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Abstract: The purpose of feature selection is to find important features from the1

original high-dimensional space. As a typical feature selection algorithm, Locally linear2

embedding(LLE)-based feature selection algorithm, which applies the idea of LLE to the3

graph-preserving feature selection framework, has been received wide attention. However, LLE-based4

feature selection framework is sensitive to noise and K-nearest neighbors. To address these problems,5

an improved LLE-based feature selection algorithm, robust LLE (RLLE) vote, is proposed. In this6

algorithm, l1 and l2 regularization are introduced into the high-dimensional reconstruction model7

of LLE. Furthermore, RLLE vote also proposes a criterion to measure the difference between the8

reconstruction features and the original features, and then the importance features can be selected by9

this criteria. Extensive experiments are carried out on a benchmark fault data set and the bearing10

data set collected from our own laboratory, and the experimental results demonstrate that RLLE vote11

achieves the most significant performance compared existing state-of-art methods.12

Keywords: Feature selection; Locally linear embedding; Regularization technology; Bearing fault13

diagnosis14

1. Introduction15

In many pattern recognition and machine learning applications, the dimensionality of the16

features(or variables) is becoming much higher[1,2]. Such examples can be found in face recognition[3],17

handwriting character recognition[4], data mining[5], bearing fault diagnosis[6–8] and so on[9,10].18

Usually, the high-dimensionality property of data brings at least two challenges for the learning19

algorithm, 1) it increases the computational burden of the algorithm; 2) the curse of dimensionality20

may degrade the performance of the learning algorithm[11]. To overcome these challenges, one always21

utilizes the dimension reduction techniques prior to processing data to the learning algorithm.22

Typically, dimension reduction can be divided into two types: (1) feature selection[12] and (2)23

feature extraction[13]. Feature selection methods reduce the dimensionality of data by selecting a subset24

from original input, while feature extraction algorithms reduce the data’s dimensionality by relying on25

a certain property of the original input. Compared with feature selection, usually, low-dimensional26

features obtained by feature extraction are lack of meaningful interpretations, which restricts its27

application in practical engineering. On the contrary, the feature obtained by feature selection methods28

has distinct interpretations, which is widely used in many practical engineering[14], such as pattern29

recognition[15], image retrieval[16] and son on[17,18]. Consequently, we are particularly interested in30

feature selection in this paper.31
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Feature selection methods can be classified into three groups : filter, wrapper, and embedded[12]. The32

filter-based feature selection algorithms evaluate the importance of features by employing a predefined33

criterion, which is independent on the learning algorithms. The wrapper-based methods measure34

the significance of features by employing a predetermined learning algorithm. The embedded-based35

methods integrate the feature evaluation criteria into the learning algorithm to evaluate each feature.36

Note that both wrapper-based and embedded-based methods outperform the filter-based ones, since37

they take account of the learning algorithm. However, these approaches bring huge computational38

burden, which impedes their application dealing with high-volume data. According to the above39

analysis, the filter-based methods are more attractive and practical, especially when the amount of the40

data are large. In this paper, we focus on filter-based methods for feature selection.41

Depending on whether the label information is available, filter-based feature selection methods42

can be categorized into supervised ones and unsupervised ones. The key of the supervised method is to43

evaluate the importance of each feature by employing a priori information, like Fisher score[19] which44

evaluates the importance of each feature depending on its discriminative. While the unsupervised45

methods sort the features based on its ability of preserving some properties of original input, like46

data variance[20] which ranks the features by their variance. Overall, the performance of supervised47

filter-based feature selection methods are superior to unsupervised ones, since the label information is48

available. However, obtaining label information is expensive and the amount of labeled is usually very49

limited in many cases. In other words, most supervised feature selection methods may bring ’small50

labeled-sample problem’[21].51

More recently, inspired by the phenomenon that the data with the same class often cluster together,52

while the data with different class may separate in the original space, various extensions to the basic53

local structure of data have gained great popularity in feature selection. Some works demonstrate54

that the local structure of data is beneficial to seeking important features in unsupervised methods.55

Laplacian score[22] is one of such method, which scores each feature by its capability of preserving the56

learnt local structure. More recently, Liu et al.[23] proposed a filter-based graph-preserving feature57

selection framework. Generally speaking, data variance[20], Laplacian score[22], Fisher score[19], and58

constraint score[24] are all unified into this framework[25]. In such methods, feature selection problem59

is formulated to evaluate each feature by evaluating its ability of preserving the graph-structure which60

is learned by a predefined algorithm.61

Despite the fact that some filter-based unsupervised feature selection methods have already62

gained great popularity in many real-word applications, it can still be further improved. Yao et al.[25]63

integrated locally linear embedding[26] into the graph-preserving feature selection framework. To64

be specific, it utilizes the locality information of data to construct a graph, and then measures the65

significance of each feature by evaluating its ability of preserving the graph-structure. Moreover, Lots66

of researchers have revealed the effectiveness of LLE[27,28]. However, we find that it still brings at67

least two drawbacks that directly incorporate LLE into the graph-preserving framework, which will68

impede the performance of LLE in feature selection. To solve these drawbacks, we propose a new69

unsupervised filter-based feature selection with new criteria to measure the graph-preserving ability70

of the feature, and we called it LLE vote. Experimental results on two rolling bearing data sets reveal71

the effectiveness of the proposed method.72

It is worth noting that the main contributions of this paper are summarized as follows:73

(1) With analysis of directly embedding LLE into the graph-preserving feature selection74

framework, we find it have at least three drawbacks: 1) it is susceptible to noise in computing75

graph-preserving; 2) it is sensitive to K-nearest neighbors in constructing graph-preserving framework.76

(2) To overcome the problems of directly embedding LLE into the graph-preserving framework,77

we propose a new criteria to measure the importance of each feature. In the new criteria, l1 and78

l2 regularization are introduced into the high-dimensional reconstruction model of LLE. Then, the79

weights are utilized to evaluate the importance of the feature.80
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(3) The RLLE vote algorithm is employed to select the features of two kinds of bearing data sets81

to validate the algorithm.82

The reminder of this paper is organized as follows. Section 2 briefly reviews several filter-based83

feature selection methods. Then, we introduce the graph-preserving feature selection framework by84

LLE in detail and propose the RLLE vote in Section 3. Section 4 shows the experiments results. Finally,85

the conclusions are drawn in Section 5.

Table 1. Notations

Notation Description
C number of classes
d sample’s dimensionality
n number of samples
xi the i-th sample, where xi ∈ Rd

X data matrix, where X = {x1, ..., xn}
nP number of samples in the P-th class
1 a vector with all elements equal to 1
I identity matrix
fr the r-th feature of all the data
f P
r the r-th feature of the P-th class

f P
ri the r-th feature of the i-th sample in the P-th class

µr center of the r-th feature
µP

r center of the r-th feature in the P-class
e e = (e1, ..., eC)
eP eP(i) = 1, if the i-th data belongs to the P-class, or eP(i) = 0

s(k) a spectrum for k = 1,...,K (K is the number of spectrum lines)
fk the frequency value of k-th lines

86

2. Related works87

In this section, we will briefly introduce several relevant filter-based feature selection methods.88

Some related notations are listed in Table 1 for explanation. Vectors are represented by lowercase89

letters (e.g., x), and matrices are indicated by capital boldface (e.g., X).90

Data variance[20], the simplest unsupervised feature selection method, is utilized to evaluate the
importance of each feature by its variance. Let Varr denote the variance of r-th feature, and it can be
computed as follows:

Varr =
1
n

n

∑
i=1

( fri − µr)
2. (1)

where µr =
1
n ∑n

i=1 fri. The large Varr means that the feature is representative.91

Fisher score[19], a supervised feature selection method, measures the importance of the feature
by evaluating its ability of maximizing the distance of inter-class and minimizing the distances of
intra-class simultaneously. We denote the Fisher score of the r-th feature as FSr, which is computed as
follows:

FSr =
∑C

P=1(µ
P
r − µr)2

∑C
P=1 ∑nP

i=1( f p
ri − µP

r )
2

. (2)

where µP
r = 1

nP
∑nP

i=1 f P
ri .92

Laplacian score[22], an unsupervised feature selection method, evaluates the feature by its ability
of preserving the local structure. Note that Laplacian score supposes that the local structure of the data
plays a important role in feature selection. Let LSr represent the Laplacian score of r-th feature, and it
can be computed as follows:

LSr =
∑n

i=1 ∑n
j=1( fri − frj)

2Sij

∑n
i=1( fri − µr)2dii

. (3)
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where D is a diagonal matrix with elements dii = ∑n
j=1 Sij, and Sij denotes the weight coefficient

between xi and xj. It is defines as follows:

Sij =

e−
||xi−xj ||

2

σ if xi and xj are neighbors,

0 otherwise.
(4)

where σ is a constant set. The term "if xi and xj are neighbors" denotes the local structure of sample.93

In practice, one always employs σ-ball and k-nearest neighbors to find the neighborhood of each94

sample. We denote the weight matrix S = (s1, s2, ..., sn), then D = Diag(S1), where Diag(·) represents95

a diagonal matrix.96

Constraint score[24], a semi-supervised feature selection method, can deal with partial label
information. It utilizes the pairwise constraints. Specifically, when the pairwise belong to the same
class, must-link constraints should be used in the model, otherwise, cannot-link constraints should be
used. Two constraints scores are proposed, CS1

r and CS2
r , to evaluate the importance of the r-th feature.

They are defined as follows[24]:

CS1
r =

∑(xi ,xj)∈M( fri − frj)
2

∑(xi ,xj)∈C( fri − frj)2 . (5)

CS2
r = ∑

(xi ,xj)∈M
( fri − frj)

2 − λ ∑
(xi ,xj)∈C

( fri − frj)
2. (6)

where M = {(xi,xj)| xi and xj belong to the same class} and C = {(xi, xj)|xi and xj belong to different97

classes} respectively represent the must-link constraints and the cannot-link constraints, and λ is a98

parameter to balance the two terms in Eq.(6).99

More recently, inspired by the phenomenon that the sparsity linear representation can improve
the robustness of the model against the noise. Liu et al.[23] proposed an unsupervised filter-based
feature selection method called sparsity score. It first utilizes l1 regularization to construct a sparsity
graph S, and it formulates as follows:

min
si
||si||1, s.t. xi = Xsi,

n

∑
j=1

sij = 1. (7)

where si = (si,1, ..., si,i−1, 0, si,i+1, ..., si,n)
T and S = (s1, ..., sn)T . Then the measurement SSr of the r-th

feature can be calculated as:

SSr
1 =

∑n
i=1( fri −∑n

j=1 sij frj)
2

1
n ∑n

i=1( fri − µr)2
. (8)

In [23], Liu et al. also proposed a filter-based graph-preserving feature selection method as
follows:

score1
r =

f T
r A fr

f T
r B fr

. (9)

score2
r = f T

r A fr − λ f T
r B fr. (10)

where λ is a parameter to balance the two terms in Eq(10). Then, the aforementioned feature selection
methods can be embedded into this framework, and the corresponding A and B are listed in Table 2. In
this table, DM = Diag(SM1), DC = Diag(SC1), and the elements in matrix SM and SC are calculated
as:

sM
ij =

{
1 i f (xi, xj) ∈M or (xj, xi) ∈M,

0 otherwise.
(11)
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sC
ij =

{
1 i f (xi, xj) ∈ C or (xj, xi) ∈ C,

0 otherwise.
(12)

Table 2. The definitions of A and B for several filter-based feature selection methods.

Algorithm A and B definition Graph-preserving form
Data variance[20] A = I; B = 1

n 11T Eq.(10) with λ = 1
Fisher score[19] A = ∑C

P=1
1

nP
ePeT

P −
1
n eeT ; B = I− 1

nP
ePeT

P Eq.(9)
Laplacian score[22] A = D - S; B = D Eq.(9)
Constraint score[24] A = DM − SM; B = DC − SC; Eq.(9) and Eq.(10)

Sparsity score[23] A = I− S− ST + SST ; B = I− 1
nP

ePeT
P Eq.(10) with λ = 0

100

3. The proposed method101

3.1. Problem formulation102

As a typical manifold learning algorithm, LLE first learns the local structure of data in the103

high-dimensional space, and then obtains the low-dimensional embedding results by preserving104

these structures. In the previous work[26], many researcher have been embedded LLE into the graph105

framework for feature extraction. Therefore, it is reasonable to extend LLE into filter-based feature106

selection task. In order to investigate the potential of LLE in feature selection, Yao et al.[25] proposed a107

graph-framework based on LLE to feature selection. However, to our best knowledge, we have not108

found any work using LLE to vote the feature so far. In this study, we first introduce how to embed109

LLE into the graph-preserving framework. To do so, we first employ LLE algorithm to model the local110

structure, which can be summarized as follows:111

1) Find the neighborhood Ni = {xj, j ∈ Qi} for each sample xi;112

2) Compute the reconstruction weights by minimizing the reconstructing error of xi using samples113

in Qi.114

In step 1), the Euclidean distance is commonly utilized to find K-nearest neighbors for xi. And
then step 2) aims to find the optimal reconstruction weights based on the obtained K-nearest neighbors.
The reconstruction weights are calculated by solving the following formula:

min
{wij ,j∈Qi}

||xi − ∑
j∈Qi

wijxj||2, s.t. ∑
j∈Qi

wij = 1. (13)

The construction weights matrix W = [wij]n×n is obtained by repeating step 1) and step 2) for all115

samples. In matrix W, wij = 0, if xj /∈ Qi. Note that the least squares method is always utilized to solve116

Eq.(13).117

Then, the importance of each feature is evaluated by its ability to preserving these weights. The
measurement Scorer of the r-th feature can be computed as follows[25]:

Scorer =
n

∑
i=1

( fri −
n

∑
j=1

wij frj)
2

= f T
r (I−W−WT + WTW) fr.

(14)

Then the ranking list of the features can be obtained according to their Scorer, and select the top d118

features with lowest scores. The detailed procedures of this method is shown in Algorithm 1. Let119

A = I −W −WT + WTW, λ = 0, the proposed method can be unified into the aforementioned120

framework in Eq.(10).121

The aforementioned method that directly embeds LLE into the graph-preserving framework122

feature selection are shown in Algorithm 1. Hence, the features reconstructed by LLE plays an123
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important role for this method to select the representative features. Recalling the measurement of124

Algorithm 1 in Eq.(14), we find three drawbacks in it which are summarized as follows:125

• Because the ordinary least square algorithm is utilized to calculate the reconstruction weights,126

the model of Algorithm 1 is sensitive to noise[29].127

• The model cannot select the K-nearest neighbors adaptively using Euclidean distance to measure128

the pairwise similarity. As shown in Figure 1, we can see that the 3-nearest neighbors of sample xi129

are samples x1, x2 and x3 in original space. However, x3 is the false neighbor of sample xi. The130

measurement in Eq.(14) could not capture this case. Actually, the graph-preserving ability of the131

feature should take this case into consideration.132

Algorithm 1 Embedding LLE into the graph-preserving feature selection
Input: The data matrix X.
Output: The rank feature list.
Procedure:

1): Find K-nearest neighbors of xi, then compute its weights wij
by Eq.(13). Repeated these two procedures for all samples,
and construct matrix W;

2): Evaluate the importance of the d feature by Eq.(14);
3): Rank the d feature in ascending order according to its score;
4): return The ranking list of the feature.

Due to these drawbacks, the measurement of Algorithm 1 may fail in some cases, which means133

that its performance will degrade. To address these problems, we propose a new criteria in next134

subsection.

1x
ix

2x

3x

4x

neighborhood

original space

Figure 1. Select the local structure of the graph by embedding LLE into the graph-preserving framework
135

3.2. RLLE vote136

As previous mentioned, one can find that there are two weaknesses that directly embeds LLE into
the graph-preserving framework. To solve these weaknesses, we propose a new criteria to evaluate
the importance of the feature. In the new criteria, we integrate the regularization technology into the
computation of reconstruction weights. Due to the fact that the computation of objective function
with l1 regularization is expensive, and many important variables may be lose by this way. Thus, in
this new criteria, we integrate the l1 and l2 regularization into the computation of the local structure.
Specifically, we calculate the reconstruction weights of each element in fr as follows:

min
{wr

ij ,j∈Qr
i }
|| fri − ∑

j∈Qr
i

wr
ij frj||2 + λ1||wr

ij||1 + λ2||wr
ij||22 (15)

where

||wr
ij||1 =

k

∑
j=1
|wr

ij|, ||wr
ij||22 =

k

∑
j=1

wr2

ij .

the neighborhood index set Qr
i : = {j : if frj is one of the K-nearest neighbors of fri }, and λ1 and137

λ2 are nonnegative tuning parameters. It is difficult to directly calculate Eq.(15), because it is not138
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differentiable when Wr
ij is equal to zero[30]. LARS-EN, a relatively conservative iterative algorithm, is139

commonly utilized to compute the optimal solution.140

After obtaining the reconstruction weight matrix Wr = [wr
ij] for the r-th feature using Eq.(15), we

vote each feature by its ability to preserving these weights. We denote RLLEVr as the vote of the r-th
feature, which is calculated as follows:

Voter =
n

∑
i=1

( fri −
n

∑
j=1

wr
ij frj)

2

= f T
r (I−Wr −WrT

+ WrTWr) fr.

(16)

We use the above measurement to evaluate the graph-preserving ability of each feature, and choose141

the top d features with lowest votes. The detailed procedure of RLLE vote is presented in Algorithm 2.142

Algorithm 2 RLLE vote
Input: The data matrix X.
Output: The ranked feature list.
Procedure:

1): For each fr, recompute its K-nearest neighborhood set Qr
i ;

Construct the reconstruction weighting matrix W and Wr

via Eq.(13) and Eq.(15).
2): Compute the importance of the d feature by Eq.(16);
3): Rank the d feature in ascending order according to its RLLE vote;
4): return The ranking list of the feature.

Recalling the aforementioned weaknesses of Algorithm 1, we can find that LLE vote can overcome143

them efficiently. To be specifically, it can adaptively select K-nearest neighbors by setting an iterative144

termination condition in the LARS-EN algorithm. Furthermore, Zhang et al.[29] have proved that145

integrating l1 and l2 regularization into the model of local reconstruction can improve the robustness146

of the model.147

4. Experiments results148

In this section, we utilize the following experiments to evaluate the efficiency of our proposed149

methods on benchmark fault data set and the bearing data set collected from our own laboratory, by150

comparing with several relevant dimensionality reduction methods.151

5. Experiments results152

Bearing data set 1: The bearing data set is collected from the Case Western Reserve University153

Bearing Data Center (CWRU). This data set has become a benchmark for validating fault diagnosis154

algorithms. As shown in Figure 2, the test platform is mainly consisted of motor (left), torque155

transducer/encoder (centre) and dynamometer (right).156

This bearing data set includes four types of data set(normal condition, ball fault, inner race fault157

and outer race fault), in which each kind of data contains 100 samples. Moreover, we select 1024158

features as a sample, that is, the dimensionality of each sample is equal to 1024.159

dynamomete Motor

accelerometer torquesensor

Bearing

Figure 2. The bearing test platform 1
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Table 3. Time-domain and Frequency-domain statistical features

Time-domain features

T1 = 1
D

D
∑

i=1
x(i) T2 =

√
1

D−1

D
∑

i=1
(x(i)− T1)2 T3 =

√
1
D

D
∑

i=1
(x(i))2

T4 =

(
1
D

D
∑

i=1

√
|x(i)|

)2

T5 =

D
∑

i=1
(x(i)−T1)2

(D−1)T3
2

T6 =

D
∑

i=1
(x(i)−T1)4

(D−1)T4
2

T7 = 1
T3

max |x(i)| T8 = max(xi)−min(xi)
T4

T9 = T3

1
D

D
∑

i=1
|x(i)|

T10 = max(xi)−min(xi)

1
D

D
∑

i=1
|x(i)|

T11 = max x(i) T12 = min x(i)

T13 = T11 − T12 T14 = 1
D

D
∑

i=1
|x(i)| T15 = T11

T14

T16 =
D
∑

i=1
x(i)2 T17 =

D
∑

i=1
x(i)3

D T18 = T11
T3

T19 = T11
T4

T20 = T11
T2

2

Frequency-domain features

F1 = 1
K

K
∑

k=1
s(k) F2 =

√
1

K−1

K
∑

k=1
(s(k)− F1)2 F3 =

K
∑

k=1
(s(k)−F1)3

K
√

F2
3

F4 = 1
KF2

2

K
∑

k=1
(s(k)− F1)

4 F5 = 1
K
∑

k=1
s(k)

K
∑

k=1
(s(k) fk) F6 =

√
K
∑

k=1
( fk−F5)2 fk

K

F7 =

√√√√√ K
∑

k=1
( fk)4s(k)

K
∑

k=1
( fk)2s(k)

F8 =

K
∑

k=1
( fk)

2s(k)√
K
∑

i=1
(s(k)

K
∑

i=1
f 4
k s(k)

F9 = F6
F5

F10 =

K
∑

k=1
( fk−F5)4s(k)

KF2
6

F11 =

K
∑

k=1

√
( fk−F5)4s(k)

KF2
6

F12 =

K
∑

k=1
( fk−F5)3s(k)

KF3
6

F13 =

K
∑

i=1
( fk−F5)4s(k)

KF4
6

F14 =

K
∑

i=1
( fk−F5)s(k)

K
√

T6

Bearing data set 2: This bearing data set is obtained from a real test platform in our own laboratory.160

As shown in Figure 3, the test platform consists of a motor (left), a gearbox (centre) and a bearing161

(right). There are four different data sets(bearing case 1–bearing case 4) collected from the test platform162

under different operating conditions. In this data set, the rotational speed of the motor is 1400 r/min.163

The vibration signals are obtained from the bearings with a sample frequency of 1kHz and 10kHz.164

Note that each data set also contains four types of data(normal condition, ball fault, inner race fault165

and outer race fault), in which each kind of data contains 100 samples. Furthermore, according to the166

sampling rate and the frequency of signal, the dimensionality of each sample is also 1024. The detailed167

description of this data sets are summarized in Table 4.

Figure 3. The bearing test platform 2
168
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Moreover, for reducing the influence of nonlinear characteristic and noise, in the following169

experiments, we first compute the statistic features of each sample in the time-domain and170

frequency-domain spaces. The detailed depictions of the statistical features of the original data sets are171

shown in Table 3. Besides, all time-domain statistical features are also calculated in frequency-domain172

space, but they are not listed in Table 3 because of the page limitation. In order to improve the173

performance of our proposed methods, excellent statistical features are selected.

Table 4. Description of bearing data set 2

Data Name sampling Class Number load

Bearing case 1 1k 4 400 0Hp
Bearing case 2 10k 4 400 0Hp
Bearing case 3 1k 4 400 1Hp
Bearing case 4 10k 4 400 1Hp

174

5.1. Visualization evaluation175

We evaluate the clustering performance of our proposed method by comparing the visualization176

results with several other relevant dimensionality reduction methods, i.e., Variance, Laplacian score,177

Fisher score, LLE and Algorithm 1. We perform all the dimensionality reduction algorithms on the178

bearing data set 1, and the embedding results are shown in Figure 4. From this Figure, we can easily179

find that: 1) The performance of Algorithm 1 is the worst, since it is sensitive to noise and the number180

of neighborhoods K; 2) The results of LE score and LLE have excellent intra-class compactness, but181

their inter-class separation are poor, that is, part of the samples with different labels overlap; 3) The182

performance of Variance and Fisher score are superior to LE score, LLE and Algorithm 1, due to the183

fact that the variance model can select features with large variance by its measurement criteria, and184

the supervised Fisher score can employ the label information for training samples; 4) Compared with185

other methods, RLLE vote outperforms than other related methods. The main reason is that RLLE vote186

can reveal the neighborhood relations between data samples clearly due to the imposed regularization187

technology, and by this way, it can adaptively select K-nearest neighbors and simultaneously improve188

the robustness of the model.
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Figure 4. The three-dimensional(3D)embedding results obtained by different dimension reduction
algorithms on the bearing data set 1. The red points denote normal data. The green points indicate
inner fault data. The blue points represent ball fault data. The black points indicate outer fault data.
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5.2. Quantitative clustering evaluation190

In order to quantitative analysis the proposed methods, Fisher criterion is introduced. The Fisher
criterion is a statical method that is used to compare variances of the two variational series, and it is
defined as follows[31]:

F = Sb/Sw (17)

Sw =
c

∑
i=1

Nc

∑
j=1

(xj − µi)(xj − µi)
T (18)

Sb =
c

∑
i=1

(µi − µ̄)(µi − µ̄)T (19)

where Sb measures the distance of inter-class, and Sw denotes the distance of intra-class. The larger191

value of F is, the better performance of the corresponding algorithm will be.192

In the second experiment, bearing data set 1, bearing case 1 and bearing case 2 are examined for193

quantitative evaluation. We show the comparison results in Table 5. From the Table, we can easily find194

that the quantitative results generally keep consistent with the visualization results. Specifically, the195

value of F obtained by Algorithm 1 is smallest, that is, the Algorithm 1 is the worst. Moreover, Fisher196

score can deliver higher value of F than Variance, LE score and LLE in most cases, due to the fact that197

it can make use of the label information of samples so that the performance of inter-class separation198

and intra-class compactness can be enhanced. In addition, RLLE vote deliver the largest F value in199

most cases so that it is superior to other methods. According to the aforementioned analysis, it shows200

the validity of the proposed measurement in RLLE vote.201

Table 5. Quantitative clustering evaluation results

Methods CWRU Bearing case 1 Bearing case 2
F F F

Variance 3.5234 0.1450 0.4826
Fisher score 47.311 11.382 3.2519

LE score 6.2297 19.071 0.9313
LLE 1.4567 1.2046 0.7835

Algorithm 1 0.5980 0.0994 0.1828
RLLE vote 111.35 19.240 2.9025

202

5.3. Fault recognition203

In the third experiment, we evaluate our RLLE vote for recognizing bearing data sets via204

comparing with other relevant methods. The involved bearing data sets include bearing case 3205

and bearing case 4. For quantitative recognition evaluations, we perform k-nearest-neighbor(kNN)206

over the low-dimensional Y by each method due to its simplicity. For each experimental setting, we207

select 80 samples from each type of this data set as training set and the others as test set. Therefore, the208

results are averaged over 10 random splits of training/test samples to alleviate the bias.209

In this experiment, we evaluate the recognition performance under different numbers of features210

and show the results in Figure 5. From this Figure, we can have the following findings. First, the211

recognition evaluation results of Algorithm 1 and LLE are usually the worst, since they cannot provide212

a clear separation of samples from different classes, and cannot enhance compactness for intra-class213

samples simultaneously; Second, Fisher score obtains comparable and even better outcomes than214

other remaining approaches on the whole, since it can employ the label information of samples, and215

the performance of inter-class separation and intra-class compactness can be enhanced; Third, the216

performance of RLLE vote can be improved via increasing the numbers of features in virtually all cases.217

To be specifically, the performance of RLLE vote firstly increases faster as the number of features is218
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relatively small, while the recognition result goes up slower when the numbers of features is large;219

Final, our RLLE vote is superior to other relevant methods in most cases, especially on the bearing220

case 4. Therefore, the experiment results validate the efficiency of our proposed method.221
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(c) Bearing case 4
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(d) Bearing case 4

Figure 5. Recognition rate (%) of different dimension reduction algorithms using different numbers of
features.

222

5.4. Parameter analysis of RLLE vote223

Finally, we investigate the influence of the model parameter selection on the data visualization224

results. In this experiment, bearing data set 1 is employed for evaluation. Due to the fact that it is225

impossible to visualize all the possible results under different parameter settings. In this study, we226

mainly explore the effects of parameter K on the visualization results, and we change K from 13 to227

40. The parameter analysis results on the visualizations are shown in Figure 6. From this figure,228

one can find that when the value of K is small than 32, our proposed method can offer a distinct229

separation among the different kinds of samples and simultaneously obtain the enhanced compactness230

for intra-class samples. On the contrary, when the value of K is larger than 32, RLLE vote has excellent231

intra-class compactness, but their inter-class separation are degrade, that is, part of the samples with232

different labels overlap. Generally speaking, RLLE vote can perform well in a wide range of parameter233

settings, which demonstrates that the performance of our proposed method is robust to the parameter234

K, i.e., the selection of K will be relatively easier for the real applications. It is worth noting that we can235

obtain a guidance of the selection of model parameters based on the above experimental results and236

analysis.237
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Figure 6. The three-dimensional(3D)embedding results over different parameter K on the bearing data
set 1. The red points denote normal data. The green points indicate inner fault data. The blue points
represent ball fault data. The black points indicate outer fault data.

6. Conclusion238

In this paper, the idea of LLE embeds LLE into the graph-preserving feature selection framework,239

and then a new filter-based feature selection method called LLE vote is proposed. RLLE vote240

introduces l1 and l2 regularization in high-dimensional reconstruction of LLE, which can address the241

existing problems that directly embedding LLE into the graph-preserving feature selection framework.242

Specifically, the importance of each feature is evaluated by measuring the difference between feature243

reconstructed by RLLE vote and the original data. Extensive experimental results on two rolling244

bearing data sets not only validate the effectiveness of our the proposed method, but also demonstrate245

that our proposed method is superior to the existing state-of-art methods.246

In feature, the optimal determination of the sparse reconstruction still remains an open problem247

in reality, which needs further investigation in future. Furthermore, the local structure is actually248

consisted of both the location of the neighbors and the reconstruction weights, it is difficult to determine249

the effects of them yet. In addition, investigating the joint of feature selection learning and tensor250

learning will be considered, since tensor learning algorithms ease both the curse dimensionality and251

the computation issues.252

References253

1. Dernoncourt, D.; Hanczar, B.; Zucker, J.D. Analysis of feature selection stability on high dimension and254

small sample data. Computational statistics & data analysis 2014, 71, 681–693.255

2. He, R.; Zheng, W.S.; Tan, T.; Sun, Z. Half-quadratic-based iterative minimization for robust sparse256

representation. IEEE transactions on pattern analysis and machine intelligence 2013, 36, 261–275.257

3. Yang, M.H.; Kriegman, D.J.; Ahuja, N. Detecting faces in images: A survey. IEEE Transactions on pattern258

analysis and machine intelligence 2002, 24, 34–58.259

4. Liu, C.L.; Yin, F.; Wang, D.H.; Wang, Q.F. Online and offline handwritten Chinese character recognition:260

benchmarking on new databases. Pattern Recognition 2013, 46, 155–162.261

5. Purarjomandlangrudi, A.; Ghapanchi, A.H.; Esmalifalak, M. A data mining approach for fault diagnosis:262

An application of anomaly detection algorithm. Measurement 2014, 55, 343–352.263

6. Meng, Z.; Zhan, X.; Li, J.; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault264

diagnosis. Measurement 2018, 130, 448–454.265

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2019                   doi:10.20944/preprints201911.0261.v1

https://doi.org/10.20944/preprints201911.0261.v1


Version November 20, 2019 submitted to Journal Not Specified 13 of 14

7. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault266

diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics 2015,267

62, 3757–3767.268

8. Glowacz, A.; Glowacz, W.; Glowacz, Z.; Kozik, J. Early fault diagnosis of bearing and stator faults of the269

single-phase induction motor using acoustic signals. Measurement 2018, 113, 1–9.270

9. Kumar, S.; Pandey, A.; Satwik, K.S.R.; Kumar, S.; Singh, S.K.; Singh, A.K.; Mohan, A. Deep learning271

framework for recognition of cattle using muzzle point image pattern. Measurement 2018, 116, 1–17.272

10. Zhang, L.; Tian, F.; Pei, G. A novel sensor selection using pattern recognition in electronic nose. Measurement273

2014, 54, 31–39.274

11. Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Transactions on pattern275

analysis and machine intelligence 2000, 22, 4–37.276

12. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. Journal of machine learning research277

2003, 3, 1157–1182.278

13. Guyon, I.; Elisseeff, A. An introduction to feature extraction. In Feature extraction; Springer, 2006; pp. 1–25.279

14. Motoda, H.; Liu, H. Feature selection, extraction and construction. Communication of IICM (Institute of280

Information and Computing Machinery, Taiwan) Vol 2002, 5, 2.281

15. Mu, H.Q.; Yuen, K.V. Modal frequency-environmental condition relation development using long-term282

structural health monitoring measurement: Uncertainty quantification, sparse feature selection and283

multivariate prediction. Measurement 2018, 130, 384–397.284

16. Bar-Hillel, A.; Hertz, T.; Shental, N.; Weinshall, D. Learning a mahalanobis metric from equivalence285

constraints. Journal of Machine Learning Research 2005, 6, 937–965.286

17. Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II:287

Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches. IEEE Transactions on Industrial288

Electronics 2015, 62, 3768–3774.289

18. Chen, L.; Li, J.; Zhang, Y.H.; Feng, K.; Wang, S.; Zhang, Y.; Huang, T.; Kong, X.; Cai, Y.D. Identification290

of gene expression signatures across different types of neural stem cells with the Monte-Carlo feature291

selection method. Journal of cellular biochemistry 2018, 119, 3394–3403.292

19. Gu, Q.; Li, Z.; Han, J. Generalized fisher score for feature selection. arXiv preprint arXiv:1202.3725 2012.293

20. Bishop, C.M.; others. Neural networks for pattern recognition; Oxford university press, 1995.294

21. Jain, A.; Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE295

transactions on pattern analysis and machine intelligence 1997, 19, 153–158.296

22. He, X.; Cai, D.; Niyogi, P. Laplacian score for feature selection. Advances in neural information processing297

systems, 2006, pp. 507–514.298

23. Liu, M.; Zhang, D. Sparsity score: A novel graph-preserving feature selection method. International Journal299

of Pattern Recognition and Artificial Intelligence 2014, 28, 1450009.300

24. Zhang, D.; Chen, S.; Zhou, Z.H. Constraint Score: A new filter method for feature selection with pairwise301

constraints. Pattern Recognition 2008, 41, 1440–1451.302

25. Yao, C.; Liu, Y.F.; Jiang, B.; Han, J.; Han, J. LLE score: A new filter-based unsupervised feature selection303

method based on nonlinear manifold embedding and its application to image recognition. IEEE Transactions304

on Image Processing 2017, 26, 5257–5269.305

26. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. science 2000,306

290, 2323–2326.307

27. Su, Z.; Tang, B.; Ma, J.; Deng, L. Fault diagnosis method based on incremental enhanced supervised locally308

linear embedding and adaptive nearest neighbor classifier. Measurement 2014, 48, 136–148.309

28. Zhang, S.q. Enhanced supervised locally linear embedding. Pattern Recognition Letters 2009, 30, 1208–1218.310

29. Zhang, Y.; Ye, D.; Liu, Y. Robust locally linear embedding algorithm for machinery fault diagnosis.311

Neurocomputing 2018, 273, 323–332.312

30. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. Journal of the royal statistical313

society: series B (statistical methodology) 2005, 67, 301–320.314

31. Fisher, R.A. The use of multiple measurements in taxonomic problems. Annals of eugenics 1936, 7, 179–188.315

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2019                   doi:10.20944/preprints201911.0261.v1

https://doi.org/10.20944/preprints201911.0261.v1


Version November 20, 2019 submitted to Journal Not Specified 14 of 14

c© 2019 by the authors. Submitted to Journal Not Specified for possible open access316

publication under the terms and conditions of the Creative Commons Attribution (CC BY) license317

(http://creativecommons.org/licenses/by/4.0/).318

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 November 2019                   doi:10.20944/preprints201911.0261.v1

http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints201911.0261.v1

