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Abstract
Several lines of evidence support a relationship between circadian disruption in the onset,
course, and maintenance of mental disorders. Despite the study of circadian phenotypes

promising a decent understanding of the pathophysiologic or etiologic mechanisms of

oNOYTULT D WN =

psychiatric entities, several questions still need to be addressed. In this review, we aimed to
10 synthesize the literature investigating chronobiologic theories and their associations with
12 psychiatric entities. We first introduced molecular elements and mechanisms of the circadian
14 system to promote a better understanding of the chronobiologic implications of mental
disorders. Then, we comprehensively and systematically reviewed circadian system studies in
mood disorders, schizophrenia, and anxiety disorders. Current research has demonstrated
19 that circadian pathologies, including genetic and neurohumoral alterations, represent the
21 neural substrates of the pathophysiology of many psychiatric disorders. However, much more
23 work is needed to identify the causal relationship between circadian physiology abnormalities

25 and mental disorders, and to develop sound pharmacologic interventions.

Keywords: Biological Clocks, Circadian Rhythm Disorders, Psychiatric disorders, melatonin,

30 Hypothalmo-pituitary-adrenal axis
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1 “There is a time for many words, and there is also a time for sleep.”

2

3 Homer, 850 BC

4

5

? Summations

8 Sleep and circadian biorhythms are major physiologic functions responsible for
9

10 emotional, cognitive, and somatic responses of the living organism.

11

12 Mental disorders are often associated with disruptions in circadian rhythm
13

14 functions.

15 - - - -
16 Molecular elements and expressions of genes including CLOCK, PER, and CRY, which
1; are directly involved in the circadian system, are reported altered in many
;g psychiatric disorders, particularly in mood disorders.

21 Glucocorticoid rhythm supported by the hypothalamus—pituitary—adrenal (HPA) axis
22

23 and melatonergic activity have a crucial role in the regulation of biorhythm, and
24

25 oscillations of tissue and organ systems including the central nervous system, and
26 . . . . . . .
57 both systems have been demonstrated impaired in major mental ilinesses including
;g schizophrenia and other psychotic disorders.

30

31

32 Considerations

33

34 Despite the review process performed with a detailed searching, selection, and
35

36 summarization practices, the inadequacy of the studies that establish a causative
37

38 link between circadian rythm disruptions and mental disorders hinders
ig generalizations on pathophysiologic mechanism.

:; There is a lack of translational approach to the findings of animal models which
43 might provide clearer understanding of pathophysiologic implications of the
44

45 circadian system in mental disorder.

46

47 Despite studies to date suggesting circadian genotypes and phenotypes as promising
48

49 subjects for a better understanding of the pathophysiologic mechanisms of
50 _— . . . . . .

51 psychiatric disorders, a causal relationship between circadian physiology
gg abnormalities and mental disorders has yet to be elucidated.

54

55

56

57

58

59

60
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1 1. Introduction

;

4

5 Rhythmicity is a fundamental characteristic of the nature of life. Time as a dynamic and
? complex phenomenon, playing a pivotal role to sustain rhythmicity for the biologic essentials
2 and needs of living organisms. Chronobiology aims to define basic principles of vital reactions
:? that occur nearly 24 hours per day through circadian rhythms and biologic processes in
g anything from single cells to human beings. The first scientific awareness of circadian rhythms
14 started with observations of the mimosa plant (Mimosa pudica) folding independent of
:2 daylight by the French astronomer Jean Jacques d'Ortous de Mairan, in 1729 (Foster and
:Z; Kreitzman, 2005). In the 1930s, the German biologist Erwin Blinning subsequently noticed
;g that the movement of the bean plant had an intrinsic period that did not change under
;; constant light conditions and inferred that such periodic alterations were arranged with an
23 endogenous clock (Foster and Kreitzman, 2005).

25

26 The term ‘circadian’ was first used by Franz Halberg in 1959. It means ‘about a day’ and an
;Z; endogenous day slightly shorter or longer than 24 hours (from the Latin term circa: about and
;g diem: day) depending on constant conditions, preserved from environmental factors (Halberg
g; et al., 2003). Uncovering interactions between molecules and cells within an endogenous day
gi was a major advancement in the discovery of the essential mechanism of circadian rhythm,
35 which was a remarkable scientific milestone in chronobiology. It had been eagerly attempted
g? to explain the further molecular mechanisms of circadian rhythm; however, the oscillation
22 process could not be unraveled until 1971. Konopka and Benzer first determined a gene by
2(1) observing the differences of circadian period lengths among three mutant flies (Konopka and
fé Benzer, 1971). They demonstrated three mutants, one was arrhythmic, another had a shorter
jg period of 19 h, and the third had a longer period of 28 h; flies with neither the short-period
46 gene nor the long-period gene or the arrhythmic gene would not produce a normal rhythm.
2273 They concluded that the same functional gene with a point mutation appeared to be affected
:g in all cases. This work inspired Jeffery C. Hall, Michael Rosbash, and Michael Young,
g; independently. They cloned and rescued the Drosophila Period gene, which was recognized
gi as the first clock gene, found in 1984 (Bargiello, Jackson and Young, 1984; Reddy et al., 1984).
gg They defined the transcriptional translational feedback loop (TTFL) model with the analysis of
57 Per gene expression and they demonstrated additional genes and proteins in further work.
gg The simple genetic model they postulated revealed the generation of an autonomous
60
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1 oscillator, including transcription-translation cycles from interacting positive and negative
; feedback loops that depend on ribonucleic acid (RNA) and protein levels, which is still used to
: understand circadian rhythms. Consequently, they were awarded the Nobel Prize in
? Physiology and Medicine in 2017 for their explanatory findings of molecular mechanisms
2 controlling the circadian rhythm (Huang, 2018).

10

11 Despite the fact that the understanding of the neural basis of rhythmicity and central nervous
g system (CNS) involvement in circadian mechanisms is not long-standing knowledge, the
12 discovery of the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, which was later
1? described as the master circadian pacemaker in mammals, is actually not very recent. The SCN
:2 was first defined as a cluster of different neurons in the 1880s and was subsequently
;‘1) recognized in a number of mammalian species’ brains through comparative studies of the
22 hypothalamus by Crosby and Woodburne (Crosby and Woodburne, 1951; Sollars and Pickard,
;i 2015). However, the discovery of its regulatory function on circadian rhythm occurred nearly
;2 100 years later. The SCN contains a complex neurochemical organization and its functional
;Z; organization had been revealed with comprehensive experimental studies regarding the
gg function of localization, the neuronal mini-network it contains, and its role in the circadian
g; system. Consequently, the SCN is recognized as a coordinator of biologic processes regulating
33 numerous cellular clocks of the brain and other organ systems.

s

36 The findings of considerable studies revealing that a broad range of cell types in the body and
:; brain have biologic clocks raised questions regarding the specific function of circadian rhythm
ig and its contribution to illnesses. Circadian rhyhthms in peripheral organ systems and their
2; impeccable relationship with the SCN and other physiologic and metabolic mechanisms are
ji essential for physical and mental health. Disturbances in the central and peripheral clocks due
45 to shiftwork or a diversity of clock genotypes have been associated with many illnesses
j? including metabolic dysfunctions, obesity, cancer, and mental disorders (Gillette, 2013).

48

49

50 Circadian disruption, a common manifestation of nearly all psychiatric disorders, is not a
g; surprising predisposing factor for mental disorders, because sleep is considered as a cardinal
gi psychological and vital function and requires routine evaluation in every mental state
22 examination. Studies of human circadian rhythm genes revealed that genetic polymorphisms
57 of these genes predisposed to psychiatric disorders (Benedetti et al., 2003; Takao et al., 2007;
gg Lee et al., 2010). Therefore, circadian disturbances seem to be the common thread to all these
60
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1 possible underlying mechanisms that contribute to illness onset, maintenance, and even the
; response to treatment. Special attention ought to be paid toward the physiology and
: pathology of circadian rhythm to understand the etiology of psychiatric disorders, and to
? develop appropriate treatment strategies because chronobiology is an essential field of work
2 in mental disorders. Related literature provides information on circadian rhythm disturbances
10 for certain psychiatric diagnoses such as mood and anxiety disorders. However, we are aware
1; of a lack of a comprehensive perspective of molecular and neural substrates to clinical
:i manifestations in psychiatric disorders. Therefore, we aimed to provide a general overview
12 regarding the reciprocal relationship between circadian rhythm and psychiatric disorders in
:; this article.

19

20

21 Searching strategy and selection criteria of reviewed studies

;g An electronic database search was performed by the authors in the MEDLINE, Embase,
;g PsycIinfo, and Scopus databases for relevant articles published between January 1990 and
;? October 2019. We searched reference lists of relevant reviews. Different combinations of the
;g keywords psychiatric disorder, mental disorder, mood disorder, bipolar disorder, depression,
2(1) unipolar depression, major depressive disorder, schizophrenia, psychotic disorders, anxiety
32 disorders, circadian rhythms, circadian markers, chronotype, chronobiology, circadian gene,
gi clock gene, melatonin, and HPA axis were polled. Articles published only in English were
22 reviewed. Unpublished studies, case reports, theses, and conference papers were excluded.
g; Several highly cited and regarded comprehensive review articles and meta-analyses are cited
ig due to space considerations. Eligible open-access and institutional-access articles were
j; recruited. The articles were filtered through an inspection of the abstracts in order to select
ji the most suitable articles related to the topic. In addition to database searches, the reference
22 lists of the relevant articles were also evaluated manually for additional publications matching
j; the scope of our review. The authors avoided incorporating duplicated samples of the key
‘5‘3 papers; however, studies with similar methodology were included when they were of a high-
51 impact nature (Figure 1).

52

53

54

55 2. Molecular regulation of the circadian rhythm

g? We believe that it is noteworthy to briefly summarize the molecular underpinnings of
gg circadian science that gave input to the research into neural substrates of rhythmicity.
60
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1 Although the aforementioned discovery of the period gene was a remarkable finding that
; identified a genetic determination of the biological clock, it did not mean comprehension of
: all circadian molecular mechanisms. The circadian rhythm started to be more understandable
? with the determination of alterations in PER protein and period mRNA levels during a day. Hall
595 and Rosbash ascertained that levels of period mRNA peaked in the early night, several hours
10 earlier than the peak PER protein abundance (Hardin, Hall and Rosbash, 1990). The TTFL model
1; emerged with the discovery of further circadian rhythm genes found in subsequent studies.
:i According to this model, PER and TIM (a protein encoded by the timeless gene) proteins
12 transformed into a heterodimer form in the cytoplasm in order to translocate into the nucleus.
:; TIM protein allows nuclear entry of PER (Gekakis et al., 1995). Besides CLOCK and CYCLE
;g [orthologues of mammalian CLOCK and BMAL-1 (a protein encoded by the brain muscle ARNT-
21 like protein-1 (Bmal-1) gene), respectively] constitute a protein couple that supports the
;g transcription of period and timeless genes [the equivalent of period 1-3 and cryptochrome 1-
;g 2(Cry)) in mammalian cells] in the nucleus (Allada et al., 1998; Rutila et al., 1998). When the
;? PER-TIM heterodimer binds to the CLOCK-CYCLE couple, CLOCK-CYCLE segregates from DNA
;g and the transcription of downstream genes related to PER and TIM conclude. In other words,
2(1) the PER and TIM heterodimer terminate their transcription. However, in the event of a
32 decrement in PER and TIM protein levels, the CLOCK and CYCLE couple activates their
gi transcription once again, and TTFL starts over. All of these biochemical reactions include
:2 transcription and translation processes that occur rapidly. However, a near 24-h period needs
2373 a delay period and timeless gene transcriptions. The explanation about the regulation of the
ig needed delay comes from the discovery of the doubletime gene, another member of the clock
2; genes (Kloss et al., 1998; Price et al., 1998). The doubletime gene’s product casein kinase-1
43 (CSNK-Ig; casein kinase 1 epsilon in mammals) phosphorylates PER for degradation. Thus,
22 activity of the doubletime gene reduces the stability and accumulation of PER, thereby
j? promoting a delay between PER-TIM transcription and PER-TIM nuclear function (Lowrey et
22 al., 2000; Huang, 2018). This molecular mechanism occurs both in the SCN and nearly all
?1) peripheral cells.

52

53 The maestro of chronophysiologic rhythms including body temperature, sleep-wake cycle
gg motor activity, and neuroendocrine functions, is located in the SCN of the hypothalamus. The
?? clock genes in the peripheral cells such as hepatocytes, adipocytes or epidermal and dermal
gg cells have their own rhythmicity; however, cyclic processes in which the SCN is involved
60


https://doi.org/10.20944/preprints201911.0297.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2019 d0i:10.20944/preprints201911.0297.v1

1 provide an integrative organization of the physiologic functions and behavioral outputs of the
; body (Mohawk, Green and Takahashi, 2012; Challet, 2015). The circadian system sustains an
: endogenous rhythmic activity in spite of environmental cues. Regardless of the presence of
? light, the neuronal activity in the SCN occurs at a higher frequency during the day compared
595 with the night. The neurons of the SCN tend to be excitable in the day to maintain spontaneous
10 activity through persistent Na** currents, oscillations in chloride pumps, K* channels, and Ca**
1; pools in the morning. Conversely, hyperpolarized neurons are inhibited and keep the silence
:i in the SCN at night (Colwell, 2011). CRY and PER proteins gather in the cytoplasm before
12 translocating into the nucleus where they inhibit CLOCK-BMAL-1 activity during the night. In
:; other words, CRY and PER proteins terminate their own transcription when they inhibit
;g CLOCK-BMAL-1 complex activity. After that, degradation of PER and CRY manages the
21 inhibition of CLOCK-BMAL1 toward the morning, followed by resumed transcription of
;g period/cryptochrome and other clock genes (Tsang et al., 2016).

24

;2 The master clock synchronizes the endogenous rhythm to the external world, mainly in the
;273 presence of major environmental input — light (Mrosovsky and Hattar, 2003; Dibner, Schibler
gg and Albrecht, 2010; Pevet and Challet, 2011). A specialized tract, called the retino-
g; hypothalamic tract, which starts from the retinal ganglion cells that include the essential
33 photoreceptor pigment melanopsin, and terminating at the SCN. This tract aids upregulation
gg of clock gene expression and increases neuronal activity in the SCN (Hankins, Peirson and
:? Foster, 2008; Amaral et al., 2018). Nevertheless, functions of the SCN, such as synchronization
gg by the light/dark cycle, do not only depend on this molecular mechanism. Many inputs of the
j? SCN have been determined including melatonin, food intake, blood pressure, and physical
jé activity (Buijs et al., 2014; Asher and Sassone-Corsi, 2015; Sabbar et al., 2017; Pfeffer and
44 Wicht, 2018). In addition, the SCN receives non-photic timing inputs from the raphe nucleus,
22 which means the serotoninergic system plays a substantial role in the regulation of circadian
j; rhythm (Zhang et al., 2016). Furthermore, the SCN serves in the excretion of numerous
:g neurotransmitters that interact with other hypothalamic structures, hence neuropeptidergic
g; signaling maintains circadian rhythm of the SCN. Consequently, the biologic interactions
53 between the brain and body are modulated by the SCN, which is critically involved in the
gg organism’s adjustment to the environment through the impact of internal signals, which are
g? mediated by hormonal rhythms, the autonomic nervous system, and external time indicators
gg such as light and food intake (Gillette, 2013).

60
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1

; Circadian disruption could contribute to a wide range of illnesses including obesity, diabetes
: mellitus, autoimmune disorders, and particularly mental disorders (Buttgereit et al., 2015;
? Duval et al., 2017; Rebecca Robillard et al., 2018; Rébecca Robillard et al., 2018; Saetung et
595 al., 2019). Disruption that arises due to a misalignment between inner physiology and the
10 external world or a clock gene polymorphism may facilitate the emergence of diseases,
1; increased disease severity and worsened prognosis, and heightened risk for poor treatment
:i outcomes (Barandas et al., 2015; Charrier et al., 2017). (Table 1)

15

16

1; 3. Neurohumoral and hormonal regulation of circadian rhythm

19

;? The SCN collects information about the endogenous clocks through nervous projections and
;g peripheral hormones. The SCN’s monosynaptic outputs mainly target the pre-autonomic
;g neurons of the paraventricular nucleus (PVN) in the hypothalamus. The SCN is directly
26 involved in the hypothalamic output to the preganglionic parasympathetic regions of the
;Z; brainstem and to sympathetic preganglionic motor neurons of the spinal cord (Ono et al.,
;g 1978; Kalsbeek et al., 2006; Guilding and Piggins, 2007). These projections allow the SCN to
g; command the rhythmic control of hormone release and metabolism of all visceral structures
gi through parasympathetic and sympathetic outputs. It has been determined that the SCN could
35 increase glucose production from the liver through the sympathetic output to the liver with
g? its projections that reach to the PVN (la Fleur et al., 2000). Similarly, the SCN could increase
22 corticosterone secretion in the adrenal or support glucose uptake into the muscle cells via
2(1) sympathetic activation (la Fleur et al., 2001; Shimazu and Minokoshi, 2017; Buijs et al., 2019).
jé Besides, hormonal signals predominantly controlled by the SCN have a critical role in the
2‘5‘ regulation of internal synchronization (Challet, 2015). Internal synchronization is supplied by
46 adrenal glucocorticoids, pineal melatonin, adipocyte-derived leptin, pancreatic insulin or
2273 stomach ghrelin induced by the SCN. Internal synchronization included many multi-synaptic
:g neuronal pathways that modulate behavior. For example, leptin increases during food intake
g; in rats, ghrelin increases following a fasting period, and adrenaline increases with locomotor
gi activity (Kalsbeek et al., 2001; Shiiya et al., 2002; Buijs et al., 2019).

55

g? Glucocorticoids are produced in the adrenal glands from cholesterol and rhythmically released
58 at ultradian (pulsatile) and circadian (daily) scales. Glucocorticoid release peaks typically prior
Zg to the onset of physical activity and depends on the fluctuations of corticotropin
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1 (adrenocorticotropic hormone, ACTH), a polypeptide secreted from the anterior pituitary
; under the control of corticotropin-releasing hormone (CRH), during the day. Glucocorticoid
: levels are regulated by a complex interaction between the adrenal clock and sympathetic
? outputs from the PVN and SCN (Kalsbeek et al., 2012). Furthermore, the daily variation of
595 glucocorticoids is influenced by stressful life events that activate the hypothalamus—pituitary—
10 adrenal (HPA) axis and the autonomous nervous system. Glucocorticoid rhythm has a crucial
1; role in the regulation of other hormonal rhythms and peripheral oscillations of metabolic gene
:i expressions in the cells of tissues such as liver and white adipose tissue (Kalsbeek et al., 2012).
15

1? On the other hand, adrenal glucocorticoids can modulate the synchronization of the master
:g clock to light via serotonergic projections from the raphe nucleus (Van De Kar and Lorens,
;‘1) 1979). Serotonergic neurons release serotonin in the presence of glucocorticoid and
22 locomotor activity. Such neuronal activity ensures transmitting feedback to the SCN in order
;i to sustain the functioning of the clock itself (Malek et al., 2007). In other words, serotonergic
;2 projections stimulated by locomotor activity provide a re-synchronization of the SCN (Buijs et
;273 al., 2016). Furthermore, brain serotonin synthesis and catabolism have their own circadian
gg rhythm, closely related to the SCN. Neuronal serotonin release in the SCN is provided in the
g; absence of photic stimulation, and serotonin levels increase in the raphe nucleus after the
33 beginning of the dark phase (Pontes et al., 2010). Tryptophan hydroxylase (TpH), the rate-
gg limiting enzyme in the synthesis of serotonin, is one of the regulators of circadian rhythm in
:? the raphe nucleus. It is known that TpH peaks during the dark phase, helping the interaction
gg between the serotoninergic system and the SCN through the increment of serotonin levels
j? (Pontes et al., 2010). Also, serotonergic neurotransmission alterations could cause phase
jé shifts and changes in SCN activity affecting the phosphorylation of CLOCK proteins (Zaki et al.,
44 2018).

45

46

47 Melatonin, a member of the class of acetamides, is another hormone related to biologic
22 rhythm. It is primarily released by the pineal gland, particularly at night. Melatonin release is
?1) adjusted by the length of night time and melatonin per se regulates the seasonality of energy
gg metabolism and reproduction in photoperiodic species (Pévet, 2003). The nocturnal release
g‘S‘ of melatonin is induced by the SCN input to the PVN noradrenergic (sympathetic) afferents to
56 the pineal gland (Buijs et al., 2019). Melatonin accumulates sleep both by setting the SCN and
;73 inhibiting neural centers such as the locus coeruleus (LC) and raphe nuclei, which mediate
Zg arousal through the ventrolateral preoptic nucleus of the hypothalamus (VLPO). It has been

10
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1 determined that melatonin receptor agonists increase monoaminergic neuronal activity and
; contribute to the regulation of dopamine and 5-HT neurotransmission (Chenu, El Mansari and
: Blier, 2013). In other words, melatonin has a modulatory role on the monoaminergic activity
? by linking the circadian and monoamine systems. The SCN modulates the release of melatonin
2 mainly through y-aminobutyric acid (GABA) neurons that project from the SCN to the PVN
10 (Kalsbeek et al., 1999). The daylight in the morning and the bright light in the evening activate
1; the SCN neurons that inhibit the same PVN neurons through GABAergic projections and cease
:i the secretion melatonin (Pevet and Challet, 2011). The daily rhythm of melatonin has
12 remarkable effects on the molecular clockworks of both the brain and body alongside
:; regulating the sleep/wake cycle (Khaldy et al., 2002; Uz et al., 2003). Melatonin receptors
;g (MT1 and MT2) are mainly localized in the CNS but also have been detected beyond the CNS
21 in a wide range of somatic cells (Macchi and Bruce, 2004). This diversity could be interpreted
;g as melatonin having an integrative role in the light-induced circadian rhythms controlled by
;g the SCN in the whole organism.

26

27

;g 4. Circadian rhythm and its implications on psychiatric disorders

2(1) At the core of any psychiatric disorder is an abnormality in neurotransmitter signaling. It is
gg well known that the disruption of circadian physiology has widespread effects on all aspects
34 of neural and neuroendocrine function, which leads to psychiatric disorders. The
22 aforementioned information regarding neural substrates of biologic rhythm is frequently
227; reported impaired in many mental disorders. Following the comprehensive conceptual
ig framework of neural substrates of chronobiologic processes mentioned above, we will next
j; discuss the reciprocal associations between circadian rhythm disturbances and psychiatric
ji disorders, and draw a clinical picture for common diagnoses (Table 2).

45

46

47 4.1. Mood disorders

48

49

50 In 1681, Robert Burton defined the autumn as the most melancholic season in his best-known
g; classic, The Anatomy of Melancholia (Burton, 1621). Circadian rhythm abnormalities in mood
gi disorders have been pointed towards by the observers of melancholia for sixty years (Richter,
gg 1965; Atkinson, Kripke and Wolf, 1975; Souétre et al., 1989). A wide range of body functions
57 such as body temperature, blood pressure, pulse rate, and hormones such as plasma cortisol
gg levels, thyroid-stimulating hormone, and melatonin have been found disturbed in patients
60

11


https://doi.org/10.20944/preprints201911.0297.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2019 d0i:10.20944/preprints201911.0297.v1

1 with manic depression and depression compared with people without a mental disorders
2

3 (Atkinson, Kripke and Wolf, 1975; Souétre et al., 1989). Moreover, mood and other symptoms

4 . . . e .

5 of the disorder have been previously reported to show diurnal variation in depression (Hall,
? Spear and Stirland, 1964). Disordered sleep/wake cycle is considered as another clue for
8 physicians in patients with bipolar disorder (BD) and major depressive disorder (MDD) (Hall,
9

10 Spear and Stirland, 1964). In addition, it was recognized that disrupted rhythms were re-
11

12 synchronized after antidepressant or mood-stabilizing treatment (Wehr and Wirz-Justice*,
13

14 1982). Another significant feature is that mood episodes recur seasonally and previous studies
1 e .

12 showed that there could be an association between light and the emergence of mood states
:; (Zung and Green, 1974; Eastwood and Peacocke, 1976; Milstein et al., 1976; Frangos et al.,
;9 1980; Berkol et al., 2017). Thus, all of these findings suggested the possibility of circadian
0

21 rhythm disturbance in mood disorders. Consequently, the earliest mention of seasonality took
22

23 place in the Diagnostic and Statistical Manual of Mental Disorders Third Edition, Revised
24

25 Version (DSM-III-R), and seasonal pattern was defined as a specifier in the affective disorders
;? section (Spitzer et al., 1990).

28

gg Chronotype is another concept associated with mental disorders, particularly with affective
31 disorders, and resembles individual physiologic functions and activities such as sleeping,
32

33 eating, or hormone release. Chronotype has usually been used to denote sleep habits:
34

35 morning and evening types. The relationship between chronotypes and several psychiatric
36

37 disorders has been studied to date and the evening chronotype has been related to a
gg vulnerability to depression and increased alcohol and stimulant drug use (lasevoli et al., 2016).

40

2; Although sleep/wake cycle alteration, which is considered as a consequence of circadian

43 system disruption, had been the best-known contributor to the pathophysiology of mood

44

45 disorders for years, today, it is well-recognized that circadian rhythm is entangled with a wide

46

47 range of molecular and cellular processes that are hypothesized to lead to mood disorders

48

49 (McClung, 2013). Accordingly, below we discuss in detail internal and external factors that
?1) may play a role in the emergence of mood disorders through various psychophysiological
gg mechanisms within the circadian rhythm processes.

54

55

56 4.1.1. Major depressive disorder

57

58

59

60
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1 As a cardinal element of chronobiologic processes, sleep behavior and its disturbances have
; received the strongest spotlight regarding research into their undisputed etiologic and
: prognostic association with mood disorders. The concomitance of sleep disruption and
? depression had been the main focus of research into the contribution of circadian rhythm
595 disruption to depression development since the 1970s (Wirz-Justice, Pihringer and Hole,
10 1976; Wirz-Justice et al., 1981; Wehr et al., 1983). The relationship between sleep and mood
1; could easily be observed even in healthy individuals exposed to jet lag or shiftwork (Simon,
:i 2012). The presence of sleep disruption may cause negative effects, irritability, and fatigue.
12 Sleep behavior changes, such as difficulties in initiating/maintaining sleep or early morning
:; awakening have been determined in 90% of patients with MDD (Wulff et al., 2010). Sleep-
;g wake disruptions are among the criteria for the diagnosis of depression, and comorbid
21 parasomnias are associated with poor treatment outcomes, increased suicidality, and greater
;g relapse risk in depression (lasevoli et al., 2016; Stubbs et al., 2016; Vadnie and McClung, 2017;
;g Vargas et al., 2019). Sleep architecture alterations including shortened latency of the initial
;? rapid eye movement (REM) sleep, prolonged first REM period, increased total REM time,
;g increased REM density and proportion of REM sleep, and decreased non-REM sleep have been
2(1) demonstrated in depression (Kupfer and Foster, 1972; ‘The application of EEG sleep for the
32 differential diagnosis of affective disorders’, 1978; Kupfer et al., 1984; Rush et al., 1986; Giles
gi et al., 1987; Monteleone and Maj, 2008; Pillai, Kalmbach and Ciesla, 2011). It should be
:2 considered that sleep has multiple regulators related with homeostatic mechanisms along
2373 with the circadian rhythm.

39

j? Melatonin output and the timing of its release have been found closely associated with other
jé rhythms as mentioned above. Numerous studies have been conducted to show alterations of
44 melatonin release and its phase to determine circadian misalignment in patients with mood
22 disorders (De Berardis et al., 2015). Melatonin secretion peaks a few hours before sleep or at
j; the time of minimal vigilance propensity, and decreases as wakefulness approaches under
:g normal conditions (Reiter, 1993). In contrast, core body temperature reaches the highest
g; degree during the day and has a nocturnal decline related to the melatonin peak (Cagnacci,
53 Elliott and Yen, 1992). This inverse relationship between melatonin and core body
gg temperature is organized by the SCN. To date, the most consistent results suggested lower
?? nocturnal melatonin levels, delayed melatonin secretion onset, and offset in patients with
gg depression (De Berardis et al., 2015). Besides, the length of the interval between melatonin
60
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1 secretion and sleep onset has been found related to depression severity (Emens et al., 2009).
; In addition, elevated nocturnal body temperature and daily mean temperature degrees are
: observed in patients with depression and these higher values normalized with antidepressant
? treatment (lasevoli et al., 2016). However, several studies were unable to explain the causal
2 association between body temperature abnormalities and the melatonin increase in
10 depression (Shafii et al., 1996; Hasler et al., 2010).

12

13 There is an irrefutable association between circadian genes and mood regulation. Even though
12 mood disorders are not directly related to clock gene mutations, findings suggest that
1? individual genetic polymorphisms of clock genes may influence the clinical features of the
:2 disorder, such as age at disease onset and treatment response (Wirz-Justice, 2006; Kishi et al.,
;‘1) 2009). Genetic studies have implicated clock, timeless, cryptochrome-1 (Cry-1), period-2,3
22 (Per-2,3), Bmal-1,2, neuronal pas domain protein 2 (Npas-2), nuclear receptor subfamily-1,
;i group d, member 1 (Nrld-1), retinoid-related orphan receptor a (Rora), CSNK-Ie, D site of
;2 albumin promoter binding protein (Dbp), acetylserotonin methyltransferase (Asmt), melatonin
;Z; receptor 1b (Mtnr1-B), arylalkylamine n-acetyltransferase (Aanat) genes in unipolar
gg depression (Kennaway, 2010; Lavebratt et al., 2010; Soria et al., 2010; Etain et al., 2011;
g; Melhuish Beaupre, Brown and Kennedy, 2018). However, most of these studies have small
33 sample sizes and need to be replicated in larger groups.

s

36 Glucocorticoids are adrenal steroid hormones and have multifunctional roles in the body and
:; brain such as metabolism, immunity, arousal, neuronal survival, and neurogenesis (Herbert et
ig al., 2006). Glucocorticoids have their own circadian rhythm and an important role in
2; synchronizing peripheral clocks and the SCN. In addition, they have anti-inflammatory
ji properties and regulate the immune system response (Dumbell, Matveeva and Oster, 2016).
45 Since Carroll defined the resistance of the dexamethasone suppression test in patients with
j? depression in 1968 (Carroll, Martin and Davies, 1968), hypothalamic-pituitary-adrenal (HPA)
22 axis dysregulation has been one of the most consistent findings in mental disorders,
?1) particularly in depression (Carroll, Martin and Davies, 1968; McClung, 2013).
gg Hypercortisolemia-flattened HPA axis circadian rhythm and disrupted response of the HPA
54 axis to glucocorticoid feedback are commonly observed in patients with depression (Gold,
gg 2015; Keller et al., 2017). Dehydroepiandrosterone (DHEA), is another adrenal steroid that has
237; a neuroprotective role and modulates corticosteroid-induced cell death. An increased
Zg cortisol/DHEA ratio, which assesses the degree of ‘functional’ hypercortisolemia, is seen in
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1 adults and adolescents with depression (Goodyer, Herbert and Altham, 1998; Gallagher and
; Young, 2002; Markopoulou et al., 2009). Glucocorticoid receptor hypofunction has also been
: found in peripheral tissue cells including mononuclear cells and skin cells (Pariante and
? Lightman, 2008). Furthermore, findings support that antidepressant treatment repairs the
8 impaired HPA axis dysfunction in depression (Carvalho et al., 2010).

0

11 Depression and inflammatory disorders such as rheumatoid arthritis, inflammatory bowel
g disease, and asthma have been found coexisting, and such common comorbidities point to
12 the neuroinflammatory background and immune-associated contributions in the
1? etiopathogenesis of depression (Pasco et al., 2010; Raison and Miller, 2011). Studies have also
:2 shown that pro-inflammatory cytokines could induce a depression-like symptom cluster
;‘1) including anhedonia, fatigue, increased sleep, and decreased locomotor activity (Postal and
22 Appenzeller, 2015). Inflammatory markers such as interleukin (IL)-1pB, IL-2, IL-6, tumor necrosis
;i factor (TNF)-a, C-reactive protein (CRP), and prostaglandin E2 (PGE2) have been reported
;2 increased in patients with depression (Felger and Lotrich, 2013). Circadian disruption may be
;Z; another contributor to increased pro-inflammatory cytokine levels in depression. The
gg arrhythmic clock system interacts with the nuclear factor-kappa B (NF-kB) signaling pathway,
g; which is one of the major regulators of inflammation in the body and activates the
33 inflammatory response (Imeri and Opp, 2009; Narasimamurthy et al., 2012). Besides, sleep
gg disturbances and long sleep duration were found related with the increased cytokines levels
:? and the risk for depression (Irwin, Olmstead and Carroll, 2016). We may interpret the
gg aforementioned findings as the circadian system’s involvement in the pathophysiology of
j? MDD being not limited to sleep/wake cycle disruption, it is also related to complex
jé associations between biologic rhythm, environment-gene interactions, HPA axis dysfunction,
44 and immune system alterations.

45

46

47

48 4.1.2. Bipolar disorder

49

?1) Sleep disturbances have been the core common characteristic feature in bipolar mood
gg episodes, both mania and depression, since the first definition of Kraepelin (Plante and
54 Winkelman, 2008). In turn, insomnia or hypersomnia and decreased need for sleep are typical
gg for manic and depressive episodes. Studies showed that sleep architecture was characterized
237; by increased REM density and reduced REM latency in bipolar manic episodes (Harvey, 2008b,
Zg 2008a). Sleep disturbances are also frequently observed in euthymic patients with BD.
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1 Increased REM density and the proportion of REM sleep have been shown in remitted patients
; with BD (Dallaspezia and Benedetti, 2017). Moreover, findings revealed that remitted patients
: with BD have longer sleep latency and sleep duration and lower sleep efficiency (Rocha, Neves
? and Corréa, 2013; Geoffroy et al., 2015). Bipolar depression has similar polysomnographic
595 findings including a tendency for more early awakenings and more fragmented REM sleep
10 periods. However, total REM density was found greater in bipolar depression than in unipolar
1; depression (Dallaspezia and Benedetti, 2017) (See table 2 for detailed information). Although
:i abnormalities of sleep architecture are seen in episodes and inter-episodes, sleep
12 disturbances worsen before relapses. Sleep loss and reduced sleep duration were defined as
:; reliable predictors of hypomania and mania (Dallaspezia and Benedetti, 2017). In addition,
;g hypersomnia in euthymia is found associated with the development of upcoming depressive
21 symptoms (Kaplan et al., 2015). On the other hand, a large amount of euthymic patients
;g describe symptoms that meet the diagnostic criteria for insomnia (Boudebesse et al., 2014;
;g Geoffroy et al., 2015). Sleep-wake disturbances have been found as one of the reasons for a
;? worse course of illness, relapses, increased symptom severity, and poor treatment outcomes
;g (Harvey et al., 2015; Kanady, Soehnera and Harvey, 2015; Ng et al., 2015; Sylvia et al., 2018).
2(1) These findings may explain the reason for the treatment need in remitted patients with BD
32 (Vadnie and McClung, 2017).

33

34

35 Melatonin activity alteration is also associated with BD due to circadian dysregulations such
:? as changes in the release timing, phase alterations of melatonin secretion, and the sleep-wake
gg cycle (Dallaspezia and Benedetti, 2017). Although findings of melatonin function in patients
j? with BD are inconsistent, circadian system characteristics generally vary depending on the
jé current episode; mania or depression (lasevoli et al., 2016). Melatonin levels were found
44 higher in the daytime in manic patients than in healthy controls and patients with depressive
22 episode (Novakova et al., 2015). Findings about nocturnal melatonin levels among BD phases
j; are not consistent (Lewy et al., 1979, 1981; Kennedy et al., 1989; Souétre et al., 1989). It
:g remains unclear as to whether these alterations derive from a primary dysfunction of the
g; circadian rhythm or if they are secondary to sleep disturbances related to the BD episode.
52 However, some studies supported the beneficial effect of exogenous melatonin
gS administration, which provides sleep and mood improvement (Livianos et al., 2012).

7

58 Some of the clock genes have been found intimately associated with both the onset of BD and
Zg illness course. Studies revealed that circadian gene polymorphisms may increase the
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1 predisposition to BD and indirectly affect recurrences and symptoms across all BD phases
; (Geoffroy, 2018). Genetic linkage and gene expression studies implicated the variant genes
: related to BD as clock, timeless, Cry-1, Npas-2, Bmal-1,2, Dbp, Nr1d-1, Per-2,3, Rora, Rorb,
? Asmt, Csnk-1g, Csnk-16, and glycogen synthase kinase-3f (GSK-3f) (Kripke et al., 2009;
g McGrath et al., 2009; Etain et al., 2011; McCarthy and Welsh, 2012; Geoffroy et al., 2014;
10 Geoffroy, 2018). It has been demonstrated that ClockD19, the mutant gene that occurs with
1; the deletion of exon 19 in the Clock gene, produces a dominant negative CLOCK protein
:i capable of DNA binding but deficient in transcriptional activity. This gene induces dopamine
:2 synthesis and increased dopaminergic activity, which result in an increase in tyrosine
:; hydroxylase (TH) expression in the ventral tegmental area (VTA) and manic-like behavior in
;g animal models (Abarca et al., 2002; Roybal et al., 2007; Coque et al., 2011). Moreover,
21 ClockD19- related higher dopaminergic activity in the VTA normalized after lithium treatment,
;g which suggests increased dopaminergic activity may be the main reason for the manic-like
52 behavior of mice (Roybal et al., 2007). Recently, several lines of evidence have emphasized
;? the importance of the molecular and synaptic mechanisms of monoaminergic systems and
;g circadian gene interactions, which are closely related to molecular alterations associated with
2(1) the ClockD19 model in the VTA and nucleus accumbens.(Parekh et al., 2018) On the other
32 hand, lithium, a potent inhibitor of the GSK-3 enzyme, regulates the clock gene Nr1d-1 and
gi BMAL-1 through GSK-3 (Gekakis et al., 1998). Some polymorphisms including Clockrs3805148,
22 Clockrs534654, Timelessrs11171856, and Timelessrs2291739 are associated with suicidal
2373 behavior in BD (Pawlak et al., 2015).

39

j? A dysfunctional HPA axis is suggested to play an important role in the pathophysiology of BD,
jé although the mechanism needs to be elucidated. Increased levels of cortisol and ACTH are the
44 most replicated findings in BD (Belvederi Murri et al., 2016; Sigitova et al., 2017). However,
22 CRH levels are not determined to increase in BD.(Belvederi Murri et al., 2016) Depressive
2373 symptoms and cognitive deficits are thought to be associated with the higher levels of cortisol,
:g and ACTH and cortisol seem to be related to manic episodes (Sigitova et al., 2017). A meta-
g; analysis suggested that abnormalities of stress-related pathways including increased morning
gi cortisol levels were mainly prominent in manic episodes. Such abnormalities are even
55 observed in remitted patients, which means that the long-term pathology of the HPA axis is
g? related to clinical states of BD and contributes to the stress-vulnerability models of illness
?2 development and progression (Girshkin et al., 2014).

60
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1 Immune abnormalities have received increased attention due to their possible role in the
; pathophysiology of BD, as well as MDD. Systematic reviews on cytokine levels in patients with
: BD revealed that IL-4, IL-6, IL-10, soluble IL-2 receptor, soluble IL-6 receptor, and TNF-a levels
? were increased in patients compared with healthy controls, whereas IL-2, IL-8, IFN-gamma,
2 and C-C motif ligand were not different from controls (Modabbernia et al., 2013). Moreover,
10 a comparison of cytokine levels in another study determined that proinflammatory cytokines
1; including IL-2, IL-4, IL-6 were higher during manic episodes, and IL-6 levels were higher in
:i depressive state than in healthy controls (Brietzke et al., 2009). It was also demonstrated that
12 mood symptoms had a positive correlation with IL-6 and IL-2 levels (Brietzke et al., 2009).
:; When bipolar depression and unipolar depression were compared, sIL-6R, CRP, sTNF-R1, and
;g monocyte chemoattractant protein-1 (MCP-1) were found at higher levels than in unipolar
21 depression (Bai et al., 2015). In conclusion, sleep disturbances are a reliable indicator of an
;g upcoming mood episode in BD.

24

25

;? 4.2. Schizophrenia

28

gg Although the relationship between mood disorders and circadian abnormalities has become
g; clearer in recent times, the links between schizophrenia and disrupted circadian rhythms have
33 yet to be elucidated fully. However, sleep and circadian disruption have been known as
gg common and consistent features of schizophrenia and other psychotic disorders since the first
:? definition of Kraepelin in 1883 (Peirson and Foster, 2015). Schizophrenia has been associated
gg with abnormalities in sleep including delayed and advanced sleep onset, altered resting
j? activity patterns, and irregular sleep-wake cycle (Wulff et al., 2012). Research into circadian
jé abnormalities and sleep disruption in schizophrenia has attempted to explain the causal
44 relationship in a reciprocal context. Hyperdopaminergia is a well-known phenomenon in
22 psychosis syndromes and striatal hyperdopaminergic activity may be a result of sleep
j; disruption and circadian abnormalities, and increased dopamine levels may induce sleep
:g disruptions (Howes and Kapur, 2009; Monti et al., 2013; Yates, 2016). There is also supporting
g; evidence showing an association between genetic polymorphisms and circadian disruption,
52 which is consistently confirmed in animal models. For instance, the Clock T3111C
gs polymorphism, which is associated with increased dopamine levels in the SCN, has been
g? determined in a population of Japanese patients with schizophrenia (Takao et al., 2007).
gg Furthermore, the blind-drunk mutant mouse, which carries a mutation in the gene encoding
60
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1 an exocytotic synaptic protein, synaptosomal-associated protein-25 (Snap-25), exhibits
; schizophrenia-like symptoms (Fasshauer et al., 1998; Oliver and Davies, 2009). This mouse
: model of schizophrenia has been shown to display phase advance and fragmentation of the
? circadian cycle (Oliver et al., 2012). Most consistent findings of the circadian genetics studies
595 have been associations between CLOCK, PERIOD1, PERIOD3, and TIMELESS genes and
10 schizophrenia (Lamont et al., 2010). Circadian rhythm disruption has been reported in
1; approximately 80% of patients with schizophrenia (Cosgrave, Wulff and Gehrman, 2018).
:i Abnormal sleep patterns in schizophrenia have been described in both unmedicated patients
12 and patients currently receiving antipsychotic treatment (Wulff et al., 2010). The major
:; findings in sleep architecture could be aligned, such as long sleep-onset latency, increased
;g intermittent-awakenings, decreased total sleep time, and poor sleep efficiency (Sasidharan et
21 al., 2017). Moreover, reductions in REM latency, REM density, and duration of non-REM Stage
;g 4 are other alterations in micro-sleep architecture (Wulff et al., 2010; Jones and Benca, 2015;
;g Bian et al., 2017; Chan et al., 2017; Kaskie, Gill and Ferrarelli, 2019). Sleep disturbances are
;? also important to predict increased suicide attempts in patients with schizophrenia (Li et al.,
;g 2016).

30

g; Melatonin is a versatile neuro-hormone that plays an important role in the pathophysiology
33 of schizophrenia. 5-HT synthesis regulation, sleep-wake cycle, and anti-oxidant effects against
gg neuroinflammation are impaired due to melatonin dysfunction in schizophrenia (Anderson
:? and Maes, 2012; Yates, 2016). It has been shown that melatonin increases endogenous
gg antioxidants by increasing phosphorylated glycogen synthase kinase-3 (GSK-3) levels and
j? provides an anti-inflammatory effect (Olcese et al., 2009; Anderson and Maes, 2012). Galvan-
jé Arrieta et al. reported a reduction in axogenesis associated with lower levels of
44 phosphorylated GSK-3 subtype B and less expression of melatonergic receptors in patients
22 with schizophrenia compared with healthy controls. These findings may indicate a melatonin-
j; derived neurodevelopmental deficit at a cellular level (Galvan-Arrieta et al., 2017). The
:g absence of melatonin rhythmicity, decreased nocturnal secretion of melatonin, and phase
g; advance in melatonin circadian rhythms have also been described in patients with
53 schizophrenia (Rao et al., 1994; Anderson and Maes, 2012; Yates, 2016). Additionally, pineal
gg calcification in computed tomography has been demonstrated in patients with schizophrenia,
?? and this structural change has been found associated with cortical atrophy (Sandyk and Kay,
gg 1991). Because of its significance in the pathogenesis of schizophrenia, melatonin has become
60
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1 atherapeutic target for researchers. It has been shown that melatonin agonists are efficacious
; agents for schizophrenia-associated sleep disorders and drug-related tardive dyskinesia
: (Shamir et al., 2001; Gorfine et al., 2006). Moreover, its improving effects on behavioral
? deficits via reducing brain oxidative stress have been shown in an animal model of
595 schizophrenia (Onaolapo, Aina and Onaolapo, 2017).

10

11 The relationship between clock genes and schizophrenia is another undiscovered area for
g scientists. Few studies have been conducted to show linking circadian clock gene
1‘51 polymorphisms in schizophrenia to date. Takao et al. identified the Clock 311C/T
:? polymorphism, which is associated with higher dopaminergic neurotransmission in the SCN in
:g patients with schizophrenia (Takao et al., 2007). These results were confirmed in another
;‘1) study conducted in a Chinese schizophrenic population (Zhang et al., 2011). Period-1 mRNA
22 expression in the temporal lobe of post-mortem subjects with schizophrenia was found down-
;i regulated when compared with healthy controls (Aston, Jiang and Sokolov, 2004). In addition,
;2 disrupted diurnal rhythms of the Per-1, Per-2, Per-3, Npas-2 and phase delay in the expression
;273 of Per-2 have been reported in white blood cells of patients with schizophrenia (Sun et al.,
gg 2016). More recently, the absence of rhythmic expression of Cry-1 and Per-2 was determined
g; in the fibroblasts of patients with schizophrenia compared with cells obtained from healthy
33 controls.(Johansson et al., 2016) Pinacho et al. reported decreased levels of CSNK1g protein
gg levels in the prefrontal cortex of patients with hschizophrenia (Pinacho et al., 2016). However,
2? due to the small sample sizes of the available studies, the association between schizophrenia
gg and clock genes still needs to be clarified with further studies with larger populations.

40

Z; The stress-vulnerability model for schizophrenia was first proposed in the 1970s and has been
ji further developed since that time (Zubin and Spring, 1977; Coulon et al., 2016). Thus, the HPA
45 axis has been one of the most attractive research targets to understand the pathophysiology
j? of schizophrenia for decades. Increased cortisol levels have been determined in patients with
22 schizophrenia and even in individuals at high risk for schizophrenia compared with controls
?1) (Mittal and Walker, 2011; Carol and Mittal, 2015; Singh et al., 2015). However, mean baseline
gg cortisol level measurements in schizophrenia are not consistent in the literature (Bradley and
g‘S‘ Dinan, 2010). Nevertheless, blunted cortisol levels in response to stressors are much more
56 consistent findings, regardless of disease stage, chronicity, and treatment condition (Zorn et
;73 al., 2017). To conclude, despite it being widely accepted that sleep and circadian disorders
Zg have an important role in the etiopathogenesis of schizophrenia, well-designed and
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1 comprehensive clinical studies are still needed to explicate the genetic and neurobiologic
; underpinnings.

4

5

? 4.3. Other Psychiatric Disorders

8

?o Anxiety disorders are seen as the most frequent type of psychiatric disorders with a lifetime
11 prevalence of 29% in the general population (Remes et al., 2016). Sleep disturbance is a
g common feature of anxiety disorders and is included in the symptom criteria for several
12 anxiety disorders such as post-traumatic stress disorder and generalized anxiety disorder
1? (Boland and Ross, 2015). The presence of sleep disturbances has been reported as 74% in
:2 patients with anxiety disorders (Dallaspezia and Benedetti, 2017). However, MDD as a
;‘1) frequent comorbid condition in anxiety disorders is a confounder in understanding the
22 relationship of sleep disturbances and anxiety disorders. Studies related to generalized
;i anxiety disorder have reported decreased total sleep time, increased sleep-onset latency, and
;2 alterations in non-REM sleep architecture, whereas findings of REM sleep and sleep efficiency
;Z; are inconsistent (Cox and Olatunji, 2016). Patients with panic disorder frequently have both
gg sleep disorder and/or another anxiety disorder because they could have nocturnal panic
g; attacks, which usually occur in Stage-2 or Stage-3 of non-REM sleep, as well as decreased sleep
33 efficiency, total sleep time, and increased sleep onset latency (Cox and Olatunji, 2016;
gg Dallaspezia and Benedetti, 2017). Although sleep disturbances, including REM sleep-related
:? nightmares, have been investigated in post-traumatic stress disorder, conclusions are not
gg consistent (Dallaspezia and Benedetti, 2017). There is no significant difference in sleep
j? architecture in social anxiety disorder (Brown, Black and Uhde, 1994; Mesa, Beidel and
jé Bunnell, 2014). In an animal model, Cry-1 and Cry-2 gene protein deficiencies led to behavioral
44 alterations characterized by an abnormally high level of anxiety (De Bundel et al., 2013).
22 Akiyama et al. suggested that period-1 mRNA levels reduced after anti-anxiety treatment in
j; the mouse cerebellum (Akiyama et al., 1999). Cry-2 expression was determined reduced in
:g the hippocampus in another animal study (Griesauer et al., 2014). Furthermore, a
g; polymorphism in BMAL-2rs2306073 has been found associated with social phobia (Sipila et
53 al., 2010).

54

55

56 Obsessive-compulsive disorder (OCD) is another debilitating disorder that is segregated from
;7; the anxiety disorders category in the DSM-5 (American Psychiatric Association. Diagnostic and
Zg statistical manual of mental disorders: DSM-5. 5th edn, 2013). Although sleep disturbances
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1 have been reported including decreased total sleep time, alterations in REM and non-REM
; sleep architecture are less clear (Cox and Olatunji, 2016). Certain chronotypes have been
: found as predictors of OCD symptoms in adults, and circadian rhythm disorders have been
? found as predictors of treatment outcomes (Cox and Olatunji, 2019). To the best of our
2 knowledge, the role of circadian rhythm disruptions in all anxiety disorders, including OCD,
10 has yet to go beyond showing sleep disturbance; comprehensive research is warranted in the
1; context of chronobiologic mechanisms of anxiety disorder pathology.

:i (Table 3)

15

16

1; 5. Conclusion

19

;? The circadian system is responsible for the temporal organization of physiologic functions, and
;g disruptions can have marked functional influences on the living organism. As the role of
;;1 chronobiologic systems in both physical and mental health have become better understood,
26 research into neurobiologic mechanisms of circadian rhythms has been expanded. Mood,
;Z; cognition, and behavior have complex relationships with biologic rhythms, and the vast
;g majority of mental disorders are reciprocally associated with impaired circadian biology.
g; Extensive research has shown that impaired circadian mechanisms could lead to psychiatric
gi entities, whereas they may be an outcome of mental disturbances. Impaired HPA axis function
25 and melatonin homeostasis are the most consistent findings in mental disorders. Independent
3? from sleep disorders, the circadian system has a distinct role in homeostatic processes, whose
22 impairment has an impact in emotion regulation, cognition, behavior, and, most importantly,
2(1) neural plasticity, all of which are often disrupted in psychiatric phenotypes. There is some
fé evidence suggesting that circadian rhythm genes are associated with psychiatric disorders;
jg however, the specificity and causality of these associations have yet to be made clear. In our
46 opinion, we are a long way from establishing a robust causative link between circadian rhythm
2273 disruption and phenotypic complexity of psychiatric disorders. A decent translational
:g approach to the findings of animal models would likely result in a clearer understanding of
g; pathophysiologic implications of the circadian system. Further support from continued and
gi integrated investigations of these issues may promote a deeper appreciation of the
gg contribution of circadian disturbances to the pathophysiology of psychiatric illnesses, and will
57 hopefully yield improved therapeutic strategies for their treatment.

22
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Table 1. Non-exhaustive list of studied human clock genes, expressed proteins, their main function and associated psychiatric disorders

Gene

Clock

Timeless

Cry-1

Cry-2

Per-1

Per-2

Per-3

Bmal-1 (or
ARNTL-1)

Bmal-2
Npas-2

Nomenclature and Protein
Circadian Locomotor Output
Cycles Kaput (CLOCK)

Timeless homolog (TIM)

Cryptochrome-1 (CRY-1)

Cryptochrome-2 (CRY-2)

Period homolog 1 (PER-1)

Period homolog 2 (PER-2)

Period homolog 3 (PER-3)

Brain muscle ARNT like protein-1 (Aryl Hydrocarbon
Receptor Nuclear Translocator like 1)
(BMAL-1/ARNTL-1)

Brain muscle ARNT like protein-2
Neuronal PAS domain protein- 2 (NPAS-2)

Protein function
Positive regulation of period and timeless genes through interaction with BMAL-1

Negative regulation of CLOCK-BMAL-1 activity through interaction with PER and close the
circadian feedback loop

Inhibition of CLOCK-BMAL-1

Inhibition of CLOCK-BMAL-1

Negative regulation of CLOCK-BMAL-1 activity through interaction with CRY and close the

circadian feedback loop

Negative regulation of CLOCK-BMAL-1 activity through interaction with CRY and close the
circadian feedback loop

Seems not to have a critical role circadian rhythm. Contribute to determination of diurnal
preference

Positive regulation of period and timeless genes through interaction with CLOCK

Probably has a role in activation of CLOCK and CLOCK-controlled genes
Intrinsic enhancer for pre-mRNA splicing

Associated disorder

MDD(Kishi et al., 2009; Soria et
al., 2010; Shi et al., 2016) BD(Shi
et al., 2008; Kripke et al., 2009;
Lee et al., 2010; Soria et al., 2010;
Benedetti et al., 2015; Suzuki et
al., 2017) SCH(Takao et al., 2007;
Zhang et al., 2011)*

MDD(Utge et al., 2010; Dmitrzak-
Weglarz et al., 2015) BD(Mansour
et al., 2006; Utge et al., 2010;
Etain et al., 2014)

MDD(Soria et al., 2010; Hua et
al., 2014) BD(Soria et al., 2010)
SCH(Johansson et al., 2016)
ANX(De Bundel et al., 2013)
ANX(De Bundel et al., 2013;
Griesauer et al., 2014)

BD(Kripke et al., 2009)
SCH(Aston, Jiang and Sokolov,
2004; Sun et al., 2016)
ANX(Akiyama et al., 1999)
MDD(Partonen et al., 2007;
Lavebratt et al., 2010; Soria et al.,
2010) BD(Kripke et al., 2009)
SCH(Liu et al., 2015; Johansson et
al., 2016; Sun et al., 2016)
MDD(Artioli et al., 2007; Soria et
al., 2010; Maglione et al., 2015;
Shi et al., 2016) BD(Mansour et
al., 2006; Nievergelt et al., 2006;
Benedetti et al., 2008;
Dallaspezia et al., 2011;
Karthikeyan et al., 2014; Brasil
Rocha et al., 2017) SCH(Sun et al.,
2016)

MDD(Partonen et al., 2007; Soria
et al., 2010; Utge et al., 2010)
BD(Nievergelt et al., 2006; Soria
et al., 2010; Bengesser et al.,
2018)

ANX(Sipil3 et al., 2010)
MDD(Partonen et al., 2007; Soria
et al., 2010; Shi et al., 2016) BD
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Nr1d-1 (or Nuclear receptor subfamily-1, group d, member 1 ( or
Rev-erb-q) orphan
nuclear receptor REV-ERB-a1) (NR1D1/REV-ERB-a)
Rora Retinoid-related orphan receptor a (RORA)
Rorb Retinoid-related orphan receptor b (RORB)
Dbp D site of albumin promoter binding protein
Asmt Acetylserotonin methyltransferase
Mtnrl-B Melatonin receptor 1b
Aanat Arylalkylamine N-acetyltransferase
Csnk-1¢g Casein kinase 1 epsilon (CSNK1g)
Csnk-16 Casein kinase 1 delta (CSNK13)
GSK-3p Glycogen synthase kinase-3[ (GSK-3[3)

d0i:10.20944/preprints201911.0297.v1

Works as nuclear hormone receptors.
Compete with RORA for binding to the BMAL-1 promoter and repress the BMAL-1

Works as nuclear hormone receptors.
Compete with NR1D1 for binding to the BMAL-1 promoter and activate the BMAL-1

Works as nuclear hormone receptors.

Compete with NR1D1 for binding to the BMAL-1 promoter and activate the BMAL-1
Being regulated by CLOCK-BMAL-1 and CRY-1.

Supports the rhythmic transcription of downstream genes

The last enzyme of the melatonin synthesis pathway

G protein coupled melatonin reseptor

The first enzyme of the melatonin synthesis pathway
Phosphorylates of PER, CRY and BMAL,

increases their degradation

Phosphorylates of PER, CRY and BMAL,
increases their degradation

Regulation circadian period length
Regulation circadian period length

Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia, ANX: Anxiety disorders *CLOCK T3111C polymorphism,

(Kripke et al., 2009; Soria et al.,
2010) SCH(Sun et al., 2016)
MDD(Soria et al., 2010; Utge et
al., 2010; Byrne et al., 2014)
BD(Kishi et al., 2008; Kripke et al.,
2009; Severino et al., 2009)
MDD(Lavebratt et al., 2010; Utge
et al., 2010; Maglione et al.,
2015) BD(Etain et al., 2014; Lai et
al., 2015; Geoffroy et al., 2016)
BD(McGrath et al., 2009; Lai et
al., 2015)

MDD(Soria et al., 2010) BD(Shi et
al., 2008)

MDD(Gatecki et al., 2010;
Talarowska et al., 2014) BD(Etain
et al., 2012; Geoffroy et al., 2014)
MDD(Gatecka et al., 2011)

MDD (Soria et al., 2010)
MDD(Utge et al., 2010) BD(Shi et
al., 2008; Matsunaga et al., 2012;
Lee et al., 2018) SCH (Matsunaga
et al., 2012; Pinacho et al., 2016)
BD(Kripke et al., 2009;
Matsunaga et al., 2012)
SCH(Matsunaga et al., 2012)
BD(Szczepankiewicz et al., 2006;
Kaladchibachi et al., 2007)
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Table 2. Main alterations of sleep architecture in psychiatric disorders

Disorder = Major alterations

MDD Shortened latency of the initial REM sleep, prolonged first REM period, increased total REM time, increased REM density, and proportion of
REM sleep, decreased non-REM sleep (Kupfer and Foster, 1972; Kupfer, 1976; Rush et al., 1986; Giles et al., 1987; Pillai, Kalmbach and Ciesla,
2011)

BD Euthymia; Increased REM density and proportion of REM sleep, longer sleep onset latency and sleep duration, lower sleep efficiency (Sitaram
et al., 1982; Millar, Espie and Scott, 2004; Rocha, Neves and Corréa, 2013; Geoffroy et al., 2015)
Mania; Shortened REM sleep latency, increased REM activity and REM density, reduced total sleep time (Hudson et al., 1988, 1992; Linkowski
and Mendlewicz, 1993)
Depression; More fragmented REM sleep periods, shortened REM sleep latency (Gillin et al., 1979; Lauer, Wiegand and Krieg, 1992)
longer sleep onset latency, increased proportion of REM sleep, trend toward higher percentage of awakenings in bipolar depression than in
unipolar depression (Giles, Rush and Roffwarg, 1986; Jernajczyk, 1986; Fossion et al., 1998)

SCH Comparison to healthy control; Redused total sleep time, longer sleep onset latency, lower sleep efficiency and REM latency, increased REM
density, decreased total REM time, decreased non-REM stage-3 and stage-4 (Chan et al., 2017)
Medication naive patients; reduced total sleep time, lower sleep efficiency, increased REM latency, decreased stage-4 of non-REM sleep,
increased stage-1 of non-REM (Bian et al., 2017)
Duration of illness has no effect on polysomnography parameters (Chan et al., 2017)

ANX Generalized anxiety disorder; reduced total sleep time, longer sleep onset latency, alterations in non-REM sleep architecture, inconsistent
findings for REM sleep architecture and sleep efficiency (Cox and Olatunji, 2016)
Panic disorder; decreased sleep efficiency and total sleep time, longer sleep onset latency, REM and non-REM sleep architecture findings are
less clear (Cox and Olatunji, 2016)
Post-traumatic stress disorder; reduced total sleep time, longer sleep onset latency, variations in REM sleep

OoCD Reduced total sleep time, increased wake after sleep onset, inconsistent findings for REM and non-REM sleep architectures (Cox and Olatunji,

2016)

Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia, ANX: Anxiety disorders, OCD: Obsessive-compulsive disorder
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Tab 3. Summary of consistent findings on the alterations of two major neurohumoral systems regulating circadian ryhthm in psychiatric disorders

NEUROHUMORAL SYSTEM

HPA Axis
Elevated baseline cortisol levels, disruption in dexamethasone suppression test
results (Carroll, Martin and Davies, 1968; Nelson and Davis, 1997; Belanoff et al.,
2001; Keller et al., 2006, 2017; Gold, 2014)
increased cortisol/ DHEA ratio (Goodyer, Herbert and Altham, 1998; Gallagher
and Young, 2002; Markopoulou et al., 2009)

Increased cortisol and ACTH levels in manic phase

Findings about HPA axis abnormalities are seen both depressive and euthymic
phase, it is preferred to evaluate them as state and trait markers due to clinical
variations (Belvederi Murri et al., 2016)

Baseline cortisol levels are inconsistent
Blunted cortisol stress response (Zorn et al., 2017)

Note: MDD: Major depressive disorder, BD: Bipolar disorder, SCH: Schizophrenia

Melatonergic System
Lower nocturnal melatonin levels, delayed melatonin
secretion onset and offset (Wetterberg, 1979; Beck-Friis et al.,
1984; Nair, Hariharasubramanian and Pilapil, 1984; Claustrat
et al., 1984; Beck-Friis et al., 1985; Wehr et al., 1985; Brown et
al., 1985; Frazer et al., 1986; Parry and Newton, 2001;
Fountoulakis et al., 2001; Paparrigopoulos, 2002; Tuunainen
etal., 2002; Crasson et al., 2004; Emens et al., 2009; Rahman
et al., 2010; Buckley and Schatzberg, 2010; Khaleghipour et
al., 2012)
Higher melatonin levels in manic phase in the daytime
(Novakova et al., 2015)
Findings about nocturnal melatonin levels among BD phases
are inconsistent (Lewy et al., 1979, 1981; Souétre et al., 1989;
Kennedy et al., 1996)
Lower nocturnal melatonin levels, (Monteleone et al., 1992,
1997) phase advance in melatonin rhythm,(Rao et al., 1994)
the absence of melatonin rhythmicity (Bersani et al., 2003)
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