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Abstract 

Membrane-coupled RNA transport is an emerging theme in fungal biology. This review focuses 

on the RNA cargo and mechanistic details of transport via two inter-related sets of organelles: 

endosomes and extracellular vesicles for intra- and intercellular RNA transfer. Simultaneous 

transport and translation of messenger RNAs (mRNAs) on the surface of shuttling endosomes 

is a conserved process pertinent to highly polarised eukaryotic cells, such as hyphae or neurons. 

Here we detail the endosomal mRNA transport machinery components and mRNA targets of 

the core RNA-binding protein Rrm4. Extracellular vesicles (EVs) are newly garnering interest 

as mediators of intercellular communication, especially between pathogenic fungi and their 

hosts. Landmark studies in plant-fungus interactions indicate EVs as a means of delivering 

various cargos, most notably small RNAs (sRNAs), for cross-kingdom RNA interference. 

Recent advances and implications of the nascent field of fungal EVs are discussed and potential 

links between endosomal and EV-mediated RNA transport are proposed. 
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1. Introduction  

RNA molecules figure fundamentally in mediating protein production from the genetic 

blueprint. They serve both as components of the translation machinery as well as adaptable 

regulators. In this review, we focus on messenger RNAs (mRNAs) and small regulatory RNAs 

(sRNAs), transported in association with intracellular and extracellular organelles, namely 

endosomes and extracellular vesicles (EVs).  

A molecule of mRNA contains, apart from the protein-coding sequence, cis-acting regulatory 

elements for interaction with cognate trans-acting factors. These fine-tune timing, localisation, 

and amplitude of translation in a combinatorial manner. Thus, each mRNA molecule interacts 

with various factors during its lifetime (Eliscovich and Singer, 2017; Singh et al., 2015), 

including small RNAs (sRNAs) and a plethora of RNA-binding proteins (Hentze et al., 2018). 

Small RNAs regulate gene expression at the transcriptional and post-transcriptional level in a 

process known as RNA silencing or RNA interference (RNAi) in eukaryotes (Bologna and 

Voinnet, 2014; Chang et al., 2012; Wilson and Doudna, 2013). Dicer-like proteins (DCR, 

Drosha, DCL) are core factors in sRNA biogenesis that process double-strand RNA precursors 

into mature 20-30 nucleotide (nt) duplex sRNAs, which include microRNAs (miRNAs), small-

interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). The guide strand of sRNAs 

is loaded into an active Argonaute (AGO) core of the RNA-induced silencing complex (RISC) 

to direct sequence-specific gene silencing. 

RNA-binding proteins (RBPs) contain designated domains to interact with specific elements in 

target RNAs. For example, the RNA recognition motifs (RRMs) of the poly(A)-binding protein 

recognises the poly(A) tail of almost all mRNAs (Brambilla et al., 2019; Hogan et al., 2008). 

Conversely, RNA elements with defined secondary and tertiary structures are bound by specific 

RNA-binding proteins that influence the stability, functionality and localisation of RNA 

molecules. Pertinent to intracellular RNA transport are complexes containing RBPs that link 
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them to molecular motors to determine where and when the mRNA should be translated (Martin 

and Ephrussi, 2009; Niessing et al., 2018).  

In recent years, a close link between RNA transport and membrane trafficking has become 

apparent (Béthune et al., 2019; Jansen et al., 2014). Endosomes, for example, carry mRNA 

along the microtubule cytoskeleton (Baumann et al., 2012). Moreover, translation of mRNA on 

the surface of mobile endosomes has been demonstrated as a novel mechanism to load protein 

cargo on endosomes for long distance transport (Baumann et al., 2012; Haag et al., 2015).  

Another emerging theme is extracellular vesicle (EV)-mediated RNA transport. Various RNA 

species have been found in the lumen of EVs that may participate in intercellular 

communication. In light of the breakthrough discoveries of cross-kingdom RNAi between 

pathogenic fungi and their host plants (Nowara et al., 2010; Weiberg et al., 2013), EVs are 

emerging as probable vehicles mediating this process (Cai et al., 2018). The membrane-

associated RBPs, such as the endosome-associated RNAi components (Gibbings et al., 2009; 

Lee et al., 2009) are predicted to facilitate selective targeting of RNA cargo into extracellular 

vesicles. Here, we summarise the current knowledge and carefully speculate on the mechanism 

of endosomal and EV-mediated RNA transport in fungi, with respect to their development and 

lifestyle: from endosomal transport of mRNA during polar growth of hyphae to secretion of 

sRNA in extracellular vesicles at the fungal-plant interface.  

2. Endosomal mRNA transport  

2.1 Fungal endosomes on the move 

The endosomal pathway is an evolutionarily conserved membrane trafficking mechanism 

important for recycling and degradation of plasma membrane proteins. Starting with 

endocytosis, early endosomes are formed by inward budding of the plasma membrane and 

mature into late endosomes. Along the path of maturation, intraluminal vesicles bud inwards 
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forming multivesicular endosomes (MVEs) (Huotari and Helenius, 2011). Maturing endosomes 

have different fates: they fuse with the vacuole for cargo degradation or they fuse with the 

plasma membrane, releasing its luminal contents. The intraluminal vesicles of MVEs are 

released as exosomes. Important regulators of intracellular membrane trafficking are small 

GTPases, specific subsets of which mark membrane compartment identity. Early and late 

endosomes, for example, are associated with Rab5- and Rab7-type GTPases, respectively 

(Huotari and Helenius, 2011). 

Among the best-studied examples for endosomal transport in fungi is the basidiomycete 

Ustilago maydis (Haag et al., 2015; Steinberg, 2012). This corn pathogen switches from yeast-

like budding to unipolar growth in order to form infectious hyphae for plant colonisation 

(Lanver et al., 2017). Prior to invading the plant, the cell cycle is temporarily arrested and 

hyphae begin to grow with a defined axis of polarity. The hyphae expand at the apical pole and 

insert septa at the basal pole resulting in the formation of regularly spaced empty sections that 

collapse over time (Fig. 1A; Vollmeister et al., 2012;). Studying endocytosis during this phase 

of the life cycle uncovered extensive bidirectional movement of Rab5a-positive early 

endosomes along microtubules (Fig. 1C-D; Steinberg, 2012, 2014). Endosomal shuttling is 

achieved by the concerted action of the plus end-directed Kinesin-3-type motor Kin3 towards 

the hyphal tip and the minus end-directed motor dynein Dyn1/2 towards the central nucleus. 

Loss of Kin3 results in the formation of aberrant bipolar hyphae, suggesting that endosomal 

transport is needed for efficient unipolar hyphal growth (Schuster et al., 2011). It has been 

speculated that endosomes deliver cargo proteins to the basal vacuole or transport signalling 

components over long distances to allow communication between the nucleus and the growing 

apex (Bielska et al., 2014; Steinberg, 2012, 2014). 
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2.2 Rrm4: a major RBP for mRNA transport on endosomes 

An insightful addition to the picture of the endosomal distribution chain was the presence of 

the mRNA-binding protein Rrm4 on Rab5-positive endosomes, uncovering a novel mechanism 

of mRNA transport in polarised cells (Baumann et al., 2012; Jansen et al., 2014). Prior to this 

discovery, there was genetic evidence linking Rrm4 to endosomal function and cell polarity: 

loss of Rrm4 leads to the formation of aberrant bipolar hyphae, similar to those of kin3Δ strains 

(Fig. 1B; Becht et al., 2006). 

Rrm4 contains three RRM domains for RNA binding at the N-terminus and two MLLE domains 

for protein-protein interaction at the C-terminus. A recent transcriptome-wide search for 

sequences bound by Rrm4, down to single-nucleotide resolution, showed groups of transcripts 

with different patterns of Rrm4 binding along the mRNA, at the start or stop codons, the ORF, 

and most prominently, the 3´ untranslated region (UTR) (Fig. 1D; Olgeiser et al., 2019). We 

speculate that differential binding specificities of the three RRM domains, in combination with 

other protein interactors, bring about different binding patterns on the target mRNA. Supporting 

this notion, the third RRM domain recognizes the sequence motif UAUG. Furthermore, the 

small glycin-rich RNA-binding protein Grp1 was found to share targets Rrm4 particularly in 3´ 

UTRs (Fig. 1D; Olgeiser et al., 2019). In essence, the key RNA-binding protein of endosomal 

mRNA transport binds distinct translational landmark sites to orchestrate transport and 

translation. 

2.3 On-the-go translation of mRNAs on shuttling endosomes 

Evidence from RNA live imaging with in vivo UV crosslinking revealed that Rrm4 binds a 

distinct set of target mRNAs, including those encoding septins (König et al., 2009). Septins are 

cytoskeletal proteins that assemble into heteromeric building blocks, important for cell polarity 

and morphology (Mostowy and Cossart, 2012). In hyphae, septins form higher-order structures, 
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such as filaments, with a gradient emanating from the hyphal growth pole (Fig. 1D; Baumann 

et al., 2014; Zander et al., 2016). 

Intriguingly, the septin proteins too, were found to be present on Rrm4-positive transport 

endosomes, along with septin mRNA. Moreover, Rrm4-dependent shuttling of tagged 

ribosomes on these endosomes strongly suggests on-the-go translation of the cargo mRNA on 

endosomal surface (Baumann et al., 2014; Higuchi et al., 2014). Consistently, all four septin 

mRNAs carry Rrm4 binding sites in their 3´ untranslated region (UTR), presumably so that the 

binding of Rrm4 does not interfere with translation during transport (Olgeiser et al., 2019). In 

the absence of Rrm4, shuttling of both septin mRNA and proteins was lost, as well as septin 

heteromer assembly and the formation of a gradient of higher order septin filaments (Fig. 1C-

D; Baumann et al., 2014; Zander et al., 2016). Thus, the novel concept of endosomal transport-

coupled translation was introduced (Baumann et al., 2014): local translation and assembly of 

protein complexes at the surface of motile endosomes allows the efficient delivery of ready-

made products to the hyphal growth pole (Fig. 1D-E).  

2.4 The endosomal RNA transport machinery 

A major research question surrounding Rrm4-mediated endosomal mRNA transport is how the 

Rrm4-containing mRNPs are attached to endosomes. Initially, it was found that mutations in 

critical residues of the C-terminal MLLE domain caused loss of Rrm4 movement (Becht et al., 

2006). The 70-amino-acid MLLE domain was first found in the human poly(A)-binding protein 

PABC1. It specifically interacts with the PAM2 peptide motif (PABP interacting motif 2), 

present in cognate protein interaction partners (Kozlov et al., 2010; Xie et al., 2014). Search for 

PAM2 motif proteins lead to Upa1 (Ustilago PAM2 protein 1; Pohlmann et al., 2015), which 

additionally contains a FYVE zinc finger for the interaction with PI3P lipids characteristic for 

early endosomes (Kutateladze, 2006; Stenmark et al., 2002). Indeed, Upa1 shuttles on almost 

all Rrm4-positive endosomes and the loss of Upa1 causes aberrant bipolar hyphal growth. Upa1 
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interacts with Rrm4 but unexpectedly, the PAM2 motif was dispensable for this function 

(Pohlmann et al., 2015). Instead, it was found to contain two PAM2-like sequences (PAM2L) 

for interaction with the MLLE domains of Rrm4 (Pohlmann et al., 2015). Taken together, Upa1 

is the first example of a functionally important adaptor protein linking Rrm4-containing mRNPs 

to endosomes (Fig. 1E; Pohlmann et al., 2015). However, even in the absence of Upa1, residual 

endosomal shuttling of Rrm4 is observed, suggesting that there are additional factors involved.  

Upa2, which exceptionally contains four PAM2 motifs, shuttles on almost all Rrm4-positive 

endosomes and is important for efficient unipolar hyphal growth (Jankowski et al., 2019). 

However, in contrast to Upa1 it requires Rrm4 to be present on endosomes, indicating that it 

most likely interacts with the components of the mRNP, rather than directly with the endosomal 

membrane. Also in this case, the PAM2 motifs were functionally dispensable. Instead, a novel 

functionally important effector domain was discovered at the N-terminus and a conserved 

GWW motif for endosomal mRNP attachment at the C-terminus. Loss of Upa2 did not 

influence Rrm4, but shuttling of the poly(A)-binding protein Pab1 and specific target mRNAs 

was strongly reduced. Thus, Upa2 classifies as a novel core component of endosomal mRNA 

transport, which most likely serves as a scaffold protein for endosomal mRNP assembly or 

stability during transport (Fig. 1E; Jankowski et al., 2019).  

To learn more about the identity of the transport endosomes, we studied the conserved factor 

Did2, which regulates the ESCRT machinery (endosomal sorting complex required for 

transport) for endosomal maturation (Hurley, 2015; Teis et al., 2009). Loss of Did2 caused 

aberrant bipolar hyphal growth, suggesting a link to endosomal mRNA transport. Closer 

inspection revealed that maturation of shuttling endosomes was indeed disturbed, since marker 

proteins Rab7 or vacuolar cargo proteins were present on shuttling endosomes in did2Δ hyphae 

(Haag et al., 2015). The altered identity of the shuttling endosomes causes reduced attachment 

of the motor Kin3 as well as less FYVE protein Upa1. Consequently, mRNPs were transported 
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less efficiently, explaining the phenotype. Thus, the ESCRT regulator orchestrates the balance 

of early endosomes functioning in long-distance transport and endocytic maturation (Haag et 

al., 2017).  

2.5 Membrane-associated RNA transport as a widespread concept  

Membrane-associated RNA transport appears to be a common theme in biology (Béthune et al., 

2019). Within the fungal kingdom, a detailed phylogenetic analysis of the core endosomal RNA 

transport machinery components revealed their conservation across Basidiomycota and absence 

in Ascomycota (Müller et al., 2019). Endosomal shuttling of the heterologous expressed Rrm4 

orthologue from fungi as distant as Rhizophagus irregularis in U. maydis, suggests a high 

degree of functional conservation (Müller et al., 2019). Intriguingly, microtubule-dependent 

shuttling of the RNA-binding protein Gul1 was recently reported in hyphae of the ascomycete 

Neurospora crassa, although the mode of membrane association is still unclear (Herold et al., 

2019).  

Comparable to endosomal mRNA transport in U. maydis, neuronal endosomes were discovered 

to deliver mRNAs and promote mitochondrial targeting of nuclear encoded proteins by local 

translation at the surface of late endosomes (Cioni et al., 2019). Furthermore, the mammalian 

RNA-binding protein ANXA11 links RNA granules to moving lysosomes for long-distance 

mRNA transport in neurons (Liao et al., 2019). In essence, endosomal mRNA transport is not 

an exceptional invention in basidiomycete smut fungi, but a widespread trafficking process.  

On a wider scale, membrane-associated RNA-binding proteins (memRBPs) coordinate 

membrane-coupled local translation, not only at endosomes or the ER but most likely at all 

internal membranes including those of mitochondria, peroxisomes and vacuoles (Béthune et 

al., 2019). This brings us to hypothesise that such memRBPs would also facilitate specific 

loading of various RNA cargo from intercommunicating intracellular organelles into secreted 
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extracellular membrane structures, which can be considered “extended” organelles that can 

bring about extended phenotypes (Dawkins, 1982). 

3 Extracellular vesicle-mediated RNA transport  

3.1 Extracellular vesicles 

Extracellular vesicles (EVs) are membranous nano-sized particles secreted by organisms 

representing the kingdoms of life. Despite initial disregard as being cell debris or disposals, 

cumulative evidence clearly indicates biological functionality of EVs, particularly in 

intercellular and inter-organismal communication (Deatherage and Cookson, 2012; Maas et al., 

2017; Meldolesi, 2018; Mittelbrunn and Sanchez-Madrid, 2012). EVs are now recognized as 

common vehicles that deliver molecules such as RNAs and proteins to instigate physiological 

changes in recipient cells. Already observed in early ultrastructural studies, EVs have only 

recently begun to gain increasing attention from plant scientists and microbiologists. EVs are 

proposed to play pivotal roles in cross-kingdom communication between microbial pathogens 

and their hosts (Bielska et al., 2019; Bielska and May, 2019; Kuipers et al., 2018; Rutter and 

Innes, 2018; Rybak and Robatzek, 2019; Samuel et al., 2015; Soares et al., 2017). In this part, 

we summarise the state-of-the-art in fungal EVs, their protein and RNA cargos as well as their 

potential function in intra-species to cross-kingdom communication. 

3.2 EV biogenesis in fungi 

EVs are a collective term for a very heterogeneous group of lipid bilayer particles varying in 

size, composition and cargo. Such high level of heterogeneity suggests that distinct EV 

biogenesis pathways must exist in cells (Mathieu et al., 2019; van Niel et al., 2018). In 

mammalian cell types, two major EV secretion mechanisms have been described. On the one 

hand, intraluminal vesicles in multivesicular endosomes (MVEs) are released as exosomes 

upon fusion of MVEs with the plasma membrane (Fig. 2). On the other hand, microvesicles 
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bud directly off the plasma membrane, which explains the overlap in molecular contents in this 

type of EVs with the local cytoplasm at the cell periphery. In both EV secretion pathways, 

conserved ESCRT components and accessory proteins are involved (Colombo et al., 2013). 

Furthermore, various proteins that are linked to endomembrane systems, such as small GTPases 

(Muralidharan-Chari et al., 2009), SNAREs (Fader et al., 2009; Koles et al., 2012), syntenins 

(Baietti et al., 2012) and tetraspanins (van Niel et al., 2011), are relevant for EV biogenesis and 

cargo loading. Homologous proteins and similar secretory pathways are likely to participate in 

fungal EV biogenesis as well, but their relative contribution and biological significance remain 

to be clarified (Oliveira et al., 2013). In this regard, genetic evidence suggests involvement of 

both the conventional secretory pathway and the ESCRT-mediated MVE pathway in fungal EV 

biogenesis and cargo loading. For instance, Saccharomyces cerevisiae mutants of both the 

exocytic Rab GTPase Sec4, required for post-Golgi secretory vesicle formation, and the ESCRT 

component Snf7, show altered EV protein composition (Oliveira et al., 2010b). Furthermore, 

knocking down the exocyst component Sec6 in the fungus Cryptococcus neoformans led to a 

dramatic reduction in EV secretion (Panepinto et al., 2009), presumably by affecting MVE 

fusion with the plasma membrane. Obviously, disruption of individual genes involved in EV 

biogenesis does not completely abolish EV formation, implying a certain level of functional 

redundancy of genes and pathways in EV formation. 

3.3 Proteins and RNAs in fungal EVs 

To gain further insights into the biogenesis of fungal EVs and their potential roles in fungal 

biology and pathogenicity, several studies have examined the EV protein and RNA cargos 

(Rodrigues et al., 2014). Commonly, many proteins found in EVs indeed lack classical signal 

peptides, supporting their cellular release via unconventional secretion mechanisms (Rodrigues 

et al., 2008). Moreover, comparative proteomics of fungal EVs displayed not only high 

diversity, but also revealed core sets of cargo proteins, indicating some degree of conservation 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2019                   doi:10.20944/preprints201911.0213.v1

https://doi.org/10.20944/preprints201911.0213.v1


12 
 

in EV biogenesis, cargo loading and function (Rodrigues et al., 2014; Vallejo et al., 2012). 

These EV core proteins were predicted to function in translation, carbohydrate and protein 

metabolism, oxidation/reduction, transport, stress response and signalling functions (Vallejo et 

al., 2012). Moreover, several virulence factors have been found in EVs of pathogenic fungal 

species, suggesting a role of EVs in pathogenesis (Bleackley et al., 2019).  

Beside proteins, several RNA species have been identified in fungal EVs. To date, studies on 

various fungal species have predominantly focused on smaller non-coding RNAs (<200 nt), 

including potential gene-regulatory small RNAs, such as miRNA-like RNAs (milRNAs) and 

tRNA fragments (tRFs) (Fig. 2; Alves et al., 2019; Peres da Silva et al., 2019; Peres da Silva et 

al., 2015; Rayner et al., 2017). The detection of small RNAs in fungal EVs supports their 

proposed role in RNA-mediated intra- or interspecific communication. Moreover, full-length 

mRNAs have also been found in fungal EVs (Alves et al., 2019; Peres da Silva et al., 2019), 

but it needs to be clarified whether EV mRNAs are translated into functional peptides in 

recipient cells. Beside detection, enrichment of certain RNA species and sequence motifs has 

been reported in plant and animal EVs (Villarroya-Beltri et al., 2014). Indeed, there seems to 

be clear differences between cellular and EV abundance of transcripts (Alves et al., 2019; Peres 

da Silva et al., 2019) implying the existence of active, yet unknown RNA sorting mechanisms 

into EVs. In this regard, RNA-binding proteins that form ribonucleoprotein complexes were 

found to facilitate loading of specific microRNAs into mammalian exosomes (Statello et al., 

2018; Villarroya-Beltri et al., 2014). Similarly, ribonucleoprotein complexes are prime suspects 

to mediate RNA sorting into fungal EVs, as well (Fig.2). Accordingly, candidate RBPs have 

been detected in fungal EV proteome studies (Alves et al., 2019), thus waiting to be studied for 

their role in EV RNA sorting.  
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3.4 EVs in human-pathogenic fungi 

Fungal EVs are thought to participate in intercellular communication regarding host-fungal or 

fungal-microbial interactions. Indeed, fungal EVs released from different pathogenic species 

can either support host infection (Bielska et al., 2018; Ikeda et al., 2018) or stimulate immune 

responses in their mammalian host cells (Oliveira et al., 2010a; Vargas et al., 2015). For instance, 

EVs isolated from the culture supernatant of Candida albicans or Cryptococcus neoformans 

have immunomodulatory effects on macrophages and other immune cells (Joffe et al., 2016; 

Zamith-Miranda et al., 2018). Known virulence-associated proteins, such as laccases and 

ureases, were found in C. neoformans and C. albicans EVs, suggesting vesicular transport of 

such virulence factors towards host cells for infection (Oliveira et al., 2010b; Rodrigues et al., 

2008). Other non-proteinaceous compounds were also detected in fungal EVs that are known 

to contribute to pathogenicity and virulence, such as melanin and the polysaccharide 

glucuronoxylomannan (Eisenman et al., 2009; Rodrigues et al., 2007). Interestingly, fungi do 

not only secrete EVs for pathogenesis, but eventually also for defence against predators. For 

instance, C. neoformans was reported to release EVs for protection against the predatory 

amoeba Acanthamoeba castellanii. The fungal EVs are internalised by the amoeba cells and are 

suggested to suppress predatory activity that result in increased fungal survival rates (Rizzo et 

al., 2017).  

An interesting function of fungal EVs has been proposed in regard to intraspecific, intercellular 

communication at the population level (Bielska and May, 2019). Virulence of the Cryptococcus 

gattii outbreak lineage R265 is attributed to an explosive proliferative ability through “division 

of labour” between fungal cells co-infecting a macrophage (Voelz et al., 2014). In this context, 

EVs isolated from axenic culture of the outbreak strain are sufficient to trigger rapid 

proliferation of a recipient non-outbreak strain inside macrophages in cell culture. Interestingly, 

both the EV protein and RNA cargoes are essential for this effect. Proliferation of the non-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 November 2019                   doi:10.20944/preprints201911.0213.v1

https://doi.org/10.20944/preprints201911.0213.v1


14 
 

outbreak strain in macrophages in the presence of other macrophages infected with the outbreak 

strain further supports EV-mediated long-distance communication (Bielska et al., 2018). 

Similarly, bacterial outer membrane vesicles were also reported to transport quorum sensing 

molecules (Toyofuku, 2019), indicating that EVs may be a common means of microbial 

communication at population level. 

3.5 EVs in plant-fungal interactions  

EV- and MVE-like structures have been also observed in plants by microscopic techniques at 

infection sites of fungal pathogens (Fig. 2; An et al., 2007; Snetselaar and Mims, 1994). 

Ultrastructural examination of non-host interaction between the barley powdery mildew fungus 

Blumeria graminis f.sp. hordei and Arabidopsis thaliana revealed plant MVEs and syntaxin 

PEN1-positive exosomes accumulating around the fungal infection structures (An et al., 2006; 

Böhlenius et al., 2010; Meyer et al., 2009). Intriguingly, an antimicrobial capacity of infection-

induced PEN1-positive EVs was proposed recently; EVs isolated from leaf apoplastic wash 

fluids of Arabidopsis plants challenged with the bacterial pathogen Pseudomonas syringae 

showed enrichment of antimicrobial peptides, such as Pathogenesis-Related (PR) proteins  

(Hansen and Nielsen, 2017; Rutter and Innes, 2017). Plant EVs were found to supress fungal 

pathogens also. For instance, incubation of Sclerotinia sclerotiorum liquid culture with EVs 

isolated from sunflower apoplastic wash fluid led to uptake of plant EVs by the fungus and 

subsequent growth inhibition (Regente et al., 2017). However, the identity of the components 

of plant EVs inhibiting fungal proliferation remains unknown. Arabidopsis EVs also contain 

different types of small and tiny RNAs (Baldrich et al., 2019) that might mediate plant-pathogen 

crosstalk. The phenomenon, whereby plant host-derived sRNA silences genes in the pathogen, 

is known as host-induced gene silencing (HIGS; Fig. 2; Nowara et al., 2010). Recently, it was 

demonstrated for the first time in Arabidopsis, that HIGS is mediated by EVs for plant defence 

(Huang et al., 2019). Arabidopsis delivers miRNAs and trans-acting siRNAs (tasiRNAs) via 
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exosome-like EVs into cells of the fungal plant pathogen Botrytis cinerea during infection. EV 

sRNAs were found to suppress fungal virulence genes putatively involved in intracellular 

transport and pathogenesis (Cai et al., 2018). Along the same lines, Arabidopsis EVs are 

proposed to also deliver siRNAs into the oomycete plant pathogen Phytophthora capsici, 

possibly to silence virulence genes (Hou et al., 2019). Likewise, cotton plants also deliver 

miRNAs to the fungal pathogen Verticillium dahliae to inhibit virulence gene expression and 

to promote disease resistance (Zhang et al., 2016), but participation of cotton EVs in miRNA 

transport has so far not been examined.  

Cross-kingdom RNAi in plant-fungal interaction is bidirectional (Wang et al., 2016), because 

pathogen-induced gene silencing (PIGS; Fig. 2) by a fungal pathogen has been initially 

discovered as a virulence strategy of B. cinerea. This fungal pathogen delivers sRNAs into plant 

cells during infection, which hijack the plant RNAi machinery to silence host immunity genes 

(Weiberg et al., 2013). Similarly, sRNAs of the fungal plant pathogen Verticillium dahliae were 

found associated with the plant RNAi machinery during infection (Wang et al., 2016). 

Moreover, miRNA-like RNAs of the wheat pathogens Puccinia striiformis f.sp. tritici and 

Fusarium graminearum were suggested to target host plant genes for infection (Wang et al., 

2017, Jian and Liang, 2019). Other types of plant pathogens, parasites or symbionts are 

proposed to deliver sRNAs into their host plants to manipulate gene expression (Weiberg et al., 

2015). Indeed interspecies and cross-kingdom RNAi has been discovered in the parasitic plant 

Cuscuta spp. (Johnson and Axtell, 2019) and the nitrogen-fixing bacteria Sinorhizobium 

meliloti (Ren et al., 2019). Whether fungi and other microbes deliver sRNAs and other types of 

virulence factors (effectors) into host cells via EVs, needs to be resolved. Yet, another type of 

membranous structure, called membrane tubules (“memtubs”), has been described at the 

interface between the arbuscular mycorrhizal fungus Rhizophagus irregularis and its plant host 

(Ivanov et al., 2019; Roth et al., 2019). Memtubs seem to be generally conserved in plant-
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fungus interaction, and have also been observed in the pathogen U. maydis (Roth et al., 2019). 

Consistent with the hypothesis, memtubs might be produced to increase surface areas for 

exchange of signals and nutrients at the fungus-plant interface. However, any functional role of 

memtubs and whether RNAs and proteins can be transported via this route between fungi and 

plants needs to be investigated.  

How EVs of 50-500 nm in diameter can traverse the cell wall of bacteria, fungi or plants is 

currently poorly understood. Different models of vesicular trans-cell wall shuttling have been 

postulated (Brown et al., 2015; Wolf and Casadevall, 2014). One hypothesis is that EVs cross 

the cell wall via pores or channels (Brown et al., 2015 Walker et al., 2018). However, electron 

microscopy studies of EV interaction with the fungal cell wall in C. neoformans suggest direct 

vesicular exit through mechanisms that depend on cell wall melanisation (Wolf et al., 2014), 

indicating that cell wall composition matters. Similarly, the viscoelastic properties of C. 

albicans cell walls seem to influence the traffic of liposomes (Walker et al., 2018). Higher cell 

wall plasticity at the site of cell separation, hyphal branching or actively growing daughter cells 

and hyphal tips may facilitate EV release as well. Interestingly, many putative cell wall 

remodelling enzymes, such as glucanases and pectinases were identified in EVs, suggesting cell 

wall modifying activity by EVs may promote their cell wall passage (Nimrichter et al., 2016; 

Rodrigues et al., 2014). 

4. Concluding remarks 

As outlined above, membrane and RNA trafficking are two tightly intertwined processes. A key 

unanswered question is how transported RNAs are specifically loaded to membrane 

compartments. This includes the attachment of mRNAs to the surface of endosomes and the 

loading of extracellular vesicles with RNA cargo. Determining factors are most likely RNA-

binding proteins that interact with membrane-associated proteins. The precise significance of 

membrane-coupled RNA transport in localised subcellular processes as well as intercellular 
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communication shaping fungal populations, fungus-host interactions, and even the greater 

microbiome, remains to be elucidated. As so often, fungi could serve as excellent model systems 

to advance this emerging research area.  
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Figures and Figure legends 

 

Fig. 1 Endosomal RNA transport machinery in Ustilago maydis. (A) Unipolar filamentous 
growth of U. maydis laboratory strain AB33, engineered to facilitate genetic studies on 
filamentous growth (Brachmann et al., 2001). (B) Bipolar filamentous growth of rrm4Δ strain 
in AB33 background. Aberrant cell polarity in the absence of the endosome-associated mRNA-
binding protein Rrm4 indicates the importance of mRNA transport in polarity maintenance in 
hyphal cells. (C) Model of bi-directional, endosome-associated mRNA transport along 
microtubules in U. maydis hypha. (D) Components of the endosomal RNA transport machinery. 
Rrm4 core mRNA-binding protein and Pab1 poly(A)-binding protein are attached to the surface 
of Rab5-positive early endosomes via the adaptor protein Upa1. Upa1 is bound to the 
endosomal surface via a PI3P-binding FYVE domain and possesses PAM2L (P2L) and PAM2 
(P2) domains to interact with MLLE domains (M) of Rrm4 and Pab1. Multi-PAM2 protein 
Upa2 presumably acts as a scaffold for Pab1 proteins on the poly(A) tail of cargo mRNAs, and 
its GWW motif is important for association of Pab1 on endosomal surface. Rrm4 has three 
RRM domains (1, 2, 3), which notably bind septin mRNAs, and recognises the UAUG motif 
via the third RRM domain (3). Additional RNA-binding protein Grp1 co-localises and shares 
mRNA targets with Rrm4, including septins. Bound mRNAs are translated during transport on 
endosomes and the translation products are co-transported, as exemplified by shuttling of 
partially assembled septin hetero-oligomers for increased efficiency. 
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Fig 2 Cross-kingdom RNAi at the fungus-plant interface mediated by extracellular 
vesicles (EVs). During infection, both the fungus and the plant deploy small RNAs (sRNAs) to 
silence target genes in the interaction partner, as virulence and defence strategies, respectively. 
Silencing of fungal pathogen genes by plant host sRNAs is termed host-induced gene silencing 
(HIGS) and vice versa, pathogen-induced gene silencing (PIGS) is brought about by fungal 
sRNAs in plants. EVs are one of the ways in which sRNAs are transferred between interacting 
organisms. EVs can be derived from multivesicular endosomes (MVEs) or from budding at the 
plasma membrane. Endosomes bud inwards during maturation to form intraluminal vesicles, 
incorporating contents from the cytosol, notably sRNAs and proteins. RNA-binding proteins 
are thought to be key determinants of RNA loading into EVs. Intraluminal vesicles are released 
as exosomes upon fusion of the MVE with the plasma membrane. How precisely EVs cross the 
cell walls and deliver their contents to the recipient cell are currently undetermined. 
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