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The principal objective of this project is to investigate the gravitational lensing by asymptotically
flat black holes in the framework of Horndeski theory in weak field limits. To achieve this objective,
we utilize the Gauss-Bonnet theorem to the optical geometry of asymptotically flat black holes and ap-
plying the Gibbons-Werner technique to achieve the deflection angle of photons in weak field limits.
Subsequently, we manifest the influence of plasma medium on deflection of photons by asymptot-
ically flat black holes in the context of Horndeski theory. We also examine the graphical impact of
deflection angle on asymptotically flat black holes in the background of Horndeski theory in plasma
as well as non-plasma medium.
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I. INTRODUCTION

The anecdote of a falling apple fostering Newtonian gravity has been imparted on generations since the year 1666.
For centuries from then, physicists have believed that the gravitational force is related to the ratio of the product
of the interacting masses and the square of their separation through a proportionality constant. This ’Gravitational’
constant was given an accurate value via the Cavendish experiment. In 1910s, Einstein’s general theory of relativity
transpired suggesting a finite, spherical universe in which the Gravitational constant, G was discerned to exhibit a
dependence on mass distribution and size of the universe, so as to account for the inertial forces [1].

A decade later, Hubble’s observations confirmed the Big Bang Theory, essentially establishing that the universe
was expanding, and potentially infinite. The extent of the universe that can be observed is limited to a maximum
distance determined by the time that light takes to reach Earth from the observable edge. In other words, mass
distribution and the size of the universe changes with time, and hence, so does the gravitational constant, G [2, 3].
This discrepancy led to the speculation that the effect of G could rather be a scalar field, than a constant number.
According to Einstein’s formulation, the so-called metric field contains the influence of gravity, and mathematically
known as a tensor. Therefore, the idea of consolidating a scalar field due to mass distribution with the metric is
called as the scalar-tensor theory [4–6].

One such generic gravitational scalar-tensor theory is the Horndeski theory [7]. Defined for a four-dimensional
spacetime, the scalar field is incorporated as a new degree of freedom to formulate the Lagrangian of the system,
begetting second-order field equations of motion. This notion is inspired from the Lovelock theory of gravity: relax-
ing Lovelock’s assumptions not only exercises the scalar-tensor theory, but also extends Einstein’s theory of gravity.

The kinetic term of the Lagrangian characterizes the quadratic derivative of the field and depends on the Lovelock
tensor – which is proportional to the Einstein tensor, Gµν – encompassing non-minimal coupling between the scalar
field, ϕ and curvature [8]. Hence, the action principle for a 4-D spacetime (n = 4) becomes [9, 10]:

I[gµν , ϕ] =

∫ √
−g d4x

[
k (R− 2Λ)− 1

2
(αgµν − ηGµν)∇µϕ∇νϕ

]
(1)
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where, k ≡ 1/16πG. Here, the first term accounts for the scalar field with non-minimal coupling for matter owing to
the Ricci scalar,R, and the second term accounts for the Einstein-Hilbert action for gravity owing to the cosmological
constant, Λ. Values of the parameters α and η are governed by the positive energy density of matter field.

The above equation is the reduced form of the action analyzed with standard matter, matter fields and non-
standard scalar field [10]: implementing assumptions - the geometry is static, spherically symmetric and homo-
geneous with the scalar and metric fields obeying this symmetry in an asymptotically flat space-time - renders this
equation as the limiting case of Horndeski theory. Eq. 1 is the foundation of the ensuing work.

Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive ob-
ject bends the paths of light originating from distant objects lying behind it, which is used to understand galaxies,
dark matter, dark energy and the universe [1]. Various authors studied the gravitational lensing by black holes,
wormholes, cosmic strings and other objects since the first gravitational lensing observation by Eddington [11–37].

In 2008, Gibbons and Werner cleverly showed that there is a alternative way to obtain weak deflection angle for
asymptotically flat optical spacetimes using the Gauss-bonnet theorem [38]. Afterwards, Werner was managed to
derive the weak deflection angle of stationary spacetimes using the Gauss-bonnet theorem [39]. Note that both of
them were used the way that the source and receiver are located at asymptotic regions. Next, Ishihara et al. showed
that it is also possible to use this method for finite-distances (large impact parameter cases) [40]. Then, Crisnejo and
Gallo showed that plasma medium deflects photons [41]. For more recent works, one can see [42–82].

The purpose of this work is to study the deflection angle by black holes in a Horndeski theory using the Gauss-
Bonnet theorem to test the validity of this modified gravity theory. For comparison, we consider the notion of the
deflection angle of massive particles in a plasma medium from a black hole. Our main aim is to check the effects of
Horndeski theory on the weak deflection angle.

This paper is organized as follows: In section 2, we review some basic concepts about asymptotically flat BH, then
we compute the Gaussian optical curvature for deflection angle and calculate the deflection angle by using GBT.
In section 3, we calculate the deflection angle for in a plasma medium. The last section comprises of concluding
remarks.

II. CALCULATION OF PHOTON LENSING FOR FOR ASYMPTOTICALLY FLAT BLACK HOLES

Here we will show that the inclusion of a cosmological term in the action allows finding a new asymptotically
locally flat black hole. In this case we will consider that the matter sector is given only by the kinetic term of the
scalar field which is constructed with the Einstein tensor, namely we shall consider the action with α = 0. Thus, the
action reduces to

I[gµν , ϕ] =

∫ √
−gd4x[k(R− 2Λ) +

η

2
Gµν∇µϕ∇νϕ]. (2)

The field equation allows a first integral which introduces an integration constant. If we set it to zero, we find that
for K 6= 0, the following metric defines a solution of the system [9]:

ds2 = −H(r)dt2 +
15(Λr2 − 2K)2

K

dr2

H(r)
+ r2dΣ2

K,2, (3)

where dΣ2
K,2 = dθ2 + sin2 θdϕ2 and

H(r) = (60K2 − 20ΛKr2 + 3Λ2r4)− µ

r
, (4)

If Λ disappears, the scalar field vanishes and the solution turns into the topological Schwarzschild solution in a
flat space-time, representing a black hole only in a spherically symmetrical scenario [9]. By taking Λ = 0:

ds2 = −H(r)dt2 +
60K

H(r)
dr2 + r2dΣ2

K,2, (5)

and

H(r) = 60K2 − µ

r
. (6)

Here, µ is the integration constant and can be explicate as the black hole mass.
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Now to acquire the null geodesics (ds2 = 0), the BH optical spacetime can be simply written in equatorial plane
θ = π

2 :

dt2 =
60K

H(r)2
dr2 +

r2

H(r)
dϕ2. (7)

along with optical metric ĝoptab = gab

(−gtt) , according to the Fermat principle, the geodesics are spatial rays of light.

The Gaussian optical curvature can be determined by allowing use of the description for the two-dimensional
optical metric 7

K =
RicciScalar

2
, (8)

in which R for optical metric is the Ricciscalar. Following the computation of non-zero Christoffel symbols, we
obtain the following equation particularly for the Gaussian optical curvature of the optical metric 7

K = −Kµ
r3

+
µ2

80Kr4
+O(r−5) (9)

Let us recall the GBT for a two dimensional manifold. In this regard, we consider a regular domain DR aligned by
2-dimensional surface S with Riemannian metric ĝij , along with its piece-wise smooth boundary ∂DR = γg ∪ CR,
then GBT permits a connection among the geometry and topology in terms of the subsequent relation [38]∫ ∫

DR

KdS +

∮
∂DR

k̂dσ +
∑
j

α̃j = 2πX (DR). (10)

where K is the Gaussian optical curvature, α̃j is the exterior angle at the jth vertex and σ is the line element along
the boundary DR. Let γ be a smooth curve in the same domain. Thus, γ̇ comes to be the unit speed vector [38]. It is
well known that for regular domain the Euler characteristic XDR

= 1, while k̂ is termed as a geodesic curvature and
is defined as

k̂ = gopt(∇γ̇ γ̇, γ̈), (11)

having the unit speed condition gopt(γ̇, γ̇) = 1, where γ̈ is the unit acceleration vector perpendicular to γ̇. In the case
of R → ∞, the respective jump angles are taken as π/2 (in short, the sum of angles corresponding to the observer
and the source: α̃O + α̃S → π).

Using the fact that, from geodesic there is a zero contribution i.e. k̂(γg̃) = 0, we shall pursue a contribution by
virtue of the curve CR and this contribution can be computed as

k̂(CR) =| ∇ĊR
ĊR | . (12)

Let us consider CR := r(ϕ) = R = const, while R endows the distance from the coordinate origin. The radial
component of the geodesic curvature states as

(∇ĊR
ĊR)r = ĊϕR(∂ϕĊ

ϕ
R) + Γrϕϕ(ĊϕR)2. (13)

Doing the analogous identifications among the frequencies, energy and mass, which implies the form invariant
quantity

lim
R→∞

[
k̂
dσ

dϕ

]
CR

= 1. (14)

ensuing in this manner the form invariant deflection angle [38]

α̃ = −
∫ π

0

∫ ∞
b/ sinϕ

KdS. (15)

where b is the impact parameter. This equation inscribe the global impact on the lensing of particles on account of
the fact that one has to integrate over the optical domain of integration outside the enclosed mass.

Now, by using Eq. 9 into Eq. 15 we obtain the deflection angle for flat black holes in Horndeski theory.

α̃ =
2Kµ

b
+

µ2π

320Kb2
+O(µ3). (16)
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A. Graphical Analysis

This segment is dedicated to review the graphical impact of deflection angle α̃ on asymptotically flat BHs. Ad-
ditionally, illustrate the physical eminence of these graphs to examine the influence of curvature constant K and
impact parameter b on deflection angle by analyzing the stable and unstable state of BH.

1. Deflection angle versus Impact parameter b

This subsection gives the analysis of deflection angle α̃ with impact parameter b for different values of curvature
constant K, for fixed µ = 2.

K=-1
K=-0.5
K=0.5
K=1
K=1.5

2 4 6 8 10 12 14

-2

-1

0

1

2

3

b

(i) μ=2

K=5

K=10

K=15

K=20

K=25

0 20 40 60 80 100

0

2

4

6

8

10

12

b

(i) μ=2

Figure 1: α̃ versus b.

• Figure 1 demonstrates the influence of α̃ w.r.t b for different values of K. One can examine that for small b
deflection angle increases but with the increase of b the deflection angle decreases for fixed µ. So for stable
behavior we choose the domain b ∈ [1, 15].

1. Figure (i), illustrate the graphical impact of deflection angle w.r.t b by varying K. For negative K, we
obtain locally hyperbolic behavior but for K = 0 the behavior is locally flat. If there is small change in the
variation of K, deflection angle is exponentially decreasing.

2. Figure (ii), shows that with the increase of K the deflection angle gradually decreases and then goes to
positive infinity. We obtain physical stable behavior just for K ≥ 0.5.

III. PHOTON LENSING IN A PLASMA MEDIUM

In this section, we investigate the effect of plasma medium on the photon lensing by asymptotically flat black hole
in Horndeski theory. The refractive index for flat black hole is stated as follows [41],

n(r) =

√
1− ω2

e

ω2
∞
H(r), (17)

then, the corresponding optical metric illustrated as

dσ2 = goptjk dx
jdxk =

n2(r)

H(r)
[
60K

H(r)
dr2 + r2dϕ2]. (18)

where the metric function of the above optical metric is given as

H(r) = 60K2 − µ

r
. (19)
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The optical Gaussian curvature for the above optical metric (18) is calculated by using Eq. 8 as follows

K = −µK
r3

+
µ2

80Kr4
+

90µK3

r3
ω2
e

ω2
∞
− 9µ2K

4r4
ω2
e

ω2
∞
− 3µK

r4

(60K2r − µ)
ω2
e

ω2
∞

+
µ3

80Kr5
ω2
e

ω2
∞

+
3µ2(60K2r − µ)

80Kr5
ω2
e

ω2
∞
. (20)

Hence we get differently which goes to α:

lim
x→∞

k̂g
dσ̃

dϕ
|CR

= α. (21)

We use straight line approximation r = b/ sinϕ, for the limit x→∞, then GBT stated as [41]

lim
x→∞

∫ π+α̃

0

[
k̂g
dσ̃

dϕ

]
|CR

dϕ = π − lim
x→∞

∫ π

0

∫ x

b/ sinϕ

KdS. (22)

After simplification, we obtain

α̃ ' µ2π

320b2K
+

µ3

90b3K

ω2
e

ω2
∞

+
2µK

b
− 3µ2Kπ

4b2
ω2
e

ω2
∞

+
180µK3

b

ω2
e

ω2
∞

+O(µ4,K4). (23)

The above results shows that the photon rays are moving in a medium of homogeneous plasma.

A. Graphical Analysis

This section is focused to investigate the graphical effect of deflection angle α̃ on asymptotically flat BHs in a
plasma medium. Further, we exemplify the physical implications of these graphs to analyze the effect of curvature
constant K, ωe

ω∞
and impact parameter b on deflection angle by analyzing the stable and unstable state of BH.

1. Deflection angle versus Impact parameter b

This subsection offers the examination of deflection angle α̃ w.r.t impact parameter b for different ranges of curva-
ture constant K, ωe

ω∞
, for fixed µ = 2. For simplicity, here we suppose ωe

ω∞
= η.
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Figure 2: Relation between α̃ and impact parameter b.

• Figure 2 depicts the influence of α̃ w.r.t b for varying η and for fixed µ = 2 and K = 1.

1. In figure (i), represents the behavior of α̃ w.r.t b for small variation of η. For η = 0.005 the deflection angle
decreases, it is observed that the behavior is same for η = 0.005 → 0.01 and 0.01 → 0.1 there is small
change in deflection angle but greater than 0.1 the deflection angle actually increase.

2. In figure (ii), shows that the deflection angle gradually increase by increasing η.
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IV. CONCLUSION

In this paper, we accomplished an extensive analysis of deflection angle of light by asymptotically flat BH in the
background of Horndeski theory in weak field approximation. In this regard, we employ the optical geometry of
asymptotically flat BH in Horndeski theory. Thenceforth, we have utilized the GBT by using straight line approx-
imation and compute the deflection angle in leading order terms. The obtained deflection angle is evaluated by
integrating a domain outside the impact parameter, that depict the globally impact of gravitational lensing. Addi-
tionally, we have found the deflection angle of photon by asymptotically flat BH in plasma medium. For couple case,
we have analyzed graphically the influence of impact parameter, curvature constant and plasma term on deflection
angle of photon by asymptotically flat BH in the context of Horndeski theory. We have examined that the proposed
deflection angle increases by decreasing the impact parameter also the mass term µ decreases the deflection angle,
on the contrary, with the increase of curvature constant the deflection angle gradually decreasing. Moreover, if we
disregard the impact of plasma medium ( ωe

ω∞
→ 0), in the following equation

α̃ ' µ2π

320b2K
+

µ3

90b3K

ω2
e

ω2
∞

+
2µK

b
− 3µ2Kπ

4b2
ω2
e

ω2
∞

+
180µK3

b

ω2
e

ω2
∞

+O(µ4,K4), (24)

we obtain the weak deflection angle for non-plasma medium case:

α̃ =
2Kµ

b
+

µ2π

320Kb2
+O(µ3). (25)

The observations that follow from the Horndeski theory and its mathematical implications include determining
observables such as angular positions, separation, magnification and fluxes: a case study of astrophysical applica-
tions for Sagittarius A* and M87 can be found in [11]. Additionally, distinct researches include linear Horndeski
theories to study dark energy and gravitational waves [83], and Horndeski gravity to study dark matter [84]. Our re-
sults can be extrapolated to correct for quantum effects while determining the observables, thus, increasing precision
- however, the resulting calculations to attain it are beyond the scope of this work.
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[52] A. Övgün, K. Jusufi and I. Sakalli, Phys. Rev. D 99, 024042 (2019).
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