripheral tissue cells including mononuclear cells and skin cells (Pariante and 

Lightman, 2008). Furthermore, findings support that antidepressant treatment repairs the 

impaired HPA axis dysfunction in depression (Carvalho et al., 2010). 

Depression and inflammatory disorders such as rheumatoid arthritis, inflammatory bowel 

disease, and asthma have been found coexisting, and such common comorbidities point to 

the neuroinflammatory background and immune-associated contributions in the 

etiopathogenesis of depression (Pasco et al., 2010; Raison and Miller, 2011). Studies have also 

shown that pro-inflammatory cytokines could induce a depression-like symptom cluster 

including anhedonia, fatigue, increased sleep, and decreased locomotor activity (Postal and 

Appenzeller, 2015). Inflammatory markers such as interleukin (IL)-1β, IL-2, IL-6, tumor necrosis 

factor (TNF)-α, C-reactive protein (CRP), and prostaglandin E2 (PGE2) have been reported 

increased in patients with depression (Felger and Lotrich, 2013). Circadian disruption may be 

another contributor to increased pro-inflammatory cytokine levels in depression. The 

arrhythmic clock system interacts with the nuclear factor-kappa B (NF-kB) signaling pathway, 

which is one of the major regulators of inflammation in the body and activates the 

inflammatory response (Imeri and Opp, 2009; Narasimamurthy et al., 2012). Besides, sleep 

disturbances and long sleep duration were found related with the increased cytokines levels 

and the risk for depression (Irwin, Olmstead and Carroll, 2016). We may interpret the 

aforementioned findings as the circadian system’s involvement in the pathophysiology of 

MDD being not limited to sleep/wake cycle disruption, it is also related to complex 

associations between biologic rhythm, environment-gene interactions, HPA axis dysfunction, 

and immune system alterations.

4.1.2. Bipolar disorder

Sleep disturbances have been the core common characteristic feature in bipolar mood 

episodes, both mania and depression, since the first definition of Kraepelin (Plante and 

Winkelman, 2008). In turn, insomnia or hypersomnia and decreased need for sleep are typical 

for manic and depressive episodes. Studies showed that sleep architecture was characterized 

by increased REM density and reduced REM latency in bipolar manic episodes (Harvey, 2008b, 

2008a). Sleep disturbances are also frequently observed in euthymic patients with BD. 
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Increased REM density and the proportion of REM sleep have been shown in remitted patients 

with BD (Dallaspezia and Benedetti, 2017). Moreover, findings revealed that remitted patients 

with BD have longer sleep latency and sleep duration and lower sleep efficiency (Rocha, Neves 

and Corrêa, 2013; Geoffroy et al., 2015). Bipolar depression has similar polysomnographic 

findings including a tendency for more early awakenings and more fragmented REM sleep 

periods. However, total REM density was found greater in bipolar depression than in unipolar 

depression (Dallaspezia and Benedetti, 2017) (See table 2 for detailed information). Although 

abnormalities of sleep architecture are seen in episodes and inter-episodes, sleep 

disturbances worsen before relapses. Sleep loss and reduced sleep duration were defined as 

reliable predictors of hypomania and mania (Dallaspezia and Benedetti, 2017). In addition, 

hypersomnia in euthymia is found associated with the development of upcoming depressive 

symptoms (Kaplan et al., 2015). On the other hand, a large amount of euthymic patients 

describe symptoms that meet the diagnostic criteria for insomnia (Boudebesse et al., 2014; 

Geoffroy et al., 2015). Sleep-wake disturbances have been found as one of the reasons for a 

worse course of illness, relapses, increased symptom severity, and poor treatment outcomes 

(Harvey et al., 2015; Kanady, Soehnera and Harvey, 2015; Ng et al., 2015; Sylvia et al., 2018). 

These findings may explain the reason for the treatment need in remitted patients with BD 

(Vadnie and McClung, 2017).

Melatonin activity alteration is also associated with BD due to circadian dysregulations such 

as changes in the release timing, phase alterations of melatonin secretion, and the sleep-wake 

cycle (Dallaspezia and Benedetti, 2017). Although findings of melatonin function in patients 

with BD are inconsistent, circadian system characteristics generally vary depending on the 

current episode; mania or depression (Iasevoli et al., 2016). Melatonin levels were found 

higher in the daytime in manic patients than in healthy controls and patients with depressive 

episode (Nováková et al., 2015). Findings about nocturnal melatonin levels among BD phases 

are not consistent (Lewy et al., 1979, 1981; Kennedy et al., 1989; Souêtre et al., 1989). It 

remains unclear as to whether these alterations derive from a primary dysfunction of the 

circadian rhythm or if they are secondary to sleep disturbances related to the BD episode. 

However, some studies supported the beneficial effect of exogenous melatonin 

administration, which provides sleep and mood improvement (Livianos et al., 2012). 

Some of the clock genes have been found intimately associated with both the onset of BD and 

illness course. Studies revealed that circadian gene polymorphisms may increase the 
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predisposition to BD and indirectly affect recurrences and symptoms across all BD phases 

(Geoffroy, 2018). Genetic linkage and gene expression studies implicated the variant genes 

related to BD as clock, timeless, Cry-1, Npas-2, Bmal-1,2, Dbp, Nr1d-1, Per-2,3, Rora, Rorb, 

Asmt, Csnk-1ε, Csnk-1, and glycogen synthase kinase-3 (GSK-3) (Kripke et al., 2009; 

McGrath et al., 2009; Etain et al., 2011; McCarthy and Welsh, 2012; Geoffroy et al., 2014; 

Geoffroy, 2018). It has been demonstrated that ClockD19, the mutant gene that occurs with 

the deletion of exon 19 in the Clock gene, produces a dominant negative CLOCK protein 

capable of DNA binding but deficient in transcriptional activity. This gene induces dopamine 

synthesis and increased dopaminergic activity, which result in an increase in tyrosine 

hydroxylase (TH) expression in the ventral tegmental area (VTA) and manic-like behavior in 

animal models (Abarca et al., 2002; Roybal et al., 2007; Coque et al., 2011). Moreover, 

ClockD19- related higher dopaminergic activity in the VTA normalized after lithium treatment, 

which suggests increased dopaminergic activity may be the main reason for the manic-like 

behavior of mice (Roybal et al., 2007). Recently, several lines of evidence have emphasized 

the importance of the molecular and synaptic mechanisms of monoaminergic systems and 

circadian gene interactions, which are closely related to molecular alterations associated with 

the ClockD19 model in the VTA and nucleus accumbens.(Parekh et al., 2018) On the other 

hand, lithium, a potent inhibitor of the GSK-3 enzyme, regulates the clock gene Nr1d-1 and 

BMAL-1 through GSK-3 (Gekakis et al., 1998). Some polymorphisms including Clockrs3805148, 

Clockrs534654, Timelessrs11171856, and Timelessrs2291739 are associated with suicidal 

behavior in BD (Pawlak et al., 2015).

A dysfunctional HPA axis is suggested to play an important role in the pathophysiology of BD, 

although the mechanism needs to be elucidated. Increased levels of cortisol and ACTH are the 

most replicated findings in BD (Belvederi Murri et al., 2016; Sigitova et al., 2017). However, 

CRH levels are not determined to increase in BD.(Belvederi Murri et al., 2016) Depressive 

symptoms and cognitive deficits are thought to be associated with the higher levels of cortisol, 

and ACTH and cortisol seem to be related to manic episodes (Sigitova et al., 2017). A meta-

analysis suggested that abnormalities of stress-related pathways including increased morning 

cortisol levels were mainly prominent in manic episodes. Such abnormalities are even 

observed in remitted patients, which means that the long-term pathology of the HPA axis is 

related to clinical states of BD and contributes to the stress-vulnerability models of illness 

development and progression (Girshkin et al., 2014).
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Immune abnormalities have received increased attention due to their possible role in the 

pathophysiology of BD, as well as MDD. Systematic reviews on cytokine levels in patients with 

BD revealed that IL-4, IL-6, IL-10, soluble IL-2 receptor, soluble IL-6 receptor, and TNF-α levels 

were increased in patients compared with healthy controls, whereas IL-2, IL-8, IFN-gamma, 

and C-C motif ligand were not different from controls (Modabbernia et al., 2013). Moreover, 

a comparison of cytokine levels in another study determined that proinflammatory cytokines 

including IL-2, IL-4, IL-6 were higher during manic episodes, and IL-6 levels were higher in 

depressive state than in healthy controls (Brietzke et al., 2009). It was also demonstrated that 

mood symptoms had a positive correlation with IL-6 and IL-2 levels (Brietzke et al., 2009). 

When bipolar depression and unipolar depression were compared, sIL-6R, CRP, sTNF-R1, and 

monocyte chemoattractant protein-1 (MCP-1) were found at higher levels than in unipolar 

depression (Bai et al., 2015). In conclusion, sleep disturbances are a reliable indicator of an 

upcoming mood episode in BD. 

4.2. Schizophrenia

Although the relationship between mood disorders and circadian abnormalities has become 

clearer in recent times, the links between schizophrenia and disrupted circadian rhythms have 

yet to be elucidated fully. However, sleep and circadian disruption have been known as 

common and consistent features of schizophrenia and other psychotic disorders since the first 

definition of Kraepelin in 1883 (Peirson and Foster, 2015). Schizophrenia has been associated 

with abnormalities in sleep including delayed and advanced sleep onset, altered resting 

activity patterns, and  irregular sleep-wake cycle (Wulff et al., 2012). Research into circadian 

abnormalities and sleep disruption in schizophrenia has attempted to explain the causal 

relationship in a reciprocal context. Hyperdopaminergia is a well-known phenomenon in 

psychosis syndromes and striatal hyperdopaminergic activity may be a result of sleep 

disruption and circadian abnormalities, and increased dopamine levels may induce sleep 

disruptions (Howes and Kapur, 2009; Monti et al., 2013; Yates, 2016). There is also supporting 

evidence showing an association between genetic polymorphisms and circadian disruption, 

which is consistently confirmed in animal models. For instance, the Clock T3111C 

polymorphism, which is associated with increased dopamine levels in the SCN, has been 

determined in a population of Japanese patients with schizophrenia (Takao et al., 2007). 

Furthermore, the blind-drunk mutant mouse, which carries a mutation in the gene encoding 
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an exocytotic synaptic protein, synaptosomal-associated protein-25 (Snap-25), exhibits 

schizophrenia-like symptoms (Fasshauer et al., 1998; Oliver and Davies, 2009). This mouse 

model of schizophrenia has been shown to display phase advance and fragmentation of the 

circadian cycle (Oliver et al., 2012). Most consistent findings of the circadian genetics studies 

have been associations between CLOCK, PERIOD1, PERIOD3, and TIMELESS genes and 

schizophrenia (Lamont et al., 2010). Circadian rhythm disruption has been reported in 

approximately 80% of patients with schizophrenia (Cosgrave, Wulff and Gehrman, 2018). 

Abnormal sleep patterns in schizophrenia have been described in both unmedicated patients 

and patients currently receiving antipsychotic treatment (Wulff et al., 2010). The major 

findings in sleep architecture could be aligned, such as long sleep-onset latency, increased 

intermittent-awakenings, decreased total sleep time, and poor sleep efficiency (Sasidharan et 

al., 2017). Moreover, reductions in REM latency, REM density, and duration of non-REM Stage 

4 are other alterations in micro-sleep architecture (Wulff et al., 2010; Jones and Benca, 2015; 

Bian et al., 2017; Chan et al., 2017; Kaskie, Gill and Ferrarelli, 2019). Sleep disturbances are 

also important to predict increased suicide attempts in patients with schizophrenia (Li et al., 

2016). 

Melatonin is a versatile neuro-hormone that plays an important role in the pathophysiology 

of schizophrenia. 5-HT synthesis regulation, sleep-wake cycle, and anti-oxidant effects against 

neuroinflammation are impaired due to melatonin dysfunction in schizophrenia (Anderson 

and Maes, 2012; Yates, 2016). It has been shown that melatonin increases endogenous 

antioxidants by increasing phosphorylated glycogen synthase kinase-3 (GSK-3) levels and 

provides an anti-inflammatory effect (Olcese et al., 2009; Anderson and Maes, 2012). Galván-

Arrieta et al. reported a reduction in axogenesis associated with lower levels of 

phosphorylated GSK-3 subtype β and less expression of melatonergic receptors in patients 

with schizophrenia compared with healthy controls. These findings may indicate a melatonin-

derived neurodevelopmental deficit at a cellular level (Galván-Arrieta et al., 2017). The 

absence of melatonin rhythmicity, decreased nocturnal secretion of melatonin, and phase 

advance in melatonin circadian rhythms have also been described in patients with 

schizophrenia (Rao et al., 1994; Anderson and Maes, 2012; Yates, 2016). Additionally, pineal 

calcification in computed tomography has been demonstrated in patients with schizophrenia, 

and this structural change has been found associated with cortical atrophy (Sandyk and Kay, 

1991). Because of its significance in the pathogenesis of schizophrenia, melatonin has become 
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a therapeutic target for researchers. It has been shown that melatonin agonists are efficacious 

agents for schizophrenia-associated sleep disorders and drug-related tardive dyskinesia 

(Shamir et al., 2001; Gorfine et al., 2006). Moreover, its improving effects on behavioral 

deficits via reducing brain oxidative stress have been shown in an animal model of 

schizophrenia (Onaolapo, Aina and Onaolapo, 2017). 

The relationship between clock genes and schizophrenia is another undiscovered area for 

scientists. Few studies have been conducted to show linking circadian clock gene 

polymorphisms in schizophrenia to date. Takao et al. identified the Clock 311C/T 

polymorphism, which is associated with higher dopaminergic neurotransmission in the SCN in 

patients with schizophrenia (Takao et al., 2007). These results were confirmed in another 

study conducted in a Chinese schizophrenic population (Zhang et al., 2011). Period-1 mRNA 

expression in the temporal lobe of post-mortem subjects with schizophrenia was found down-

regulated when compared with healthy controls (Aston, Jiang and Sokolov, 2004). In addition, 

disrupted diurnal rhythms of the Per-1, Per-2, Per-3, Npas-2 and phase delay in the expression 

of Per-2 have been reported in white blood cells of patients with schizophrenia (Sun et al., 

2016). More recently, the absence of rhythmic expression of Cry-1 and Per-2 was determined 

in the fibroblasts of patients with schizophrenia compared with cells obtained from healthy 

controls.(Johansson et al., 2016) Pinacho et al. reported decreased levels of CSNK1 protein 

levels in  the prefrontal cortex of patients with hschizophrenia (Pinacho et al., 2016). However, 

due to the small sample sizes of the available studies, the association between schizophrenia 

and clock genes still needs to be clarified with further studies with larger populations.

The stress-vulnerability model for schizophrenia was first proposed in the 1970s and has been 

further developed since that time (Zubin and Spring, 1977; Coulon et al., 2016). Thus, the HPA 

axis has been one of the most attractive research targets to understand the pathophysiology 

of schizophrenia for decades. Increased cortisol levels have been determined in patients with 

schizophrenia and even in individuals at high risk for schizophrenia compared with controls 

(Mittal and Walker, 2011; Carol and Mittal, 2015; Singh et al., 2015). However, mean baseline 

cortisol level measurements in schizophrenia are not consistent in the literature (Bradley and 

Dinan, 2010). Nevertheless, blunted cortisol levels in response to stressors are much more 

consistent findings, regardless of disease stage, chronicity, and treatment condition (Zorn et 

al., 2017). To conclude, despite it being widely accepted that sleep and circadian disorders 

have an important role in the etiopathogenesis of schizophrenia, well-designed and 
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comprehensive clinical studies are still needed to explicate the genetic and neurobiologic 

underpinnings.

4.3. Other Psychiatric Disorders

Anxiety disorders are seen as the most frequent type of psychiatric disorders with a lifetime 

prevalence of 29% in the general population (Remes et al., 2016). Sleep disturbance is a 

common feature of anxiety disorders and is included in the symptom criteria for several 

anxiety disorders such as post-traumatic stress disorder and generalized anxiety disorder 

(Boland and Ross, 2015). The presence of sleep disturbances has been reported as 74% in 

patients with anxiety disorders (Dallaspezia and Benedetti, 2017). However, MDD as a 

frequent comorbid condition in anxiety disorders is a confounder in understanding the 

relationship of sleep disturbances and anxiety disorders. Studies related to generalized 

anxiety disorder have reported decreased total sleep time, increased sleep-onset latency, and 

alterations in non-REM sleep architecture, whereas findings of REM sleep and sleep efficiency 

are inconsistent (Cox and Olatunji, 2016). Patients with panic disorder frequently have both 

sleep disorder and/or another anxiety disorder because they could have nocturnal panic 

attacks, which usually occur in Stage-2 or Stage-3 of non-REM sleep, as well as decreased sleep 

efficiency, total sleep time, and increased sleep onset latency (Cox and Olatunji, 2016; 

Dallaspezia and Benedetti, 2017). Although sleep disturbances, including REM sleep-related 

nightmares, have been investigated in post-traumatic stress disorder, conclusions are not 

consistent (Dallaspezia and Benedetti, 2017). There is no significant difference in sleep 

architecture in social anxiety disorder (Brown, Black and Uhde, 1994; Mesa, Beidel and 

Bunnell, 2014). In an animal model, Cry-1 and Cry-2 gene protein deficiencies led to behavioral 

alterations characterized by an abnormally high level of anxiety (De Bundel et al., 2013). 

Akiyama et al. suggested that period-1 mRNA levels reduced after anti-anxiety treatment in 

the mouse cerebellum (Akiyama et al., 1999). Cry-2 expression was determined reduced in 

the hippocampus in another animal study (Griesauer et al., 2014). Furthermore, a 

polymorphism in BMAL-2rs2306073 has been found associated with social phobia (Sipilä et 

al., 2010). 

Obsessive-compulsive disorder (OCD) is another debilitating disorder that is segregated from 

the anxiety disorders category in the DSM-5 (American Psychiatric Association. Diagnostic and 

statistical manual of mental disorders: DSM-5. 5th edn, 2013). Although sleep disturbances 
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have been reported including decreased total sleep time, alterations in REM and non-REM 

sleep architecture are less clear (Cox and Olatunji, 2016). Certain chronotypes have been 

found as predictors of OCD symptoms in adults, and circadian rhythm disorders have been 

found as predictors of treatment outcomes (Cox and Olatunji, 2019). To the best of our 

knowledge, the role of circadian rhythm disruptions in all anxiety disorders, including OCD, 

has yet to go beyond showing sleep disturbance; comprehensive research is warranted in the 

context of chronobiologic mechanisms of anxiety disorder pathology. 

(Table 3)

5. Conclusion

The circadian system is responsible for the temporal organization of physiologic functions, and 

disruptions can have marked functional influences on the living organism. As the role of 

chronobiologic systems in both physical and mental health have become better understood, 

research into neurobiologic mechanisms of circadian rhythms has been expanded. Mood, 

cognition, and behavior have complex relationships with biologic rhythms, and the vast 

majority of mental disorders are reciprocally associated with impaired circadian biology. 

Extensive research has shown that impaired circadian mechanisms could lead to psychiatric 

entities, whereas they may be an outcome of mental disturbances. Impaired HPA axis function 

and melatonin homeostasis are the most consistent findings in mental disorders. Independent 

from sleep disorders, the circadian system has a distinct role in homeostatic processes, whose 

impairment has an impact in emotion regulation, cognition, behavior, and, most importantly, 

neural plasticity, all of which are often disrupted in psychiatric phenotypes. There is some 

evidence suggesting that circadian rhythm genes are associated with psychiatric disorders; 

however, the specificity and causality of these associations have yet to be made clear. In our 

opinion, we are a long way from establishing a robust causative link between circadian rhythm 

disruption and phenotypic complexity of psychiatric disorders. A decent translational 

approach to the findings of animal models would likely result in a clearer understanding of 

pathophysiologic implications of the circadian system. Further support from continued and 

integrated investigations of these issues may promote a deeper appreciation of the 

contribution of circadian disturbances to the pathophysiology of psychiatric illnesses, and will 

hopefully yield improved therapeutic strategies for their treatment.
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Figure 1. Flowchart of articles selected for the review. 
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 Table 1. Non-exhaustive list of studied human clock genes, expressed proteins, their main function and associated psychiatric disorders 

Gene Nomenclature and Protein Protein function Associated disorder
Clock Circadian Locomotor Output

Cycles Kaput (CLOCK)
Positive regulation of period and timeless genes through interaction with BMAL-1 MDD(Kishi et al., 2009; Soria et 

al., 2010; Shi et al., 2016) BD(Shi 
et al., 2008; Kripke et al., 2009; 
Lee et al., 2010; Soria et al., 2010; 
Benedetti et al., 2015; Suzuki et 
al., 2017) SCH(Takao et al., 2007; 
Zhang et al., 2011)*

Timeless Timeless homolog (TIM) Negative regulation of CLOCK-BMAL-1 activity through interaction with PER and close the 
circadian feedback loop

MDD(Utge et al., 2010; Dmitrzak-
Weglarz et al., 2015) BD(Mansour 
et al., 2006; Utge et al., 2010; 
Etain et al., 2014)

Cry-1 Cryptochrome-1 (CRY-1) Inhibition of CLOCK-BMAL-1 MDD(Soria et al., 2010; Hua et 
al., 2014) BD(Soria et al., 2010)  
SCH(Johansson et al., 2016) 
ANX(De Bundel et al., 2013)

Cry-2 Cryptochrome-2 (CRY-2) Inhibition of CLOCK-BMAL-1 ANX(De Bundel et al., 2013; 
Griesauer et al., 2014)

Per-1 Period homolog 1 (PER-1) Negative regulation of CLOCK-BMAL-1 activity through interaction with CRY and close the 
circadian feedback loop

BD(Kripke et al., 2009)  
SCH(Aston, Jiang and Sokolov, 
2004; Sun et al., 2016) 
ANX(Akiyama et al., 1999)

Per-2 Period homolog 2 (PER-2) Negative regulation of CLOCK-BMAL-1 activity through interaction with CRY and close the 
circadian feedback loop

MDD(Partonen et al., 2007; 
Lavebratt et al., 2010; Soria et al., 
2010) BD(Kripke et al., 2009)  
SCH(Liu et al., 2015; Johansson et 
al., 2016; Sun et al., 2016)

Per-3 Period homolog 3 (PER-3) Seems not to have a critical role circadian rhythm. Contribute to determination of diurnal 
preference

MDD(Artioli et al., 2007; Soria et 
al., 2010; Maglione et al., 2015; 
Shi et al., 2016) BD(Mansour et 
al., 2006; Nievergelt et al., 2006; 
Benedetti et al., 2008; 
Dallaspezia et al., 2011; 
Karthikeyan et al., 2014; Brasil 
Rocha et al., 2017) SCH(Sun et al., 
2016)

Bmal-1 (or 
ARNTL-1)

Brain muscle ARNT like protein-1 (Aryl Hydrocarbon 
Receptor Nuclear Translocator like 1)
(BMAL-1/ARNTL-1)

Positive regulation of period and timeless genes through interaction with CLOCK MDD(Partonen et al., 2007; Soria 
et al., 2010; Utge et al., 2010) 
BD(Nievergelt et al., 2006; Soria 
et al., 2010; Bengesser et al., 
2018)

Bmal-2 Brain muscle ARNT like protein-2 Probably has a role in activation of CLOCK and CLOCK-controlled genes ANX(Sipilä et al., 2010)
Npas-2 Neuronal PAS domain protein- 2 (NPAS-2) Intrinsic enhancer for pre-mRNA splicing MDD(Partonen et al., 2007; Soria 

et al., 2010; Shi et al., 2016) BD 
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Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia, ANX: Anxiety disorders *CLOCK T3111C polymorphism, 

(Kripke et al., 2009; Soria et al., 
2010) SCH(Sun et al., 2016)

Nr1d-1 (or
Rev-erb-)

Nuclear receptor subfamily-1, group d, member 1 ( or 
orphan
nuclear receptor REV-ERB-)  (NR1D1/REV-ERB-)

Works as nuclear hormone receptors.
Compete with RORA for binding to the BMAL-1 promoter and repress the BMAL-1

MDD(Soria et al., 2010; Utge et 
al., 2010; Byrne et al., 2014) 
BD(Kishi et al., 2008; Kripke et al., 
2009; Severino et al., 2009)

Rora Retinoid-related orphan receptor a (RORA) Works as nuclear hormone receptors.
Compete with NR1D1 for binding to the BMAL-1 promoter and activate the BMAL-1

MDD(Lavebratt et al., 2010; Utge 
et al., 2010; Maglione et al., 
2015)  BD(Etain et al., 2014; Lai et 
al., 2015; Geoffroy et al., 2016) 

Rorb Retinoid-related orphan receptor b (RORB) Works as nuclear hormone receptors.
Compete with NR1D1 for binding to the BMAL-1 promoter and activate the BMAL-1

BD(McGrath et al., 2009; Lai et 
al., 2015)

Dbp D site of albumın promoter bındıng protein Being regulated by CLOCK-BMAL-1 and CRY-1.
Supports the rhythmic transcription of downstream genes

MDD(Soria et al., 2010) BD(Shi et 
al., 2008)

Asmt Acetylserotonin methyltransferase The last enzyme of the melatonin synthesis pathway MDD(Gałecki et al., 2010; 
Talarowska et al., 2014)  BD(Etain 
et al., 2012; Geoffroy et al., 2014)

Mtnr1-B Melatonin receptor 1b G protein coupled melatonin reseptor MDD(Gałecka et al., 2011)
Aanat Arylalkylamine N-acetyltransferase The first  enzyme of the melatonin synthesis pathway MDD (Soria et al., 2010)
Csnk-1ε Casein kinase 1 epsilon (CSNK1ε) Phosphorylates of PER, CRY and BMAL,

increases their degradation
MDD(Utge et al., 2010) BD(Shi et 
al., 2008; Matsunaga et al., 2012; 
Lee et al., 2018) SCH (Matsunaga 
et al., 2012; Pinacho et al., 2016)

Csnk-1 Casein kinase 1 delta (CSNK1) Phosphorylates of PER, CRY and BMAL,
increases their degradation
Regulation circadian period length

BD(Kripke et al., 2009; 
Matsunaga et al., 2012) 
SCH(Matsunaga et al., 2012)

GSK-3 Glycogen synthase kinase-3 (GSK-3) Regulation circadian period length BD(Szczepankiewicz et al., 2006; 
Kaladchibachi et al., 2007) 
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      Table 2. Main alterations of sleep architecture in psychiatric disorders

                

Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia, ANX: Anxiety disorders, OCD: Obsessive-compulsive disorder 
      

Disorder Major alterations

MDD Shortened latency of the initial REM sleep, prolonged first REM period, increased total REM time, increased REM density, and proportion of 
REM sleep,  decreased non-REM sleep (Kupfer and Foster, 1972; Kupfer, 1976; Rush et al., 1986; Giles et al., 1987; Pillai, Kalmbach and Ciesla, 
2011)

BD Euthymia; Increased REM density and proportion of REM sleep, longer sleep onset latency and sleep duration, lower sleep efficiency (Sitaram 
et al., 1982; Millar, Espie and Scott, 2004; Rocha, Neves and Corrêa, 2013; Geoffroy et al., 2015)
Mania;  Shortened REM sleep latency, increased REM activity and REM density, reduced total sleep time (Hudson et al., 1988, 1992; Linkowski 
and Mendlewicz, 1993)
Depression; More fragmented REM sleep periods, shortened REM sleep latency (Gillin et al., 1979; Lauer, Wiegand and Krieg, 1992)
longer sleep onset latency, increased proportion of REM sleep, trend toward higher percentage of awakenings in bipolar depression than in 
unipolar depression (Giles, Rush and Roffwarg, 1986; Jernajczyk, 1986; Fossion et al., 1998)

SCH Comparison to healthy control; Redused total sleep time,  longer sleep onset latency, lower sleep efficiency and REM latency, increased REM 
density, decreased total REM time,  decreased non-REM stage-3 and stage-4 (Chan et al., 2017)
Medication naive patients; reduced total sleep time, lower sleep efficiency, increased REM latency,  decreased  stage-4 of non-REM sleep, 
increased  stage-1 of non-REM (Bian et al., 2017)
Duration of illness has no effect on polysomnography parameters (Chan et al., 2017) 

ANX Generalized anxiety disorder; reduced total sleep time, longer sleep onset latency, alterations in non-REM sleep architecture, inconsistent 
findings for REM sleep architecture and sleep efficiency (Cox and Olatunji, 2016)
Panic disorder; decreased sleep efficiency and total sleep time, longer sleep onset latency, REM and non-REM sleep architecture findings are 
less clear (Cox and Olatunji, 2016)
Post-traumatic stress disorder; reduced total sleep time, longer sleep onset latency, variations in REM sleep

OCD Reduced total sleep time, increased wake after sleep onset, inconsistent findings for REM and non-REM sleep architectures (Cox and Olatunji, 
2016)
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Tab 3. Summary of consistent findings on the alterations of two major neurohumoral systems regulating circadian ryhthm in psychiatric disorders

 
Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia

         

NEUROHUMORAL SYSTEMDIAGNOSIS
HPA Axis Melatonergic System

MDD Elevated baseline cortisol levels, disruption in dexamethasone suppression test 
results (Carroll, Martin and Davies, 1968; Nelson and Davis, 1997; Belanoff et al., 
2001; Keller et al., 2006, 2017; Gold, 2014)
increased cortisol/ DHEA ratio (Goodyer, Herbert and Altham, 1998; Gallagher 
and Young, 2002; Markopoulou et al., 2009)

Lower nocturnal melatonin levels, delayed melatonin 
secretion onset and offset (Wetterberg, 1979; Beck-Friis et al., 
1984; Nair, Hariharasubramanian and Pilapil, 1984; Claustrat 
et al., 1984; Beck-Friis et al., 1985; Wehr et al., 1985; Brown et 
al., 1985; Frazer et al., 1986; Parry and Newton, 2001; 
Fountoulakis et al., 2001; Paparrigopoulos, 2002; Tuunainen 
et al., 2002; Crasson et al., 2004; Emens et al., 2009; Rahman 
et al., 2010; Buckley and Schatzberg, 2010; Khaleghipour et 
al., 2012)

BD Increased cortisol and ACTH levels in manic phase
Findings about HPA axis abnormalities are seen both depressive and euthymic 
phase, it is preferred to evaluate them as state and trait markers due to clinical 
variations (Belvederi Murri et al., 2016)

Higher melatonin levels in manic phase in the daytime 
(Nováková et al., 2015)
Findings about nocturnal melatonin levels among BD phases 
are inconsistent (Lewy et al., 1979, 1981; Souêtre et al., 1989; 
Kennedy et al., 1996)

SCH Baseline cortisol levels are inconsistent
Blunted cortisol stress response (Zorn et al., 2017)

Lower nocturnal melatonin levels, (Monteleone et al., 1992, 
1997) phase advance in melatonin rhythm,(Rao et al., 1994) 
the absence of melatonin rhythmicity (Bersani et al., 2003)
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