Title page

Comparative proteomic analysis reveals the regulatory effects of H₂S on salt tolerance of mangrove plant *Kandelia obovata*

Authors: Yi-Ling Liu¹, Zhi-Jun Shen¹, Martin Simon¹, Huan Li¹, Dong-Na Ma¹, Xue-Yi Zhu¹ and Hai-Lei Zheng¹,²

Institute or laboratory of origin:

¹ *Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China*

² *Corresponding author (zhenghl@xmu.edu.cn)*

Corresponding author:

Hai-Lei Zheng, PhD, Professor
College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P.R. China
Tel: +86 592 218 1005
Fax: +86 592 218 5889
E-mail: zhenghl@xmu.edu.cn
Abstract: As a dominant mangrove species, *Kandelia obovata* is distributed in an intertidal marsh with an active H$_2$S release. Whether H$_2$S participates in the salt tolerance of mangrove plant is still ambiguous although increasing evidence have demonstrated that H$_2$S functions in plant responses to multiple abiotic stresses. In this study, as an H$_2$S donor, NaHS was used to investigate the regulatory mechanism of H$_2$S on salt tolerance of *K. obovata* seedlings using a combined physiological and proteomic analysis. The results showed that the reduction in photosynthesis (Pn) caused by 400 mM NaCl was recovered by the addition of NaHS (200 μM). Furthermore, the application of H$_2$S enhanced the quantum efficiency of PSII and the membrane lipid stability, implying that H$_2$S is beneficial to the survival of *K. obovata* seedlings under high salinity.

We further identified 37 differentially expressed proteins by proteomic approaches under salinity and NaHS treatment. Among them, the proteins related to photosynthesis, primary metabolism, stress response and hormone biosynthesis were primarily enriched. The physiological and proteomic results highlighted that exogenous H$_2$S up-regulated photosynthesis and energy metabolism to help *K. obovata* to cope with high salinity. Specifically, H$_2$S increased photosynthetic electron transfer, chlorophyll biosynthesis and carbon fixation in *K. obovata* leaves under salt stress. Furthermore, the abundances of other proteins related to metabolic pathway, such as antioxidation (APX, CSD2, PDX1), protein synthesis (HSP, Cpn 20), nitrogen metabolism (GS2, GS1:1), glycolysis (PGK, TPI), AsA-GSH cycle were increased by H$_2$S under high salinity. These findings provide new insights into the roles of H$_2$S in the adaptations of mangrove plant *K. obovata* to high salinity environment.

Keywords: *Kandelia obovata*, mangrove, hydrogen sulfide, salt tolerance, comparative proteome
Introduction

Mangroves is a complex and unique ecosystem that distributes along tropical and subtropical coastal tidal zone (Parida and Jha 2010). Mangroves are facultative halophytes and potential stress adaptors due to their special morphological, anatomical, physiological, and biochemical features (Parida and Jha 2010). Different mangrove species have different salinity preferences and achieve optimal growth at different salinity levels. Jayatissa et al. (2008) reported that there is an optimal growth for *Sonneratia caseolaris* with the lowest salt tolerance at 3-5 ppt salinity, and for *Avicennia marina* with the highest salt tolerance at 25-27 ppt salinity. As a dominant species of mangrove plants, *Kandelia obovata* can distribute in areas with salinities up to 27.58 ppt seawater level (Yang et al. 2013). The salinity between 5 and 15 ppt is suitable for indoor-cultured *K. obovata* growth, while salinity up to 20 ppt inhibits photosynthesis and growth of *K. obovata* (Li et al. 2008).

The tidal inundation, which originates from coastal waters, influences the sediment salinity and pore-water sulfide concentration (Watson et al. 2016). The soil salinities and porewater sulfide concentrations are further enhanced with high inundation (Luo et al. 2019). Hydrogen sulfide (H$_2$S) is the dominant sulfide-containing gas emitted from the intertidal sediment. During anaerobic decomposition, sulfate reduction in sediment was triggering, and H$_2$S was consequent producing, which annual mean is $768 \pm 240 \, \mu g \, S \, m^{-2} \, d^{-1}$ (Ganguly et al. 2018). Mangrove plants affect the sulfide concentration and H$_2$S emission flux in sediments (Lyimo et al. 2002), and this research focused on whether H$_2$S influences the adaptation of mangrove plants to harsh environmental conditions such as high salinity.

As a huge body of previous studies, plants gain their tolerance to abiotic stress by actively synthesizing H$_2$S. Hou et al. (2011) reported that drought stress led to stomatal closure through the increase in the expression and activity of D/L-cysteine desulphydrase (L/D-CD), a key enzyme of H$_2$S biosynthesis in leaves of *Vicia faba*. H$_2$S pretreatment significantly increased regrowth ability of tobacco suspension-cultured cells re-growth ability after heat stress by alleviating a reduction in cell viability (Li et al. 2012). Salinity can detrimentally impact plant biomass production, which is associated with the salinity-induced (Yarsi et al. 2017). Previous studies mostly examined the role of H$_2$S in the mitigation of oxidative stress in salt-stressed plants (Christou et al. 2013; Sun and Luo 2014; Yu et al. 2013). The
activities of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX) and dehydroascorbate reductase (DHAR) were increased in salt-stressed cucumber seedlings by the addition of NaHS which is a widely used H$_2$S donor, while under the same experimental conditions, lipid peroxide and hydrogen peroxide (H$_2$O$_2$) levels decreased (Yu et al. 2013). The improved germination rate of salt-stressed cucumber seed by H$_2$S might due to the breakdown of starch by H$_2$S-mediated α- and β-amylase in the endosperm, which ultimately led to improved hypocotyl growth (Sun and Luo 2014). To salt-stressed strawberry, pre-treatment roots with H$_2$S have a distinct increase in stomatal conductance, photosynthesis and leaf water content (Christou et al. 2013). In salt-stressed rice, NaHS increased chlorophyll and the content of protein (Mostofa et al. 2015). However, in the study of Koch et al. (1990), H$_2$S negatively affected the anoxic production of energy and the energy-dependent N uptake in roots of freshwater marsh species Spartina alterniflora.

In most of the true mangroves, the adaptations of seedlings to tolerate saline conditions have been widely studied (Krishnamurthy et al. 2014). However, the role of H$_2$S in salinity tolerance improvement in mangroves is still mostly unknown. In this study, an appropriate concentration of NaHS, a donor of H$_2$S, had a positive effect on K. obovata under high salinity considering both physiological and proteomic aspects. The K. obovata seedling were exposed to 400 mM NaCl with or without 200 μM NaHS for 7 days, and proteomics-based methodology (2-DE accompanied by MALDI-TOF/TOFMS) was adopted to investigate the specific metabolic pathways, and regulatory mechanism of H$_2$S on salt tolerance of K. obovata seedlings.

Materials and methods

Plant growth and treatment

Mature propagules of K. obovata were collected from the mangrove forest in the National Nature Reserve for Mangroves in Zhangjiang River Estuary (23°55’ N, 117°26’ E), Yunxiao County, Fujian Province, PR China, where salinity levels range from 8% to 20%. Healthy propagules of similar size (20 cm in length) were selected and pre-cultivated in a plastic pot (dimension of 12 cm in diameter and 11 cm in depth) with clean sands. The pots were placed in a growth chamber with temperature of 25/30 °C (night
/day), relative humidity of 70%, a photoperiod of 8 h dark/16 h light with around 1,250 μmol m$^{-2}$ s$^{-1}$. A 1/4 strength Hoagland's nutrient solution was used to cultivate the hypocotyls. The solutions were replaced every week.

The treatments of NaHS and NaCl were set up when the 3rd pair of leaves appeared for physiological assays. The healthy and uniform seedlings were randomly cultivated in three groups and each group had three replicates.

In the first group, plants were supplied with NaHS and NaCl for 7 days. Different concentrations of NaHS at 0, 50, 100, 200, 350 and 500 μM (The average of H$_2$S is 243.1±234.9 μM in pore water samples of mangrove forest sediment) (Pérez et al. 2018) were prepared in the 1/4 strength Hoagland's nutrient solution in the presence or absence of 400 mM NaCl. After 7-days treatment, photosynthesis, chlorophyll content and dry weight were measured to determine the optimal NaHS concentration that growth inhibition induced by NaCl.

The second group was supplied with 1/4 strength Hoagland’s nutrient solution containing 400 mM NaCl in the presence of NaHS (200 μM), Na$_2$SO$_4$ (200 μM), NaHSO$_3$ (200 μM), NaHSO$_4$ (200 μM) and CH$_3$COONa (200 μM), respectively. Leaves were harvested after 7 days treatments for chlorophyll and endogenous H$_2$S content measurement to distinguish the actual role of H$_2$S/HS$^-$ from the other possible compounds derived from NaHS decomposition.

According to the results from above two experiments, the third group was supplied with 1/4 strength Hoagland’s nutrient solution containing 400 mM NaCl (NaCl) and 400 mM NaCl + 200 μM NaHS (NaCl+H$_2$S), respectively. The same volume of 1/4 strength Hoagland’s nutrient solution was used as the control (CK). After chlorophyll fluorescence measurements, the second pair of leaves from the apex of the growing shoots were harvested and frozen rapidly in liquid nitrogen and stored at -80 °C for a proteomic study and further biochemical analysis.

Measurements of leaf photosynthetic pigment, photosynthetic rate and chlorophyll fluorescence quenching
The contents of chlorophyll were measured based on Lichtenthaler (1987) with little modifications. 80\% (v/v) acetone was used to extract chlorophyll, the content was estimated according to the absorbances at 470, 646 and 663 nm.

Net photosynthetic rate (Pn) of fully expanded leaves, as well as transpiration (Tr), stomatal conductance (Gs), and internal CO$_2$ concentration (Ci) were determined using a portable photosynthesis system (Li-6400, Li-Cor, Lincoln, NE, USA). Those measurements were carried out in the morning from 9:00 to 11:30. Recovery coefficient of Pn was calculated according to the following equation: $\frac{P_{nNaCl}}{P_{nCK}}$.

Here, P_{nNaCl} and P_{nCK} stand for the leaf photosynthetic rate measured at NaCl and CK treatment.

We applied a fluorometer for measuring chlorophyll fluorescence (Li-6400, Li-Cor, Lincoln, NE, USA). Fv/Fm was calculated using $(F_m - F_0)/F_m$, where minimum (dark) fluorescence (F_0) was obtained by applying to measure light pulses at low frequency (0.03 μmol m$^{-2}$ s$^{-1}$ for 1 s). The maximum fluorescence (F_m) was determined by applying a saturating light pulse (6000 μmol m$^{-2}$ s$^{-1}$ for 0.8 s) to a dark-adapted sample (Neves et al. 2019).

Determination of dry weight and the content of endogenous H$_2$S

Endogenous H$_2$S content was determined according to Zhang et al (2008), and the method of Chen et al. (2014) was employed to determine the dry weight.

Measurements of oxidative stress and antioxidant system activity

The H$_2$O$_2$ content was measured according to Hung and Kao (2004). Lipid peroxidation in terms of malondialdehyde (MDA) content was measured according to Yan et al (2010).

For the relative electrolyte leakage (REL) measurement, fresh leaves (0.2 g) were cut, added to deionized water (20 mL) and degassed for 10 min at room temperature. Using an electrical conductivity meter (DDS-11A), the initial reading of conductivity (E1) was recorded. Then, the solution containing plant materials was incubated at 100 °C for 15 min. The final reading of conductivity (E2) of the solution was recorded after cooling. Besides, the reading of conductivity for deionized water (E0) was measured. Finally, the REL was estimated based on the following equation: $REL(\%) = (E_1 - E_0)/(E_2 - E_0) \times 100\%$.

Superoxide dismutase (SOD) activity was determined according to the method described by Beauchamp and Fridovich (1971). Ascorbate peroxidase (APX) activity was estimated according to Chen and Asada (1989).

Total content of glutathione (GSH) was measured by a GSH kit (JBI, Nanjing, China). Leaves (0.3 g) were ground with 0.3 mL H₃PO₄ (25%) and 0.9 mL NaH₂PO₄-EDTA buffer (0.1 M, pH 8.0). The homogenates were separated at 10,000 g at 4°C for 20 min. The supernatant was used for GSH content measurement (Devi and Prasad 1998). The absorbance at 420 nm was measured according to the manufacturer’s instruction.

Protein extraction from K. obovata leaves and 2-DE PAGE and image/data analysis

Proteins were extracted by a phenol extraction procedure, followed by methanolic ammonium acetate precipitation, according to the method described by Delaplace et al. (2006). We rehydrated 17 cm immobilized pH 4-7 gradient strips (BioRad, CA, USA) with 340 μL rehydration buffer (contain 1 mg protein sample) in the tray for overnight. Ettan IPGphor3 system (GE Healthcare Amersham Bioscience, Little Chalfont, UK) was used to isoelectric focusing, following the condition described by Shen et al. (2018). In 12.5% acrylamide gels, we observed the gel electrophoresis. Each experiment was repeated three times.

We stained SDS-PAGE gels with Coomassie Brilliant Blue R-250 and scanned by Uniscan M3600 (China) at 600 dpi. Gels were analyzed by PDQuest software (Version 8.0, Bio-Rad) (Hu et al. 2014). Afterward, those proteins which compared to the control gels by over 2.0-fold changes were selected for the next experiment.

In-gel digestion, identification and classification of differentially expressed proteins

We excised the differentially expressed proteins (DEPs) with more than 2.0-fold change from 2-DE gels (Shen et al. 2018). Gel slices were incubated with 25 mM NH₄HCO₃ and acetonitrile for at least four times until the color of CBB was removed. Trypsin/Lys-C Mix (Promega, sequencing grade) was used to digest the proteins. Trifluoroacetic acid (0.5-1%) was added to terminate digestion. The supernatant was
collected at 12,000 × g for 10 minutes. MALDI-TOF-TOF mass spectrometer was used to analyze the supernatant for mass spectrometry identification (Applied Biosystems, Massachusetts, USA), according to Hu et al. (2014). The search parameters were set as follows: database NCBInr (release date: 2018.12.01); taxonomy viridiplantae (green plants); peptide mass ranged from 10 to 130 kDa; the coverage of protein sequence must reach a minimum of 10%; proteins with scores higher than 60 ($P < 0.05$); results with Confidence Interval % (C.I.%) value higher than 95% were considered to be an identifications.

The functions of the identified proteins were determined in http://www.uniprot.org/uniprot, and then the proteins were divided into five groups according to their biological functions in the plant. The subcellular localization of identified proteins was obtained by WoLF PSORT prediction tool (http://wolfpsort.hgc.jp/), as well as from previously published papers when possible.

The Search Tool of the Retrieval of Interaction Genes/Proteins (STRING) database was used to predict the protein-protein interactions (PPIs) (Szklarczyk et al. 2015) and Cytoscape to visualize significant protein-protein associations in the PPI network. The combined score of >0.4 was selected as the cut-off value. Then, module analysis was carried out by Molecular Complex Detection (MCODE) plugin to illuminate the biological significance of gene modules that respond to NaCl and/or NaHS treatment in K. obovata leaves (Bader and Hogue 2003). Subsequently, BiNGO tool was used to visualize the level of enriched GO terms.

Quantitative real-time PCR analysis

For the total RNA extraction, the frozen K. obovata leaves (0.1g) were ground in liquid nitrogen and extracted by using a Total RNA Kit (TaKaRa, Dalian, China). We observed the RNA quality and integrity by ultraviolet spectrophotometer (Cary 50, Varian, USA) and agarose gel electrophoresis. The RNA was used to synthesized cDNAs with M-MLV reverse transcriptase First-Strand cDNA synthesis kit (TaKaRa, Dalian, China), and the cDNA mixture was used as templates for subsequent PCRs. The primers used for real-time PCR were shown in Supplementary Table S1. A 10 μL real-time PCR mixture contained 2 μL primers, 2 μL cDNA, and 6 μL SYBR Green (Sangon, Shanghai, China). Five independent biological replicates were used to performed gene expression. The relative gene expression was calculated by the
\[2^{-\Delta \Delta CT}\] method and actin was used as an internal control (Livak and Schmittgen 2001). The Bio-Rad iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad, Hercules, CA) was used to run qRT-PCR.

Statistical analysis

Two-tailed Student’s t-test \((P < 0.05)\) was used for statistical analysis. Pearson’s correlation among the amendment’s characteristics was evaluated using SPSS Statistics for Windows (Version 22.0, IBM Corp, Armonk, NY). The direct and indirect relationships among leaf drought weight, chlorophyll content, net photosynthetic rate, intercellular carbon dioxide, stomatal conductance and transpiration rate were evaluated through path analysis using edgeR package. The heatmap of the DEPs was drawn by using R software “heatmap package”.

Results

Effects of H\(_2\)S and NaCl on growth and photosynthesis of K. obovata seedlings

As expected, exogenous NaHS treatments (varying from 50 to 350 \(\mu\)M) progressively alleviated the NaCl-induced decrease in inhibition on leaf photosynthesis of K. obovata seedlings. Meanwhile, a high concentration of NaHS (500 \(\mu\)M) exhibited no beneficial effects (Figure 1). A powerful relationship was found among observed parameters through two-tailed Pearson correlation and path analysis (Supplementary Tables S2). Most of the physiological indices were positively correlated with the net photosynthetic rate (Pn) except intercellular carbon dioxide (Ci). The Pn had negative but significant associations (-0.655*) with Ci and displayed significant interactions with leaf dry weight (DW), chlorophyll content (Chl), stomatal conductance (Gs) and transpiration rate (Tr). Among different concentration of NaHS, 200 \(\mu\)M was the most effective in relieving NaCl-induced adverse effects in K. obovata seedlings. The recovery rate of Pn at 200 \(\mu\)M is the highest compared with other concentrations (Supplementary Figure S1). We used 200 \(\mu\)M NaHS in the next experiments.

H\(_2\)S rather than other derivatives from NaHS alleviates NaCl-induced reduction in chlorophyll content
It should be noticed that the NaHS solution contains not only H$_2$S/HS$^-$ but also other sulfur-containing components. The research results showed that, except NaHS, the above chemicals failed to rescue NaCl-induced reduction of chlorophyll content only except NaHS (Supplementary Figure S2A). Meanwhile, leaf endogenous H$_2$S content kept the high level at NaHS treatment but maintained a stable low level under the negative controls when compared with the experimental control group (Supplementary Figure S2B). HS$^-$ and/or H$_2$S has an essential role in relieving the reduction in chlorophyll content in K. obovata seedlings under salt treatment, but not other sulfur-containing compounds or sodium-containing compounds (Na$_2$SO$_4$, NaHSO$_3$, NaHSO$_4$, CH$_3$COONa).

Effects of H$_2$S and NaCl on the characteristics of chlorophyll fluorescence

The $F_/F_m$ ratio reflects the potential quantum efficiency of photosystem II (PSII), widely used as a sensitive indicator of stress-induced damage to the photosynthetic apparatus (Maxwell and Johnson 2000). After 7-days treatment with NaCl, K. obovata seedlings’ leaves were used to measure the chlorophyll fluorescence. The results showed that NaCl treatment significantly decreased the ratio of $F_/F_m$ by 27.18% compared to the control. However, when exogenous H$_2$S was applied to NaCl-treated seedlings, the $F_/F_m$ was increased by 16.8% (Supplementary Figure S3).

Effects of H$_2$S and NaCl on oxidative stress and activity of the antioxidant system

Salinity was damaged to cytomembranes by increasing ROS. The content of H$_2$O$_2$ was analyzed to evaluate the effect of H$_2$S on the oxidative burst of NaCl-treated K. obovata seedlings. When exogenous H$_2$S was applied to NaCl-treated leaves, the content of H$_2$O$_2$ decreased from 5.36 μmol·g$^{-1}$ to 4.79 μmol·g$^{-1}$ (Figure 2A). Leaf REL and the content of MDA were measured to estimate the protective role of H$_2$S on the stability of membrane. Compared with NaCl treatment, the content of MDA was decreased from 0.71 μmol·g$^{-1}$·FW to around 0.58 μmol·g$^{-1}$·FW by exogenous H$_2$S addition (Figure 2B). Meanwhile, high salinity significantly increased REL of K. obovata leaves, being 2.0-fold higher than that of control. The exogenous H$_2$S significantly alleviated the NaCl-induced increase in REL (Figure 2C).

Additionally, the content of GSH significantly increased by around 4-fold after NaCl+H$_2$S treatment compared to the NaCl treatment (Figure 2D). Plant cells have evolved the antioxidant enzymatic system,
such as SOD and APX, to cope with stress-induced ROS generation. When exogenous H$_2$S was applied to NaCl-treated seedlings, APX activity increased by 6.1 U·g$^{-1}$·min$^{-1}$ (Figure 2E), while the activity of SOD increased by about 315.3 U·g$^{-1}$·min$^{-1}$ (Figure 2F) in comparison with the NaCl treatment.

Identification and classification of DEPs

The 2-DE proteomic approach was employed to analyze the protein expression profile to investigate the mechanism of H$_2$S-mediated salt tolerance of *K. obovata*. Three biological replicates were performed with similar results. According to the image analysis by PDQuest software, approximately 450 protein spots were reproducibly resolved on each gel. A total of 37 spots with significant changes (higher than 2-fold, $P < 0.05$) were identified as DEPs (Figure 3A).

We provide 37 DEPs information in Table 1. A comprehensive overview of expression patterns of 37 identified proteins is shown in Figure 4A. They were divided into five functional categories, including carbohydrate and energy metabolism (29.73%), photosynthesis (18.92%), stress response proteins and cell structure (18.92%), amino acid and protein metabolism (16.22%), hormone biosynthesis and transcription factor (10.81%) by the biological function, which is in the UniProt database (Figure 4B). Comparing with NaCl vs CK group, there were more up-regulated DEPs in NaCl+H$_2$S vs CK group. These up-regulated DEPs were mostly divided into carbohydrate and energy metabolism, and stress response proteins (Figure 4B).

STRING interaction networks among DEPs

To predict protein-protein interaction (PPI) networks by STRING database, alignment of the amino acid sequence to find the corresponding homologous proteins from *Arabidopsis thaliana*. The PPI network visualized by Cytoscape is shown in Supplementary Figure S4. The PPI network of DEPs is composed of 27 nodes and 129 edges. A total of 2 modules were identified in the PPI network, which includes 9 and 8 proteins, respectively (Figure 5, Supplementary Table S3). Module A has 9 nodes and 32 interactions. The key node in module A is GS2. Module B has 8 nodes and 22 interactions. The key node in module B is RBCL.
An acyclic graph was constructed and directed using the BiNGO tool to depict the visual interactions of functions based on the enrichment levels of the GO terms. The present study identified eight significantly enriched GO terms in biological processes, and especially in terms of response to response to abiotic stimulus, response to stress, and generation of precursor metabolites and energy (Supplementary Figure S5).

Comparisons of expression patterns between protein and transcript of selected DEPs

To further verify the results of the proteome, we randomly selected 6 DEPs to further analyze their transcriptional expressions under different treatments by using quantitative real-time PCR. Particularly, the consistency between protein level and mRNA level of the following proteins was compared: transcription factor bHLH145 (spot 13), superoxide dismutase 4 (SOD, spot 18), heat-shock protein (HSP, spot 19), oxygen-evolving enhancer protein 1 (OEE1, spot 14), abscisic acid stress ripening protein (Asr, spot 31) and glutamine synthetase 1;1 (GS1;1, spot 33). The detailed list of the corresponding primer pairs and the detailed PCR procedures used for the real-time PCR are summarized in the Supplemental Table S1. As shown in Figure 6, all selected genes showed a similar pattern with their corresponding protein.

Discussion

H$_2$S but not other NaHS derivatives contributes to chlorophyll content recovery decreased by NaCl treatment

NaHS, which in solution dissociates to Na$^+$ and HS$^-$ that associates with H$^+$ producing H$_2$S, is widely used to examine biological effects of H$_2$S (Hosoki et al. 1997). To discriminate the effects of NaHS from other sulfur- and sodium-containing compounds, solutions of Na$_2$SO$_4$, NaHSO$_3$, NaHSO$_4$, and CH$_3$COONa were used instead of NaHS to ameliorate NaCl-induced seedling growth inhibition. In contrast to the results from NaHS, treatment with other compounds failed to induce endogenous H$_2$S accumulation and to alleviate the reduction in chlorophyll content caused by NaCl exposure (Supplementary Figure S2). Accordingly, this study provides evidence that NaHS-associated responses are H$_2$S-specific.

Exogenous H$_2$S alleviates growth and photosynthesis inhibition induced by NaCl in K. obovata seedlings
Parameters such as relatively low fresh and dry weight and reduced photosynthesis are potential indicators of salinity stress in plants (Yarsi et al. 2017). In this study, significant variations in studied physiological traits of K. obovata under different concentrations of NaHS with 400 mM NaCl were recorded. Low concentration of H$_2$S (50-350 μM) increased the K. obovata leaf dry weight, chlorophyll content, and photosynthesis. In contrast, when the concentration of H$_2$S reached 500 μM, the above indices all decreased (Figure 1). These findings are in agreement with Chen et al. (2011), who reported a similar decline in the biomass and photosynthesis of Spinacia oleracea after treatment with a high concentration of NaHS.

The previous study indicated that H$_2$S could indirectly enhance photosynthesis reaching their maximal values, as well as the maximal photochemical efficiency of photosystem II (F_{v}/F_{m}) (Chen et al. 2011). In the present research, NaCl+H$_2$S treatment also increased F_{v}/F_{m} (Supplementary Figure S3). Additionally, the proteomics analyses revealed six proteins involved in the light reactions of photosynthesis, including electron transfer, light-harvesting, and light-induced oxidation of water. The level of ferredoxin-NADP reductase (FNR, spot 2), which catalyzes the removal of the electron from PSI to NADP$^+$, and otherwise NADPH is oxidized to produce reducing power via ferredoxin (Fd) (Mulo and Medina 2017), recovered under NaCl+H$_2$S treatment. The O$_2$ evolving complex 33kD family protein (OEC spot 12) has been termed the chloroplast manganese-stabilizing protein due to its functions in assembly, stabilization and protection of the manganese cluster required for oxygen evolution in higher plants (Sugihara et al. 2000). The accumulation of OEC came back to control level under NaCl+H$_2$S treatment, which implied that H$_2$S maintained the photosynthetic electron transport activity during K. obovata exposure to high salt stress. Besides, NaCl-induced down-regulation of photosynthetic electron transfer C (PETC, spot 10) which is the important subunit of Cytb/f complex and participates the linear electron transport (Sanda et al. 2011), was alleviated by the addition of H$_2$S. Nevertheless, plastocyanin (PC, spot 1) was up-regulated under NaCl, which is consistent with the study on K. candel under high salinity did by Wang et al. (2015). On another hand, the abundances of PC remained unchanged under combined NaCl+NaHS treatment. The results of proteomics analyses are in agreement with physiological measurements which showed that treatment with NaHS alleviated the NaCl-caused inhibition of photosynthesis.
Photosynthetic carbon assimilation is driven by ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco). Ribulose-1,5-bisphosphate carboxylase large subunit (RBCL, spot 8) was down-regulated by NaCl treatment and unchanged under NaCl+NaHS treatment. Noteworthy, ribulose activase small isoform precursor (RBCS, spot 36) showed a reverse trend, which is unchanged under NaCl treatment and down-regulated by NaCl+NaHS treatment. The capacity of photosynthesis is associated with the level of RBCL/RBCS ratio in rice leaves (Wang et al. 2009). The up-regulation of RCA and RBCL/RBCS ratio by NaHS addition under salt treatment in our study indicated that the alleviation of Rubisco inhibition inevitably lead to the improvement of photosynthesis.

Phosphoglycolate phosphatase (PGP, spot 25), which is involved in photorespiration and required for giving carbon from 2-phosphoglycolate back into metabolism (Bauwe et al. 2012). The photosynthetic electron transport was more allocated to photorespiration with the decrease of the chlorophyll content (Bauwe et al. 2012). In this study, NaCl treatment strongly up-regulated PGP, which indicated allocation of photosynthetic electron transport to Calvin cycle was reduced (Wingler et al. 2000).

The photosynthetic electron transport chain converts light into chemical energy, supplying ATP and NADPH to drive the carbon dioxide reduction and fixation processes (Matuszyńska et al. 2019). ATP synthase CF1 epsilon subunit (atpC, spot 7) is involved in energy supply needed for carbon dioxide reduction and fixation processes. Compared with NaCl treatment, atpC were recovered under NaCl+H₂S treatment, implying the energy used for photosynthetic carbon assimilation was recovered with NaHS addition.

H₂S rescues the primary metabolism altered by NaCl

In this study, triosephosphate isomerase (TPI, spots 16), and phosphoglycerate kinase (PGK, spot 35) were found to be unchanged or down-regulated under high salinity. PGK plays a crucial role in catalyzing the ATP-dependent phosphorylation of phosphoglycerate in the Calvin cycle (Zhao et al. 2016). The two glycolytic enzymes were all positivity modulated by NaHS addition, suggesting much more energy was produced by glycolysis.
All levels of plant function are affected by nitrogen metabolism (Schultz et al. 1998). In higher plants, glutamine synthetase (GS2 and GS1:1, spot 32 and 33) is a crucial enzyme of primary ammonium assimilation and nitrogen metabolism (Lea and Miflin 2003). Glutamine synthetase participates in the synthesis of GSH through glutamate biosynthesis pathway; thus, the overexpression of glutamine synthetase leads to more GSH formation (Sarry et al. 2006; Semane et al. 2010). It is interesting to note that the accumulation of glutamine synthetase was positivity modulated by NaHS addition.

Heat-shock protein (HSP, spot 19) and 20 kDa chaperon family protein (Cpn 20, spot 26), which involved in protein synthesis, were found positivity modulated by NaHS addition. As molecular chaperones, HSP and chaperonin family protein participate in protein transport, protein folding, and protein assembly processes (Omar et al. 2011). During abiotic stress, chaperonins help the plant to combat against increasing amount of incorrectly folded proteins (Omar et al. 2011).

Previous publications have reported that the TCA cycle provides essential precursors for amino acid biosynthesis and energy metabolism. ATP synthase subunit d (ATP5PD, spot 9) and ATP synthase beta subunit (ATP5F1B, spots 29) are located in the mitochondria. The ATP synthase is an important enzyme which catalyzes energy production by synthesizing ATP from ADP (Yasuda et al. 2001), providing energy to the TCA cycle. NaCl+H\(_2\)S treatment significantly up-regulated the accumulation of ATP5PD and ATP5F1B. In addition, nucleoside diphosphate kinase 1 (NDPK1, spot 30), a housekeeping enzyme that maintains the levels of CTP, GTP, and UTP in cells, was identified to be down-regulated under high salinity and significantly up-regulated by NaHS addition. A recent study showed that NDPK granted transgenic plants tolerance to multiple stresses, including salt and extreme temperatures (Dorion and Rivoal 2015).

Remarkably, H\(_2\)S rescued the primary metabolism altered by NaCl. In a previous study, Li et al. (2016) also reported that increment in energy metabolism by H\(_2\)S might be responsible for abiotic stress alleviation.

\textbf{H\(_2\)S relieves oxidative stress induced by NaCl}
Salt-induced disruption of the normal plant metabolism results in accumulation of harmful reactive oxygen species (ROS) (Hernandez and Almansa 2002). Excess ROS not only causes growth inhibition but also programmed cell death (PCD). The accumulation of H$_2$O$_2$, and consequent increase in MDA and REL are indicators of salt-induced oxidative damage to the membranes (Demiral and Turkan 2005). In the present study, NaHS pretreatment reduced the accumulation of H$_2$O$_2$, MDA, and REL under salt stress, which is in agreement with the previous study by Shi et al. (2013). In addition, Actin7 isoform 1 (Actin7, spot 23) is thought to aid in the stability of organelles membranes in plant cells and induces PCD with the stabilization of actin depolymerization (Geitmann and Nebenfuhr 2015, Thomas et al. 2006), was significantly up-regulated under NaCl+H$_2$S treatment. Meanwhile, plants trigger various enzymatic and non-enzymatic antioxidants to detoxify ROS and prevent cellular damage (Yin et al. 2019). In this study, compared with NaCl treatment, the activity of superoxide dismutase (SOD) and cytosolic ascorbate peroxidase (APX), and the content of GSH were found to be induced by application of H$_2$S (Figure 2). Ascorbate (AsA) and GSH play important roles in the AsA-GSH cycle (Suo et al. 2015). As an electron donor, APX reduces H$_2$O$_2$ into the water using AsA, and monodehydroascorbate can react with GSH to produce AsA and oxidized GSH catalyzed by DHAR (Suo et al. 2015). The increase in GSH content and the activity of APX indicate that H$_2$S promoted AsA-GSH cycle responsible for the removal of H$_2$O$_2$ under high salinity. In agreement, APX (spot 37) protein expression was found up-regulated under NaCl+H$_2$S treatment. Moreover, copper/zinc superoxide dismutase CSD2A-1 (CSD2, spot 17) was found up-regulated under NaCl+H$_2$S treatment, but SOD (spot 18) showed the opposite trend. We propose that CSD2 plays a critical role in a direct and rapid mechanism of ROS detoxification under high salinity. In short, based on the above results, it can infer that H$_2$S has a positive effect to protect the plant from the excess ROS. Moreover, some abiotic stress-related proteins, such as cysteine proteinase (CP, spot 4), pyridoxine biosynthesis PDX1-like protein 3 (PDX1, spot11), and alcohol dehydrogenase (ADH, spots 20) also responded to high salinity and NaCl+H$_2$S treatment. An increase in the CP activity occurred just before the first senescence symptoms became visible in most plants (Buono et al. 2019). CP is involved in PCD and the balance between the levels of CP and phytocystatins is keeping in a certain state through the antagonistic activities of ABA and GAs (Prins et al. 2008, Szewińska et al. 2016). The accumulation of CP was significantly down-regulated by NaHS addition. PDX1 was identified as a cysteine synthase (Komatsu
et al. 2014), inducing cysteine biosynthesis as a protective measure against high ion concentrations, or synthesis of cystatin to inhibit PCD (Youssefian et al. 1993). We observed that PDX1 was significantly up-regulated under NaCl+H2S treatment.

H2S regulates hormone biosynthesis and transcription factor

Abscisic acid stress ripening protein (Asr, spot 31) is a downstream protein, which participates in ABA signaling pathways (Shkolnik and Bar-Zvi 2008). The bHLH served as negative feedback regulatory loop in ABA signaling in *Arabidopsis thaliana* (Zheng et al. 2019). In the present study, the up-regulated of Asr and bHLH145 under salt treatment and recovered under NaCl+H2S treatment, which indicated the signal transduction of ABA was inhibited by the addition of NaHS. Furthermore, in the promoter regions of the genes encoding CP exists ABA-responsive elements (Szewińska et al. 2016). Besides, NaHS up-regulated the accumulation of bZIP (spot 27), which positively altered the adaptation of plants to adverse circumstances (Joo et al. 2013; Sen et al. 2017).

Protein-protein interaction networks analysis

The DEPs in the PPI network exhibited higher enrichment, indicating a higher degree of modularization; therefore, the DEPs were divided into two modules for investigating the interactions using Mode (Figure 5). In module A, CDSP, FLDH (NAD(P)-binding Rossmann-fold superfamily protein isoform 1, spot 24), FNR, GS2, OEE, PC, PETC, RBCS are enriched in response to stimulus. The key node in this module is GS2. In module B, six nodes (APX, Cpn20, TPI, PGK, Prx, SOD) are involved in response to abiotic stimulus and another two nodes (RBCL, ATP5F1B) are related to Calvin cycle. The two modules implied that response to abiotic stimulus influenced other biological process.

Conclusions

Physiological, and proteomic evidence in this study support beneficial role of H2S on *K. obovata* exposed to high salinity: (1) H2S increased carbon fixations and electron transfer, maintaining photosynthesis under high salinity; (2) H2S stimulated glycolysis to generate precursor metabolites and energy, and protein synthesis; (3) H2S increased enzymatic and non-enzymatic antioxidants to detoxify ROS and prevent cellular damage under high salinity; (4) H2S effected the ABA signaling pathway, which
led to sustained plant adaptation to high salinity. As shown in Figure 7, we propose a working model to illustrate the detailed mechanism by which H$_2$S alleviates the NaCl-induced inhibition. In conclusion, these findings have important implications for understanding the functional role of H$_2$S in salt tolerance of *K. obovata*.

Acknowledgments

This study was jointly supported by the funds from the National Key Research and Development Program of China (2017YFC0506102), and the Natural Science Foundation of China (NSFC 31570586 and 31870581).

Reference

66. Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer

Figure 1. Effects of various concentrations of NaHS on leaf photosynthetic characteristics of *K. obovata* seedlings treated by high salinity. (A) leaf dry weight, (B) total chlorophyll contents, (C) net photosynthetic rate (Pn), (D) intercellular CO$_2$ concentration (Ci), (E) stomatal conductance (Gs) and (F) transpiration rate (Tr). Seedlings were treated with different concentrations of NaHS (0, 50, 100, 200, 350 and 500 μM) together with 400 mM NaCl for 7 days. Values are means ± SE of three independent experiments with at least three replicates for each. Bars with different letters are significantly different at $P < 0.05$ according to Duncan’s multiple range test.
Figure 2. Effects of NaHS on oxidative stress and antioxidant system activity of the leaves of *K. obovata* seedlings treated by high salinity. (A) H$_2$O$_2$ content, (B) malondialdehyde (MDA) content, (C) electrolyte leakage percentage, (D) glutathione (GSH) content, (E) ascorbate acid peroxidase (APX) activity and (F) superoxide dismutase (SOD) activity. CK stands for the control treated only by 1/4 strength Hoagland’s nutrient solution. NaCl stands for 400 mM NaCl treatment. NaCl+H$_2$S stands for 400 mM NaCl + 200 μM NaHS treatment. Error bars are SE (n =3). The columns labeled with different letters are significantly different at $P < 0.05$.

Figure 3. 2-DE analysis of proteins extracted from the leaves of *K. obovata* seedlings exposed to NaCl and combined NaCl and NaHS treatments. The numbers assigned to the protein spots correspond to those listed in Table 1. (A) Representative CBB-R250 stained 2D gel of total proteins extracted from *K. obovata* leaves under the control condition. Proteins (1.5 mg) were loaded onto the pH 4-7 gradient IPG strip for the first-dimensional isoelectric focusing (IEF) and then separated in the second dimension on a 15% SDS-PAGE gel. The isoelectric point (pI) and molecular weight (MW) in kilodaltons are indicated on the top and left of the gel. Arrows indicate 37 spots with at least 2.0-fold changes ($P < 0.05$) that were analyzed by MALDI-TOF/TOF MS. (B) The enlarged windows of the representative protein spots with different expression under NaCl and NaCl+H$_2$S treatments. NaCl stands for 400 mM NaCl treatment, NaCl+H$_2$S stands for 400 mM NaCl + 200 μM NaHS treatment, and CK stands for the control treated only by 1/4 strength Hoagland solution.
Figure 4. (A) Functional classification and hierarchical clustering analysis, (B) Functional categories for the 37 differentially expressed proteins in K. obovata seedling leaves under NaCl and NaCl+H₂S treatments. The rows represent the individual protein. The protein cluster is on the left side, and the treatment cluster is on the top. The up- or down-regulated proteins are indicated in red or green and white represent no change. The intensity of the color increases with increasing expression differences, as shown in the bar at the bottom of the figure.
Figure 5. The two modules obtained from the protein-protein interaction network of DEPs. (A) proteins in cluster 1, (B) proteins in cluster 2.

Figure 6. Comparison of expression changes at (A) mRNA and (B) protein levels for the selected six DEPs. They are bHLH145; superoxide dismutase (SOD); heat-shock protein (HSP); oxygen-evolving enhancer protein 1 (OEE1); abscisic acid stress ripening protein (Asr); glutamine synthetase 1:1 (GS1:1).
Figure 7. The proposed regulatory networks of H$_2$S on salt tolerance of *K. obovata* seedling leaves. The left and right dot stand for NaCl and NaCl+H$_2$S treatment, respectively. The red color of dot indicates the up-regulated change, the green color of dot indicates the down-regulated change, the white color of dot indicates no change in comparison with control. ADH: alcohol dehydrogenase; APX: cytosolic ascorbate peroxidase; Asr: abscisic acid stress ripening protein; atpC: ATP synthase CF1 epsilon subunit; ATP5F1B: ATP synthase beta subunit; ATP5PD: ATP synthase subunit d, mitochondrial; CP: cysteine proteinase; Cpn 20: 20 kDa chaperonin family protein; Cpn 60: TCP-1/cpn60 chaperonin family protein; CSD2: copper/zinc superoxide dismutase; CDSP: chloroplastic drought-induced stress protein; FLDH: NAD(P)-binding Rossmann-fold superfamily protein isoform 1; FNR: ferredoxin-NADP reductase; GS2: glutamine synthetase 2; GS1:1: glutamine synthetase 1;1; HSP: heat-shock protein; MAN: Glycosyl hydrolase superfamily protein; MDH: malate dehydrogenase; NDPK: nucleoside diphosphate kinase; OEE1: oxygen-evolving enhancer protein; OEC: O$_2$ evolving complex 33kD family protein; PC: plastocyanin; TPI: triosephosphate isomerase; PCD: programmed cell death; PDX1: pyridoxin biosynthesis; PETC: photosynthetic electron transfer C; PGK: phosphoglycerate kinase; PGP: phosphoglycolate phosphatase; Prx: 2-Cys peroxiredoxin; RBCL: ribulose-1,5-bisphosphate carboxylase large subunit; RBCS:
RuBisCO activase small isoform precursor; SOD: superoxide dismutase; The detailed information for each spot is shown in Table 1.

Supplementary Figure S1. Net photosynthetic rate (Pn) recovery coefficient of *K. obovata* seedling leaf under the treatments of series concentration of NaHS. Bars with different letters are significantly different at $P < 0.05$ according to Duncan’s multiple range test.

Supplementary Figure S2. H$_2$S and/or HS$^-$, but not other compounds derived from NaHS, contribute to (A) chlorophyll content and (B) endogenous H$_2$S accumulation. *K. obovata* seedlings were treated by 200 μM of NaHS, Na$_2$SO$_4$, NaHSO$_3$, NaHSO$_4$, or CH$_3$COONa, respectively, together with 400 mM NaCl for 7 days. The sample without any above sulfur-containing chemical but with 400 mM NaCl was regarded as the control (Con). CK represents the seedlings without NaCl and any above sulfur-containing chemical. Values
are means ± SE of three independent experiments with at least three replicates for each. Bars with different letters are significantly different at $P < 0.05$ according to Duncan’s multiple range test.

Supplementary Figure S3. Effects of NaHS on chlorophyll fluorescence characteristics of *K. obovata* seedling leaves. CK stands for the control which treated only by 1/4 strength Hoagland’s nutrient solution. NaCl stands for 400 mM NaCl treatment. NaCl+H$_2$S stands for 400 mM NaCl + 200 μM NaHS treatment. Error bars are SE (n=3). The columns labeled with different letters are significantly different at $P < 0.05$.

Supplementary Figure S4. Protein–protein interactions (PPIs) network analysis of 27 identified proteins from NaCl and NaHS treated *K. obovata* leaves. The association network was developed by STRING software using the homologous protein accessions from *Arabidopsis thaliana*. (A) the PPI network in NaCl vs CK, (B) the PPI network in NaCl+H$_2$S vs CK. Nodes in red color represent up-regulated, green color represents down-regulated, white represent no change.
Supplementary Figure S5. Gene ontology analysis of the proteins identified from the leaves of *K. obovata*. Hierarchical directed acyclic graph in the aspect of biological process was performed. The yellow color represents the enriched GO terms.
Table 1. Identification of differentially expressed proteins with greater than 2.0-fold change in the leaves of *K. obovata* seedlings under salinity and NaHS treatments.

<table>
<thead>
<tr>
<th>Spot</th>
<th>Accession (gb)</th>
<th>Protein name³</th>
<th>Theoretical (Mr/pI)⁴</th>
<th>Observed (Mr/pI)⁵</th>
<th>Score⁶</th>
<th>MP⁷</th>
<th>Species⁸</th>
<th>Ratio⁹ NaCl vs CK</th>
<th>NaCl+H₂S vs CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>gi</td>
<td>502131189</td>
<td>PREDICTED: plastocyanin, chloroplastic-like</td>
<td>17.13/5.04</td>
<td>14.05/4.37</td>
<td>118</td>
<td>1</td>
<td>Cicer arietinum</td>
<td>2.257</td>
</tr>
<tr>
<td>2</td>
<td>gi</td>
<td>226497434</td>
<td>Ferredoxin-NADP reductase, leaf isozyme</td>
<td>40.98/8.53</td>
<td>37.32/6.74</td>
<td>311</td>
<td>4</td>
<td>Zea mays</td>
<td>0.287</td>
</tr>
<tr>
<td>8</td>
<td>gi</td>
<td>363981020</td>
<td>Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, partial (chloroplast)</td>
<td>50.67/5.87</td>
<td>19.87/5.19</td>
<td>116</td>
<td>7</td>
<td>Cercidiphyllum japonicum</td>
<td>0.086</td>
</tr>
<tr>
<td>10</td>
<td>gi</td>
<td>508707371</td>
<td>Photosynthetic electron transfer C</td>
<td>24.67/8.15</td>
<td>19.14/4.79</td>
<td>103</td>
<td>5</td>
<td>Theobroma cacao</td>
<td>0.100</td>
</tr>
<tr>
<td>12</td>
<td>gi</td>
<td>222853091</td>
<td>O₂ evolving complex 33kD family protein</td>
<td>35.41/5.85</td>
<td>36.80/5.22</td>
<td>405</td>
<td>4</td>
<td>Populus trichocarpa</td>
<td>0.067</td>
</tr>
<tr>
<td>14</td>
<td>gi</td>
<td>527190719</td>
<td>Oxygen-evolving enhancer protein 1, chloroplastic</td>
<td>34.80/6.48</td>
<td>34.78/5.47</td>
<td>493</td>
<td>8</td>
<td>Genlisea aurea</td>
<td>1.213</td>
</tr>
<tr>
<td>36</td>
<td>gi</td>
<td>62733297</td>
<td>RuBisCO activase small isofrom precursor</td>
<td>52.39/5.59</td>
<td>42.29/5.03</td>
<td>276</td>
<td>7</td>
<td>Oryza sativa Japonica Group</td>
<td>0.741</td>
</tr>
<tr>
<td>Carbohydrate and energy metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>gi</td>
<td>508785499</td>
<td>Glycosyl hydrolase superfamily protein, putative</td>
<td>37.45/8.39</td>
<td>34.33/4.66</td>
<td>68</td>
<td>1</td>
<td>Theobroma cacao</td>
<td>2.072</td>
</tr>
<tr>
<td>7</td>
<td>gi</td>
<td>336041766</td>
<td>ATP synthase CFI epsilon subunit</td>
<td>13.69/5.43</td>
<td>14.89/5.03</td>
<td>97</td>
<td>2</td>
<td>Justicia americana</td>
<td>0.323</td>
</tr>
<tr>
<td>9</td>
<td>gi</td>
<td>460411739</td>
<td>PREDICTED: ATP synthase subunit d, mitochondrial-like</td>
<td>19.78/5.33</td>
<td>18.95/5.04</td>
<td>119</td>
<td>4</td>
<td>Solanum lycopersicum</td>
<td>0.704</td>
</tr>
<tr>
<td>16</td>
<td>gi</td>
<td>508786769</td>
<td>Triosephosphate isomerase</td>
<td>27.50/5.54</td>
<td>23.96/6.35</td>
<td>164</td>
<td>7</td>
<td>Theobroma cacao</td>
<td>0.142</td>
</tr>
<tr>
<td>20</td>
<td>gi</td>
<td>223535342</td>
<td>Alcohol dehydrogenase, putative</td>
<td>41.61/8.61</td>
<td>37.23/5.88</td>
<td>513</td>
<td>6</td>
<td>Ricinus communis</td>
<td>0.643</td>
</tr>
<tr>
<td>22</td>
<td>gi</td>
<td>226503019</td>
<td>Malate dehydrogenase, cytoplasmic</td>
<td>35.85/5.76</td>
<td>40.48/6.78</td>
<td>250</td>
<td>7</td>
<td>Zea mays</td>
<td>3.659</td>
</tr>
<tr>
<td>24</td>
<td>gi</td>
<td>508715598</td>
<td>NAD(P)-binding Rossmann-fold</td>
<td>36.50/9.29</td>
<td>28.24/5.53</td>
<td>268</td>
<td>4</td>
<td>Theobroma cacao</td>
<td>0.663</td>
</tr>
<tr>
<td></td>
<td>gi</td>
<td></td>
<td>superfamily protein isoform 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>25</td>
<td>gi</td>
<td>502105712</td>
<td>Phosphoglycerate phosphatase</td>
<td>40.78/6.89</td>
<td>37.32/6.74</td>
<td>226</td>
<td>10</td>
<td>Cicer arietinum</td>
<td>2.400</td>
</tr>
<tr>
<td>29</td>
<td>gi</td>
<td>335059237</td>
<td>ATP synthase beta subunit</td>
<td>52.29/5.09</td>
<td>57.59/4.97</td>
<td>453</td>
<td>11</td>
<td>Clerodendrum trichotomum</td>
<td>1.591</td>
</tr>
<tr>
<td>30</td>
<td>gi</td>
<td>475549973</td>
<td>Nucleoside diphosphate kinase 1</td>
<td>17.03/6.85</td>
<td>16.16/6.40</td>
<td>107</td>
<td>5</td>
<td>Aegilops tauschii</td>
<td>0.419</td>
</tr>
<tr>
<td>35</td>
<td>gi</td>
<td>223547261</td>
<td>Phosphoglycerate kinase, putative</td>
<td>50.11/8.74</td>
<td>51.05/5.99</td>
<td>294</td>
<td>6</td>
<td>Ricinus communis</td>
<td>1.115</td>
</tr>
</tbody>
</table>

Amino acid and protein metabolism

	gi		Cysteine proteinase	54.16/5.27	40.03/4.48	93	4	Medicago truncatula	1.512	0.162
---	---	----------------	-------------------------------	--------	---------	------	------	Ricinus communis	0.734	2.172
19	gi	223544592	Heat-shock protein, putative	17.81/5.93	16.81/5.69	129	6	Populus trichocarpa	0.196	2.934
26	gi	550336292	20 kDa chaperonin family protein	26.89/8.75	23.19/5.62	245	5	Theobroma cacao	2.301	1.562

Hormone biosynthesis and transcription factor

	gi		Transcription factor bHLH145	35.26/5.08	40.10/5.52	64	11	Arabidopsis thaliana	4.254	1.032
---	---	----------------	-------------------------------	--------	---------	------	------	Theobroma cacao	0.252	0.393
21	gi	508712975	Mitochondrial transcription termination factor family protein, putative isoform 1	51.01/9.32	44.71/6.38	56	11	Medicago truncatula	2.478	3.198
27	gi	355514936	BZIP transcription factor	24.12/8.65	23.37/5.88	60	9	Medicago truncatula	2.024	1.567

Stress response proteins

<p>| | gi| | 2-Cys peroxiredoxin BAS1-like, chloroplastic-like isoform X2 | 29.14/6.12 | 21.46/4.96 | 361 | 6 | Cucumis sativus | 2.446 | 2.257 |
|---|---|----------------|---|--------|---------|------|------|Theobroma cacao | 0.886 | 2.230 |
| 11 | gi|222867611 | Pyridoxin biosynthesis PDX1-like protein 3 | 33.31/6.55 | 15.98/5.29 | 60 | 8 | Musa acuminata | 1.184 | 2.006 |
| 17 | gi|409900374 | Copper/zinc superoxide dismutase | 23.29/6.12 | 19.07/5.74 | 393 | 4 | Theobroma cacao | 2.446 | 2.257 |</p>
<table>
<thead>
<tr>
<th>Spot</th>
<th>Accession</th>
<th>Description</th>
<th>Theoretical Mass (kDa)</th>
<th>Experimental Mass (kDa)</th>
<th>pI</th>
<th>pI</th>
<th>Species</th>
<th>NaCl vs CK</th>
<th>NaCl+H$_2$S vs CK</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>gi</td>
<td>414866828</td>
<td>Superoxide dismutase 4</td>
<td>15.65/5.10</td>
<td>15.02/5.80</td>
<td>77</td>
<td>3</td>
<td>Zea mays</td>
<td>2.510</td>
</tr>
<tr>
<td>23</td>
<td>gi</td>
<td>508776520</td>
<td>Actin 7 isoform 1</td>
<td>41.80/5.31</td>
<td>43.65/5.52</td>
<td>342</td>
<td>9</td>
<td>Theobroma cacao</td>
<td>0.827</td>
</tr>
<tr>
<td>34</td>
<td>gi</td>
<td>508723241</td>
<td>Chloroplastic drought-induced stress protein of 32 kD</td>
<td>40.91/7.66</td>
<td>27.45/5.77</td>
<td>213</td>
<td>6</td>
<td>Theobroma cacao</td>
<td>0.237</td>
</tr>
<tr>
<td>37</td>
<td>gi</td>
<td>498923199</td>
<td>Cytosolic ascorbate peroxidase</td>
<td>27.09/5.52</td>
<td>32.52/6.66</td>
<td>234</td>
<td>3</td>
<td>Arachis hypogaea</td>
<td>0.734</td>
</tr>
<tr>
<td>3</td>
<td>gi</td>
<td>548848586</td>
<td>Hypothetical protein AMTR_s00157p00064680</td>
<td>54.99/6.91</td>
<td>28.30/4.86</td>
<td>68</td>
<td>1</td>
<td>Amborella trichopoda</td>
<td>0.120</td>
</tr>
<tr>
<td>15</td>
<td>gi</td>
<td>462410037</td>
<td>Hypothetical protein PRUPE_ppa019045mg</td>
<td>25.73/5.65</td>
<td>29.45/6.01</td>
<td>150</td>
<td>5</td>
<td>Prunus persica</td>
<td>0.488</td>
</tr>
</tbody>
</table>

1 The spot number corresponding to the number listed in the table.
2 Database accession numbers (gb) according to NCBI nr.
3 The names of proteins were identified by LC-MALDI-TOF/TOF.
4 Theoretical mass (kDa) and pI of identified proteins. Theoretical values were retrieved from the NCBI nr database.
5 Experimental mass (kDa) and pI of identified proteins. Experimental values were calculated by using PDquest software and standard molecular mass markers.
6 Number of matched peptide fragments.
7 The Mascot searched score against the database NCBI nr.
8 The species which has the high homology of the identified protein.
9 Ratio between the different treatments. NaCl vs CK means 400 mM NaCl vs control; NaCl+H$_2$S vs CK means 400 mM NaCl + 200 μM NaHS vs control.
Supplementary Table S1. Sequences of forward and reverse primers used in qRT-PCR for gene expression analysis in *K. obovata* leaves.

<table>
<thead>
<tr>
<th>Spot number</th>
<th>Gene name</th>
<th>Annealing temperature</th>
<th>Forward primer sequence (5’ to 3’)</th>
<th>Reverse primer sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>bHLH145</td>
<td>59°C</td>
<td>F: GATGTTGCATGTGTTGGAGAAG</td>
<td>R: GAGAGAGATGTGGGACTGAAAG</td>
</tr>
<tr>
<td>24</td>
<td>SOD</td>
<td>59°C</td>
<td>F: GCTTTGACCCAGGAAGATGA</td>
<td>R: CATTGTTGTTGTCGCCATACTC</td>
</tr>
<tr>
<td>25</td>
<td>HSP</td>
<td>59°C</td>
<td>F: GCAGGAGGAGAAGAAGATAAAG</td>
<td>R: CCATGCTAGCCTTGACCTGATA</td>
</tr>
<tr>
<td>46</td>
<td>OEE1</td>
<td>59°C</td>
<td>F: AGGTTGGCCTTGATTCTCAAATA</td>
<td>R: CAGCATGTATAGGCTCGGAAA</td>
</tr>
<tr>
<td>48</td>
<td>Asr</td>
<td>59°C</td>
<td>F: ATGACAGCAAGCCAAAGAGA</td>
<td>R: CTCCTACAGAGCGAGTGATAGA</td>
</tr>
<tr>
<td>50</td>
<td>GS1:1</td>
<td>59°C</td>
<td>F: GAGACACATCCCTCTGGAAAC</td>
<td>R: GTGTTGGAACCTTACGCCAACTA</td>
</tr>
<tr>
<td></td>
<td>actin</td>
<td>59°C</td>
<td>F: AGCATCAGGCTCCATGAGAC</td>
<td>R: TGCTGAGGATGCGGAGATG</td>
</tr>
</tbody>
</table>

Supplementary Table S2. Co-relations among different physiological indices in *K. obovata* leaves.

<table>
<thead>
<tr>
<th></th>
<th>DW</th>
<th>Chl</th>
<th>Ci</th>
<th>Pn</th>
<th>Gs</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>DW</td>
<td>0.379</td>
<td>0.042</td>
<td>0.500*</td>
<td>0.352</td>
<td>0.804**</td>
<td></td>
</tr>
<tr>
<td>Chl</td>
<td>-0.655*</td>
<td>0.895*</td>
<td>0.825**</td>
<td>0.406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ci</td>
<td>-0.645**</td>
<td>-0.655**</td>
<td>-0.133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pn</td>
<td></td>
<td>0.839**</td>
<td>0.695**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS</td>
<td></td>
<td></td>
<td>0.469*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed)

Supplementary Table S3. The modules of the protein-protein interaction networks and nodes biological process (GO) analysis

<table>
<thead>
<tr>
<th>Module name</th>
<th>Nodes</th>
<th>Edges</th>
<th>Cluster scores</th>
<th>Term ID</th>
<th>Term description</th>
<th>FDR</th>
<th>Matching nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>32</td>
<td>8</td>
<td>GO: 0050896</td>
<td>response to stimulus</td>
<td>3.7×10^-4</td>
<td>CDSP, FLDH, FNR, GS2, OEE, PC, PETC, RBCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>APX, Cpn20, TPI, PGK, Prx, SOD</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>22</td>
<td>6.286</td>
<td>GO: 0009628</td>
<td>response to abiotic stimulus</td>
<td>8.6×10^-5</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table S4. The detail information of the peptide sequence, expected and observed m/z values, sequence coverage for the different expressed proteins identified by MALDI-TOF/TOF MS in the leaves of *K. obovata* under the salinity and NaHS treatments.

<table>
<thead>
<tr>
<th>Spot</th>
<th>Sequence</th>
<th>Theoretical (Mr)</th>
<th>Observed (Mr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NNAGFPHNVVFDEDEIPS GVDATK</td>
<td>17128.7</td>
<td>14050</td>
</tr>
<tr>
<td>2</td>
<td>LDFAVSR MYIQTR DPNATVIMLATGTGIAPF R ITGDAPGETWHMVFST EGEIPYR</td>
<td>40976.5</td>
<td>37320</td>
</tr>
<tr>
<td>8</td>
<td>EGNEIIR DDFIEKDR EGNEIIREASK TYYTPDYETK LEDLRIPAAYAK TFQGPPHQIGQVER GHYLNATAGTCEEMIK</td>
<td>50671.4</td>
<td>19870</td>
</tr>
<tr>
<td>10</td>
<td>FYWAPTR EGPPFEFEQPK SFQCELVFAK MCCFLINDLDAGAGR LVNSREPPEFEQPK IVDSFPQSIDFFGALR MCCFLINDLDAGAGR</td>
<td>30594.1</td>
<td>58180</td>
</tr>
<tr>
<td>12</td>
<td>VPFLFTIK RLYTTEIQSK GGSTGYDNAVAPAGR DGIDYAAVTVQLPGGER</td>
<td>35412</td>
<td>36800</td>
</tr>
<tr>
<td>14</td>
<td>STASVPIR VPFLFTIK DGIDYAAVTVQLPGGER FVEKGIDYAAVTVQLPGGER</td>
<td>34802.9</td>
<td>34780</td>
</tr>
<tr>
<td>36</td>
<td>FYWAPTR VPLILGIWGKK EGPPFEFEQPK SFQCELVFAK MCCFLINDLDAGAGR IVDSFPQSIDFFGALR QVTSAVNYHKGSSNIR</td>
<td>52394</td>
<td>42290</td>
</tr>
<tr>
<td>Carbohydrate and energy metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RPGKPIETYLFAMFDEENQK</td>
<td>37447.3</td>
<td>34330</td>
</tr>
<tr>
<td>7</td>
<td>QIEANLALR LNGEWLTMALMGGFAR</td>
<td>13694.4</td>
<td>14890</td>
</tr>
<tr>
<td>9</td>
<td>KFDDEIR TIDWDGMAK</td>
<td>19781.1</td>
<td>18950</td>
</tr>
<tr>
<td></td>
<td>Sequence 1</td>
<td>Sequence 2</td>
<td>Weight</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>16</td>
<td>FDDEIRNDYWGY FSQEPEPINWEYYR</td>
<td></td>
<td>27497.2</td>
</tr>
<tr>
<td>20</td>
<td>FFVGGNWK KFFVGGNWK CNGTTEEVK ALLNESNEFVGDK SDFHVAAQNCWVR ELAAQPVDVGFLVGGASLKPEFIDIIK ELAAQPVDVGFLVGGASLKPEFIDIIKAATVK</td>
<td>AWVYGEYGGVDVLK FDVVYDAIGQCDR QFGSLAEYTAVEEK EGGSVVALTGAVTPPGFR GPFPFSQLVAEAFSYIETNR ENFEDLPEKFDDVVYDAIGQCDR</td>
<td>41607.1</td>
</tr>
<tr>
<td>22</td>
<td>MAKEPMR ALGQISER VLVVANPANTNALILK FSSALSAASSACDHIR KFSSALSAASSACDHIR VLVTTAGGQIYGAVPMIAR NVIIWGNHSSTQYPDYNHATVK</td>
<td></td>
<td>35846.3</td>
</tr>
<tr>
<td>24</td>
<td>MKPGFDPTK SDQFVTRGLVR AEQYLADSGVPYTIIR KAEQYLADSGVPYTIIR</td>
<td></td>
<td>36499</td>
</tr>
<tr>
<td>25</td>
<td>ISDFLSLK SQICMVGDRIQYGTLCIR VYVIGEDGILK ISDFLSLKAAAV NPLLSSNSAFLK LVFVTVNNSTKSR ENPGCLFIATNR GDSLIEGVPETLMRL EPLVVGKSTFMMMDYLANEFGISK</td>
<td></td>
<td>40783.6</td>
</tr>
<tr>
<td>29</td>
<td>MPNIYNALVK TVAMSATDGLMR AHGGVSFGGVGER FVQAGSEVSALLGR VGLTALTMAEYFR VALVYGQMNEPPGAR DVNEQDVLLFIDNIFR GMEVIDTGAPLSVPVGGATLGR ELQDIIIALGLDELSEEDR MPSAVGYZQPLSTEMGSLQER IFNVLGEPVDNLGVPDTRTTFPIHR</td>
<td></td>
<td>52293.2</td>
</tr>
<tr>
<td>30</td>
<td>GLKLQNVKEK SSQHNWIYEAE</td>
<td></td>
<td>17034.8</td>
</tr>
</tbody>
</table>
NVIHGSDVESAR
EIALWFPEGIAEWR
ASEQTFIMIKPDGVQR

35
NEPEFAK
FSLAPLVPR
ASRAVVSMAK
VILSSHLPGRK
LVASLPQGVLLEHVNR
LASLADLYVNDAGFTAH

Amino acid and protein metabolism

4
NLAASVAGK Ђ 53517.9
DNPFGKVAMK
EVKNIYEEWR
AVANQIPSVAIEAGGR
TPAKLHWPGDQNK

19
DAKAMASTPADVK
QVVEDDNVLISGER

26
YAGNDFK
IKIAEEL
DLKPLNDR
TAGGLLTATEK
DLKPLNDRVL1K

28
KLQTVGNK
AEKEVLGQAAK
LADLVGTLLGPK
IAALKAPGFFER
VVAAGANPQVITK
GYISPYFVTDSEK
AAVEEGIVVGGCTLLR
SQQLDIAALTGTVIR
LSGGVAVIQVGAQTELEK

32
VGRDTEK
AMVHRQMQVEQVGK
AMAYTWIGGSPGIDLR

33
VGRDTEK
EHIAAAYEGNER
HKEHIAAAYEGNER
IIAEYIWVGGSMDMR
RPASNMDPYVTSMIAETTILWNP
LTGHHETADINTFLWGVANRGASIR

Hormone biosynthesis and transcription factor

13
SLKMEAK
QLDNLVSK
AEEQCSQK
QHACPDMK
EELQRSNK

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 November 2019
AEEQCSQKR
ILETSNESMR
KILETSNESMR
QHACPDMEELQQR
SFETLKQHACPDMK
RFLVFDQSGDQITLLASDIR

21
WQIGISK
MAVTSLTK
ILWKEPR
IEFLVNRMK
VLGMALGEMSR
FQIDPGFLK
AVTSLTKATTLLK
VEFFEGIGIPR
LVLYEIEEIEK
VFYLFPEVLGLDIGNR

27
NMENAVADLT
AMAYHSIGISK
LNSVLENQFT
MAMAYHSIGISK
LANEVKHLSSNR
LSDLIGDLQALVK
VLFIAVTGTYGTVLLK
VLFIAVTGTYGTVLLKNGK
VQDTVTTIHDDLSVQHTVVKMLDGR

31
TTTGGGYGGGYGDSDK
HKIEEEVAAVAAVGSGGFAFHEHHEK

Stress response proteins

5
SVDETKR
SYGVLIPDQGIALR
EGVIQHSTINLAIQR
SGLGDNLVPDSLSDVTKSISK
GLFIDKEQYIQHSTINLAIQR
TLQALQYVQENPDEVCPAGWKPGK

11
HRVRSVMGDIR
QAVTIPVMAKAR
VPADIRAQGGVAR
KIAAPYDLVMQTK
AQGGVARMSPDQLIK
AGTVVAVYNGNAGETK
MAGTVVAVYNGNAGETK
VGLAQMLRGGVIMDVVTPEQAR

17
SAPLGGQFR
GGHESLTTGNAGGR
AFVVHEEDDLQK
AFVVHEEDDLQKGGHESLTTGNAGGR

18
EHGAPEDENR
AVVVHADPDNDLGK
FCVFVCVECGGAFPLF
23	AGFAGDDAPR	41801.1	43650
	GYSFTTTAER		
	AVFPSIVGRPR		
	AEYDESGPSIVHR		
	IWHHTFYNELR		
	AEYDESGPSIVHRK		
	SYELPDQVITIGAER		
	VAPEEHVVLLTEAPLNPK		
	DLYGNIVLSGGSTMFPGIADR		
34	LEASKTR	40911.9	27450
	GELIGEILR		
	VPHFSFYK		
	HCGPCVKVYPTVIK		
	DMDVIEVPTFLFIR		
	TCNDVEFILVMGDESEK		
37	EDKPEPPPEGR	27090.8	32520
	ELLSGKEGILLQLPSDK		
	YAADEDADFYAEALHK		

Unknown protein

| | SMEVVSGFR | 54990.9 | 28300 |
| 3 | GEEQEEAK | 25734.2 | 29450 |

FWVVDYIDK
APLLPSDPYQR
DKAPLLPSDPYQR
CMQKESVAQSLADPK

1The peptide sequence. C represent modification of carbamidomethyl, O represent modification of oxidation.

2The theoretical m/z, mass over charge ratio of the parent ion.

3The experimental m/z, mass over charge ratio of the parent ion.