On a Dual Direct Cosine Simplex Type Algorithm and Its Computational Behavior

E. M. Badr¹ and Khalid Aloufi²

¹Scientific Computing Department, Faculty of Computers & Artificial Intelligence, Benha University, Benha, Egypt. <u>badrgraph@gmail.com</u>

²College of Computer Science & Engineering Taibah University Saudi Arabia koufi@taibahu.edu.sa

Abstract: The goal of this paper is to propose a dual version of the direct cosine simplex algorithm (DDCA) for general linear problems. Unlike the two-phase and the big-M methods, our technique does not involve artificial variables. Our technique solves the dual Klee-Minty problem in two iterations and solves the dual Clausen's problem in four iterations. The utility of the proposed method is evident from the extensive computational results on test problems adapted from NETLIB. Preliminary results indicate that this dual direct cosine simplex algorithm (DDCA) reduces the number of iterations of two-phase method.

Keywords: linear programming; dual simplex method; dual direct cosine method; two-phase method.

1. Introduction:

Linear programming is an important cornerstone in the optimization theory. Many realistic problems can be formulated by means of linear mathematical models. The simplex algorithm is the most used tool for solving linear programs. It is an iterative method that was developed by Dantzig [1, 2, 3].

There are many pivot rules for the simplex type algorithm like exterior point simplex algorithm [4, 5, 6] and max-out-in pivot rule [7]. It is known that the application of the simplex algorithm requires at least one basic feasible solution. The two-phase and big-M methods are the most familiar technique for the research of an initial feasible basis. The main drawback of these techniques is requiring the introduction of artificial variables, increasing the dimension of the problem. Wei-Chang Yeh and H.W. Corley [8] proposed a simple direct cosine simplex algorithm (DCA) which solves the Klee-Minty Problem [9] in two iterations and reduced the number of iterations of Simplex

in most cases in their computational experiment. In this paper, we propose a dual version of a simple direct cosine simplex algorithm (DDCA) which solves the dual Klee-Minty class of problem in two iterations while the Two phases method solves this class in n+1 iterations where n is the size of the problem. Our technique also solves Clauser class of problems in four iterations but the two phase method solves this class in 2n-1 iterations where n is the size of the problem. Our technique does not require the introduction of artificial variables.

The rest of the paper is organized as follows. Section 2 describes the proposed DDCA algorithm and its characteristics. Benchmark problems "Klee-Minty and Clausen problems" are presented in Section 3. In Section 4, we introduce illustrations of the proposed algorithm with help of two examples. Computational experiments are presented in Section 5, followed by concluding remarks and directions of future research in Section 6.

2. Dual Cosine Simplex Algorithm (DDCA).

We consider the linear programming (LP) problem in standard form:

(P) $max\{b^Ty: A^Ty = c; y \ge 0\}$, where A is an $m \times n$ matrix, x and c are n-dimensional vectors and T denotes transposition. The dual of (P) is the problem

(D)
$$min\{c^Tx : Ax \ge b\}$$
 where y is an m-dimensional vector.

For constraint i of (D), define $\cos \theta_i = (\sum_{j \in N} a_{ij} c_j)^2 / \sum_{j \in N} (a_{ij})^2$ as the cosine of angle θ_i

between the constraints i and the objective function where $b_i < 0$ and N is the index set of the non-basic variables.

Remark: The above cosine criterion is only a simple observation without any further proof. Hence, the cosine criterion is not always true.

Dual Cosine Simplex Method (DCSM).

Require: infeasible basis

While $b_i < 0$

Step 1: (Dual feasibility Condition). Let N is the index set of the non-basic variables. The leaving variable x_i , is the basic variable having the maximum $\cos \theta_i$ for minimization problem, where

$$\cos \theta_i = \left(\sum_{j \in N} a_{ij} c_j\right)^2 / \sum_{j \in N} (a_{ij})^2 \text{ is}$$

the angle between the constraint *i* and the objective function. If there is a tie, then choose the variable with the most negative value in right hand side.

Step 2: (Dual optimality condition). Given that, x_i , is the leaving variable, the entering variable is the non-basic variable $a_{ij} < 0$ that corresponds to

$$min\{ |\frac{b_i}{a_{ii}}| : a_{ij} < 0 \text{ and } j \in N \}$$

The ties are broken arbitrary. If $a_{ij} \ge 0$ for all non-basic variables then the problem has no feasible solution.

Step 3: Apply a pivoting

End while

The current basis is feasible Apply the simplex algorithm.

3. Benchmark problems

In this Section we present two well-known classes of linear programming problems, Klee-Minty class of problems [10] is the first problem and the other is Clausen class of problems [11] as illustrated in the following models:

$$\max \qquad \sum_{j=1}^{n} 10^{n-j} x_{j} \qquad \max \qquad \sum_{j=1}^{n} (4/5)^{j} x_{j}$$

$$x_{1} \leq 1$$

$$subject \ to \quad 2 \sum_{j=1}^{i-1} 10^{i-j} x_{j} + x_{i} \leq 100^{i-1} \qquad subject \ to \quad 2 \sum_{j=1}^{i-1} (5/4)^{i-j} x_{j} + x_{i} \leq 5^{i-1}$$

$$x_{j} \geq 0, \quad i = 1, 2, ...n$$

$$X_{j} \geq 0, \quad i = 2, ...n$$
 Klee-Minty problem
$$\text{Clausen problem}$$

Klee and Minty [10,12] were the first to prove that Simplex has exponential worst-case running time in 1972. An interesting result is that the dual simplex method solves the Klee-Minty problem in a polynomial number of iterations [11]. A more challenging exponential example is given by Clausen [10,11]. The main feature of Clausen's example is that the primal simplex method is exponential on the primal problem while the dual simplex is exponential on the dual problem.

The following examples show the superiority of our technique over the Twophase method. Example 1 shows that the two-phase method requires 6 tableaus while our technique requires 3 iterations only, without including the initial one.

4- Illustrative examples

4.1 Example 1: Consider the following random linear programming problem:

min
$$w = 4x_1 + x_2$$

subject to:
 $3x_1 + x_2 \le 3$; $3x_1 + x_2 \ge 3$; $4x_1 + 3x_2 \ge 6$; $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

The variables x_3 , x_6 and x_4 , x_5 , below are the slack and surplus variables for the corresponding constraints, respectively. We only need to calculate the corresponding $\cos \theta_i$ in the Iteration 0 for every i = 1, 2, 3, respectively, as follows:

$$\cos \theta_1 = \#$$
 ;

$$\cos \theta_2 = \frac{\left[(-3) \times (-4) + (-1)(-1) \right]^2}{(-3)^2 + (-1)^2} = \frac{169}{10} = 16.9$$

$$\cos \theta_3 = \frac{[(-4) \times (-4) + (-3)(-1)]^2}{(-4)^2 + (-3)^2} = \frac{361}{25} = 14.44$$
;

$$\cos \theta_{4} = \#$$

The value of $\cos \theta_2$ is bigger than that for $\cos \theta_3$. We choose x_4 as the leaving variable. From STEP 2, i.e. the entering variable is calculated as follows:

 $min\{/b_i/a_{ij}/: a_{ij} < 0 \text{ and } j \in N \} = \{|\frac{-3}{-3}|, |\frac{-3}{-1}|\} = 1 \text{, therefore the element } x_1 \text{ is chosen}$ as the entering variable. The elementary row operations are the employed to construct a new Simplex Tableau (i.e. STEP 3) as shown in Iteration 1 in Table 3. The entire procedure is repeated until all coefficients in Row 0 are non-positive in Iteration 3 and $x_3 = 0$, $x_4 = 2/5$, $x_5 = 9/5$ and $x_6 = 1$ are optimal with z = 17/5 in original the problem.

On the other hand, the two-phase method requires 6 tableaus, as shown in Table 2, without including the initial one.

Table 1The Tableau obtained from the proposed DCSM for Example 1.

Iteration		x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> 6	R.H.S
0	Z	-4	-1	0	0	0	0	0
	x_3	3	1	1	0	0	0	3
	x_4	-3	-1	0	1	0	0	-3
	x_{5}	-4	-3	0	0	1	0	-6

	x_{6}	1	2	0	0	0	1	4
1	Z	0	2	0 1	0 1	-1 0	0	6 0
	x_3	1	1/3	0	-1/3	0	0	1
	x_4 x_5	0	-5/3	0	-4/3	1	0	-2
	x_6	0	5/3	0	1/3	0	1	3
2	Z	0	0	0	-8/3	1/5	0	18/5
	x_3	0	0	1	1	0	0	0
	x_4	1	0	0	-3/5	1/5	0	3/5
	x_5	0	1	0	4/5	-3/5	0	6/5
	x_6	0	0	0	-1	1	1	1
3	Z	0	0	0	-7/5	0	-1/5	17/5
	x_3	0	0	1	1	0	0	0
	x_4	1	0	0	-2/5	0	-1/5	2/5
	x_5	0	1	0	1/3	0	-3/5	9/5
	x_6	0	0	0	-1	1	1	1

Table 2 The Tableau obtained from the Two-Phase Method for Example 1.

Iteration		x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	R_1	R_2	x_6	R.H.S
0 Phase1	Z'	0	0	0	0	0	-1	-1	0	0
	x_5	3	1	0	0	1	0	0	0	3
	R_1	3	1	-1	0	0	1	0	0	3
	R_2	4	3	0	-1	0	0	1	0	6
	x_6	1	2	0	0	0	0	0	1	4
1 Phase1	z,	7	4	-1	-1	0	0	0	0	9
	X_5	3	1	0	0	1	0	0	0	3
	R_1	3	1	-1	0	0	1	0	0	3
	R_2	4	3	0	-1	0	0	1	0	6
	x_6	1	2	0	0	0	0	0	1	4
2 Phase1	Z'	0	1.67	-1	-1	-2.33	0	0	0	2
	x_1	1	0.33	0	0	0.33	0	0	0	1
	R_1	0	0	-1	0	-1	1	0	0	0
	R_2	0	1.67	0	-1	-1.33	0	1	0	2
	x_6	0	0	0	0	-0.33	0	0	1	3
3 Phase1	z,	0	0	-1	0	-1	0	-1	0	0
	X_1	1	0	0	0.2	0.6	1	-0.2	0	0.6
	R_1	0	0	-1	0	-1	0	0	0	0
	x_2	0	1	0	-0.6	-0.8	0	0.6	0	1.2
	x_6	0	0	0	1	1	0	-1	1	1
4 Phase2	z,	0	0	0	0.2	1.6	blocked	blocked	0	3.6
	X_1	1	0	0	0.2	0.6	0	-0.2	0	0.6
	R_1	0	0	-1	0	-1	1	0	0	0
	x_2	0	1	0	-0.6	-0.8	0	0.6	0	1.2

	x_6	0	0	0	1	1	0	-1	1	1
5 Phase 2	Z'	0	0	-1.6	0.2	0	blocked	blocked	0	3.6
	\mathcal{X}_1	1	0	-0.6	0.2	0	0	-0.2	0	0.6
	X_5	0	0	1	0	1	1	0	0	0
	x_2	0	1	0.8	0.6	0	0	0.6	0	1.2
	X_6	0	0	-1	1	0	0	-1	1	1
6 Phase 2	Z'	0	0	-1.4	0	0	blocked	blocked	-0.2	3.4
	\mathcal{X}_1	1	0	-0.4	0	0	0	-0.2	-0.2	0.4
	X_5	0	0	1	0	1	1	0	0	0
	x_2	0	1	0.2	1	0	0	0.6	0.6	1.8
	X_4	0	0	-1	0	0	0	-1	1	1

Example 2: Dual Klee-Minty Problem

Consider the following dual Klee-Minty problem of size n = 3

min
$$w = x_1 + 100x_2 + 10000x_3$$

subject to:
 $x_1 + 20x_2 + 200x_3 \ge 100$; $x_2 + 20x_3 \ge 10$; $4x_3 \ge 1$,
 $x_1, x_2, x_3 \ge 0$

The variables x_4 , x_5 , x_6 below are the surplus variables for the corresponding constraints, respectively. We only need to calculate the corresponding $\cos \theta_i$ in the Iteration 0 for every i = 1, 2, 3, respectively., as follows:

$$\cos \theta_{1} = \frac{\left[(-1) \times (-1) + (-20)(-100) + (-200) \times (-10000) \right]^{2}}{(-1)^{2} + (-20)^{2} + (-200)^{2}} = \frac{4.0008 \times 10^{12}}{40401} = 99027351.81$$

$$\cos \theta_{2} = \frac{\left[(0) \times (-1) + (-1)(-100) + (-20) \times (-10000) \right]^{2}}{(0)^{2} + (-1)^{2} + (-20)^{2}} = \frac{4.004001 \times 10^{10}}{401} = 99850399$$

$$\cos \theta_{3} = \frac{\left[(0) \times (-1) + (0)(-100) + (-1) \times (-10000) \right]^{2}}{(0)^{2} + (0)^{2} + (-1)^{2}} = \frac{10^{8}}{1} = 10^{8}$$

The value of $\cos \theta_3$ is bigger than that for $\cos \theta_1$ and $\cos \theta_2$. We choose x_6 as the leaving variable. From STEP 2, i.e. the entering variable is calculated as follows:

$$min\{|b_i|/a_{ij}|: a_{ij} < 0 \text{ and } j \in N \} = \{|\frac{-100}{-1}|, |\frac{-100}{-20}|, |\frac{-100}{-200}|\} = \frac{1}{2}$$
, therefore the

element x_3 is chosen as the entering variable. The elementary row operations are the employed to construct a new Simplex Tableau (i.e. STEP 3) as shown in Iteration 1 in Table 3. The entire procedure is repeated until all coefficients in Row 0 are non-positive in Iteration 1 and $x_1 = 1$, $x_2 = x_3 = 0$ are optimal with $z = 10^4$ in original the problem.

Table 3 The Tableau obtained from the proposed DCSM for Example 2.

Iteration		x_1	<i>x</i> ₂	<i>x</i> ₃	x 4	<i>x</i> ₅	<i>x</i> ₆	R.H.S
0	Z	-1	-10	-10000	0	0	0	0
	x_4	-1	-20	-200	1	0	0	-100
	x_5	0	-1	-20	0	1	0	-10
	x_6	0	0	(-1)	0	0	1	-1
1	\mathbf{Z}	-1	-10	0	0	0	-10000	10000
	x_4	-1	-20	0	1	0	200	100
	x_5	0	-1	0	0	1	20	10
	x_3	0	0	1	0	0	-1	1

On the other hand, the two-phase method requires 5 tableaus, as shown in Table 4, without including the initial one.

Table 4 The Tableau obtained from the Two-Phase Method for Example 2.

Iteration		x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	x_6	R_1	R_2	R_3	R.H.S
0 Phase1	Z'	0	0	0	0	0	0	-1	-1	-1	0
	R_1	1	20	200	-1	0	0	1	0	0	100
	R_2	0	-1	-20	0	-1	0	0	1	0	10
	R_3	0	0	(-1)	0	0	-1	0	0	1	1
1 Phase1	Z'	1	21	221	-1	-1	-1	0	0	0	111
	R_1	1	20	200	-1	0	0	1	0	0	100
	R_2	0	1	20	0	-1	0	0	1	0	10
	R_3	0	0	1	0	0	-1	0	0	1	1
2 Phase1	Z'	-0.11	-1.10	0	0.11	-1	-1	-1.11	0	0	0.50
	x_3	0.01	0.10	1	-0.01	0	0	0.01	0	0	0.50
	R_2	-0.10	-1	0	(0.10)	-1	0	-0.10	1	0	0
	R_3	-0.01	-0.10	0	0.01	0	-1	-0.01	0	1	0.50
3 Phase1	Z'	0	-0.05	0	0	0.05	-1	-1	-1.05	0	0.50
	x_3	0	0.05	1	0	-0.05	0	0	0	0	0.50
	χ_4	-1	-10	0	1	-10	0	-1	10	0	0
	R_3	0	-0.05	0	0	0.05	-1	0	-0.05	1	0.50
4 Phase1	Z'	0	0	0	0	0	0	-1	-1	-1	0
	x_3	0	0	1	0	0	-1	0	0	1	1
	χ_4	-1	-20	0	1	0	-200	-1	0	200	100
	R_3	0	-1	0	0	1	-20	0	-1	20	10
5 Phase 2	Z'	-1	-100	0	0	0	-10^{4}	blocked	blocked	blocked	10000
	<i>x</i> ₃	0	0	1	0	0	-1	0	0	1	1
	χ_4	-1	-20	0	1	0	-200	-1	0	200	100
	<i>X</i> 5	0	-1	0	0	1	-20	0	-1	20	10

5. Computational Experiments

In this section, we present the computational results of dual cosine simplex algorithm (DDCA) and two - phase method for dual Klee-Minty and dual Clauser classes of problems. We compare the number of iterations of dual cosine simplex

algorithm (DDCA) with two - phases method. In each test problem, we used different tolerances in order to get the smaller number of iterations with the exact optimum solution. For this comparison, we chose the two phase method [12-15] for the problems contain "≥" constraints and/or equality constraints.

The programming language used was MATLAB v7.01 SP2 with default options. All codes were run under 64-bit Window 8.1 Operating System having Core(TM)i5 CPU M 460 @2.53GHz, 4.00 GB of memory.

	Dual Klee-M	inty problem	roblem Dual Clauser prol				
Size	Dual cosine DDCA	Two phase method	Dual cosine DDCA	Two phase method			
1	2	1	4	3			
2	2	3	4	4			
3	2	4	4	5			
4	2	5	4	7			
5	2	6	4	9			
6	2	7	4	11			
7	2	8	4	13			
8	2	9	4	15			
9	2	10	4	17			
10	2	11	4	19			

Table 5 The Tableau obtained from the dual cosine, Two-Phases and dual simplex.

From Table 5, the contribution of the proposed algorithm is to solve Klee-Minty problem and Clausen problem with 2 and 4 iterations, respectively, while the simplex method with two phase method spends O(n) iterations for these problems.

Table 6 characterizes 33 NETLIB test problems [16] were used in comparison to test the performance of the algorithms. We transformed the variables (consist of bounds or are free without limitation) into constraints to keep the algorithms simple. We used LINGO to test the accuracy of the answers obtained using our algorithms.

Table 6 Properties of 33 NETLIB problems

Problem name	Number of onzeros	Density	New number of constraints	New number of variables	Number of variables	Number of " ≤ " constrains	Number of "≥" constrains	Number of " = " constrains
adlittle	465	0.0856	56	97	97	40	1	15
afiro	88	0.10185	27	32	32	19	0	8
bandm	2659	0.01847	305	472	472	0	0	305
beaconfd	3476	0.07669	173	262	262	33	0	140
brandy	2150	0.03925	220	249	249	54	0	166
etamacro	2489	0.00547	400	688	688	183	125	354

fit1d 14,430 0.0134 24 1026 1026 1038 11 1 fit1p 10,894 0.00633 627 1677 1677 399 0 627 grow15 5665 0.00976 300 645 645 600 0 300 grow22 8318 0.00666 440 946 946 880 0 440 grow7 2633 0.02083 140 301 301 280 0 140 kb2 291 0.13649 43 41 41 21 15 16 lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 <th< th=""></th<>
grow15 5665 0.00976 300 645 645 600 0 300 grow22 8318 0.00666 440 946 946 880 0 440 grow7 2633 0.02083 140 301 301 280 0 140 kb2 291 0.13649 43 41 41 21 15 16 lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
grow22 8318 0.00666 440 946 946 880 0 440 grow7 2633 0.02083 140 301 301 280 0 140 kb2 291 0.13649 43 41 41 21 15 16 lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
grow7 2633 0.02083 140 301 301 280 0 140 kb2 291 0.13649 43 41 41 21 15 16 lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
kb2 291 0.13649 43 41 41 21 15 16 lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
lotfi 1086 0.02305 153 308 308 42 16 95 recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
recipelp 752 0.0198 91 180 180 77 43 91 sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
sc105 281 0.02598 105 103 103 60 0 45 sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
sc205 552 0.01326 205 203 203 114 0 91 sc50a 131 0.05458 50 48 48 30 0 20
sc50a 131 0.05458 50 48 48 30 0 20
sc50b 119 0.04958 50 48 48 30 0 20
scagr25 2029 0.00862 471 500 500 146 25 300
scagr7 553 0.03062 129 140 140 38 7 84
scfxm1 2612 0.01732 330 457 457 143 0 187
scfxm2 5229 0.00867 660 914 914 286 0 374
scfxm3 7846 0.00578 990 1371 1371 429 0 561
scsd1 3148 0.05379 77 760 760 0 0 77
scsd6 5666 0.02855 147 1350 1350 0 0 147
sctap1 2052 0.01425 300 480 480 0 180 120
share1b 1182 0.0449 117 225 225 28 0 89
share2b 730 0.09626 96 79 79 83 0 13
shell 4900 0.00303 536 1775 1775 119 9 784
ship041 8450 0.00992 402 2118 2118 40 8 354
ship04s 5810 0.00991 402 1458 1458 40 8 354
stair 3857 0.0186 356 467 467 153 0 698
stocfor1 474 0.0365 117 111 111 48 6 63
Sum 111,017 1.09377 8539 19,531 19,531 5453 454 7079
Average 3364.152 0.03315 258.758 591.849 591.849 165.242 13.7576 214.51
Max 14,430 0.13649 990 2118 2118 1038 180 784
Min 88 0.00303 24 32 32 0 0 1

Tables 6 contains 6 categories of the problems according to the variable numbers range as 30-99, 100-500, 501-999, 1000-1500, 1501-1999 and over 2000 were 6, 15, 5, 4, 2 and 1, respectively. Table 6 contains the largest nonzero number, density, number of variables (after transferring sign constraints), number of constraints (after transferring sign constraints), " \leq " constraint number, " \geq " constraint number, and "=" constraint number.

Table 7 Comparison between the proposed DDCA and two phase method

			Iteration	Difference in iteration number					
Problem	DCA			Simplex			Simplex - DCA		
name	Phase	Phase	Phase	Phase	Phase	Phase	Phase	Phase	Phase
	I	H	I&II	I	H	I&II	I	H	I&II
adlittle	21	99	120	38	100	138	17	1	18
afiro	6	7	13	10	7	17	4	0	4

hand	929	323	1151	1042	242	1294	214	-81	133
bandm	828	17		1042	37	1284	22	20	42
beaconfd	132	82	149	154	71	191	-210	-11	-221
brandy	731		813	521		592			
etamacro	940	355	1295	944	423	1367	4	68	72
fit1d	52	1664	1716	94	1355	1449	42	-309	-267
fit1p	820	2288	3108	1441	1358	2799	621	-930	-309
grow15	285	205	490	303	485	788	18	280	298
grow22	425	245	670	443	704	1147	18	459	477
grow7	131	78	209	143	168	311	12	90	102
kb2	74	25	99	397	38	435	323	13	336
lotfi	208	164	372	126	77	203	-82	-87	-169
recipelp	300	6	306	299	28	327	-1	22	21
sc105	54	46	100	64	42	106	10	-4	6
sc205	118	110	228	128	115	243	10	5	15
sc50a	24	20	44	29	23	52	5	3	8
sc50b	32	14	46	37	21	58	5	7	12
scagr25	503	869	1372	639	218	857	136	-651	-515
scagr7	126	85	211	159	45	204	33	-40	-7
scfxm1	753	252	1005	802	211	1013	49	-41	8
scfxm2	1592	322	1914	1478	386	1864	-114	64	-50
scfxm3	1947	490	2437	2324	591	2915	377	1	378
scsd1	90	200	290	139	206	345	49	6	55
scsd6	216	184	400	170	447	617	-46	263	217
sctap1	453	161	614	705	163	868	252	2	254
share1b	352	224	576	363	158	521	11	-66	-55
share2b	125	50	175	112	27	139	-13	-23	-36
shell	795	264	1059	843	209	1052	48	-55	-7
ship04l	700	143	843	728	78	806	28	-65	-37
ship04s	488	106	594	499	58	557	11	-48	-37
stair	1019	323	1342	1203	265	1468	184	-58	126
stocfor1	81	12	93	90	29	119	9	17	26
Sum	14421	9433	23854	16467	8385	24852		ı	
Average	437	285.848	722.848	499	254.091	753.091			
Max	1947	2288	3108	2324	1358	2915			
Min	6	6	13	10	7	17			

In general, from Table 7, the contribution of the proposed algorithm is that DDCA is generally better than two phase method (22 problems vs. 11 problems). The details of our results as the following:

- a) Six problems with the variable numbers 30-99:DDCA is better than two phase method (5 problems vs. one problem)
- b) Fifteen problems with the variable numbers 100-500:DDCA is better than two phase method (10 problems vs. 5 problems)
- c) Five problems with the variable numbers 501-999:

DDCA is better than two phase method (4 problems vs. one problem)

- d) Four problems with the variable numbers 1000-1500:
 DDCA and two phase methods are equal (2 problems vs. 2 problems)
- e) Two problems with the variable numbers 1501-1999:

 Two phase method is better than DDCA (0 problems vs. 2 problems)
- f) One problem with the variable numbers over 2000:

 Two phase method is better than DDCA (0 problems vs. 1 problem)

6. Conclusions

We proposed a dual version of the direct cosine simplex algorithm (DDCA) for general linear problems. Unlike the two-phase and the big-M methods, our technique does not involve artificial variables. Our technique solved the dual Klee-Minty problem in two iterations and solved the dual Clausen's problem in four iterations. The utility of the proposed method is evident from the extensive computational results on test problems adapted from NETLIB. Preliminary results indicate that this dual direct cosine simplex algorithm (DDCA) reduces the number of iterations of two-phase method.

References

- [1] G.B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, in: T.C. Koopmans (Ed.), Activity Analysis of production and Allocation, John Wiley, NY, 1951, pp. 339–347.
- [2] G.B. Dantzig, Linear Programming and Extensions, Princeton Univ. Press, Princeton, NJ, 1963.
- [3] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, third ed., John Wiley, NY, 2004.
- [4] K. Paparrizos, An exterior point simplex algorithm for general linear problems, Annals of Operation Research 32 (1993) 497–508.
- [5] E. S. Badr, K. Paparrizos, N. Samaras, and A. Sifaleras (2005), On the Basis Inverse of the Exterior Point Simplex Algorithm, in Proc. of the 17th National Conference of Hellenic Operational Research Society (HELORS), 16-18 June, Rio, Greece, pp. 677-687.
- [6] E.S. Badr, K. Paparrizos, Baloukas Thanasis and G. Varkas (2006), Some computational results on the efficiency of an exterior point algorithm, in Proc. of the 18th National Conference of Hellenic Operational Research Society (HELORS), 15-17 June, Rio, Greece, pp. 1103-1115

- [7] M. Tipawanna and K. Sinapiromsaran (2013), Max-out-in pivot rule with Dantzig's safeguarding rule for the simplex method, 2nd International Conference on Mathematical Modeling in Physical Sciences
- [8] W.-C. Yeh and H.W. Corley, A simple direct cosine simplex algorithm, Applied Mathematics and Computing. 214 (2009) 178–186.
- [9] V. Klee, G. Minty, How good is the simplex algorithm?, in: O. Shisha (Ed.), Inequalities–III, Academic Press, NY, 1972, pp. 159–175.
- [10] J.Clausen. A tutorial note on the complexity of the simplex algorithm. Technicla Report NR79/16, DIKU, Copenhagen, Denmark, 1979.
- [11] K. G. Murty. Linear Programming. John Wiley and Sons, New Yourk, 1983.
- [12] R. Vanderbei, Linear Programming: Foundations and Extensions, second ed., Kluwer Academic Publishers, Boston, 2001.
- [13] P.E.Gill, W.Murray, M.H. Wright, Practical Optimization, Academic Press, NY, 1981.
- [14] F.S. Hiller, G.J. Lieberman, Introduction to Operations Research, sixth ed., McGraw-Hill, NY, 1995.
- [15] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, third ed., John Wiley, NY, 2004.
- [16] http://www.netlib.org/lp/data>.
- [17] Elsayed M. Badr, Mahmoud I. Moussa in *Wireless Networks* (2019), An upper bound of radio *k*-coloring problem and its integer linear programming model, First Online: 18 March 2019.
- [18] Badr, E.; Aloufi, K.A Robot's Response Acceleration Using the Metric Dimension Problem. *Preprints* 2019, 2019110194 (doi: 10.20944/preprints201911.0194.v1).