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Abstract: Myocardium transcriptomes of mouse left and right atria and ventricles were profiled
separately to identify the differences that might be responsible for the distinct functional roles of the
four heart chambers. In total, 16,886 distinct unigenes have been quantified in all 16 samples collected
from four adult male mice from the same litter. 15.76% of the quantified genes on the left and 16.5%
on the right exhibited differential expression between the corresponding atrium and ventricle of the
same side, while 5.8% in atria and 1.2% in ventricles were differently expressed between the left and
the right. Beyond the differentially expressed genes, the study revealed distinct expression control
and coordination of ion channels and genes within the cardiac muscle contraction, oxidative
phosphorylation, glycolysis/glucogenesis, calcium and adrenergic signaling pathways. Interestingly,
while expression of Ank2 (encoding ankyrin-B) oscillates in phase with all its binding partners in the
left ventricle, the percentage of synergistically expressed partners of Ank2 is 15% and 37% in the left
and right atria and 74% in the right ventricle. The analysis revealed also the high interventricular
synchrony of the expression of ion channels.

Keywords: adrenergic signaling; ankyrin-B; calcium channel; calcium signaling; glycolysis; oxidative
phosphorylation; potassium channel; sodium channel

1. Introduction

In all mammals and birds, the heart pumps the blood through the pulmonary circulation and the
systemic circulation (that continue each-other) by the coordinated rhythmic contractions of its upper
left and right atria (LA, RA) and lower left and right ventricles (LV, RV). Each of the four heart
chambers has a well-defined role in circulation and the adequate morphology but how their distinct
functions and buildups are determined by the transcriptomic profiles is still not completely understood.

In previous papers we have reported significant sex differences in the expression and networking
of heart rhythm determinant genes (HRD) [1] and subcellular localization of HRD proteins [2]. We
have also reported that mouse males have higher expression of HRD genes in atria than in ventricles,
while mouse females have higher expression of HRD genes in ventricles than in atria [1].

There are important left-right differences in the mean arterial pressure between systemic and
pulmonary circulation measured invasively in mice. The mean RV systolic pressure of 16.3 mm Hg [3]
or 11.7 mm Hg [4] vs. mean LV systolic pressure of 96.2 mm Hg [3] or 107.7 mm Hg [4] lead to a five
times greater LV workload compared to RV. There are also left-right differences in intraparietal tension,
oxygen consumption and metabolic stress between the two ventricles, resulting in higher susceptibility
to oxidative stress, reduced angiogenic response and higher likelihood of activation of cell death
pathways with more rapid progression to failure of RV compared to LV [5].

A recent publication [6] compared the regulation of genes involved in atrial fibrillation (AF) from
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paired human left and right atrial appendages of healthy and AF patients, concluding that there are
“different mechanisms for development, support and remodeling of AF within the left and right atria”.
Other authors compared the gene expressions from the left and right aortic arches of the chick embryo
[7]. However, for technical reasons, none of these studies included a direct comparison of right/left
expression levels in the same individual: [6] compared the regulations in AF patients with left or right
appendages vs. healthy persons, while [7] performed comparisons of pooled samples from several
embryos.

Differential gene expression studies based on both microarray and RNA sequencing methods
have brought in recent years important contributions in understanding the complex landscape of heart
embryogenesis [8], in defining signaling pathways involved in differentiation of heart regions [9],
transcriptional enhancers and gene regulatory networks [10-12], involvement of miRNAs [13, 14],
epigenetic reprogramming mechanisms [15] a.s.o.

A number of molecular mechanisms have been proposed in order to explain the left-right
asymmetry at the level of the heart and generally in the internal organization of the amniote embryo.
Starting from Kartagener’'s syndrome, a rare autosomal recessive disorder characterized by primary
ciliary dyskinesia associated with situs inversus in about half of the human patients [16], researchers
have proposed as primary left-right asymmetry determinant a mechanosensitive detection mechanism
of unidirectional yolk sac fluid movement. The yolk sac fluid movement is generated by cilia rotation
on the endoderm side of the primitive node, involving TRPP2 ion channels belonging to the polycystin
subfamily of transient receptor potential (TRP), activation of non-canonical Hedgehog pathway and
asymmetrical calcium signaling ([17], reviewed in [18-21]). Another rare clinical condition, the Holt-
Oram syndrome, associated with congenital heart defects [22], has led to an elegant demonstration
using differential gene expression methods of the rheostatic control exerted by the transcriptional
activator Tbx5 in interventricular septum formation and ventricular patterning [23]. Other researchers
have evidenced the role played by differential left-right expression of Nodal and bone morphogenetic
(BMP) signaling pathways along the lateral plate mesoderm, leading to asymmetrical activation of
transcription factors Pitx2 and Prrx1 and subsequent heart laterality in vertebrates by asymmetrical
epithelial-to-mesenchymal transition [24]. Whole-cell patch-clamp studies on isolated cardiomyocytes
have demonstrated the role of Notchl signaling pathway in achievement of a mature shortened
triangular ventricular action potential (AP) phenotype and the role played by various voltage-
dependent K* channels (Kv) subunits and interacting proteins like KChIP2 [25].

The aim of our present study was to assess the differences of gene expression patterns in
myocardium samples from the four heart chambers in adult male mice. We explored a number of
functional pathways, addressing the differences in expression level, control and coordination between
the two atria, the two ventricles, and atrium-ventricle on the same side and discuss why these
differences are important for the heart function. A particular attention was given to the expression
coordination of Ank2 (encoding Ankyrin-B), a major player in cardiac physiology, with its potential
binding partners [26] in each heart chamber. We studied also the expression coordination of the genes
encoding ion channels and transporters (ICT) in each chamber as well as the synchronous expressions
of the ICT genes between chambers.

2. Materials and Methods

2.1. Tissues

Four adult male C57Bl/6j mice, purchased from Charles River Laboratories International, Inc.
(Wilmington, MA, USA) were used in this experiment to profile separately each heart atrium and
ventricle from every mouse. The animals were housed in rooms with controlled temperature (22 + 2°C)
and humidity (55 + 10%), continuous air flow and 12h light/12h dark cycle (6 am — 6 pm), were
provided with normal rodent diet and water ad libitum, and monitored daily by trained veterinary
personnel at Albert Einstein’s Accredited Research Animal Care and Use Facility
(https://www.einstein.yvu.edu/research/shared-facilities/cores/52/animal-housing-and-studies). The
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experiments were carried out according to the approved (#20100205) protocol (PI DA Iacobas) by the
(Einstein) Institutional Animal Care & Use Committee (IACUC) for prevention of disease, daily
observation and surveillance for assessment of animal health, and the methods of animal handling,
restraint, anesthesia, and analgesia.

2.2. Microarray

The mice were decapitated under light isoflurane anesthesia and the hearts were isolated and
perfused with saline to wash out all remaining blood. Total RNA was immediately extracted from as
homogeneous as possible 1 — 2 mm pieces from each atrium and ventricle walls in separate vials with
RNAEasy Minikit (Qiagen, Germantown, MD, USA), following manufacturer's instructions. RNA
concentration was determined before and after reverse transcription in the presence of Cy3/Cy5 dUTP
with a WU-83060-00 Thermo Scientific NanoDrop ND-1000 and its quality with a 2100 Bioanalyzer
(Agilent, DE). The four groups of four samples each were marked as MAL (Male Atrium Left), MAR,
MVL and MVR (Male Ventricle Right). 825 ng of differently (Cy3/Cyb5) labeled biological replicas were
hybridized 17h at 65°C with GPL10333 Agilent-026655 Whole Mouse Genome Microarray 4x44K v2.
The chips were washed and scanned with an Agilent G2539A dual laser scanner at 5Sum resolution in
20-bit scan mode and primary analysis performed with (Agilent) Feature Extraction 11.6 software.

2.3. Data analysis

We have used our standard protocol (e.g. [27]) for data filtration and normalization. Any spot
with corrupted pixels or with foreground fluorescence less than twice the background in any of the 16
samples was removed from the analysis. As justified in a recent paper [28], profiling four biological
replicas provides for each gene three independent measures: the average expression level, the
expression variability and the expression coordination. The three features are as independent and
complementary as are the impressions of a blind person and of a deaf one on the same movie.

2.3.1. Expression variability and control

Agilent gene expression microarrays probe redundantly the transcript abundances by not
uniform (up to 28) numbers of spots. Therefore, we used the mid-interval chi-square estimate of the
coefficient of variation (CV) of the normalized expression of each gene in the profiled tissue, adjusted
for multiple spots, termed the Relative Expression Variability (REV):

R; (tissue) 2
REVi(tiSSW) = 1 \/ 2 rl + \/ 2 rl J Sﬂ((tissm') J X 100%
tal# 4(721" Vi 4 4(2; ey

il 43
redundancy correction coefficient

™

M, = average expression level of gene i probed by spot k in the 4 biological replicas
s,; = standard deviation of the expression level of gene i probed by spot k (1)
7, =4R; —1= number of degrees of freedom
R; = number of microarray spots probing redundantly transcripti, R, =1, 2, ..., 28
REV corrects the CV by a factor ranging from 1.566 (for R = 1) to 0.960 (R = 28).

REV was further used to compute the Relative Expression Control (REC) and the Pathway
Relative Expression Control (PREC):
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where higher positive REC values indicate genes whose expression level is strongly controlled by the
cellular homeostatic mechanisms, presumably because their adequate expression level is critical for the
cell survival, phenotypic expression or/and integration in the multicellular structure of the
myocardium. By contrast, lower negative RECs are associated with less controlled genes that can easily
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adapt to the slight fluctuations of the environmental conditions, as seen in the biological replicas.
Similarly, high PRECs are associated with critically important pathways to preserve the phenotype
against slight fluctuations of the environment and low PRECs with adapting pathways. One may

<REV<“‘W) )
ALL

ALL

observe that PREC{;;" = —1=0 sets the baseline for pathways comparison according to

their PREC score.
2.3.2. Differential expression
A gene is considered as significantly differentially expressed between the compared tissues if the

absolute expression ratio |x| (x negative for down-regulation) exceeded the cut-off computed for that
gene from its Relative Expression Variabilities (REV) in the two tissues:

VA, B, tissue = MAR, MAL, MVR, MVL
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In addition to the popular percentage of significantly regulated genes according to the above
criterion (that replace the traditional uniform absolute fold-change cut-off of 1.5x or 2.0x), we quantify
the alteration of the functional pathways by the Weighted Pathway Regulation (WPR), redefined from
[30]:

iel’
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2.3.3. Expression coordination

Expression variability within biological replicas is used to compute the Pearson product-moment
correlation coefficient between the (log2) expression of each gene with each other gene and identify (p <
0.05) significantly synergistically, antagonistically and independently expressed genes. The statistical
significance of the correlation coefficient was determined with the publically available software
https://www.youtube.com/watch?v=Kc3M5x7125A (two-tail t-test) for the degrees of freedom df = 4
(biological replicas)*R (number of spots probing redundantly each of the correlated transcripts) — 2. If
each gene was probed by one spot, then df =4 — 2 =2, for two spots df =8 -2 =6, for 3 spots df =12 -2 =
10. For unequal number of spots, we used for each biological replica the average expression level of all
spots probing that gene.

Correlation results were further used to determine the differences of the gene networks among
the four heart chambers. We used such analysis previously to determine the remodeling of gene
networks in hearts of mice subjected to chronic constant or intermittent hypoxia [31, 32], with Chagas
cardiomyopathy [30, 33], or with knocked-out expression of Cx43, the main gap junction protein in
cardiomyocytes [34].

Profiling the transcriptomes of all heart chambers from the same animal gives the possibility to
test whether the genes encoding interesting proteins (like ion channels and transporters) are expressed
in synchrony. We consider a gene as synchronously expressed in two heart chambers if its expression
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levels in these two chambers fluctuates in phase (positive Pearson correlation coefficient) among the
biological replicas collected from the same animals.

2.4. Pathway analysis

Gene Ontology Consortium (www.geneontology.org) and/or Kyoto Encyclopedia for Genes and
Genomes (https://www.kegg.jp) were used to select the genes encoding ion channels and transporters
(ICT, 185 genes) and genes involved in the following pathways: adrenergic signaling in
cardiomyocytes (ASC, mmu04261, 104 genes), calcium signaling (CAS, mmu04020, 121 genes), cardiac
muscle contraction (CMC, mmu04260, 65 genes), glycolysis/gluconeogenesis (GLY, mmu00010, 50
genes) and oxidative phosphorylation (OP, mmu00190, 111 genes).

3. Results

Raw and processed microarray data have been deposited and are publically available at
https://www.ncbi.nlm.nih.gov/geo/ as GSE45339 and GSE45348. After replacing the results from each
group of spots probing redundantly the same transcript with the average expression level in the group,
we arrived with a total of 16,886 unigenes adequately quantified in each of the four chambers from all

mice.
3.1. Differential expression and control of selected pathways and groups of genes among heart chambers

Figure 1 presents the percentages of the differentially expressed genes, the Weighted Pathway
Regulations (WPR) and Pathway Relative Expression Control (PREC) of the selected pathways. The
scores of all quantified genes (ALL) were included for comparison. While significant differences
between the atrium and the ventricle from the same side of the heart were expected, of note are the
large differences between the two atria and the very small differences between the two ventricles.
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Figure 1: Differential expression, control and coordination of selected functional pathways and groups
of genes. (a) Percentages of regulated genes. (b) Weighted Pathway Regulation (WPR). (c¢) Pathway
Relative Expression Control. ALL = all genes, ASC = adrenergic signaling in cardiomyocytes, CAS =
calcium signaling, CMC = cardiac muscle contraction, GLY = glycolysis/gluconeogenesis, ICT = ion
channels and transporters, OPH = oxidative phosphorylation. Note that CMC is the most altered, OPH
the most controlled and ICT the least controlled pathway.

3.2. Chamber specificity of gene expression within functional pathways

Figures 2-5 present the differentially expressed genes within the adrenergic signaling, calcium
signaling, glycolysis/gluconeogenesis and oxidative phosphorylation pathways between the two atria,
between the two ventricles (when relevant) and between the ventricles and atria of the same side.
Appendix Figure A1l presents the differentially expressed genes within the cardiac muscle contraction
and Figure A2 those within the adrenergic signaling pathway between the two atria and between the
atrium and the ventricle of each side of the heart.


https://www.kegg.jp/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.20944/preprints201911.0243.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2019 d0i:10.20944/preprints201911.0243.v1

6 of 21
Noradrenaline
a O Isoproterenol m
Cardiac myocyte . Adrenaline - Elﬂt
: 3N 4 + o MMIM
Depolarization e TT : T T Ne 2K PP E
______ } (] o { @i eopzadcldppseadal (Gl
Y | Atp2b3 | Keng1Slc9al Adrb1] [Adrb2]| Saolua ]
) I P +p\/P o +p +p Atpib3 £y ¥ _a
! il | (L [Gnas] [Gnas] [Gnai1[2[3] ———
v i . o ¥ - signaling pathway
Ce Ca’ K* H 3Na 5679
Camk2a|b|d cAME Mapk1[3] [ Pik3ré] .l A
poptosis
\
b| [Rapgef3] Mapk12|11{13|14f ~
Bcl2
Calm2(1{3 T
DNA !
ol /e o~ At 6] | =N N
~| DHPR = +p| Crebl |3 | __4,.' Hypertropy
! N .pRyr_Zp cat +» Creb312) 1:—>D o m e
T-tubule 4 PP2A Sarcoplasmic +p Atpdsa 12 1 ¥
Reticulura (SR) Pln Rps6kas 1 Crem H
| Y ——— -
‘,‘Cah P Nucleus
Mapk1| 3
Agtrla Agt I
Prkca ||Plcb1|2|3|4 Gnaq Noradrenaline
Adrald
DAG Adrenaline

()
h_ m [ o
B\ \ hamiaf—

[up-regulated
Senib [not regulated

| down-regulated
DHPR_|block of genes
PP2A_|block of genes

\ EBE _—— o\ Admaatie
- =
s

Figure 2: KEGG map (mmu04261) of the differential expression of adrenergic signaling in
cardiomyocytes (ASC) genes in: (a) the right atrium with respect to the left atrium, (b) the left ventricle
vs left atrium and (c) right ventricle vs right atrium. Only Akt3 was found with significant lower
expression in the right ventricle with respect the left one. Red/green/yellow background of gene
symbol indicates up-/down-/not regulated. Genes with significant differences: actin alpha cardiac
muscle 1 (Actcl), adenylate cyclases (Adcy4, Adcy5, Adcy9), adrenergic receptor alpha 1b (Adralb),
adrenergic receptor beta 1 (Adrbl), angiotensin II receptor type la (Agtrla), angiotensinogen (Agt),
thymoma viral proto-oncogenes (Akt2, Akt3), Ca* transporting ATPases (Atp2b2, Atp2b3), Na*/K*
transporting ATPases (Atpla2, Atpla3, Atplbl, Atp1b2), calcium channels (Cacnalg, Cacnalh, Cacnals,
Cacna2d1, Cacna2d?), calmodulin 2 (Calm2), cAMP responsive element binding protein 3-like 2 (Creb312),
FXYD domain-containing ion transport regulator 2 (Fxyd2), potassium voltage-gated channel
subfamily Q member 1 (Kcngl), mitogen-activated protein kinases (Mapk12, Mapk13, Mapk14), myosins
(Myh6, Myh7, Myl2, Myl3, Myl4), phospholamban (PIn), protein phosphatase 1 regulatory (inhibitor)
subunit 1B (Ppplrlb), protein kinase C, alpha (Prkca), ribosomal protein S6 kinase polypeptide 5
(Rps6kad), sodium channel type IV beta (Scn4b), sodium channel voltage-gated type V alpha (Scnba),
solute carrier family 8 (sodium/calcium exchanger) member 1 (Slc8al), troponins (Tnncl, Tnntl) and

tropomyosin 1 alpha (Tpm1).
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Figure 3: KEGG map (mmu04020) of the differential expression of calcium signaling (CAS) genes in: (a)
the right atrium with respect to the left atrium, (b) right ventricle vs left ventricle, (c) left ventricle vs
left atrium, (d) right ventricle vs right atrium. Red/green/yellow background of gene symbol indicates
up-/down-/not regulated. Genes with significant differences: Adcy4, Adcy5, Adcy9, adenosine A2a
receptor (Adora2a), adrenergic receptors (Adralb, Adrbl, Adrb3), Agtrla, Atp2b2, Atp2b3, Cacnalg,
Cacnalh, Cacnals, Calm2, cholinergic receptor muscarinic 2 cardiac (Chrm2), cysteinyl leukotriene
receptor 1 (Cysltr1), endothelin receptor type B (Ednrb), epidermal growth factor receptor (Egfr), v-erb-
b2 erythroblastic leukemia viral oncogene homolog 2 (Erbb2), coagulation factor II (thrombin) receptor
(F2r), metabotropic glutamate receptors (Grml, Grmb5), inositol 1,4,5-triphosphate receptor 3 (Itpr3),
myosin light chain kinases (Mylk3, Mylk4), nitric oxide synthase (Nos2, Nos3), oxytocin receptor (Oxtr),
purinergic receptor P2X ligand-gated ion channel 3 (P2rx3), phosphodiesterase 1C (Pdelc), platelet
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derived growth factor receptors (Pdgfra, Pdgfrb), phosphorylase kinase gamma 1 (Phkgl),
phospholipases (Plbd1, Plcd3, Plcd4), phospholamban (PIn), protein phosphatase 3, catalytic subunit,
beta isoform (Ppp3cb), protein kinase cAMP dependent catalytic alpha (Prkaca), prostaglandin F
receptor (Ptgfr), PTK2 protein tyrosine kinase 2 beta (Ptk2b), solute carriers (Slc25a4, Slc8al, Slc8a3),
tachykinin receptor 2 (Tacr2), thromboxane A2 receptor (Tbxa2r) and troponin C cardiac/slow skeletal
(Tnncl).
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Figure 4: KEGG map (mmu00010) of the differential expression of glycolysis/gluconeogenesis (GLY)
genes in: (a) the right atrium with respect to the left atrium, (b) right ventricle vs left ventricle, (c) left
ventricle vs left atrium, (d) right ventricle vs right atrium. Red/green/yellow background of gene
symbol indicates up-/down-/not regulated. Genes with significant differences: acyl-CoA synthetase
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short-chain family member 1 (Acss1), alcohol dehydrogenase 1 (Adhl), aldehyde dehydrogenases
(Aldh1b1, Aldh3al), aldolases (Aldoa, Aldob, Aldoc), 2,3-bisphosphoglycerate mutase (Bpgm), enolase 3
beta muscle (Eno3), fructose bisphosphatase 2 (Fbp2), glyceraldehyde-3-phosphate dehydrogenase
(Gapdh), phosphoenolpyruvate carboxykinase 2 (Pck2), phosphoglycerate mutase 1 (Pgaml) and
pyruvate kinase muscle (Pkm2).
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Figure 5: KEGG map (mmu00190) of the differential expression of oxidative phosphorylation (OPH)
genes in: (a) the right atrium with respect to the left atrium, (b) left ventricle vs left atrium and (c) right
ventricle vs right atrium. No significant difference was found between the expressions of OPH genes in
the two ventricles.
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3.3. Expression correlation and synchrony of ion channels and transporters

Figure 6 presents examples of significantly (p-val < 0.05) synergistically, antagonistically and
independently expressed ICT genes, the percentages of the significant synergistic expressions of the
ICT genes with each-other in each chamber and of the same ICT genes between two chambers.
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Figure 6: Correlation of the expressions of genes encoding ion channels and transporters (ICT). (a)
Examples of synergistically (Kcnj5 = potassium inwardly-rectifying channel, subfamily J, member 5),
antagonistically (Kcna6 = potassium voltage-gated channel, shaker-related, subfamily, member 6) and
independently (Kcnj3 = potassium inwardly-rectifying channel, subfamily ], member 3) expressed
genes with Vdacl (voltage-dependent anion channel 1) in the left atrium. (b) Percentage of
synergistically expressed ion channel and transporter gene pairs within each chamber. The correlation
was computed for each ICT gene with each other ICT gene within the same chamber. ICT = percentage
out of all 17,020 pairs that can be formed with the quantified ICT genes, ATP = transporting ATPases
(1,378 pairs), ORG = transporters through organelle (mitochondria, lysosomes) membranes (903 pairs),
CA = calcium channels (153 pairs), CL = chloride channels (91 pairs), NA = sodium channels (91 pairs),
K = potassium channels (1,596 pairs). Note the significantly larger percentages of synergistically
expressed pairs of ion channels and transporters in the ventricles. (c) Synchronous expressions of ICT
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genes between two chambers. (d) Synchronous expressions of sodium channels in paired heart
chambers.

Figure 7 shows the significantly (p-val < 0.05) synergistically, antagonistically and
independently expressed pairs out of the 2,793 pairs formed by the 57 potassium channel genes with
the 49 sodium, calcium and chloride channel genes, in the four chambers of the male mouse heart.
While there are less than 1% significant antagonistic and independent pairs, the percentages of the
synergistically expressed pairs are very high in all chambers, although with remarkable differences
among them: 28% in the LA, 22% in the RA, 53% in the LV and 43% in the RV.
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Figure 7: Significant (p < 0.05) expression correlation and independence of the 57 potassium channel
genes with the 49 sodium, calcium and chloride channel genes in (a) left atrium, (b) right atrium, (c)
left ventricle, (d) right ventricle. Red/blue/yellow square indicates that the potassium channel gene


https://doi.org/10.20944/preprints201911.0243.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 November 2019

d0i:10.20944/preprints201911.0243.v1

14 of 21

labeling the column and the sodium/calcium/chloride channel labeling the intersected raw are
significantly synergistically/antagonistically/ independently expressed.

3.4. Expression coordination of Ankyrin B with its potential binding partners

Ankyrin-B (encoded by Ank2) is an essential cytoskeletal component that performs integral

transmembrane protein anchoring, containing four primary domains: a membrane-binding domain, a

spectrin-binding domain, a death domain, and a C-terminal domain, each with binding partners

discussed in a recent paper [34]. Pearson correlation coefficients between the expression levels of Ank2

and those of its potential binding partners were computed for each chamber. The analysis aimed to

validate the partners whose transcripts abundances oscillate in phase with that of Ank2 among
biological replicas to satisfy the “transcriptomic stoichiometry” [27].

Figure 8 presents the significant expression coordination between the expression levels of Ank2,
a major player in the cardiac physiology, with its potential binding partners [26] in the four heart
chambers. While no statistically significant antagonism or independence was found, the percentages of

significant synergisms were very different: 12% in the left atrium, 40% in the right atrium, 100% in the

left ventricle and 72% in the right ventricle.
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Figure 8: Expression coordination of Ank2 with its known binding partners in (a) left atrium, (b) right
atrium, (c¢) left ventricle, (d) right ventricle. Genes: Atplal/2/3 (ATPase, Na+/K+ transporting, alpha
1/2/3 polypeptide), Atp1b1/2/3 (ATPase, Na+/K+ transporting, beta 1/2/3 polypeptide), Cacnala (calcium
channel, voltage-dependent, P/Q type, alpha 1A subunit), Cacnalc (calcium channel, voltage-
dependent, L type, alpha 1C subunit), Ehdl (EH-domain containing 1), Itpr1/2/3 (inositol 1,4,5-
trisphosphate receptor 1/2/3), Kcnj11 (potassium inwardly rectifying channel, subfamily J, member 11),
Ppp2ca (protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform), (protein phosphatase 2,
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regulatory subunit B (B56), alpha isoform), Ryr2 (ryanodine receptor 2, cardiac), Scnba (sodium channel,
voltage-gated, type V, alpha), Slc24a2/3/5/6 (solute carrier family 24 (sodium/potassium/ calcium
exchanger), member 2/3/5/6), Slc8a1/2/3 (solute carrier family 8 (sodium/calcium exchanger), member
1/2/3), Spnb1/2/3 (spectrin beta 1/2/3).

4. Discussion

The present study revealed a number of statistically significant differences in the transcriptomic
profiles of the myocardial tissue from the four heart chambers of male adult C57BI/6j mice in good
health condition. The differences were larger between the atrium and ventricle of same side, as well as
between the right and left atria, than between the right and left ventricles, both in terms of the overall
expression levels and for the specific regulatory pathways selected for analysis. The differences
between the right and the left atria (RA/LA) were more prominent for the cardiac muscle contraction
(CMC) and oxidative phosphorylation (OPH) pathways, amounting to over 40% of differentially
expressed genes.

The most logical explanation for these differences, and particularly for the surprisingly small
differences between the right and the left ventricle (RV/LV), resides in the evolution of the
cardiovascular system. Thus, the initial separation of the contracting vessel into one atrium and one
ventricle, present since the beginning of the chordate phylum, was followed by the separation into
right and left atria that started with amphibians, and right and left ventricle with the archosaurs
(crocodilians and birds, including all extinct dinosaurs, crocodilian relatives and pterosaurs). It must be
also understood that the right and left ventricle have different embryogenetic origins: LV and part of
the atria arise from the early heart tube, in turn developed from the first heart field, an area of anterior
splanchnic mesoderm formed early during gastrulation, while RV, the outflow tract and the main parts
of atrial tissue arise from the second heart field that coalesces with the heart tube at its arterial and
venous edges, being derived from the pharingeal mesoderm and dorsal mesocardium [35].

The major drivers during heart embryogenesis were determined by principal component analysis
(PCA) of microarray data from samples taken at different developmental stages [8, 9]. Differential gene
expression revealed by microarray data analysis was also used to prove that the anterior intestinal
portal endoderm functions as a heart organizer, being capable to induce cardiac identity into non-
cardiac mesoderm even if heterotopically transplanted, and patterning cardiac tissue to express
ventricular and suppress atrial region identifiers [36]. Moreover, single-cell RNA-seq was used to
understand the earliest steps of cardiovascular lineage differentiation, analyzing MesP1-positive
cardiovascular progenitor cells and different cardiac progenitor populations corresponding to the first
and second heart fields at embryonic day E6.5 and E7.25, respectively, in mice [37, 38].

The complex regulation of cardiomyocyte differentiation involves a complex interplay of signaling
pathways and gene regulatory networks [9], families of activatory transcription factors [11],
transcription enhancers [12, 39] and epigenetic mechanisms [10, 15]. The analysis of differential gene
expression in our dataset for the adrenergic signaling in cardiomyocytes and calcium signaling
pathways revealed important differences between the atrium and ventricle on the same side, as
expected, given the important regulatory functions of these pathways within cardiac physiology. But
the significant differences in expression between atria and ventricles were not found for the f-
adrenergic receptor genes themselves; they were rather found for associated membrane proteins
involved in ion transport as effectors, such as subunits of the Na*/K* pumps, Na*/Ca* exchangers
(NCX), L-type Ca? channel and voltage-dependent Na* channel subunits, the angiotensin II receptor
type la (Agtrla), or regulatory protein kinases such as Akt3, involved in cell signaling in response to
insulin and growth factors (Figure 2b,c). These results are relevant in the light shed recently by studies
assessing the important roles of adrenergic signaling and internal calcium dynamics in the “fight-or-
flight” response to sympathetic nerve stimulation, achieving via species-specific fine-tuning of these
processes the required positive inotropic response to stress-generating situations [40].

Although the RNA was extracted from as homogeneous as possible tissue samples, the analysis
provides the average expression levels for the variety of cells composing the myocardium:
cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, stem cell niches and supporting cells,
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nerve endings, immune system cells, etc. However, as we proved in previous publications [41, 42], the
transcriptome of each cell type is strongly modeled by the heterogeneous cellular environment, so that
profiling each cell phenotype separately will give also a false picture. Therefore, we were particularly
interested in genes expressed exclusively at cardiomyocyte level, such as those encoding different
subunits of certain cardiac-specific voltage-dependent ion channels and transporters. Table S1 of the
Appendix lists the ratios of expression at mRNA level between right and left ventricle (RV/LV) and
right and left atria (RA/LA) for 12 genes encoding subunits of cardiac-specific ion channels and
transporters. A highly relevant finding revealed by our detailed analysis methods is represented by the
negative Pathway Relative Expression Control (PREC) values for the ion channels and transporters
(ICT) group of genes and calcium signaling pathway for right atrium compared to positive values for
other functional pathways, as shown in Figure 1c, which signifies that ion channels and transporters
genes’ expression levels are very tightly controlled owing to their extremely important roles in shaping
cardiomyocyte action potentials in different heart chambers. Similar findings strengthening this
conclusion are the high percentages of synergistic pairs (particularly for the left ventricle) and gene
expression synchrony (particularly for RV vs LV) for different families of ion channels and transporters,
as well as the high percentages of correlated gene expression between Ank2 and its interacting partners
in the ICT group, amounting up to 100% for the left ventricle.

Several putative molecular mechanisms have been proposed and explored to explain the right/left
asymmetry in heart formation and function. One interesting hypothesis emphasizes the role of Pkd2
(polycystin 2, transient receptor potential cation channel), belonging to the polycystin subgroup of the
transient receptor potential (TRP) family, in sensing the leftward flow of fluid in the yolk sack
produced by unidirectional rotation of cilia on the endodermic surface of the Hensen node [17].
Another theory claims that differential ion channel activity in early embryo cells leads to unidirectional
mRNA flow via gap junctions and subsequently to asymmetrical gene expression. An elegant proof-of-
concept studies [22] proved that the T-box transcription factor Tbx5 exerts a “rheostatic” control on
expression levels of multiple genes including a network of cardiac transcription factors, cell signaling
molecules involved in development, and ion channel proteins, all contributing to interventricular
septum formation and right-left ventricle asymmetry [22, 23].

5. Conclusions

We can conclude that the up-down and left-right asymmetries in myocardial structure and

function result from complex and strictly controlled gene-regulated processes that can be perturbed in
pathological situations.
Supplementary Materials: The following are available online, Figure Al: KEGG map (mmu04260) of
the differential expression of cardiac muscle contraction (CMC) genes in: (a) the right atrium with
respect to the left atrium, (b) left ventricle vs left atrium and (c) right ventricle vs right atrium, Figure
A2: KEGG map (mmu04261) of the differential expression of adrenergic signaling in cardiomyocytes
(ASC) genes in the right ventricle with respect to the right atrium. Table S1: Ratios of RV/LV and
RA/LA gene expression in our study for 12 genes encoding subunits of cardiac ion channels and
transporters
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Figure A1l: KEGG map (mmu04260) of the differential expression of cardiac muscle contraction
(CMCQ) genes in: (a) the right atrium with respect to the left atrium, (b) left ventricle vs left atrium
and (c) right ventricle vs right atrium. No significant difference was found between the expressions of
CMC genes in the two ventricles. Genes with significant differences: actin alpha cardiac muscle 1
(Actcl), Na+/K+ transporting ATPases (Atpla2, Atpla), Ca* transporting ATPases (Atplbl, Atplb2),
calcium channels (Cacnalg, Cacnalh, Cacnals, Cacna2dl, Cacna2d2), cytochromes cl and b (Cycl, Cytb),
cytochrome c oxidases (Cox2, Cox3, Cox4il, Cox4i2, Cox5a, Cox5b, Cox6a2, Cox6a2, Cox6bl, Cox6b2, Coxbc,
Co7al, Cox7b, Cox7c, Cox8b), FXYD domain-containing ion transport regulator 2 (Fxyd2), myosins
(Myh6, Myh7, Myl2, Myl3, Myl4), solute carrier family 8 (sodium/calcium exchanger) member 1 (Slc8al),
tropomyosin 1, alpha (Tpm1) and troponins (Tnncl, Tnntl).
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Figure A2: KEGG map (mmu04261) of the differential expression of adrenergic signaling in
cardiomyocytes (ASC) genes in: (a) the right atrium with respect to the left right atrium; (b) the left
ventricle with respect to the left atrium; (c) the right ventricle with respect to the right atrium. No
gene was differentially expressed between the two ventricles. Genes with significant differences: actin,
alpha, cardiac muscle 1 (Actc1), adenylate cyclases (Adcy4, Adcy5, Adcy9), adrenergic receptor, alpha 1b
(Adralb), angiotensin (Agt), angiotensin II receptor, type la (Agtrla), thymoma viral proto-oncogenes
(Akt2, Akt3), Na*/K+-transporting ATPases (Atpla2, ATP1a3, ATP1bl, Atp1b3), Ca*-transporting
ATPases (Atp2b2, Atp2b3), calcium channels (Cacnalg, Cacnalh, Cacnals, Cacna2dl), calmodulin 2
(Calm2), cAMP responsive element binding protein 3-like 1 (Creb312), FXYD domain-containing ion
transport regulator 2 (Fxyd2), guanine nucleotide binding protein (G protein), alpha inhibiting 1
(Gnail), potassium voltage-gated channel subfamily Q member 1 (Kcngl), mitogen-activated protein
kinases (Mapk12, Mapk13, Mapkl4), myosins (Myh6, Myh7, Myl2, Myl3, Myl4), phospholamban (PIn),
protein phosphatases (Ppplcc, Ppplrlb), protein kinase, cAMP dependent, catalytic, alpha (Prkaca),
Rps6ka5, sodium channels (Scn4b, Scn5g), solute carrier family 8 (sodium/calcium exchanger) member 1
(Slc8al), troponins (Tnncl, Tnnt2) and tropomyosin 1 alpha (Tpm1).

Table S1. Ratios of RV/LV and RA/LA gene expression in our study for 12 genes encoding subunits of
cardiac ion channels and transporters
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Gene Protein RV/LV RAJLA
expression expression
ratio ratio
Scnba Cardiac fast voltage-dependent Na* channel main subunit Nav1.5 0.712 0.636
Kcnd?2 Cardiac fast transient outward K* channel main subunit Kv4.2 1.501 0.694
Kcna4 Cardiac slow transient outward K* channel main subunit Kv1.4 1.232 0.953
Clen2 Voltage-gated chloride channel CIC-2 1.055 0.707
Cacnafc  Cardiac L-type Ca?* channel main subunit Cav1.2 1.087 0.832
Kcnj2 Cardiac inward rectifier K* channel main subunit Kir2.1 1179 0.963
Kcnab Cardiac ultrarapid delayed rectifier K* channel main subunit Kv1.5 0.891 1.018
Kcnh2 Cardiac rapid delayed rectifier K* channel main subunit Kv11.1 1.103 1.253
Kceng1 Cardiac slow delayed rectifier K* channel main subunit Kv7.1 0.865 1.117
Atp2a2 Cardiac sarco/endoplasmic reticuluml Ca2* pump main subunit SERCA2 1.199 1.036
Atptat Cardiac Na*/K* pump catalytic subunit o1 0.973 0.890

Slc8at1 Cardiac Na*/Ca?* antiport exchanger NCX1 main sunbunit 0.895 5.269
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