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Abstract 

Circular RNAs are a special type of RNAs which recently attracted a lot of research interest in studying its formation and 

function. RNA binding proteins (RBPs) that bind circRNAs are important in these processes but are relatively less studied. 

CLIP-Seq technology has been invented and applied to profile RBP-RNA interactions on the genome-wide scale. While 

mRNAs are usually the focus of CLIP-Seq experiments, RBP-circRNA interactions could also be identified through 

specialized analysis of CLIP-Seq datasets. However, many technical difficulties are involved in this process, such as the 

usually short read length of CLIP-Seq reads. In this study, we created a pipeline called Clirc specialized for profiling 

circRNAs in CLIP-Seq data and analyzing the characteristics of RBP- circRNAs interactions. In conclusion, this is one of 

the first few studies to investigate circRNAs and their binding partners through repurposing CLIP-Seq datasets to our 

knowledge, and we hope our work will become a valuable resource for future studies into the biogenesis and function of 

circRNAs. Clirc software is available at https://github.com/Minzhe/Clirc 
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Introduction 

Circular RNAs (circRNAs) are a mysterious type of RNAs that have been discovered for more than 30 years. Thought to 

be junk and mistakes in splicing before, now they have been demonstrated as a class of abundant, stable and ubiquitous 

RNAs though mining of large-scale high-throughput RNA-Seq data and experimental validation (1,2). By far, still little is 

known about the formation of circRNAs, while several characteristics are relatively clear: 1) they are formed when the 3' 

and 5' ends of part of the linear transcript are joined, usually with the joining points flanked by GU/AG splicing signal. 2) 

reverse complementary sequences in flanking introns are necessary for the formation of some circRNAs since they can 

bring two discontinuous regions of RNAs close together for splicing and joining, but may not for some circRNAs (3). 3) 

splicing factors regulate the formation of circRNAs (3,4). Besides their formation, the understanding of the functions of 

circRNAs is also lacking. Most circRNAs are found in cytoplasmic fractions (5) and do not have a poly-A tail, though one 

circRNA was recently found translatable (4). Ashwal-Fluss et al. found that circRNAs can compete with pre-mRNA splicing 

(6).  Conn et al. and You et al. reported that the expression of circRNAs is regulated during EMT (7) and neuronal 

development (8). Li et al. found a special class of circRNAs that can regulate transcription in the nucleus (9). Bachmayr-

Heyda et al. discovered a negative correlation of global circRNA abundance with proliferation in human samples (10). 

cDR1as and Sry are the most well-known examples of circRNAs that act as miRNA sponges (11). Nonetheless, the functions 

of the majority of circRNAs are still not well elucidated. 

To understand the formation and functions of circRNAs, studying the RBPs that they are associated with is essential. CLIP-

Seq is a technology that combines Cross-linking immunoprecipitation (CLIP) (12) and next-generation sequencing (NGS), 

which has already greatly improved our understanding of RBP-RNA interactions at genome scale (13). HITS-CLIP (14), 

PAR-CLIP (15) and iCLIP (16) are the three main variants of CLIP-Seq that have been extensively used to identify RBP 

binding targets and have led to deep insights into cellular mechanisms and disease etiology. eCLIP (17), irCLIP (18), and 

sCLIP (19) are the recent advancements in CLIP-Seq technology, which intend to overcome the low complexity and 

specificity problem of early generation protocols. Though differing in cross-linking strategies and library preparation 

procedures, all these techniques purify and gather RNA sequencing reads overlapping the binding position of RBPs, which 

theoretically should also include those from circRNAs. In this regard, if sequencing reads are observed to be mapped across 

the splicing joining sites of circRNAs, it would provide direct evidences of RBPs’ binding to circRNAs. A few studies have 

explored the possibility to use CLIP-Seq datasets to identify circRNA-RBP interactions. For example, Li et al. conducted 

Pol II CLIP-Seq and revealed a subclass of nucleus-locating circRNAs that are associated with Pol II (9). Conn et al. used 

PAR-CLIP to show that Quaking regulates the formation of circRNAs via binding sites in introns (7). However, to our 

knowledge, a systematic analysis of public CLIP-Seq datasets for this purpose has not yet been presented so far.  

To achieve this task, CLIP-Seq reads need to be filtered to select those that support the existence of circRNAs. Guo et al. 

developed a pipeline and applied it to ENCODE data (5). CIRI is another software to detect circRNAs from transcriptome 

data (20,21). circBase is a database that merges datasets of circRNAs from different organisms (22). The rationales behind 

these works are similar: an RNA-Seq read whose 3’ end and 5’end are mapped to the upstream and downstream of a 

transcript respectively in a reverse configuration is an evidence of circRNAs, and non-poly-A selected paired-end RNA-

Seq data is the most suitable for this task. This strategy should also guide the discovery of circRNAs in CLIP-Seq data. 
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However, directly applying the previous pipelines developed on RNA-Seq data to CLIP-Seq data would be difficult due to 

three major challenges: 1) CLIP-Seq technology involves enzymatic digestion, leading to generally very short read length; 

2) CLIP-Seq data are almost exclusively single-end; 3) CLIP-Seq data usually have limited library complexity, yielding a 

high PCR duplicate rate. CIRI, for example, is known to have a high false discovery rate for single-ended data, which refuses 

to process data whose alignment length is smaller than 40nt and cannot distinguish between PCR duplicates. 

In this study, we created a pipeline called Clirc that specialized for profiling circRNAs in CLIP-Seq data, and applied Clirc 

to collected public CLIP-Seq datasets to detect circRNAs bound by RBPs, and analyze the characteristics of RBP-circRNAs 

interactions. We focused on HITS-CLIP, PAR-CLIP and iCLIP data as they have the most abundant public sources and 

shared similar data characteristics compared to the newer version of CLIP-Seq data. 

Materials and methods 

Downloading CLIP-Seq datasets  

We downloaded 167 CLIP-Seq datasets from GEO and other data depositories whose RBPs are wild-type and the 

experimental condition is control. These RBPs are from Human, Mouse and Drosophila Melanogaster. Low-quality CLIP-

Seq datasets were discarded after FastQC quality examination. The adaptor sequences were found by reading experimental 

protocols, FastQC detection or manual comparison. After trimming adaptors, CLIP-Seq reads that were too short were 

discarded from the analysis. To tackle the high PCR duplicate rate problem caused by limited library complexity, the 

remaining reads with exactly the same nucleotide sequence were collapsed to unique tags. 

Linearization of circRNA library 

We collected a series of published literature that identified circRNAs by mining RNA-Seq data in Human, Mouse, and 

Drosophila (Sup. Table 1) (23,24,25). We also ran CIRI2 on Encode non-poly-A selected paired-end RNA-Seq data to 

discover more circRNAs. We did this for 15 Drosophila RNA-Seq examples and 16 Mouse samples (Sup. Table 1). We 

pooled the circRNAs for each species together. The low complexity and repetitive regions were identified and counted in 

each circRNA, if the length of such regions exceeded a certain proportion of the whole circRNA length, it would be 

discarded. Then in each circRNA, the RNA sequence that started from 50bp upstream of the junction site and ended at 50bp 

downstream of the junction site was extracted and added as an artificial chromosome to the reference genome (we 

recommend the version in which repetitive/low complexity regions are masked). Then the index building functionality of 

the gsnap software (26,27) was used to build a combined index file for the following alignment. 

Competitive alignment of CLIP-Seq reads  

For each study, CLIP-Seq reads were mapped simultaneously to the linearized circRNA library and the normal reference 

genome by alignment to the combined index file. One read can be aligned to 0, 1 or more places in either the normal 

reference genome or circRNAs. A read was said to be truly aligned to a circRNA only if its alignment coordinates extended 

more than 5 bp away from the junction site in both directions, and the overall mismatch rate of overhang region in either 

direction was smaller than 0.15. Of all CLIP-Seq reads, only ones that can be uniquely aligned to circRNAs would be 

assigned to circRNAs. Reads aligned to both circRNAs and linear transcripts or aligned to multiple circRNAs are discarded.  
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Filtering for CLIP-Seq reads supporting RBP-circRNA interactions 

After screening for potential circRNA-supporting reads from one or more CLIP-Seq samples in the same condition for the 

same protein, all such reads were pooled and grouped by the circRNAs they are mapped to. Then a series of filters were 

applied to keep high confident circRNAs that were bound by each RBP: 1) only circRNAs that had at least 2 CLIP-Seq 

reads mapped across their junctions were kept. 2) Only when at least 20 nucleotides on a circRNA were covered by at least 

one junction-spanning CLIP-Seq read, would this circRNA be kept. 3) The number of unique mapping start positions and 

unique mapping end positions on the circRNA must both be larger than 1/3 of the total number of CLIP-Seq reads mapped 

across this circRNA’s junction. Only when a circRNA met all three criterion, would it be retained and declared as a candidate 

circRNA bound by the corresponding RBP. Clirc does not internally consider background signals as usual CLIP-Seq data 

do not generate control samples, and general RNA-Seq samples are not too valuable for background control since most of 

them are poly-A selected. However, if a non-poly-A selected matched RNA-Seq data is available, users can always apply 

Clirc to CLIP-Seq and control samples respectively and remove the recurrent circRNAs in both conditions. This should be 

easy as Clirc keeps all the intermediate outputs.   

Software implementation 

Clirc is a user-friendly software that implements the above-mentioned pipeline in Perl language. The alignment and filtering 

rules are based on the default parameters for the Clirc software, but all of them are tunable to serve users’ need. The Clirc 

software depends on the gsnap aligner for circRNA analysis. The software and user manual can be accessed at 

https://github.com/Minzhe/Clirc. 

Results 

The implementation of the Clirc software 

As mentioned above, CLIP-Seq reads are already very short and single-end. Common analysis methods to identify 

circRNAs will truncate these short CLIP-Seq reads into even shorter segments for alignment, which could lead to ambiguous 

alignment to multiple places in the genome or no confident alignment at all. To avoid this problem, we tried to create a 

pseudo reference alignment library in which all circRNAs are represented as continuous sequences so that CLIP-Seq reads 

can be aligned as a whole. To achieve this, we collected the locations of previously published circRNAs on the genome-

wide scale in the human, mouse and Drosophila species (6,22,28,29). We also ran CIRI2 on the representative mouse and 

Drosophila Encode non-poly-A selected RNA-Seq datasets. Each of these sets contains around 2,000 to 90,000 circRNAs. 

The circRNA sets for each species are pooled and redundant circRNAs are removed. Then we compiled a pseudo reference 

genome by linearizing the circRNA sequence across the junction sites and combined this reference library with the normal 

genome. Since CLIP-Seq reads are highly redundant due to the limited library complexity, we collapsed CLIP-Seq reads 

with the same nucleotide sequences into unique tags before alignment, which is a common practice in CLIP-Seq data 

analysis (13). We chose the gsnap aligner to align CLIP-Seq reads because of its high alignment quality with RNA-Seq data. 

Then CLIP-Seq reads were aligned competitively to this combined library, and filtered to identify RBP-bound circRNAs. 

More details can be found in the materials and method section. Fig. 1 shows the workflow of the Clirc software. Since 

CLIP-Seq is just a variation of RNA-Seq data, this software can be generalized to RNA-Seq data.  
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Profiling circRNAs bound by RBPs using Clirc 

We downloaded 167 CLIP-Seq datasets, and all datasets we downloaded were wild-type RBPs in control conditions. These 

datasets included 91 human RBPs, 26 mouse RBPs, and 10 drosophilas RBPs. The human RBP CLIP-Seq datasets also 

included four IgG controls. We preprocessed the fastq files and applied the Clirc software to identify RBP bound circRNAs 

on these datasets. Fig. 2a shows an exemplary circRNA found in an SRSF1 CLIP-Seq dataset in mouse embryonic 

fibroblasts, which spans two exons of the Fgd6 gene. To test the validity of the proposed pipeline, we applied the Clirc 

software to a mouse and a human cancer cell line DNA-Seq data as negative controls, and two RNA-Seq samples matched 

with two CLIP-Seq data in our dataset as background controls (Sup. Table 2). The circRNA supporting reads discovery 

rate in DNA-Seq samples are extremely low (in 50 bp long DNA reads) or undetectable (in 100 bp long DNA reads), which 

suggested a good stringency of our pipeline. The mapped circRNAs reads ratios in matched RNA-Seq samples were also 

considerably lower than CLIP-Seq. This was probably due to the poly-A selection of those samples. As a positive control, 

we investigated whether Clirc was able to re-identify the top 15 experimentally-validated circRNAs bound by PolII in a 

previous report (8). In Sup. Table 3, we showed the number of CLIP-Seq reads identified by our algorithm that supported 

each circRNA. 14 of these 15 circRNAs were supported by at least two CLIP-Seq reads, showing Clirc is accurate and 

sensitive in identifying RBP-bound circRNAs. Fig. 2b shows the summary statistics of the circRNAs found in all CLIP-

Seq datasets. The Clirc pipeline found circRNA reads in most CLIP-Seq datasets, with a few studies having up to 3000 

circRNA-supporting reads. Even the CLIP-Seq study with the most abundant circRNAs has less than 0.1% of all CLIP-Seq 

reads mapped across circRNA. However, this percentage is similar to the percentage of sequencing reads supporting 

circRNAs found in the Encode RNA-Seq data we used to search for circRNAs. In addition, the number of unique circRNA 

species found in each CLIP-Seq dataset is mostly between 0-200, with a few RBPs binding up to 1000 unique circRNAs. 

Overall, many CLIP-Seq studies yield significant amounts of circRNA-supportive reads that we could use for more detailed 

downstream analysis. 

Binding properties of RBPs on circRNAs 

We investigated whether RBPs bind to circRNAs through recognition of sequence motifs by carrying out HOMER motif 

searches on circRNAs bound by each RBP. To create a stringent control, we found pairs of neighboring exons in each 

species and concatenated the last 15 bp of the upstream exon with the first 15 bp of the downstream exon to create a library 

of background RNA sequences representing junction reads across splice sites. Of all CLIP-Seq studies investigated, we 

found a motif that seems to be enriched over the background. It is a GA-rich motif that occurred in circRNAs bound by 

Eif4a3, Tra2b, and Pol II (Fig. 3). The recurrent significant motif increased our confidence that there could be important 

biological functions of some motifs that mediate the interaction between RBPs and circRNAs. The GA-rich motif is very 

similar to the GAAGAA-like exonic splicing enhancer that is known to direct and enhance accurate splicing (30,31). 

Consistent with the known function of this motif, Eif4a3 and Tra2b are previously known to be involved in alternative 

splicing (32,33). Splicing is also known to be coupled to transcription by RNA polymerase II through the C-terminal domain 

of the RNAPII largest subunit. This may also suggest that the function of Pol II-associated circRNAs to regulate 

transcription could be related to alternative splicing of the linear RNA precursor. This result suggested that at least some 

RBPs recognize target circRNAs through sequence motifs and the motif analysis could hint potential functions of RBP-

circRNA interactions. 
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circRNAs are usually embodied within regular linear genes which are called parental genes of the respective circRNAs. 

These genes can be transcribed in either the sense or antisense directions, which later may produce circRNAs. RBPs can 

interact with circRNAs derived from different strands, and the relative abundance, which we term as “strand bias” may vary 

among different RBPs, though bias towards sense strand is expected. In this study, we investigated whether the “strand bias” 

of RBP-bound circRNAs is of difference compared to it of linear transcripts (Fig. 4). We plotted the proportions of CLIP-

Seq reads mapped to linear transcripts and circRNAs in the same or opposite direction of the linear genes for different RBPs. 

Overall, the “strand bias” of bound circRNAs was consistent with it of linear transcripts for most studies, and bias towards 

sense strand was dominant. Interestingly, we observed several RBPs showed different strand preference between linear 

transcripts and circRNAs. PTBP1 and PTBP2 from two different studies showed a much larger proportion of circRNA reads 

in the anti-sense direction of parental genes than it of linear transcripts. HUR protein from two different studies also 

consistently showed that it tended to bind circRNA in the anti-sense direction of parental genes. This suggested that “strand 

bias” of RBP-bound circRNA was a reproducible phenomenon. However, it must be pointed out that this was an observation 

at the global level, not at the individual gene level. At the individual gene level, transcription was still in either the sense or 

antisense strand, not mixed. For example, the source gene that produced the most abundant circRNAs HUR bound to was 

XIST. It generated 33 circRNAs, all from the sense strand. Another gene TRAM1 generated 25 circRNAs, all from the 

antisense strand. However, at the global level, the circRNAs of certain RBPs display bias toward the occupation of sense or 

anti-sense strands. Further investigation is needed to validate whether the “strand bias” is of functional importance. 

Functional implications of circRNA-RBP interactions 

To investigate the coordination of RBPs on circRNAs, we pooled circRNAs that appeared in all RBPs’ binding relationships 

and for each circRNA calculated the percentage of all RBPs that are found to bind to this circRNA. Data for the same RBP 

in different cell lines or tissue types were combined in this analysis. We showed the most common 100 circRNAs in Sup. 

Fig. 1, together with whether these circRNAs appeared in the 4 IgG control experiments. It appears that the top subset of 

circRNAs (e.g. top 20) found to bind RBPs are also more likely to be found in the IgG experiments, suggesting that these 

circRNAs may be non-specific binding targets. Echoing this observation, it has been reported before that some very 

abundantly expressed RNAs are commonly represented in CLIP-Seq datasets (28), but they could just be artifacts that are 

not truly bound by the RBPs. However, there are numerous circRNAs that are not in the top set but are also bound by 

multiple RBPs, and these circRNAs could truly serve as platforms for binding and coordination of multiple RBPs. 

To further explore the possibility of circRNAs serving to coordinate RBPs, we tried to find whether RBPs that bind similar 

circRNAs share similar properties. We conducted a hierarchical clustering of RBPs based on their circRNA binding profile 

(Fig. 5a). This analysis was done only in human protein. In the plot, RBPs that were clustered more closely together tend 

to bind a similar set of circRNAs and vice versa. Then we labeled the RBPs on this plot by their cellular localization 

annotation according to UniProt (34). We categorized RBPs into 3 types, RBPs that are mainly in the cytoplasm, RBPs that 

exist abundantly in both cytoplasm and nucleus, and RBPs that are mainly in the nucleus. Interestingly, we observed a trend 

that RBPs that belong to the same category clustered more closely together than RBPs in different categories. This trend 

will be even more obvious if we combine the first and second category to compare the difference between nucleus-only 
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RBPs and other RBPs. This result seems to partially support previous conjectures that circRNAs may act as a scaffold to 

bind and sequester multiple RBPs (35). 

Finally, we investigated whether parental genes for circRNAs bound by each RBP shows enrichment in certain biological 

functional categories. We only did this for human RBP whose circRNAs lead to more than 100 parental genes. We calculated 

the hypergeometric test p-value (log transformed) for whether the set of parental genes for circRNAs bound by each RBP 

was enriched in any GO ontology term (36,37). As a background control, we randomly sampled a set of genes with the 

same size as the set of parental genes for each RBP and calculated a background p-value for each GO term. We subtracted 

the averaged background p values from 10 randomizations from the true test p-value for each RBP and each GO term. We 

controlled the significance level at 0.05 and adjusted for multiple comparison correction with the Bonferroni method. Fig. 

5b shows the adjusted p values of the 1329 GO terms for each of the selected RBP. However, only a few RBPs resulted in 

appreciably significant p values for some terms (Sup Table 4). Interestingly, the most significant ontology term observed 

was “KEGG_FOCAL_ADHESION”, found in the YBX1 protein in the MDA cell line. However, it was not enriched at all 

in the linear transcript. On the contrary, the most enriched GO term for the linear transcript was “KEGG_RIBOSOME”, but 

not enriched in circRNAs (Sup. Fig. 2a). YBX1 is known to participate in pre-mRNA alternative splicing. Recently, several 

studies also reported that YBX1 was involved in cell adhesion and mediated resistance to focal adhesion kinase (FAK) 

inhibitor in cancer ( 38 , 39 ). For another protein DDX21, the most significant gene ontology term was 

“REACTOME_INFLUENZA_LIFE_CYCLE” (Sup. Fig. 2b). According to literature, one recently known function for 

DDX21 is inhibition of influenza A virus replication (40). These results seem to suggest that for at least some RBPs, their 

bound circRNAs might mediate their cellular functions, but more research needs to be carried out to validate this hypothesis 

and the implications of the significant ontology terms of other RBPs’ bound circRNAs. 

Discussions 

This study is the first to our knowledge to identify RBP binding sites on mature circRNAs systematically using all public 

CLIP-Seq datasets. The bioinformatics approach employed here will give an unambiguous answer to whether there is a 

direct interaction between an RBP and a circRNA in contrast to the linear form. This will shed light on both the formation 

and function of circRNAs, both of which are understudied for the moment. We carried out a series of analysis in this study 

to characterize the basic properties of circRNA-RBP interactions, including motif patterns and gene ontology enrichment. 

Our pipeline was wrapped into the Clirc software so that other researchers could use it to conveniently investigate RBP-

bound circRNAs in their future CLIP-Seq studies.  

Due to the certain level of error rate inherent in high-throughput sequencing, some chimera reads that do not represent real 

circRNAs could be identified as false positives by the Clirc software. Recognizing this risk, our analysis and the Clirc 

software was intentionally designed to be conservative. First of all, the set of circRNAs that were linearized to be combined 

with the reference genome were published in previous studies or found by CIRI2 on Encode RNA-Seq data. The size of the 

circRNA set from each source ranges from 2,000 to 90,000 (Sup. Table 1), some of which are probably false positives. 

Clirc essentially scans through each CLIP-Seq study to find CLIP-Seq reads that can be aligned to these previously defined 

circRNAs. Therefore, the resulting RBP-bound circRNAs come from the intersection of the RNA-Seq data and the CLIP-

Seq data, which is supposed to significantly decrease false positive rate. On the other hand, Clirc involves a series of 
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stringent filters to narrow down the list of CLIP-Seq reads supportive of circRNAs. In Sup. Table 3, although these 15 

circRNAs are all known to be real and bound by Pol II, Clirc only identifies 14 of them, with the remaining one missed due 

to abundant low complexity/repetitive sequence regions. On balance, Clirc was designed to be rigorous in calling RBP-

bound circRNAs, even at a slight sacrifice of a higher false negative rate. 

Integrative analysis of CLIP-Seq data with other types of high-throughput data types can be a very interesting research 

direction but has so far not been intensively explored yet. One recent study (41) identified 22,735 RBP–lncRNA regulatory 

relationships from more than 100 public genome-wide CLIP datasets. This study serves as an example of how integrative 

analysis could lead to meaningful discoveries. In this study, we investigated the possibility of integrative analysis of CLIP-

Seq datasets with circRNA data to characterize the function of RBP-circRNAs interactions. In the future, it could also be 

interesting to integrate CLIP-Seq data-derived circRNA-RBP interactions with The Cancer Genome Atlas (TCGA) data. 

The Non-Coding RNA Explorer (42) has been trying to document circRNAs identified in different types of tumors using 

TCGA RNA-Seq data. The importance of circRNAs and their interacting RBPs for prognostic survival prediction and 

influence on treatment efficacy may be investigated by leveraging this resource. 

There are a few limitations and pitfalls of this study: 1) Clirc detects RBP-circRNA binding events only in the junction site, 

and is not capable to detect binding events in non-junction regions as they are not distinguishable from those occur in the 

linear transcript, though also important. For example, during the formation of circRNAs, the upstream and downstream 

introns surrounding the circRNAs will form a “stem”, in which RBPs, especially splicing factors may play a role. Such 

events cannot be investigated in this study. 2) Clirc identifies RBP bound circRNAs by competitively aligning reads to both 

normal reference genome and a pseudo reference genome generated with known circRNAs. It is designed to detect only 

circRNAs that are presented in the library but not novel ones. Therefore, the sensitivity of Clirc demands the 

comprehensiveness of circRNA library. To achieve this, we collected thousands of existing circRNAs from previously 

published studies and databases, and supplemented it by running CIRI2 exhaustively on all suitable paired-end non-poly-A 

selected Encode RNA-Seq data. 3) Usually CLIP-Seq data does not generate control samples, and occurrence of junction 

spanning reads is also low, so the peak finding procedure is not applicable. Clirc may still have a small chance to falsely 

align non-supportive reads to the junction region or identify transient RBP-circRNA interaction by low abundance of 

supportive reads, although stringent rules have been applied to filter out those false positives. 

Overall, we created the Clirc pipeline to identify RBP-bound circRNAs from CLIP-Seq datasets in this study. We used this 

pipeline to identify RBP-bound circRNAs in CLIP-Seq datasets in the public domain and we also characterized the RBP-

circRNA interactions from a genome-wide perspective. We hope this novel approach will contribute to the circRNA 

research community and broaden our knowledge on transcription and its regulation in the long run. 
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Figures 

 

Fig. 1 Cartoon of the Clirc pipeline to identify circRNAs bound by RBP from CLIP-Seq data 
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Fig.2 Overview of circRNAs bound by RBPs. (a) Exemplary circRNA bound by mouse RBP SRSF1 (b) Summary statistics 

of circRNAs bound by RBPs in all analyzed RBPs. 
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Fig. 3 Homer motif search results for EIF4A3, Tra2b, and Pol II. The left panel shows the protein and cell line/tissue 

information, the middle panel shows top circRNA motif and the right panel shows the p values and percentages of sequences 

containing each motif. 
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Fig. 4 Proportion of circRNA reads in the same strand of the parental genes (x) vs. proportion of CLIP-Seq reads mapped 

to linear transcripts in sense strand (y).  Dot size represents number of circRNA sequences in a study. The CLIP-Seq reads 

whose circRNA sequences are more than 500 and whose absolute(x-y) difference is more than 20% are labeled at the bottom 

right corner. 
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Fig. 5 Functional implications of RBP-circRNA interactions (a) Hierarchical clustering plot of RPBs based on the similarity 

of their circRNA binding profile. This analysis is only conducted for the human RBPs. Red marks RBPs that are mainly 

cytoplasmic, yellow marks RBPs that abundantly exist in both cytoplasm and nucleus, and blue marks RBPs that are mainly 

nuclear. (b) Enriched GO terms for each RBP. Log-transformed p-value is calculated as p-value from a hypergeometric test 

of each set of parental genes of circRNAs bound by an RBP vs. genes in each gene ontology term, subtracted by averaged 

random p-value from hypergeometric tests of 10 randomizations. The significance level is controlled at 0.05 adjusted by 

Bonferroni method. 
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