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Abstract: In this work, we present a model of the atom that is based on a nonclassical logic called 

paraconsistent logic (PL), which has the main property of accepting the contradiction in logical 

interpretations without the conclusions being annulled. The proposed model is constructed with 

an extension of PL called paraconsistent annotated logic with annotation of two values (PAL2v), 

which is associated with an interlaced bilattice of four vertices. We use the logarithmic function of 

the Shannon entropy H(s) to construct the paraconsistent equations and thus adapt a probabilistic 

model for representations in quantum physics. Through analyses of the interlaced bilattice, 

comparative values are obtained for some of the phenomena and effects of quantum mechanics, 

such as superposition of states, quantum entanglement, wave functions, and equations that 

determine the energy levels of the layers of an atom. At the end of this article, we use the 

hydrogen atom as a basis of the representation of the PAL2v model, where the values of the 

energy levels in six orbital layers are obtained. As an example, we present a possible method of 

applying the PAL2v model to the use of Raman spectroscopy signals in the detection of 

lubricating mineral oil quality. 

Keywords: quantum information; Shannon entropy; quantum physics; paraconsistent logic; 

mathematics and computing 

1. Introduction 

The model of the atom was presented by Niels Bohr in 1913, where he proposed that electrons are 

particles with two kinds of motions in atoms. In the Bohr model, the electrons either move continuously 

around the nucleus in certain stationary orbits or discontinuously jump between these orbits [1]. 

Subsequently, with the advances in quantum theory, new concepts, such as the ideas of superposition of 

states and quantum entanglement, have been proposed. Currently, the physical state of an electron is 

described by a wave function and in the foundations of quantum mechanics; the wave function is a 

description of the random discontinuous motion of particles. Moreover, the data on the physical properties of 

particles are uncertain, and all of the analyses are probabilistic [1,2].  

The probability density of the particle appearing in each position is proportional to the square of the 

modulus of its wave function at every instant. The square of the modulus of the wave function represents not 

only the probability of a particle being found at a certain location but also the probability of the particle being 

there [2][3].  

In 1925, Heisenberg published results introducing the quantum concepts for particles in matrix analysis. 

In the matrix formulation, the instantaneous state of a quantum system encodes the probabilities of its 

measurable properties or “observables,” which include energy, position, momentum, and angular momentum. 

Observables can be either continuous (e.g., the position of a particle) or discrete (e.g., the energy of an 

electron bound to a hydrogen atom) [2,3]. 

In 1926, Schrödinger proposed a partial differential equation for the wave functions of particles, such as 

electrons. The state of a system at a given time is described by a complex wave function, which is also 

referred to as the state vector in a complex vector space, and this abstract mathematical object enables the 

calculation of the probabilities of outcomes of concrete experiments [3,4].  

Another important consideration is that in quantum mechanics, one can never make simultaneous 

predictions of conjugate variables, such as position and momentum, to arbitrary precision. In 1927, 
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Heisenberg proposed the uncertainty principle, which shows the formal inequality relating the uncertainty of 

position x  and the uncertainty of momentum  p , as follows [3-5]: 

                                            
2

  
h

x p .                                                 (1) 

The electrons may be considered (to a certain probability) to be located somewhere within a given region 

of space. However, their exact positions are unknown. In this condition, contours of constant probability 

density, which are often referred to as “clouds,” may be drawn around the nucleus of an atom to 

conceptualize where an electron might be located with the most probability [2][5-8]. The probability density 

is obtained using the square of the amplitude of the wave function, which usually involves a complex 

quantity. Thus, its value is derived by multiplication with the conjugate complex, as follows [6,7]: 

                                              .                                       (2) 

If the wave function is a representative of the sum of probabilities that describe a particle, then it needs to 

be normalized, as follows [3][8,9]: *
( , ) ( , ). 1

+

−
= x t x t dx  . 

With respect to the logic applied to quantum mechanics among various studies of quantum probabilistic 

logic formalism, one of the most important was developed by von Neumann in 1932 [11,12]. In his work, 

von Neumann assumed that each physical system is associated with a Hilbert space H (separable), with its 

unit vectors corresponding to possible physical states of the system. Each real “observable” random quantity 

is represented by a self-regulated operator A in H, whose spectrum is the set of possible values of A [12]. 

According to the previous works, mathematics in quantum mechanics can be considered a nonclassical 

probability calculation, which is supported by a nonclassical propositional logic [13,14]. 

 

1.1 Paraconsistent Logic 

Nonclassical logics are created with the purpose of opposing the binary principles of classical logic, thus 

providing better conditions for the construction of physical–mathematical models with more approximate 

results. Currently, there are several types of nonclassical logics, and in general, we can consider that only 

those logics that are indestructible in the presence of the contradiction are paraconsistent. Therefore, a 

paraconsistent logic (PL) is a nonclassical logic that has, as its fundamental characteristic, the opposition to 

the principle of noncontradiction [15-18]. 

The fundamental theory of PL has been developed in the area of philosophical logic [19], and a formal 

framework for inconsistent theories was proposed by da Costa [15][17][19]. Further details of the logical 

formalization of PL, the mathematical implications, and their theorems can be found in [15], [17], and [20]. 

Blair and Subrahmanian [21] presented applications of PL to logical programming and extended the 

formalization of three-valued semantics. With this initial work, a theory was developed for possibly 

inconsistent logic programs using a lattice also known as Belnap’s four-valued logic [22], where the set of 

truth values of four-valued logic is defined as τ ={ t, f, ⊺, ⊥}, in which t, f, ⊺, and ⊥ are propositions in the 

language of a program, and they denote true, false, contradictory, and paracomplete, respectively. The set of 

truth values τ comprises a complete lattice under the ordering ≤, such that ⊥ ≤ x ≥ ⊺ for x  τ = {t, f} [22,23]. 

 

1.2 Paraconsistent Annotated Logic with Annotation of Two Values 

An extended form of PL, the paraconsistent annotated logic (PAL), which has an associated lattice, has 

been investigated and applied to several fields of science [18] [23,24]. In data analysis systems, the PAL can 

derive an annotation composed of two degrees of evidence from different sources of information and, in this 

case, is named paraconsistent annotated logic with annotation of two values– PAL2v [25,26]. The first 

concepts of PAL2v, which can be applied to artificial intelligence, are presented in [25].  

As presented in [18], [26,27], and [28], in the application of PAL2v, the associated lattice is considered 

an abstract universe τ, where a negation operator allows logical interpretations to result in paraconsistent 

equations. In the annotation, the first degree of evidence is favorable for the proposition P and is represented 

by the symbol μ, and the second degree of evidence is unfavorable for the proposition P and is represented by 

the symbol λ. These degrees of evidence are normalized, classified as a set of real numbers, and contained in 

the closed interval [0,1]. The annotation assigns a logical state to the proposition P. Thus, the information in 

PAL2v is a paraconsistent logical signal represented by the proposition P with the subscript of the annotation 

as (μ, λ): ( , )P  , where the annotation is composed of a pair of the degrees of favorable evidence (μ) and 

unfavorable evidence (λ). 

The paraconsistent symbol (μ, λ) assigns a logical state to proposition P as follows [25,26]: 

2 *
( , ) ( , )= x t x t  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   doi:10.20944/preprints201911.0250.v2

https://doi.org/10.20944/preprints201911.0250.v2


 1. If the annotation is (0, 1), then the degree of favorable evidence is minimum and the degree of 

unfavorable evidence is maximum, which provides a logical “false” connotation to proposition P. This 

paraconsistent signal defines the logical state “false” f. 

 2. If the annotation is (1, 0), then the degree of favorable evidence is maximum and the degree of 

unfavorable evidence is minimum, which provides a logical “true” connotation to proposition P. This 

paraconsistent signal defines the logical state “true” t. 

 3. If the annotation is (1, 1), then the degree of favorable evidence is maximum and the degree of 

unfavorable evidence is maximum, which provides a logical true and false connotation to proposition P. This 

paraconsistent signal defines the logical state “inconsistent” ⊺. 
 4. If the annotation is (0, 0), then the degree of favorable evidence is minimum and the degree of 

unfavorable evidence is minimum, which provides a logical false and true connotation to proposition P. This 

paraconsistent signal defines the logical state “paracomplete” ⊥. 

Figure 1(a) shows the lattice FOUR associated with PAL and the representations of the extreme logical 

states in their vertices through the annotation (μ, λ) of PAL2v [25][29,30]. 

As discussed in [31,32], and [33], this representation of PAL2v has been recently investigated using an 

interlaced bilattice also known as the bilattice of Belnap [22,23][34]. A bilattice is a structure

B , ,=   t kB , where B is a nonempty set, and ,  kB and ,  tB are both bounded lattices, that is, 

with bottom and top elements. In studies of bilattice, the symbols, ⊗k and ⊕k are used to denote the meet 

and join operations that correspond to k , respectively, and ⊗t and ⊕t are used to denote the meet and join 

operations that correspond to t , respectively. The partial order k is intended to represent the knowledge or 

information order, and t is intended to represent the truth order. In other words, the knowledge order reports 

on how much information we have about a particular statement p, whereas the truth order reports on how 

confident we are that p is true or false. Interpreting tx y , we simply thereby mean that y is truer than x; in 

turn, we interpret kx y to mean that the evidence underlying x is subsumed by the evidence underlying y 

[22][34].  

Figure 1(b) shows the interlaced bilattice of Belnap with the ordering t and k and the representations of 

the extreme logical states in their four vertices, t, f, ⊺, and ⊥, which denote truth, falsity, both, and none, 

respectively [22,23][25]. 

            

(a)                                                                                  (b) 

Fig. 1. Lattices associated with nonclassical logics –LPA and four-valued logic: (a) lattice FOUR associated 

with PAL2v and representations of the extreme logical states in their vertices through the annotation (μ, λ); (b) 

interlaced bilattice of Belnap with the ordering t  k  and four extreme logical states represented in their 

vertices. 

 

The paraconsistent equations are obtained from mathematical transformations that map the values 

arranged in a unitary square on the Cartesian plane (USCP) to the associated bilattice of PAL2v [25,26]. 

Initially, the degrees of evidence of PAL2v are considered on the USCP (which is also known as lattice κ), 

from where their values are mapped to lattice FOUR [32]. Given that, in the USCP, the values are allocated 

to the x- and y-axes, the USCP (lattice κ) is mapped to the associated lattice τ of PAL2v by equating values 

with the degrees of evidence and implementing the following actions: (a) expansion of 2  from the x- and 

y-axes ( ) ( )1 1 1, = 2, 2T X Y x y ; (b) 45° counterclockwise rotation at the origin 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   doi:10.20944/preprints201911.0250.v2

https://doi.org/10.20944/preprints201911.0250.v2


( ) ( )2 2 2 1 1 1 1, cos sin , sin cos=  −   +T X Y X Y X Y    , where 
1

cos
2

=  and 
1

sin
2

= ; (c) translation of the −1 

value from the y-axis ( ) ( )3 3 3 2 2, = , 1−T X Y X Y resulting in . 

If x  is the value allocated to the x-axis of the USCP and y  is the value allocated to the y-axis of the 

USCP, then =x   and  =y  . The previously described actions create T1, T2, and T3 transformations, as 

described in [26] and [31], which results in the following: 

                                         ( ) ( )3 3 3, , 1= − + −T X Y     .                                                          (3) 

We denote the certainty degree (Dc) as X3 and the contradiction degree (Dct) as Y3 [26][31]: 

( )3 ,
=X Dc  

 → Certainty degree as a function of μ and λ: 

       ( , ) = −Dc     ,                                                      (4) 

( )3 ,
=Y Dct  

 → Contradiction degree as a function of μ and λ: 

               
( ),

1= + −Dct     .                                                             (5) 

Figure 2(a) shows this mapping with the sequences of actions to obtain the equations of the 

paraconsistent transformations and associated bilattice of PAL2v in the degrees of certainty and contradiction 

in the x- and y-axes.  

The maximum negative value of the degree of certainty is −1 at the vertex of the extreme logical state 

“false” (f) and the maximum positive value is +1 at the vertex of the extreme logical state “true” (t). For 

these two conditions, the value of the degree of contradiction will always be 0 . 

The maximum negative value of the degree of contradiction is −1 at the vertex of the extreme logical state 

“paracomplete” (⊥), and the maximum positive value is +1 at the vertex of the extreme logical state 

“inconsistent” (⊺). For these two conditions, the value of the degree of certainty will always be 0 
( ),

( 0)=Dc  
 

[25,26]. Furthermore, PAL2v, when applied to quantum mechanics, is called paraquantum logic (PqL). In the 

interlaced PqL bilattice, the values are represented by a universe of complex numbers, where the degree of 

contradiction lies in the imaginary axis and the degree of certainty lies in the real axis, with the origin at the 

point equidistant from the vertices of the bilattice; therefore, in this point, the degrees of certainty and 

contradiction are both equal to 0 [31-33]. 

The paraconsistent logical state  , which defines the paraquantum logical state [31], is considered the 

point of intersection between the degrees of certainty 
( ),

( )Dc  
 and contradiction  

( ),
( )Dct  

 located in the 

bilattice FOUR or the PqL bilattice. Therefore, the paraquantum logical state   can be expressed as follows 

[25,26]: 

                            ( )( , ) ( , ) ( , ),= Dc Dct       .                                               (6) 

Through mapping, the bilattice associated with PqL becomes a lattice of values, where the equations 

obtained create pairs of the values of ( ),Dc    and ( ),Dct   , which define infinite internal points of intersection. 

Each internal point of intersection composed of a pair of values is a single paraquantum logical state ( , )   .  

The equations obtained from the transformations enable the determination of the distance between the 

paraquantum logical state represented by a pair of inseparable values ( ) ( )( ), ,,Dc Dct     and the extreme 

logical states represented by the vertices of the bilattice. Given that ( ),Dc    and ( ),Dct    are dependent on 

the μ and λ values, the distance between the logical state resulting from ( , )    and one of the extreme logical 

states t, f, ⊺, or ⊥, represented by the vertices of the PqL bilattice, is dependent on the values of μ and λ 

considered in the physical world. If we know the paraquantum logical state ετ in any region inside the PqL 

bilattice, then the values of the degrees of evidence can be calculated using the following equations [26][31]: 

                          ( ) ( )( ) , ,

1 1 1

2 2 2
= + +p Dc Dct

   
                                       (7) 

and 

( ) ( )( ) , ,

1 1 1

2 2 2

−
= + +p Dc Dct

   
 .                                                  (8) 

Non-commutation exists between the degrees of evidence of the PqL and is explained by the logical 

negation operation denoted by the symbol  . The change of position of the degrees of evidence in the 

( ) ( )3 3 3, = , 1− + −T X Y x y x y

( ),
( 0)=Dct  
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annotation negates proposition P. Therefore, given proposition P, its logical negation  P is represented by 

the exchange of the degrees of evidence in the annotation, as follows [31-33]: 

                                       ( ) ( ), , =    .                         (9) 

An interlaced bilattice [31][33] in addition to the negation operation expressed in Eq.(9) also enables the 

application of the complementation and conflation operations. The logical complementation operation in the 

PqL, denoted by the symbol  , is an explicit complement to the unit of the degrees of evidence in the 

annotation. Given proposition P and its complement P, we can express the complementation operation as 

follows: 

( ) ( ), 1 ,1 = − −    .                                                                (10) 

The logical conflation operation in the PqL, denoted by the symbol ‡ , is explained by the negation 

operation, followed by the complement to the unit of the degrees of evidence in the annotation [31]. Given 

proposition P and its conflation P, we can express the conflation operation as follows: 

                           ( ) ( ), 1 ,1= − −‡     .        (11) 

For a logical–mathematical study, the interlaced bilattice associated with PqL can be divided into four 

quadrants [31]: (a) In Quadrant I, the degrees of certainty and contradiction are positive (there is no operator 

action on the annotation ( ),  ); (b) in Quadrant II, the degree of certainty is negative, while the degree of 

contradiction is positive (this is an action of the logical negation operator   over the annotation ( ),  ); (c) in 

Quadrant III, the degrees of certainty and contradiction are negative (this is an action of the logical 

complementation operator   over the annotation ( ),  ); and in Quadrant IV, the degree of certainty is 

positive, while the degree of contradiction is negative (this is an action of the logical conflation operator ‡  

over the annotation ). 

With the negation, complementation, and conflation operations only over the values of the degrees of 

certainty and contradiction obtained in Quadrant I, the results of the degrees of certainty and contradiction 

are obtained in the three other quadrants of the interlaced PqL bilattice. Therefore, given that we detect the 

paraquantum logical state in Quadrant I with the corresponding values of ( ),Dc    and ( ),Dct   , the negation 

operation results in a negative degree of certainty and an unchanged degree of contradiction. This results in 

another paraquantum logical state in Quadrant II, which is represented by ( ) ( )( ), ,,− +Dc Dct     [31][33]. 

Similarly, the complementation operation on the values of the degrees of certainty and contradiction in 

Quadrant I results in negative values for both the degrees of certainty and contradiction. This result defines 

the paraquantum logical state in Quadrant III, which is represented by ( ) ( )( ), ,,− −Dc Dct    . The conflation 

operation on the values of the degrees of certainty and contradiction in Quadrant I results in positive values 

for the degree of certainty and negative values for the degree of contradiction. This result defines the 

paraquantum logical state in Quadrant IV, which is represented by  [31,32]. 

Figure 2(b) shows the interlaced PqL bilattice with quadrant operators and paraconsistent equations for 

reversible logic. 

   
(a)                                                                                    (b) 

Fig. 2. Sequences of mapping to obtain the paraconsistent equations and representations in the interlaced PqL 

bilattice: (a) sequences followed to obtain the equations of the paraconsistent transformations with 

counterclockwise rotation; (b) interlaced PqL bilattice with quadrant operators and paraconsistent equations 

for reversible logic. 

‡

( ), 

( ) ( )( ), ,,+ −Dc Dct   
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1.3 Shannon Entropy 

In a work by Shannon in 1948 [35], the basis of the mathematical theory of communication, or 

information theory, was established. Moreover, Shannon’s work emphasizes a fundamental concept, that is, 

the entropy of the information, which has become well known as the Shannon entropy H(s). The Shannon 

entropy has complementary interpretations that can be either information quantity (after measurement) or 

uncertainty (before measurement) in a given probability distribution [36,37]. To establish the current concept 

that H(s) is a function of entropy, similar to Boltzmann’s H theorem, Shannon defined some statistical 

concepts through the equation 
( )

1

log

=

= − 
n

s

i

H k pi pi , where pi is the probability of a system being in cell i of its 

phase space, and k corresponds only to a certain unit of measure  [36][38,39]. 

The equation of entropy in the case of two variables, that is, p and q (where q = 1–p), is written as follows: 

                                     ( ) [ log log ]= − +sH k p p q q ,                                 (12) 

where p is the probability, q is its complement (1–p), and the constant k depends on the variable used [36, 37]. 

As can be seen in [36] and [37], to obtain the maximum unitary value of H(s) in Eq. (12), k is calculated as 

log10 1 1
3.321928

log 2 log 2 0.301029995
= = = ;k . 

 

1.4 Rydberg’s Formula  

In 1890, before Bohr introduced his model of the atom, Johannes Rydberg developed formulas describing 

the wavelengths or frequencies of light in various series of related spectral lines [40]. Later, Bohr expressing 

results in terms of wavenumber, not wavelength, combined these formulas. These studies resulted in the 

following equation [1][40]: 

                                2

2 2
1 1

1 1 1


 
= − 

 
 

R Z
n n

,                                           (13) 

where 

  is the wavelength of the photon (wavenumber = 1/wavelength); 

Z is the atomic number of the atom; 

1n  is the principal quantum number of an energy level, for the atomic electron transition; 

2n is the principal quantum number of an energy level for the atomic electron transition, with 2 1n n ; and 

R  is the Rydberg's constant, calculated as 
4

-1

2 3
0

1.0973731568539 
8

 = =


em e
R m

h c
,  

where me is the mass of the electron, e is the elementary charge of the electron, 0  is the permittivity of free 

space, c is the speed of light, and h is the Planck’s constant. 

 

1.5 Bernoulli Distribution 

The probability p is an outcome that generates the degrees of evidence for the analysis of proposition P 

for affirmation (true) or refutation (false). One form of representation whose results can be applied to the 

interlaced PqL bilattice is the Bernoulli trial process [31][41]. For this representation, we derive the random 

distribution of variable X, such that [31] ( )Pr 1= =X p  and ( )Pr 0= =X q . The expectation value is 

calculated using → ( ) =E X p , and the variance of X is written as Var(X). The variance is a measure of how 

much the value of X varies from the expectation E(X) and is defined as 2Var(X) = −p p .  

The standard deviation of the probability distribution is denoted by the symbol σ and is defined as the 

square root of the variance Var(X): 

                                          Var( )X = .                                     (14) 
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A graph of Var(X) as a function of p ∈ [0,1] exhibits a parabola that opens downward [31][41]. 

The paraconsistent model of the atom will be presented and analyzed in this paper. We compare the use 

of probability in the Shannon entropy function, which will form the degrees of evidence, and the use of 

Bernoulli distribution to determine the probability value p of the paraconsistent analysis. 

In the first stage of the analysis, we show the trajectory of the logical states in the ground state and its 

main equations obtained in Quadrant I of the interlaced PqL bilattice. Moreover, the negation, 

complementation, and conflation operations are applied, and the model of the complete atom in the xy plane 

is formed in the perception of an observer in the vector base X. In the second stage of the analysis, the 

modeling equations of the complete atom are presented, and the trajectories of degenerate and nondegenerate 

quantum states are highlighted. In the third stage of the analysis, the modeling equations of the energy layers 

are derived from the mapping of the degrees of evidence that differs in terms of the direction of rotation, 

which is now done clockwise. In this manner, the paraconsistent model of an atom in the xy plane is formed 

in the perception of an observer in the vector base Y. Finally, the results of an example of the application of 

the paraconsistent model of an atom are correlated with the energy values extracted from the Rydberg 

formulas and presented based on the hydrogen atom. The results of the hydrogen atom show the curves 

obtained from the analysis of signals using only Quadrant I of the interlaced PqL bilattice. With this final 

model is presented a method of using Raman spectroscopy signals for the detection of lubricating mineral oil 

quality. 

 

2. Materials and Methods  

In the construction of the paraconsistent model of the atom, the concepts and equations of PqL and the 

logarithmic function of the Shannon entropy H(s) are used. These fundamentals, equations, and concepts are 

applied to the in-depth analysis of the interlaced bilattice associated with PqL. In the proposed model, to 

represent the probabilistic functions according to the fundamentals of PqL, it is necessary to establish state 

vectors with unitary modules and that define the orbital paths and energy layers of the atom. 

 

2.1 State Vectors and Internal and External Orbit Trajectories of Paraquantum Logical States 

 We present below the representation of the paraquantum logical states related to the unitary module 

state vectors that are installed in the interlaced bilattice. 

2.1.1 Pψint—Internal State Vector 

We consider an internal state vector with a unitary module (Pψint) and that has its origin located at the 

vertex of the true logical state (t) of the interlaced PqL bilattice. In this point, ( ),
1= +Dc

   and ( ),
0=Dct

  . 

Therefore, if the paraquantum logical state of the origin is expressed as ( ) ( )( ) ( ), ,
, 1,0= = +Dc Dct    

 , then the 

variation of the inclination angle of the vector (Pψint) in Quadrant I will be 0
4

 


  in radians. Given that 

the modulus is unitary, the variation of the inclination angle   of the vector Pψint will occur in the 

interlaced PqL bilattice, with a curvilinear trajectory defined by the paraquantum logical states located at its 

end.  

The internal trajectory in Quadrant I of the interlaced PqL bilattice is defined in Eq. (6). 

2.1.2 Pψext—External State Vector   

For an external state vector with a unitary module (Pψext) and that has its origin at the point equidistant 

from the vertices of the interlaced PqL bilattice ( ) ( )( ) ( ), ,
, 0,0= =Dc Dct    

 , the equation of the paraquantum 

logical states that form the external trajectory in Quadrant I can be described as a function of the value of  

and can be expressed as follows: 


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 ( )( ) 1 cos( ), ( )= −I sen    .     (15) 

This expression is similar to the following function: 

( ) ( ) ( )( ), , ,
1 ,= −I Dc Dct

     
 ,                                                   (16) 

where   and   are the degrees of evidence. 

2.1.3 PψCext—Complementary External State Vector 

The external trajectory of the paraquantum logical states in Quadrant I can be completed for the variation 

of the inclination angle   of another vector, that is, PψCext. With the same values of   and  , an external 

complementary vector (PψCextII) with a unitary module is created simultaneously, with its origin at the point 

( ) ( )( ) ( ), ,
, 0,0= =Dc Dct    

  and its angle of inclination having a variation of 
4 2
 

 
  in radians. With the 

same quantitative values of the degrees of evidence, this complementary operation is applied to the degrees 

of certainty and contradiction, generating the paraquantum logical state ( ) ( ), 2 1= I PqL E   . 

The generated paraquantum logical state establishes the orbital trajectory of the state vector PψI2, whose 

inclination presents a variation of 45° to 90°, that is, an angular variation of 
4


 to  radians.  

The paraquantum logical state, which features the orbital trajectory at the end of the new complementary 

state vector, with the completed action in the degrees of certainty and contradiction, is represented by 

( ) ( ), ,=II I      in the following expression: 

                            ( ) ( )( ) ( )( ), , ,1 ,1 1
 

= − − − 
 

II Dct Dc      .                              (17) 

In Quadrant I of the interlaced PqL bilattice,   and   are represented by probabilistic functions 
( )p

 and 

( )p
 , which must present results that have their values varying simultaneously in the corresponding intervals, 

that is, ( )0.5 1.0 
p

  and , respectively.  

Figure 3 shows Quadrant I of the interlaced PqL bilattice with the state vector with a unitary module, 

which, with the variation of the inclination angle  , establishes the internal trajectory of the paraquantum 

logical states. In the same mode, the external state vectors PψextI and PψCextI establish the complete external 

trajectory of Quadrant I.  

 
Fig. 3. Quadrant I of the interlaced PqL bilattice, with the internal state vector (Pψint) and two external state 

vectors (PψextI and PψCextI) that establish the internal and external orbit trajectories of the paraquantum logical 

state . 

 

2.2 Representation of the Degrees of Evidence of PqL as Probabilistic Functions 

First, we consider that ( )p  is a probabilistic function 
( ) =pf X , such that p  and it is contained in the 

closed interval [0,1]. Therefore, p represents a probability value, and the normalized values X and X′ should 

be adapted to the interlaced PqL bilattice. The two probability values must also be presented to form an 

annotation. We also consider that as an initial condition, the two probabilistic sources 1 and 2 are out of 

2



( )0.5 1.0 
p



( ), 

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phase at the angle Θ, such that in the amplitude variation of the probability value p, the probabilistic function 

of source 2 generates another function; that is, '
( ) =p X . These two probabilistic functions must have the 

following characteristics: (a) when X is at its maximum unitary value, that is, ( ) 1= =p X , the difference 

between X and X′ will be equal to ( )'( ) = −Xp X X  → 
( )

1
1

2

 
 = − 

 
Xp

; (b) when X is at half its maximum value, 

that is, ( )
1

2
= =p X , the difference between X and X′ will be null '

( )
1 1

0
2 2

 
 = − = − = 

 
Xp X X . From the 

reference probability value at source 1, which is considered a degree of favorable evidence ( )p , the degree of 

unfavorable evidence ( )p  under the previously mentioned conditions is derived as follows: 

                                              
( )

( )
2

=
p

p


 .                       (18) 

From Eq. (4), the degree of certainty of the interlaced PqL bilattice, which is now a probabilistic function, 

can be calculated as follows: 

                         ( ) ( )
( )

2
= −

p

p pDc


 .                                        (19) 

In the same manner, the degree of contradiction shown in Eq. (5) is also a probabilistic function, which 

can be calculated as follows: 

                                      .                               (20) 

From Eq. (6), the paraquantum logical state ψPqL that appears in the interlaced PqL bilattice will be 

represented by two probabilistic functions, as follows: 

                                        ( ) ( ) ( )( ),=p p pDc Dct .                      (21) 

In the representation of the functions, the paraquantum logical state ( )p  will form a probabilistic 

trajectory into the interlaced PqL bilattice. Moreover, the paraquantum logical state ψPqL will form a 

probabilistic trajectory out of the interlaced PqL bilattice, with the origin of the state vector at the point 

equidistant from the vertices, thereby located where ( ) 0=pDc  and ( ) 0=pDct . In this case, the paraquantum 

logical state ψp that forms an external orbit trajectory will be constructed with two probabilistic functions, as 

follows: 

                                               ,                                                              (22) 

where ( )pDc  is obtained using Eq. (19), and ( )pDct  is obtained using Eq. (20). 

 

2.3 Representation of Fundamental PqL-Equations  

In this work, we will construct a paraconsistent model of the atom using the Shannon entropy to operate 

as a probabilistic function representative of the degrees of evidence (μ, λ) in the interlaced PqL bilattice. In 

this manner, the fundamental PqL-equations as degree of evidence equations will be probabilistic functions 

that will be inserted in the energy equations of the paraconsistent model of the atom.  

2.3.1 Shannon Normalization Factor 

To apply the Shannon entropy function to the PqL equations, we will introduce an adjustment 

dimensionless value represented by the symbol l , which will be called the Shannon normalization factor. 

The l value is calculated as follows: 

Being that the Shannon entropy from Eq. (12) is represented by the probabilistic logarithmic function 

( ) [ log log ]= − +sH k p p q q , the maximum unitary value of H(s) can be obtained when 1

log 2
=k ; then we will 

( ) ( )
( )

1
2

= + −
p

p pDct




( ) ( ) ( )( )1 ,= −p p pDc Dct
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make a representation of k  in which the equality of constants is satisfied as 
1

log 2
= = lk  . Thus, the 

Shannon normalization factor value l  is obtained by the equation: 
1

log 2
=l


, where 3.14159265358= , 

that results at 1.057402554=l . 

2.3.2 Degrees of Evidence as Shannon Entropy Functions 

With these dimensionless values relationships, the function of Shannon entropy for application in PqL, 

which we named ( )s PqLH , can be represented in a normalized mode as follows:   

                           ( ) [ log log ]= − +ls PqLH p p q q ,                                                (23) 

where is the constant of value ( 3.14159265358...)= , p  is the probability value,  

q  is the complement of the probability value [ (1 )]= −q p , and 

l  is the Shannon normalization factor extracted from k, with 
1

1.057402554
log 2

=l ;


.  

The variation of the resulting values of the function ( )s PqLH is expressed in the range ( )0 1 s PqLH ; 

therefore, the Shannon's normalized entropy has the variation values contained within the same range as that 

established for the PqL degrees of evidence.  

For the paraconsistent model of the atom, the probabilistic function of the degree of favorable evidence of 

the PqL  can be expressed as follows: 

                     ( )( ) =PqL s PqLH ,                                                    (24) 

where ( )s PqLH  is the Shannon entropy function presented in Eq. (23). 

According to Eq. (18), with the inclusion of the Shannon entropy, the probabilistic function of the degree 

of unfavorable evidence can be expressed as follows: 

                              ,                                                  (25) 

where ( )s PqLH  is the probabilistic Shannon entropy function presented in Eq. (23). 

With these two last equations, ( ) 1=s PqLH  means high entropy. In this condition, the degree of favorable 

evidence of the PqL (Eq. 24), will be of unit value ( ) 1=PqL , and the degree of unfavorable evidence (Eq. 

25), will be ( )
2

2
=PqL . Likewise, ( ) 0.5=s PqLH  means low entropy. In this condition the degree of favorable 

evidence, by Eq. (24), will be ( ) 0.5=PqL , and the degree of unfavorable evidence, by Eq. (25), will be 

( ) 0.5=PqL . 

 

2.4 PqL Energy Equations  

The degrees of evidence with their probabilistic representations created by the Shannon entropy function 

( )s PqLH are used in the equations to obtain the degrees of certainty and contradiction resulting in dimensionless 

values contained in the range [−1, + 1]. Since the PqL equations are functions that deal with normalized 

dimensionless values between 0 and 1, when multiplied by a known maximum energy value, they will 

represent the energy value in each condition expressed by the paraquantum logical states. Thus, in the 

paraconsistent model of an atom, we can consider that these PqL equations involve quantized energies 

through the values established by the unit modulus vectors Pψint, Pψext, and PψCextII. In this condition, at the 

ground-state level of the atom, the degrees of certainty ( )PqLDc and contradiction ( )PqLDct represent the energy 

values, which are obtained using the quantized probabilistic evidence degrees.  

From Eq. (19), the probabilistic certainty degree of the ground state (level E1) can be calculated as follows: 

                             ( ) ( )
( )

1 2
= −

s PqL

PqL E s PqL

H
Dc H .                                  (26) 

( )PqL

( )
( )

2
=

s PqL

PqL

H

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From Eq. (20), the probabilistic contradiction degree of the ground state (level E1) can be calculated as 

follows: 

                          ( ) ( )
( )

1 1
2

= + −
s PqL

PqL E s PqL

H
Dct H .                     (27) 

The values of the degrees of certainty and contradiction considered in the set of complex numbers £ , 

with their quantized probabilistic functions, represent the energy of the atom. In the proposed paraconsistent 

model of an atom, the ground state (level E1) is represented by the point of origin of the real and imaginary 

axes, which will be located at the point equidistant from the vertices of the interlaced PqL bilattice. In this 

representation, the paraconsistent logical state Pql  that defines the external orbital trajectory in the ground 

state, representing the complex numbers in Quadrant I, is expressed as follows: 

                      ( ) ( ) ( )( )1 1 1 11 ,= −I PqL E PqL E PqL EDc Dct i .                                (28) 

The probabilistic functions of the paraquantum logical state ( ) 1I PqL E  establish the ground state (level E1) 

and the external orbital trajectory in the ground state of the model of an atom at the end of the state vector 

PψI1 with a unitary module; that is,  or  

( )
( )

( )
( )

2 2

1 1 1
2 2

    
    = − − + + −    

    
    

s PqL s PqL
E s PqL s PqL

H H
M H H ,               (29) 

where ( )s PqLH  is the probabilistic Shannon entropy function presented in Eq. (23). 

 

2.5 Analogies between Quantum Mechanics and Paraquantum Logic 

With these logical–mathematical considerations, some concepts of PqL can be compared with the 

concepts of quantum mechanics on the basis of the equations obtained in Quadrant I of the interlaced PqL 

bilattice. Therefore, in quantum mechanics, the quantum state is represented by 0 1= +   and the 

vector norm is represented by 2 2
= +   . The same paraquantum logical state in quantum 

mechanics will be achieved, with the following relations of equality: ( )( )1= − PqLDc  and ( )= PqLDct . The 

quantum state of the quantum mechanics in the PqL is represented by the following well-known Dirac 

notation: 

 .                                             (30) 

In general, for n number of states related to En layers of energies: 

                    ( )( ) ( )1 0 1= − +n En EnPqL PqLDc Dct .                  (31) 

The representation of the degrees of certainty and contradiction and the ground state in level E1 will be 

unitary (E1 = 1) and is represented by 

                   ( )
( )

( )
( )

2 2

1 1 1
2 2

      
      = − − + + −      

      
      

s PqL s PqL

Total s PqL s PqL

H H
E H H ,                          (32) 

( )( ) ( )( )
2 2

1 1 11= − +E PqL E PqL EM Dc Dct

( )( ) ( )1 0 1= − +PqL PqLDc Dct
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where the potential energy of the ground state is 
( )

( )
2

1 1
2

  
  = − −  

  
  

s PqL

P s PqL

H
E H , and the kinetic energy of the 

ground state is ( )
( )

2

1 1
2

  
  = + −  
  
  

s PqL

c s PqL

H
E H and ( )s PqLH  is the probabilistic Shannon entropy function 

presented in Eq. (23). 

 

2.6 PqL Energy Equations for the Observer in the Vector Base X 

In Quadrant I of the interlaced PqL bilattice, the Shannon entropy functions simultaneously create the 

trajectories of the paraquantum logical states at the ends of two state vectors, thus establishing the ground 

state (level E1) of the quantum state of the particle. The state vector PψCextI constructed with the 

complementary action, in relation to the original vector PψextI, has the same characteristics and differs only in 

terms of the angular variation. For the X observer, as defined in the mapping shown in Fig. 3, the projections 

of the real values in the x-axis, which represent the potential energy, and the imaginary values in the y-axis, 

which represent the kinetic energy, vary proportionally, indicating the equilibrium of values against the 

inherent probabilistic uncertainties of quantum mechanics. 

2.6.1 Ground State of the Atom in the Paraconsistent Model 

The energies of the ground state are represented by the PqL equations, with the adapted function of the 

Shannon entropy having only the probability p as its variable. 

Using the logical operations of negation, complementation, and conflation, as well as the fundamentals of 

PqL, we will now define the n energy equations that form the n layers of the paraconsistent model of the 

atom. 

Initially, through these operations, the ground-state energy equations of the three other quadrants of the 

interlaced PqL bilattice are obtained.  

The negation operator applied to the functions of the paraquantum logical states that mark the orbital 

trajectory of the particle in the ground state of Quadrant I produces Quadrant II, as follows: 

( )1 ( )1 ( , ) = = −I II     → ( ) ( )( )( )1 1,= −II PqL En PqL EnDc Dct , 

 ( )2 ( )2 ( 1, 1) = = − −I II     → ( ) ( )( )( )2 , 1,= − −II PqL En PqL EnDct Dc . 

In Quadrant III, the complementation operator applied to the functions of the paraquantum logical states 

that mark the orbital trajectory of the particle in the ground state of Quadrant I produces the following 

expressions: 

( )1 ( )1 ( , ) = = − −I III     → ( ) ( )( )( )1 1,= − −III PqL En PqL EnDc Dct , 

            ( )2 ( )2 ( 1,1 ) = = − −I III     → ( ) ( )( )( )2 , 1,1 (1 )= − − −II PqL En PqL EnDct Dc . 

In Quadrant IV, the conflation operator applied to the functions of the paraquantum logical states that 

mark the orbital trajectory of the particle in the ground state of Quadrant I produces the following 

expressions: 

( )1 ( )1 ( , )= = −‡ I IV     → ( ) ( )( )( )1 1 ,= − −IV PqL En PqL EnDc Dct , 

( )2 ( )2 ( ,1 )= = −‡ I IV     → ( ) ( )( )( )2 1 ,= −IV PqL En PqL EnDct Dc . 
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These PqL logical operations create the paraconsistent model of the atom, where the probabilistic 

trajectory of the particle in the ground state is a unit-radius circle composed of the Shannon entropy functions 

introduced in the degrees of certainty and contradiction equations. These probabilistic trajectories related to 

the ground state are shown in the graphics of the results section. 

 

2.7 Energy Layers of Degenerate and Nondegenerate States 

In this work, we consider that the layers of the atom that relate to the degenerate states are represented by 

the energy that is related to the fundamentally pure state but is not aligned to the x-axis of the real values. In 

the interlaced PqL bilattice, the degenerate states have different values of contradiction degrees, which bring 

them close to the extreme logical state of inconsistency in Quadrants I and II and the extreme logical state of 

paracompleteness in Quadrants III and IV. 

In the same manner, the layers of the atom that relate to the nondegenerate states are represented by the 

energy that is related to the fundamentally pure state. In the interlaced PqL bilattice, the nondegenerate states 

are aligned to the x-axis of the real values and thus to the axis of the degrees of certainty. The nondegenerate 

states have the same values of contradiction degrees and different values of certainty degrees, which bring 

them close to the extreme logical state of true (t) in Quadrants I and IV and the extreme logical state of false 

(f) in Quadrants II and III. 

2.7.1 Second Layer of Energy 

With these considerations, for the second layer, the degree of favorable evidence μ is expressed in Eq. 

(24), and that of unfavorable evidence is expressed in Eq. (25). 

We can maintain a constant difference between the two degrees of evidence within a reasonable range of 

the probability variation p. For this, the degree of unfavorable evidence can be obtained by multiplication 

with the degree of favorable evidence, such that ( ) 2 ( ) 2 ( ) 2= PqL EE PqL E PqL E    or  

                                   ( )
( )

( ) 2
2

=
s PqL

PqL EE s PqL

H
H .                     (33) 

With these values of the degrees of evidence, the degree of certainty for the energy level E2 will have a 

constant value over a reasonable range of probability variation p. Therefore,  

or  

                                ( ) ( ) ( )
( )

2 2

 
 = −
 
 
 

s PqL

PqL E s PqL s PqL

H
Dc H H .                    (34) 

Moreover, the degree of contradiction for the energy level E2 can be derived as follows: 

         ( ) ( ) ( )
( )

2 1
2

 
 = + −
 
 
 

s PqL

PqL E s PqL s PqL

H
Dct H H ,                                                       (35) 

where ( )s PqLH  is the Shannon entropy function presented in Eq. (23). 

In the second layer, the degenerate paraquantum logical state will be represented by the function: 

                           ( ) ( )( )( ) 2 2 21 ,= −PqL E PqL E PqL EDc Dct                       (36) 

or by the Dirac notation for the X observer: 

                              ,                     (37) 

where ( ) 2PqL EDc  is presented in Eq. (34), and ( ) 2PqL EDct  is presented in Eq. (35). 

( ) ( ) 2 ( ) 22 = −PqL E PqL EEPqL EDc  

( )( ) ( )2 2( ) 2
1 0 1= − +PqL E PqL EPqL E

Dc Dct
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Given the relation to the pure state of the ground state, in the second layer, the pure or nondegenerate 

paraquantum logical state will be represented by the complement expressed in Eq. (34) and the function 

expressed in Eq. (27), as follows: 

         ( ) ( )( )( ) 2 2 11 ,= −PqL E pure PqL E PqL EDc Dct .                                           (38) 

2.7.2 Third Layer of Energy 

In the third layer, the degree of favorable evidence μ is equal to the degree of unfavorable evidence 

previously presented in Eq. (25). Therefore,  or  

                                            
( )

( ) 3
2

=
s PqL

PqL E

H
 .                                    (39) 

In this manner, the intermediary degree of unfavorable evidence will be obtained through the square root 

of ( ) 3PqL E . Therefore, 

                                        
( )

( ) 3
2

=
s PqL

PqL E

H
 .                                              (40) 

The degree of unfavorable evidence of the third layer will be obtained by multiplication with the degree 

of favorable evidence, such that  or  

                           
( ) ( )

( ) 3
2 2

= 
s PqL s PqL

PqL EE

H H
 .                   (41) 

With these values of the degrees of evidence, the degree of certainty for the energy level E3 will have a 

constant value over a reasonable range of probability variation p. Therefore, the degree of certainty for the 

third layer of energy will be computed using  or  

                             ( )
( ) ( ) ( )

3 2 2 2

 
 

= −  
 
 

s PqL s PqL s PqL

PqL E

H H H
Dc .                       (42) 

Moreover, the degree of contradiction for the energy level E3 can be derived as follows: 

                ( )
( ) ( ) ( )

3 1
2 2 2

 
 

= +  − 
 
 

s PqL s PqL s PqL

PqL E

H H H
Dct .                  (43) 

In the third layer, the degenerate paraquantum logical state will be represented by the function: 

                                        (44) 

or  

                                    ( )( ) ( )3 3( ) 3
1 0 1= − +PqL E PqL EPqL E

Dc Dct ,                   (45) 

where ( ) 3PqL EDc  is presented in Eq. (42), and ( ) 3PqL EDct  is presented in Eq. (43). 

In the third layer, the pure or nondegenerate paraquantum logical state will be represented by the 

functions expressed in Eqs. (42) and (27), as follows: 

                   ( ) ( )( )( ) 3 3 11 ,= −PqL E pure PqL E PqL EDc Dct .                              (46) 

2.7.3 Fourth Layer of Energy 

In the fourth layer, the degree of favorable evidence is equal to the degree of unfavorable evidence 

previously derived. Therefore,  or  

                                
( )

( ) 4
2

=
s PqL

PqL E

H
 .                                                              (47) 

The degree of unfavorable evidence will be obtained through the square root of ( ) 4PqL E . Therefore, 

( ) 3 ( ) 2=PqL E PqL E 

( ) 3 ( ) 3 ( ) 3= PqL EE PqL E PqL E  

( ) ( ) 3 ( ) 33 = −PqL E PqL EEPqL EDc  

( ) ( )( )( ) 3 3 31 ,= −PqL E PqL E PqL EDc Dct

( ) 4 ( ) 3=PqL E PqL E 
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                          ( )
( ) 4

2
=

s PqL
PqL E

H
 .                                 (48) 

The degree of unfavorable evidence of the energy level (E4) of the current state is calculated by 

multiplication, such that ( ) 4 ( ) 4 ( ) 4= PqL EE PqL E PqL E    or  

                                    ( ) ( )
( ) 4

2 2
= 

s PqL s PqL
PqL EE

H H
 .                                             (49) 

The degree of certainty for energy level E4 can be derived as follows: 

                             ( )
( ) ( ) ( )

4 2 2 2
= − 

s PqL s PqL s PqL

PqL E

H H H
Dc .                               (50) 

The degree of contradiction for energy level E4 can be derived as follows: 

                             ( )
( ) ( ) ( )

4 1
2 2 2

= +  −
s PqL s PqL s PqL

PqL E

H H H
Dct .                     (51) 

In the fourth layer, the degenerate paraquantum logical state will be represented by the function: 

                                                     (52) 

or  

                                  
( )( ) ( )( )4 41 0 1

 
= − + 
 

nd PqL E nd PqL EDc Dct ,                         (53) 

where ( ) 4PqL EDc  is presented in Eq. (50), and ( ) 4PqL EDct  is presented in Eq. (51). 

In the fourth layer, the pure or nondegenerate paraquantum logical state will be represented by the 

functions expressed in Eqs. (50) and (27), as follows: 

  ( ) ( )( )( ) 3 4 11 ,= −PqL E pure PqL E PqL EDc Dct .                    (54) 

2.7.4 Fifth Layer of Energy 

In the fifth layer, the degree of favorable evidence is equal to the degree of unfavorable evidence 

previously derived. Therefore,  or  

                                ( )
( ) 5

2
=

s PqL
PqL E

H
 .                             (55) 

The degree of unfavorable evidence will be obtained through the square root of ( ) 5PqL E . Therefore, 

                              
( )

( ) 5
2

==
s PqL

PqL E

H
 .                                              (56) 

Given the relation to the pure state of the fundamental layer, the degree of unfavorable evidence of the 

energy level (E5) of the current state is calculated by multiplication, such that  

or  

                                 ( ) ( )
( ) 5

2 2
= 

s PqL s PqL

PqL EE

H H
 .                     (57) 

In this case, the degree of certainty for energy level E5 can be derived as follows: 

                    ( )
( ) ( ) ( )

5 2 2 2

 
 
 = − 
 
 
 

s PqL s PqL s PqL

PqL E

H H H
Dc .                       (58) 

The degree of contradiction for energy level E5 can be derived as follows: 

( ) ( )( )( ) 4 4 41 ,= −PqL E PqL E PqL EDc Dct

( ) 5 ( ) 4=PqL E PqL E 

( ) 5 ( ) 5 ( ) 5= PqL EE PqL E PqL E  
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( )
( ) ( ) ( )

5 1
2 2 2

 
 
 = +  −
 
 
 

s PqL s PqL s PqL

PqL E

H H H
Dct .                        (59) 

In the fifth layer, the degenerate paraquantum logical state will be represented by the function: 

                    ( ) ( )( )( ) 5 5 51 ,= −PqL E PqL E PqL EDc Dct                                    (60) 

or  

  
( )( ) ( )( )5 51 0 1

 
= − + 
 

nd PqL E nd PqL EDc Dct ,                                     (61) 

where ( ) 5PqL EDc  is presented in Eq. (58), and ( ) 5PqL EDct  is presented in Eq. (59). 

In the fifth layer, the pure or nondegenerate paraquantum logical state will be represented by the functions 

expressed Eqs. (58) and (27), as follows: 

( ) ( )( )( ) 5 5 11 ,= −PqL E pure PqL E PqL EDc Dct .                      (62) 

2.7.5 Sixth Layer of Energy 

In the sixth layer, the degree of favorable evidence is equal to the degree of unfavorable evidence 

previously derived. Therefore,  or  

( )
( ) 6

2
=

s PqL

PqL E

H
 .                                           (63) 

The degree of unfavorable evidence will be obtained through the square root of ( ) 6PqL E . Therefore, 

.                                             (64) 

The degree of unfavorable evidence of the energy level (E6) of the current state is calculated by 

multiplication, such that  ( ) 6 ( ) 6 ( ) 6= PqL EE PqL E PqL E    or  

   ( ) ( )
( ) 6

2 2
= 

s PqL s PqL
PqL EE

H H
 .                  (65) 

The degree of certainty for energy level E6 can be derived as follows: 

( )
( ) ( ) ( )

6 2 2 2

 
 
 = − 
 
  
 

s PqL s PqL s PqL

PqL E

H H H
Dc .                  (66) 

The degree of contradiction for energy level E6 can be derived as follows: 

( )
( ) ( ) ( )

6 1
2 2 2

 
 
 = +  −
 
  
 

s PqL s PqL s PqL

PqL E

H H H
Dct

.                  (67) 

In the sixth layer, the degenerate paraquantum logical state will be represented by the function: 

( ) ( )( )( ) 6 6 61 ,= −PqL E PqL E PqL EDc Dc                      (68) 

or  

( )( ) ( )( )6 61 0 1
 

= − + 
 

PqL E PqL EDc Dct ,                     (69) 

where ( ) 6PqL EDc  is presented in Eq. (66), and ( ) 6PqL EDct  is presented in Eq. (67). 

In the sixth layer, the pure or nondegenerate paraquantum logical state will be represented by the 

functions expressed in Eqs. (66) and (27), as follows: 

( ) ( )( )( ) 6 6 11 ,= −PqL E pure PqL E PqL EDc Dct .                     (70) 

( ) 6 ( ) 5=PqL E PqL E 

( )
( ) 6

2
=

s PqL
PqL E

H

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These procedures can be continued for n layers of the paraconsistent model of the atom. 

The graphs resulting from the energy layer equations are shown in the results section. 

 

2.8 PqL Energy Equations for the Observer in the Vector Base Y 

For the interlaced PqL bilattice, the equations that translate this situation can be obtained using the same 

procedures performed to obtain the equations for calculating the degrees of certainty and contradiction. To 

derive the equations for the Y observer, we initially consider the same probabilistic function used for the X 

observer, with its values allocated to the same USCP (lattice κ). To obtain the degrees of certainty and 

contradiction for the Y observer, we will apply the actions that previously created the transformations that 

resulted in the degrees of certainty and contradiction, now considering the rotation of 45° to be clockwise. 

These actions are as follows: (a) expansion of 2  from the x- and y-axes ( ) ( )1 1 1, 2, 2T X Y x y= ; (b) 45° 

clockwise rotation at the origin ( ) ( )2 2 2 1 1 1 1, cos sin , sin cosT X Y X Y X Y   =  +   − where
1

cos
2

=  and 

; (c) translation of the −1 value from the x-axis ( ) ( )3 3 3 2 2, = 1,−T X Y X Y , resulting in 

( ) ( )3 3 3, = 1,+ − −T X Y x y x y  or  

( ) ( )3( ) 3 3 ( ) ( ) ( ) ( ), 1,= + − −p p p p pT X Y     .            (71) 

For the Y observer, we denote the contradiction degree (Dct) as X3 and the certainty degree (Dc) as Y3: 

3 =X Dc  → Certainty degree: 

                                  ( ) ( ) ( ) 1= + −p y p pDc   ,                            (72) 

3 =Y Dct  → Contradiction degree: 

                                     .                                    (73) 

Therefore, from Eq. (71) –transformation 3( )pT , we obtain the certainty degree equation (Dc(μ(p),λ(p))), with 

its values projected on the y-axis of the lattice τ, and the contradiction degree equation (Dct(μ(p),λ(p))), with its 

values projected on the x-axis of the lattice τ. 

In Fig. 4(a), the mapping with the sequences of actions of the paraconsistent transformations for the Y 

observer is shown. 

Given that the paraquantum logical state will have its values changed through the modification of the 

orbital trajectory, for the Y observer, its representation will be at the extremity of the internal state vector of 

the PqL, originating from the vertex where the inconsistent logical state is located. For logical negation, the 

internal state vector will have its origin at the vertex, where the extreme logical state “paracomplete” is 

located. 

Given that the paraquantum logical state ψτ is the point of intersection between the degree of certainty 

(Dc) and the degree of contradiction (Dct) located in the interlaced PqL bilattice, the representation of the Y 

observer in the form of a set of complex numbers will be expressed as follows: 

                                          int ( ) ( )= +p pIy iDc Dct .                             (74) 

An internal state vector with a unitary module and that originates from the inconsistent extreme logical 

state (⊺) is derived as follows: 

                                       ( ) ( )
2 2

( ) ( )= +p pM y Dc Dct .                          (75) 

This internal state vector with a unitary module defines the orbital paths within the interlaced PqL 

bilattice. The same values represent the external logical state for the ground state (level E1), which can be 

expressed as follows: 

                                  ( )int ( ) ( )1= − +p y p yIy i Dc Dct .                        (76) 

This unitary module of the state vector defines the external orbital trajectory in the PqL bilattice. The 

external orbital trajectory is made at the extremity of the external state vector with a unitary module and 

whose origin is at the point equidistant from the vertices of the interlaced PqL bilattice. Its module is 

expressed as follows: 

                                           ( ) ( )
2 2

( ) ( )1= − +p y p yM Iy Dc Dct .                                          (77) 

1
sin

2
=

( ) ( ) ( )= −p y p pDct  
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The values representing the external logical state of the ground state (level E1) for the Y observer with the 

probability values used in the PqL can be derived as follows: 

                                  .                       (78) 

Figure 4(b) shows Quadrant I of the interlaced PqL bilattice with the state vectors and orbit trajectories of 

the Y observer. 

   

(a)                                                                                     (b) 

Fig. 4. Paraconsistent transformations and state vectors for the Y observer: (a) sequences of the 

paraconsistent transformations for the Y observer with clockwise rotation; (b) Quadrant I of the interlaced 

PqL bilattice with the vectors and orbit trajectories of the Y observer. 

 

2.9 A Representation of the Paraconsistent Model of the Atom 

The mapping sequences of probabilistic evidence degrees with both the X and Y observers result in 

equations of superposed paraquantum logical states in Quadrant I of the interlaced PqL bilattice. Using the 

paraquantum equations, we can present the results of the superposed logical states as two bilattices 

comprising one superposed plane. 

2.9.1 Superposed Paraconsistent Logical States 

The energy equations for the Y observer are represented by the quantum logical states with a set of 

complex numbers, where the imaginary and real values will change depending on the observer. For the Y 

observer, the vector base will be orthogonal to the base X. This means that, for the Y observer, the imaginary 

values of the X observer will be their real values and the actual values of the X observer will be their 

imaginary values. 

Figure 5(a) shows the sequences of the paraconsistent transformations for the X and Y observers and 

framework vectors. 

Figure 5(b) shows the interlaced PqL bilattice and the vectors and trajectories of the X and Y observers 

with superposed paraquantum logical states.  

In the next section, a paraconsistent model of the atom is constructed with PqL equations formalized with 

the Shannon entropy function. With the range of probability values (p), we will obtain the degrees of 

evidence and the degrees of certainty and contradiction forming the paraquantum logical states and energy 

values to show through the graphical results the individual behavior and its representations that simulate 

quantum phenomena. 

 

( )( ) ( ),=y p y p yDc Dct
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(a)                                                                              (b) 

Fig. 5. Superposed paraconsistent logical states and probabilistic trajectories of the X and Y observers: (a) 

sequences of the paraconsistent transformations for the X and Y observers and framework vectors; (b) 

interlaced bilattices with the vectors and orbit trajectories of the X and Y observers with superposed 

paraquantum logical states. 

 

In the paraconsistent model, the equations form the superposed paraquantum logical states located in the 

planes of the X and Y observers. Moreover, variations of the probability values are applied to the equations 

expressing the orbital trajectories of the particles in the two superposed planes as traces of energy in the 

overlapping layers of the atom. 

 

2.10 Algorithms and Testing Procedures 

For the simulation of the paraconsistent model of the atom we consider that the functions that generate 

degrees of evidence, certainty and contradiction are discrete. Therefore, it is necessary to specify a number of 

N iterations for the algorithm. If we consider that this number N is related to a unit of time, then it means the 

frequency of the appearance of the paraquantum logical states located at the end of the state vector with a 

unitary module (Pψ). The inverse of this frequency is the period T, therefore the interval ( p ) of each 

iteration that produces the movement of the state vector in the interlaced PqL bilattice. The minimum number 

of iterations has been specified in 10 and the maximum number of iterations be only limited by the 

computational capacity. In the algorithm, the iterations count in ascending order, starts at 1 and ends at 

Nmax-1. In descending order, it starts at Nmax-1 and ends at Nmax-(Nmax- p ). Thus, the probability value 

p in the Shannon function will never be 0 or 1. As the number of iterations N specified for the generation of 

degrees of evidence can be a minimum value of 10 and an infinite maximum value, then in the paraconsistent 

model of the atom there can be an infinite number of state vectors with unitary module, where, in relation to 

frequency, all state vectors are different from each other. 

In this work, we will present two main algorithms that are two generator systems of degrees of evidence, 

certainty and contradiction. Both algorithms are used in the simulations to obtain the graphical results 

regarding the study of the behavior of the degrees of evidence and the trajectories of the paraquantum logical 

states in a representation of the atom in the ground-state with the observer in X.  

In the simulations with fundamental PqL-equations and for energy layers of the hydrogen atom, the 

number of sequential steps used was Nmax=100, therefore the probability values (p) are with intervals p  in 

the order of 1/100. The value used as the Shannon normalization factor was 1.057402554=l , and the pi 

constant used was . 3.141592654=
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2.11 Generating degrees of evidence with the Shannon entropy function 

In the construction of the model, probability p is defined as the system input value and the PqL-

evidence 

degrees are obtained through the Shannon entropy function. In algorithm application the probability is 

originated from two sources of information that generate data simultaneously.  

Source 1. For probability p ranging between 0 and 1.   

Source 2. For probability p ranging between 1 and 0.  

----------------------------------------------------------------------------------------------------------------------------- ------ 

PqL-ALGORITHM 1 - Generator of degrees of evidence with Shannon function application 

Function PqLEvidShanEntropy (in: ( ) ( ) ( ) ( ), , ,
+ + − −n n n np q p q out: ( ) ( ) ( ) ( ), , ,PqL incr PqL incr PqL decr PqL decr    ) 

1. Give the number of sequential steps used ( )max10 Computational limit N :  max ......=N      

1.1 Calculate the probability variation value ( )p used in each iteration: 
max

1
 =p

N
  

2. Consider the iteration count starting at 1 and ending at (Nmax-1) and calculate the sequence values of the 

probability in increasing order ( )+np :  

                         ( ) ( ) 1 ,2 ,3 ,...,
+
=     −ni maxp p p p N p p     

2.1 Calculate the complementary values ( )+nq :    ( ) ( )1
+ +
= −ni niq p                       

2.2 Calculate the Shannon Entropy function values in increasing order (Eq.(23)): 

                  ( ) ( ) ( ) ( ) ( )log log
+ + + +

 = − +
 

l
incrs PqL ni ni ni niH p p q q  

3. Consider the iteration count starting at (Nmax-1) and ending at Nmax-(Nmax- p ) and calculate the 

sequence values of the probability in decreasing order ( )−nip :               

          ( ) ( ) ( ) ( ) ( ) ( ) 1 , 2 , 3 ,...,
−
=  −   −   −   − − ni max max max max maxp N p p N p p N p p N p N p p             

3.1 Calculate the complementary values complementary values ( )−niq : ( ) ( )1
− −
= −ni niq p  

3.2 Calculate the Shannon Entropy function values in decreasing order ( )s PqLincrH (Eq.(23)): 

                      ( ) ( ) ( ) ( ) ( )log log
− − − −

 = − +
 

l
decrs PqL ni ni ni niH p p q q  

 4. Present the favorable evidence degree of increasing order (Eq. (24)):  ( )( ) =
incrPqL incr s PqLH  

4.1 Calculate the unfavorable evidence degree of increasing order (Eq. (25)): 

                    ( )
( )

2
= incr

s PqL

PqL incr

H

  

5.  Present the favorable evidence degree of decreasing order (Eq. (24)):  ( ) ( )=
decrPqL decr s PqLH  

5.1 Calculate the unfavorable evidence degree of decreasing order (Eq.(25)): 

                         
( )

( )
2

= decrs PqL
PqL decr

H
  

6. Plot on the same chart: ( ) PqL incrp  , ( ) PqL incrp  , ( ) PqL decrp  and ( ) PqL decrp  . 

7. Return to step 1. 

-------------------------------------------------------------------------------------------------------------------------- 

 

In the paraconsistent model of the atom, all equations are constructed with degrees of evidence, so, from 

this main algorithm, it is possible to plot other results by applying the equations presented in the text. 

 

2.12 PqL Algorithm for generating paraquantum logical states with the Shannon entropy function 
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----------------------------------------------------------------------------------------------------------------------------------- 

PqL-ALGORITHM 2 - Paraquantum logical States Generator with Shannon Function application 

Function PqLstatesShanEntropy (in: ( ) ( ),
incr decrs PqL s PqLH H out: ( )PqL PqLstates ) 

1. For each value of the Shannon functions ( ) incrs PqLH and  ( ) decrs PqLH : 

 1.2 Calculate the probabilistic certainty degree of increasing order in the ground state (Eq. (26)): 

( ) ( )
( )

2
= − incr

incr

s PqL

PqL incr s PqL

H

Dc H  

 1.3 Calculate the probabilistic contradiction degree of increasing order in the ground state (Eq. (27)): 

( ) ( )
( )

1
2

= + −incr

incr

s PqL

PqL incr s PqL

H

Dct H  

  1.4 Calculate the probabilistic certainty degree of decreasing order in the ground state (Eq. (26)): 

( )
( )

( )
2

= − decr

decr

s PqL
s PqLPqL decr

H
Dc H  

  1.5 Calculate the probabilistic contradiction degree of decreasing order in the ground state (Eq. (27)): 

( )
( )

( ) 1
2

= + −decr

decr

s PqL
s PqLPqL decr

H
Dct H  

2. Present the Paraquantum logic state functions for quadrant I (Eq. (28)): 

Increasing order:  ( ) ( )( )( ) 1 ,= −PqL incr PqL incr PqL incrI Dc Dct i  

   Decreasing order: ( ) ( )( )( ) 1 ,= −PqL decr PqL decr PqL decrI Dc Dct i  

      2.1 Present the complementary values (Eq. (17)): 

Increasing order:   ( ) ( )( )( ) 1 ,1 (1 ) = − − −PqL incr PqL incr PqL incrI Dct Dc i  

 Decreasing order: ( ) ( )( )( ) 1 ,1 (1 ) = − − −PqL decr PqL decr PqL decrI Dct Dc i  

 3. Apply the Negation Operator for obtain values to quadrant II (Eq. 9): 

Increasing order:  ( ) ( )( )( ) 1,= −PqL incr PqL incr PqL incrII Dc Dct i  

    Decreasing order: ( ) ( )( )( ) 1,= −PqL decr PqL decr PqL decrII Dc Dct i  

3.1 Present the complementary values: 

Increasing order:  ( ) ( )( )( ) 1,= − −PqL incr PqL incr PqL incrII Dct Dc i  

    Decreasing order: ( ) ( )( )( ) 1,= − −PqL decr PqL decr PqL decrII Dct Dc i  

4. Apply the Complementation Operator for obtain values to quadrant III (Eq. 10): 

Increasing order:  ( ) ( )( )( ) 1,= − −PqL incr PqL incr PqL incrIII Dc Dct i  

    Decreasing order: ( ) ( )( )( ) 1,= − −PqL decr PqL decr PqL decrIII Dc Dct i  

4.1 Present the complementary values: 

Increasing order:  ( ) ( )( )( ) 1,1 (1 )= − − −PqL incr PqL incr PqL incrIII Dct Dc i  

 Decreasing order: ( ) ( )( )( ) 1,1 (1 )= − − −PqL decr PqL decr PqL decrIII Dct Dc i  

5. Apply the Conflation Operator for obtain values to quadrant IV (Eq. 11): 

Increasing order:  ( ) ( )( )( ) 1 ,= − −PqL incr PqL incr PqL incrIV Dc Dct i  

 Decreasing order: ( ) ( )( )( ) 1 ,= − −PqL decr PqL decr PqL decrIV Dc Dct i  

5.1 Present the complementary values: 

Increasing order:  ( ) ( )( )( ) 1 ,= −PqL incr PqL incr PqL incrIV Dct Dc i  

Decreasing order: ( ) ( )( )( ) 1 ,= −PqL decr PqL decr PqL decrIV Dct Dc i  
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6. Consider the representation in complex number set ( )( ) Re, Im=PqL  and plot on the same chart the results 

of the all 16 paraquantum logical state functions. 

7. Return to step 1. 

----------------------------------------------------------------------------------------------------------------------------- ----- 

 

2.13 Rydberg energy and Hydrogen atom 

In this work, the paraconsistent model of the atom constructed with the probabilistic function of 

Shannon's entropy will be correlated to the hydrogen atom through the Rydberg formula. In this way, the 

energy values obtained in the paraconsistent atom model simulation are all correlated with the values defined 

in Eq. (13); therefore, for application in the hydrogen atom, the Rydberg energy is the unit for energy and is 

calculated by 

( )

4

2 2
02 4

= =
 h

e
Ryd

m e
E R hc



. Here, the Rydberg constant is 110973731.568527 −
 =R m , h is the 

Planck’s constant, and c is the speed of light. For this condition the Rydberg energy is

182.179872085 10−= = RydE R hc J . With 191.60217653 10−= e C , then 13.60569225   =RydE eV . In the 

simulations, this value will be multiplied by the degrees of certainty equations to obtain the energy values in 

each layer of the hydrogen atom. 

 

3. Results 

The graphical results that will be presented are from simulations using the PqL equations in a calculi 

spreadsheet. 

3.1 Results Related to the Fundamental PqL-Equations of the Paraconsistent Model of the Atom 

With application of PqL-ALGORITHM 1: Figure 6(a) shows the graphs of the results of the degree of 

favorable evidence μ(PqL) derived using Eq. (24) and the degree of unfavorable evidence λ(PqL) derived using 

Eq. (25).  With application of PqL-ALGORITHM 2: Figure 6(b) shows the variations of the degrees of 

certainty (Eq. 26) and contradiction (Eq. 27) and the simulation results of the unitary module M(ψ)I1 of the 

quantized probabilistic function (Eq. 29) for a complete variation of probability p. 

 

(a)                                                                                  (b) 

Fig. 6. Results related to the fundamental PqL-equations: (a) graphs of the results of the degrees of favorable 

evidence μ(p) (Eq. 24) and unfavorable evidence λ(p) (Eq. 25); (b) simulation results of the degrees of certainty 

and contradiction, according to Eqs. (26) and (27), respectively, and the unitary module M(ψ)I1 of the 

quantized probabilistic function (Eq. 29) for a complete variation of probability p. 
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3.2 Results Related to the Ground-State Energy of the Paraconsistent Model of an Atom 

With application of PqL-ALGORITHM 2: Figure 7(a) shows the simulation results of the ground-state 

energy for the paraconsistent model of the atom.  

With application of PqL-ALGORITHM 2: Figure 7(b) shows the simulation results with explications 

about the utilized equations, and the interlaced PqL bilattice circumscribed in the external orbital 

circumference. In this simulation, we used Eqs. (24) to (27) and the logical operations of negation, 

complementation, and conflation. 

 

(a) 

 

(b) 

Fig. 7. Results related to the fundamental PqL-equations for the energy layer. (a) Simulation of the ground-

state energy of the atom using the equations of Quadrant I and the PqL operators. (b) Simulation results with 

explications about the utilized equations and the interlaced PqL bilattice circumscribed in the external orbital 

circumference. 
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Figure 8(a) shows the results simulated with a group of Shannon entropy functions, which are obtained 

using the equations of the degrees of certainty in six layers of the paraconsistent model of the atom for 

nondegenerate states. The results of the simulations obtained using the equations defining the six layers of 

the paraconsistent model of the atom for the degenerate state mode from the X observer are shown in Fig. 

8(b). 

Figure 8(c) shows the representation of the PqL bilattice, including the results for the degenerate state 

mode in the paraconsistent model of the atom from the X observer. In this simulation, we used Eqs. (24) to 

(27), (33) to (35), (39) to (43), (47) to (51), (55) to (59), and (63) to (67) and the logical operations of 

negation, complementation, and conflation. 

 

 

(a)                                                                             (b) 

 

(c) 

Fig. 8. Graphs resulting from the energy layer with fundamental PqL-equations from the X observer: (a) 

simulation results obtained using a group of Shannon entropy functions for calculating the certainty degree 

equations in six layers of the paraconsistent model of the atom for the pure or nondegenerate states; (b) 

simulation of the energy layer with degenerate states of the atom using the paraquantum equations in the 

mode from the X observer; (c) representation of the PqL bilattice, including the results for the degenerate 

state mode in the paraconsistent model of the atom from the X observer. 
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The simulation results obtained using the PqL equations defining the six layers of the paraconsistent 

model of the atom for the degenerate state mode from the Y observer are shown in Fig. 9(a).  

Figure 9(b) shows the representation of the simulation of the degenerate states of the atom in the mode 

from the Y observer, with the inclusion of the PqL bilattice. In this simulation, we used the adapted equations 

shown in the “PqL Energy Equations for the Y Observer” section, with the logical operations of negation, 

complementation, and conflation. 

 

 

 

(a)                                                                          (b) 

Fig. 9. PqL Energy fundamental PqL-equations for the Y observer: (a) simulation of the energy layers with 

degenerate and nondegenerate states of the atom using the paraquantum equations in the mode from the Y 

observer; (b) representation of the simulation of the degenerate states of the atom in the mode from the Y 

observer, with the inclusion of the PqL bilattice. 

 

Figure 10(a) shows the results of the simulation of a complete paraconsistent model of the atom without 

nondegenerate states.  

Figure 10(b) shows the simulation results with explications about the utilized equations and the 

interlaced PqL bilattice circumscribed in the orbital circumference and energy levels.  

Figure 10(c) shows the paraconsistent model of the complete atom with the orbital energy paths of the 

layers represented by the degrees of certainty and contradiction for the two references of the X and Y 

observers. In this simulation, we used Eqs. (24) to (76) and the adapted equations shown in the “PqL 

Equations for the Y Observer” section, with the logical operations of negation, complementation, and 

conflation. 
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(a)                                                                                   (b) 

 

 (c) 

Fig. 10. The complete paraconsistent model of the atom: (a) simulation results of the paraconsistent model of 

the atom without nondegenerate states, with the representation of the interlaced PqL bilattice; (b) simulation 

results of the complete paraconsistent model of the atom with degenerate and nondegenerate states; (c) 

simulation results of the complete paraconsistent model of the atom with all probabilistic trajectories of the 

particles in the six equated layers. 

 

3.3 Results Related to the Wave Functions in the Paraconsistent Model of the Atom 

With the probabilistic variables established by the PqL equations in which Shannon entropy functions are 

included, the ( )PqLDc  and ( )PqLDct  values are transformed into functions representing the probability 

emanating from the logical model of the atom. The wave function for each layer of the paraconsistent model 

of the atom is derived by multiplying the paraquantum logical state with the conjugate complex, according to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   doi:10.20944/preprints201911.0250.v2

https://doi.org/10.20944/preprints201911.0250.v2


Eq. (2). For the ground-state energy, the wave function 
2

  is calculated using 

( ) ( ) ( )
( ) ( )

2
*

1 1,
= 

PqL PqL
PqL E PqL E 

    or  

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

2

1 1 1 1,
1 1

   
= − +  − −      PqL PqL

PqL E PqL E PqL E PqL EDc Dct i Dc Dct i
 

                        (79) 

where ( ) 1PqL EDc  is presented in Eq. (26), and ( ) 1PqL EDct  is presented in Eq. (27). 

For the other atomic shells, the axes of the references and the amplitudes of the degrees of certainty and 

contradiction derived by the equations will be considered. 

The graphs obtained by the applications of the equations that are related to the wave functions are shown 

in Fig. 11(a). Figure 11(b) shows the six wave functions represented in the paraconsistent model of the atom 

with orbital energy paths of layers E1, E2, and E3 for the X and Y observers. 

 

 

(a) 

 

(b) 

Fig. 11. Wave functions: (a) simulation results of the wave functions for the ground-state energy and the 

wave functions for some energy layers; (b) wave functions represented in the paraconsistent model of the 

atom with orbital energy paths of layers E1, E2, and E3 for the X and Y observers. 
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3.4 Results Related to the Heisenberg Uncertainty Principle in the PqL 

The reversibility characteristic of the PqL ensures that the degrees of evidence of probability can be 

obtained through Eqs. (7) and (8). The certainty degrees at the x-axis ( ( )PqL EDc ) and the contradiction 

degrees at the y-axis ( ( )PqL EDct ) in the associated interlaced PqL bilattice can be mapped back to the USCP, 

where the degrees of evidence μ(p) and λ(p) are plotted in the x- and y-axes. For the typical paraquantum 

logical state, that is, ( ) ( )( )( ) ,=PqL PqL PqLDc Dct , the degree of favorable evidence when the value of the 

degree of contradiction is 0 can be calculated using ( )( ) ,

1 1

2 2
= +p Dc

 
 , which is the normalized value for 

( )PqL EDc . With this procedure, the normalized value for the contradiction degree is obtained using 

( )( ) ,

1 1

2 2
= +p Dct

 
 . We can make this normalization for the external paraquantum logical state of the type 

( ) ( )( )( ) 1 ,= −PqL PqL PqLDc Dct , where the normalized value for ( )1− PqLDc  is considered the uncertainty for the 

x-axis, computed as: 

                                      
( )( )

( )

1 1

2

− +

 =
PqL

PqL

Dc

x ,                                (80) 

and the normalized value for ( )PqLDct  is considered the uncertainty for the y-axis, computed as: 

                                        
( )

( )

1

2

+
 =

PqL

PqL

Dct
y .                             (81) 

With Eqs. (80) and (81), the formal inequality of the Heisenberg uncertainty principle expressed in Eq. (1) 

is represented in the PqL as follows: 

                                        ( ) ( )
2

  
h

PqL PqLx y .                                  (82) 

The graphical results of the simulations with the Heisenberg uncertainty principle equations are shown in 

Fig. 12(a). 

 

3.5 Results Related to the Calculation of the Probability Value in the Paraconsistent Model of the Atom 

The PqL is a reversible logic, and in this manner, we can analyze the paraconsistent model of the atom 

from its inner part, considering the nucleus as the energy generator that spreads its values to its external part. 

With the equations considered in this manner, we can estimate the probable values of energy, as well as the 

probable location of the energy around the generating nucleus. The reversibility characteristic of the PqL 

ensures that the degrees of evidence of probability can be obtained through Eqs. (7) and (8), and the result of 

its normalized value can be compared with the Bernoulli’s probabilistic function presented in Eq. (14). This 

comparison shows that the following equality is a good approximation: ( ) 2=p  , where   is the standard 

deviation of probabilistic measures. With ( )

2
=

p
  and variance 

2=Var  , the variance in the PqL can be 

defined as ( ) ( )
2 2

2 4

 
 = =
 
 

p p
Var

 
. The variance related to the degree of unfavorable evidence can be computed 

using ( )
4= pVar  . In this case, the variance can be represented by the values of the degrees of certainty and 

contradiction, such that 

                                  
( ) ( )

4

( )

1

2

− + + 
 =
 
 

PqL PqL

PqL

Dc Dct
Var .                                       (83) 

From Eq. (12), we can obtain the p values by combining the variance equation with a second-degree 

equation and applying Bhaskara’s method, such that 
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( )1 1 4

2

 + −
 

=
PqLVar

p .                                                              (84) 

For the complement, 1= −q p  or  

                           
( )1 1 4

2

 − −
 

=
PqLVar

q .                                (85) 

Figure 12(a) shows the results of the simulation of the Heisenberg uncertainty principle based on Eqs. 

(80), (81), and (82). Figure 12(b) shows the results of the simulation of Eqs. (84) and (85), with probability 

values ranging from 0 to 1.0 as p and from 1.0 to 0 as the complement q, where q = 1 − p. 

 

(a) 

 

(b) 

Fig. 12. Heisenberg uncertainty principle and the calculation of the probability value: (a) results of the 

simulation of the PqL with the Heisenberg uncertainty principle based on Eqs. (80) and (81); (b) results of 

the simulation based on Eqs. (84) and (85) to obtain probability values ranging from 0 to 1.0. 

 

3.6 Results Related to the Representation of the Division and Distance between Particles 

The divisions and distances between particles in the paraconsistent model of the atom can be represented 

by including factors in the probabilistic equations of the degree of certainty. Thus, a division and spacing 
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between particles can be made by changing the equations of energies in Quadrant I of the interlaced PqL 

bilattice. These modifications in the Quadrant I will be expanded to the three other quadrants through the 

negation, complement, and conflation operators. In this procedure, the equations of the degree of 

contradiction are left unchanged, and a constant value is inserted into the equations of the degree of certainty, 

which we will call the distancing factor (df). This causes a change of the values and locations of the 

probabilistic trajectories of the logical states. The new equations generated will have the same values for the 

degrees of evidence, which is represented by the Shannon entropy, and simulate other particles with different 

distances from each other, which depend on the value of df inserted into the equation. The inclusion of the df 

constant enables orbital paths or paths to be chosen in the model to simulate the bonding between atoms and 

also enables to carry out other studies related to sets of elementary particles. 

Figure 13(a) shows the simulation of two particles in separation, with df = 1, and Fig. 13(b) shows the 

simulation of two particles in separation, with df = 3.    

 

 

(a) 

 

 (b) 

Fig. 13. Representation of the division and distance between particles: (a) simulation of two particles in 

separation, with df = 1; (b) simulation of two particles in separation, with df = 3. 
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3.7 Simulation Results with Energy Layer Values for the Hydrogen Atom 

As previously discussed, the energy values in each layer will be obtained by multiplying each value of the 

degree of certainty obtained in each layer of the paraconsistent model of the atom by the value of the ground-

state energy of the hydrogen atom. For a better visualization of the results in the graphs, we will use in the 

equations the module of energy value 13.6 =RydE eV .  

Figure 14(a) shows the simulation results for energy layers in the degenerate states of the hydrogen atom 

in the paraconsistent model of the atom by application of the Eqs. (34), (42), (50), (58), and (66). 

3.7.1 Adjustments in Energy Equations to Stabilize the Graphical Results in the Layers of Hydrogen Atom 

An adjustment factor adjF  is considered from the observation of the extreme results max( ) p  and min( ) p  

obtained using Eq. (34), where the necessity of a multiplicative value to attenuate the value of the extremes 

by about 85% is verified. Considering that the Shannon normalization factor value is 1.057402554=l , the 

adjF  will be the inverse of the cube of the normalization factor, such that 
3

1
0.845821917= ;

l
adjF . For the 

energy between layers 1 and 2, the corresponding maximum multiplicative value will be

3

1 1
1 0.247656

2

 
− 

 
;

l
. 

To keep in the layers the energy amplitude at constant values over the range defined by the maximum 

max( 0.89);p and minimum min( 0.11);p values of probability, we will apply the adjustment factor adjF  in Eqs. 

(34), (42), (50), (58), and (66).  

From Eq. (34), the adjustment factor of 
3

1
=

l
adjF  is applied to the degree of certainty to determine the 

energy of the second layer with a constant value over the range defined by the maximum (p(max)) and 

minimum (p(min)) values of probability. Equation (34) in this adjusted format for a hydrogen atom becomes  

( ) ( ) ( )
( )

2 3

1
13.6 

2

  
  = − 
  

    
l

s PqL

PqL E s PqL s PqL

H
En H H eV .               (86) 

From Eq. (42), the energy values of layer 3 can be computed using multiples of the adjustment factor of .  

Equation (42) in this adjusted format for a hydrogen atom becomes  

                  ( )
( ) ( ) ( )

3 5 6 6 6

1 1 1 1
13.6 

2 2 2

  
  

= −    
  

  
l l l l

s PqL s PqL s PqL

PqL E

H H H
En eV .                 (87) 

From Eq. (50), the energy values of layer 4 can be computed using multiples of the adjustment factor of 
3

1

l
. 

Equation (50) in this adjusted format for a hydrogen atom becomes 

( )
( ) ( ) ( )

4 16 6 6 6 6 6 6

1 1 1 1 1 1 1
13.6 

2 2 2

  
  

= −    
   
   

l l l l l l l

s PqL s PqL s PqL

PqL E

H H H
En eV .          (88) 

From Eq. (58), the energy values of layer 5 can be computed using multiples of the adjustment factor of 
3

1

l
. 

Equation (58) in this adjusted format for a hydrogen atom becomes 

( )
( ) ( ) ( )

5 25 6 6 6 6 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1
13.6 

2 2 2

  
  
  = −   
  

  
  

l l l l l l l l l l

s PqL s PqL s PqL

PqL E

H H H
En eV .        (89) 

From Eq. (66), the energy values of layer 6 can be computed using multiples of the adjustment factor of . 

3

1

l

3

1

l
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Equation (66) in this adjusted format for a hydrogen atom becomes 

( )
( ) ( ) ( )

6 32 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13.6 

2 2 2

  
  
  

= −    
  

  
  

l l l l l l l l l l l l l l l l

s PqL s PqL s PqL

PqL E

H H H
En eV

      (90) 

These procedures for PqL equations can be continued for n layers of the paraconsistent model applied to 

the hydrogen atom. 

Figure 14(b) shows the results of the paraconsistent functions of the energies obtained from the hydrogen 

atom using multiples of the adjustment factor of . 

     

(a)                                                                      (b) 
Fig. 14. Energy layer values for the hydrogen atom: (a) energy values of the layers in the paraconsistent 

model of the atom in the representation based on Eqs. (34), (42), (50), (58), and (66); (b) energy values of the 

layers in the hydrogen atom obtained with Eqs. (86) to (90) in the application of the adjustment factor 

.  

3.8 Results of the Paraconsistent Model of the Atom Applied to Raman Spectroscopy 

Data from Raman spectroscopy are obtained through vibrational processes of molecules involving laser 

application and capturing responses in the form of energy pulses. The obtained Raman information is related 

to the spectral lines that are provided as frequency-dominated Raman shifts or wavenumbers expressed in 

cm−1. In this work, we experimentally investigate how the paraconsistent model of the atom responds to 

variations in a particular wavelength range.  

This experimental simulation involves applying the normalized values of Raman intensity in the equation 

of the degree of favorable evidence presented in Eq. (23). In this application, the values of probability p are 

replaced in the Shannon entropy function by the complement of the normalized values of Raman intensity (1-

IRaman) throughout the spectrum of the sample. 

( ) ( ) [ log (1 ) log(1 )]= − + − −ls PqL k ni ni ni niH p p p p  →  

( ) ( ) ( ) ( ) ( ) ( )[ log (1 ) log(1 )]= − + − −ls PqL k Raman ni Raman ni Raman ni Raman niH I I I I .  

As ( )( ) ( )=PqL k s PqL kH , the degree of evidence, which is probabilistic, is modified and becomes the 

degree of evidence of Raman intensity, with spectroscopy characteristics that interfere with the energy 

amplitude values in the hydrogen atom layers. 

Figure 15(a) shows two Raman spectroscopy signals in the 400 to 1,400 cm−1 range, which were 

recorded from a lubricating mineral oil sample. The first spectrum (Type 1) is related to the Raman data of 

normal lubricating mineral oil, and the second spectrum (Type 2) shows the Raman data of non-normal 

lubricating mineral oil. The Type-2 (non-normal) lubricating mineral oil had its temperature controlled and 

maintained at approximately 127.5 °C for 8 h and cooled to room temperature to obtain the Raman sample. 

The two Raman data spectra were applied to the paraconsistent model of the hydrogen atom and analyzed 

through the representation of the energy levels of the layers presented in this work (Eqs. 86 to 90). 

Figure 15(b) shows the simulation results obtained for the energy levels of the six layers in the 

paraconsistent hydrogen atom. In a superficial analysis, it is verified that the spectrum of the normal 

lubricating mineral oil (Type 1) presents variations in the layers of the atom at several wavelengths. Some 

parts of the spectrum of the non-normal lubricating mineral oil (Type 2) exhibit few energy variations in the 

layers of the atom considering the investigated spectrum range. 

3

1

l

3

1
=

l
adjF

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2020                   doi:10.20944/preprints201911.0250.v2

https://doi.org/10.20944/preprints201911.0250.v2


 
(a) 

 
(b) 

Fig. 15. Practical example results of the paraconsistent model of the atom applied using Raman spectroscopy 

analysis: (a) Raman spectroscopy signals from a lubricating mineral oil sample considered normal (Type 1) 

and non-normal (Type 2; heated for a preset time) (in 1-IRaman normalized values); (b) simulation results 

obtained for the energy levels of the six layers in the paraconsistent hydrogen atom. 
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4. Discussion 

The equations presented in this work, as well as the method of obtaining them through interpretations of 

the interlaced PqL bilattice, follow the fundamentals of PAL2v, where the degree of favorable evidence μ 

must be accompanied by the degree of unfavorable evidence λ to form the annotation. In the same manner, 

the degree of certainty Dc must be accompanied by the degree of contradiction Dct to form the paraconsistent 

logical state.  

In Fig. 6(a), the graphs of the results obtained by simulations with Shannon entropy show how the 

variation of probability p creates the path of logical states within the interlaced PqL bilattice. Notably, the 

correlation value of 0.5 between the curves of the degrees of evidence is the point that defines the boundaries 

(p(min) = 0.11 and p(max) = 0.89) between the evolution of the states in a balanced quantum system and the 

collapse of the wave function with the definition of a false or true final logical state. 

Figure 6(b) shows the unit value of the modulus of the internal vector Pψint that moves to create a 

geometric arc. The limits of its slope are defined by the equations of the Shannon entropy, and its movement 

with the two external vectors created by the complementarity of values indicates the uncertainty in the 

movement directions of these vectors. 

The paraconsistent model of the atom presents the uncertainties that lead to incompleteness in the 

measurements, which is expected of a quantum system. This was demonstrated in the results of the 

simulations shown in Figs. 7(a) and 7(b), where the movements of the external vectors are antagonistic. 

In Figs. 8 and 9, the results show the models separated by the reference of two observers.  

Figure 10 shows the simulation results for the complete paraconsistent model of the atom, as well as its 

projection of the state vectors in the imaginary y-axis of the contradiction and in the real x-axis in the case of 

an effected measurement. It was demonstrated how the actions of the negation, complementation, and 

conflation operators applied to the logical states enabled the expansion of the probability values. From the 

analysis, the results obtained by the application of the operators to the logical states of Quadrant I show that 

the probabilistic trajectories of the particles in the layers appear simultaneously in two directions, that is, 

clockwise and counterclockwise. 

For a practical interpretation, the external and internal probabilistic trajectories of the paraconsistent 

model of the atom mean that the PqL operations (negation, complementation, and conflation) occur 

simultaneously, acting in four quadrants of the interlaced PqL bilattice. For an observer in X, in the first 

quadrant, each paraquantum logical state located at the end of the external state vector (Pψext) simultaneously 

generates a paraquantum logical state located at the end of the complementary external state vector (PψCext).  

This is also the same for a Y observer; thus, four paraquantum logical states are generated in Quadrant I. 

Therefore, each single logical state of the paraconsistent model of the atom is, in the reality, composed of 

eight paraquantum logical states. As each paraquantum logical state has one equation for the degree of 

certainty and one equation for the complement of the degree of contradiction, then 16 equations are used for 

this representation. 

In the construction of the model, each of these PqL equations receives the probabilistic value p and its 

complement (1−p) so that through the Shannon entropy functions they can present the paraconsistent results. 

The variations of the probabilistic values, and the frequency in which they are applied in the PqL equations 

result in the trajectories presented in the paraconsistent model of the atom. The countless PqL-equations of 
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the paraquantum logical states obtained in the atom layers simultaneously generate all the internal trajectories 

that are presented in the paraconsistent model. In the paraconsistent model of the atom, the internal state 

vector with a unitary module (Pψint) has its variation only within the interlaced PqL bilattice. In this way, 

this internal vector, Pψint, supports all formalization of PqL through the paraquantum logical states located at 

its end.  

The external state vector (Pψext), in turn, exceeds the limits of the interlaced bilattice and represents 

energy values through its paraquantum logical states located at its end. In this way, the actions of these two 

vectors show through the probabilistic trajectories of the particles in the paraconsistent model of the atom a 

clear interface between the logical universe and the real/quantum world. 

Figures 11(a) and 11(b) show the simulation results of the wave functions for the ground-state energy 

layer and the wave functions for the other internal energy layers. These results verify the limits that define 

the evolution of the states.  

Figure 12(a) illustrates the validation of the results of the simulation with the Heisenberg uncertainty 

principle in the PqL, and Fig. 12(b) shows that is possible to obtain the value of the probability p considering 

only the values of the degrees of certainty and contradiction. With these simulations, quantum concepts, such 

as probability density and wave function, are well established by the equations and probabilistic functions in 

the PqL. It is highlighted here that in the simulations performed to obtain the wave functions, the Heisenberg 

uncertainty principle equations, the probability values, and the values of the degrees of certainty and 

contradiction that make up the paraquantum logical states were used as input. The results demonstrate the 

application of the reversibility characteristic in the paraconsistent model of the atom. 

The results presented in Fig. 13 show the possibility of analyzing the paraconsistent model of the atom 

and other concepts of quantum mechanics. The separation imposed by a distance factor, which is applied in 

the equations, allows simulating effects in which a separate particle remains in the perception of a Y observer 

while the other is in the perception of an X observer. This condition is important as it enables the 

paraconsistent model of the atom capable of considered the quantum entanglement representations. 

In Fig. 14, the energies of the orbital layers represented by the pairs of values are well delineated in the 

representation of the hydrogen atom, with values close to those obtained by the Bohr model. 

On the basis of the results presented in Fig. 14, the experiments with Raman spectroscopy have been 

elaborated, the results of which are presented in Fig. 15. A visual analysis of the results shown in Fig. 15(b) 

indicates that with PqL equations, the differences in energy variations between a normal lubricating mineral 

oil (Type 1) and a non-normal lubricating mineral oil (heated at 127.5 °C for 8 h; Type 2) can be verified. 

Therefore, this PqL-based technique can be useful for spectroscopic signal analysis and the verification of 

material properties at atomic levels. 

In general, the simulation results define the probabilistic characteristics of the particle, whereby in 

quantum mechanics, before the measurement, any of the physical properties are always indefinite. In this 

manner, the configuration model exhibits the geometry of a sphere and can be described using equations that 

consider angular variables.  

A representation of the two planes can be made according to Fig. 12, where the orthogonality of the two 

planes forms an octahedron in which an analysis of the external and internal variables in the equations 

validates the variation of probability. With the probability representation obtained through the PqL equations 
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in which the Shannon entropy is introduced, we can derive the equations of the degrees of certainty and 

contradiction by applying the conditions used for a paraconsistent Bloch sphere as an example. 

 

5. Conclusions 

The paraconsistent model of the atom proposed in this work is based on the foundations of the PAL and 

combines the concepts of the entropy of information theory with quantum mechanics. The proposed 

paraconsistent model of the atom, which applies the interlaced PqL bilattice, shows a convincing geometric 

aspect for the atomic particle. Thus, well-adjusted fundamentals for the phenomena of quantum physics could 

be demonstrated. Despite the impossibility of covering all quantum phenomena in this work, the equations 

obtained by the analyses provide the characteristics of symmetry, recurrence, and superposition of states. The 

entanglement concept can be expressed in the form of the division obtained through the distance factor dF 

used in the equations of the degrees of certainty. The quantum phenomenon of the superposition of states is 

explicitly expressed through the equations and the representation in which two observers are active. This 

procedure, which was conducted through the simultaneous use of equations and the analysis of an observer in 

the vector of the base X and an observer in the vector of the base Y, is similar to the quantum theory. The 

model presented in this work is innovative and opens a field of in-depth investigations of different conditions 

and the effects originating from interpretations of the model under diverse conditions and dimensions. All the 

equations feature good computability and ensure that all the procedures can be presented in matrix and 

algorithmic forms. Notably, in the presented paraconsistent model of the atom, no equation results in a 

defined value. In general, all the equations used in the simulations are probabilistic functions that result in 

indefinite trajectories of paraquantum logical states. Even the direction and orientation of the orbital 

trajectories shown in the result graphics are indefinite because they are always opposite to one another. In the 

simulations, the paraconsistent model of the atom was represented by algorithms I and II that allowed 

showing the probabilistic trajectories of the paraquantum logical states that can be related to the probable 

orbits of the elementary particles. With the simulation applying the PqL equations, the energy functions, 

represented by the degrees of certainty and contradiction, therefore values generated in the quantum universe 

- Interlaced PqL Bilattice -, can to express the probabilities to be measured in the real world. These 

algorithms and equations have high significance for the beginning of new studies in computational 

applications of PqL. In its application to Raman spectroscopy data, the paraconsistent model showed 

versatility and a good representation of the energy variations at the atomic level of hydrogen. These results 

enable us to further explore the use of the proposed model with the presented concepts, such as the 

adjustment of the energy values in the lower layers of the hydrogen atom and for other atomic models. This 

work demonstrates that the use of the Shannon entropy in a paraconsistent model is an excellent method for 

modeling quantum systems. In the future, new simulation procedures will expand the application possibilities 

of the paraconsistent model of the atom in other areas, including computation, quantum logic gates, quantum 

systems for signal recognition, and quantum cryptography. 
 

 

Supplementary Materials: The data that support the plots within this paper and other findings of this study are 

available in additional material and from the corresponding author.  
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