

1 Article

2 Differential Responses of Blood Essential Amino 3 Acid Levels Following Ingestion of High Quality 4 Plant-Based Protein Blends Compared to Whey 5 Protein – A Double-Blind Randomized, Cross-Over, 6 Clinical Trial

7 **Jessica L. Brennan¹, Yui M. Keerati-u-rai¹, Eva H. Yin¹, Julie Daoust², Emilie Nonnotte³, Laurent
8 Quinquis⁴, Thierry St-Denis¹, and Douglas R. Bolster^{1*}**

9 1 Danone North America, United States

10 2 Sequel Naturals, Vancouver, Canada

11 3 Excelya, Boulogne-Billancourt, France

12 4 Danone Research, Palaiseau, France

13 * Correspondence: doug.bolster@danone.com

14 **Abstract:** This study assessed bio-equivalence of high-quality, plant-based protein blends versus
15 Whey Protein Isolate (WPI) in healthy, resistance-trained men. The primary endpoint was
16 incremental area under the curve (iAUC) of blood essential Amino Acids (eAAs) 4 hours after
17 consumption of each product. C_{max} and T_{max} of blood leucine were secondary outcomes. Subjects
18 ($n=18$) consumed three plant-based protein blends and WPI (control). Analysis of Variance model
19 was used to assess for bio-equivalence of total sum of blood eAA concentrations. The total blood
20 eAA iAUC ratios of the three blends were: [90% CI]: #1: 0.66 [0.58-0.76]; #2: 0.71 [0.62-0.82]; #3: 0.60
21 [0.52-0.69], not completely within the pre-defined equivalence range [0.80-1.25], indicative of 30-
22 40% lower iAUC versus WPI. Leucine C_{max} of the three blends was not equivalent to WPI, #1: 0.70
23 [0.67-0.73]; #2: 0.72 [0.68-0.75]; #3: 0.65 [0.62 – 0.68], indicative of a 28-35% lower response. Leucine
24 T_{max} for two blends were similar to WPI (#1: 0.94 [0.73-1.18]; #2: 1.56 [1.28-1.92]; #3: 1.19 [0.95-1.48]).
25 The plant-based protein blends were not bio-equivalent. However, blood leucine kinetic data across
26 the blends approximately doubled from fasting concentrations whereas blood T_{max} data across two
27 blends was similar to WPI. This suggests evidence of rapid hyperleucinemia, which correlates with
28 a protein's anabolic potential.

29 **Keywords:** protein; plant-based protein; whey protein; essential amino acids; leucine, healthy men
30

31 1. Introduction

32 There is increased interest in plant-based diets among consumers who consider themselves
33 vegan, vegetarian or lactose-intolerant, and the role of plant-based proteins specifically among active
34 individuals and trained athletes. Protein supplementation is a common practice amongst athletes, of
35 which animal-based proteins, such WPI are considered the “gold standard” based on its high
36 digestibility and favorable amino acid profile [1]. Protein quality as defined by the Joint Food and
37 Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) Expert
38 Consultation on Protein Quality Evaluation, is calculated using the Protein Digestibility Corrected
39 Amino Acid Score (PDCAAS), which refers to how well dietary protein can match the demand for
40 amino acids and can predict the level of utilization of the protein [2]. This definition has been adopted
41 by the United States Food and Drug Administration (FDA) and elsewhere globally. PDCAAS is a
42 function of the essential Amino Acid (eAA) profile and digestibility of the protein.

43 Consuming adequate levels of protein, especially following physical activity, helps to optimize
44 rates of Muscle Protein Synthesis (MPS) compared to muscle breakdown, which ultimately supports
45 lean muscle mass accretion [3]. Additionally, the magnitude of blood amino acid response, or

46 hyperaminoacidemia, following ingestion of protein is an important determinant for stimulating
47 MPS. The eAA composition of a protein relates to its ability to stimulate MPS, where those proteins
48 having all eAA in adequate quantities would have the optimal ability to stimulate MPS [1]. The
49 Branch-Chained Amino Acids (BCAA's): isoleucine, valine and leucine, are a unique class of eAA
50 due to the role they play in supporting MPS [4]. Indeed, there are data to suggest that leucine is the
51 most potent eAA responsible for postprandial stimulation of MPS. Thus, it is generally considered
52 that leucine content of a protein is an important and independent predictor of its capacity to stimulate
53 postprandial MPS [5].

54 Plant-based protein sources typically have less leucine (~6-8%) compared to animal-based
55 proteins (>10%) [1]. Therefore, to match the leucine content of dairy proteins, individual plant-based
56 proteins must be consumed in higher dosages (~50-60 g). Purpura *et al.* found that a plant-based
57 protein source (48 grams of protein from rice protein isolate, RPI) elicited similar blood amino acid
58 responses to WPI, when provided at high levels [6]. Moreover, Gorissen *et al.* concluded that a plant-
59 based protein hydrolysate (60 grams of protein derived from wheat) had similar digestion and
60 absorption patterns to animal-based proteins [7]. Collectively, animal and human studies have
61 demonstrated that when leucine level is matched, animal-based proteins (namely, dairy proteins)
62 and plant-based proteins have similar MPS effects [8,9].

63 In the diet, consumption of a blend of plant-based proteins (i.e. complimentary proteins) is a
64 common strategy to compensate for the fact that individual plant-based protein sources are typically
65 deficient in one or more eAA. Thus, formulation of a plant-based protein blend with the highest
66 PDCAAS (i.e. PDCAAS = 1.0) and similar leucine content of WPI represents an opportunity to
67 develop a high-quality protein option, which may be advantageous to an athlete.

68 We hypothesized that a high-quality, plant-based protein blend, with a 1.0 PDCAAS, would be
69 bio-equivalent (defined in this study as similar blood eAA response) to WPI. Therefore, the primary
70 objective of the study was to assess the bio-equivalence of the total blood eAA response over 4 hours
71 to the three plant-based products (Test) versus WPI product (Control). The secondary objectives were
72 to assess the bio-equivalence and leucine kinetics over 4 hours to the three Test products versus
73 Control product.

74 2. Materials and Methods

75 An acute, randomized, double-blind, 4x4 William square cross-over study was conducted
76 September to November 2018 to assess the bio-equivalence of the blood eAA response over 4 hours
77 after consumption of 3 distinct high-quality (PDCAAS=1.0) plant-based protein blends versus WPI
78 in healthy, resistance-trained adult men. This study was approved September 13th, 2018 by the
79 Western International Review Board (Puyallup, Washington, USA).

80 2.1. Participants

81 Participants were healthy, adult men, 18-35 years of age, Body Mass Index (BMI) between 18.5
82 and 29.9 kg/m². Participants were required to have self-reported resistance training experience of no
83 less than two years, with resistance training of at least one hour/day for two days/week over the past
84 six months. Participants were instructed to abstain from protein supplements for one day prior to
85 each of the study visits. Subjects were excluded if they had a known history of gastrointestinal, liver,
86 kidney, or cardiovascular (including, but not limited to, atherosclerotic disease, eating disorder,
87 myocardial infarction, peripheral arterial disease, stroke), and pulmonary disease, mental disease,
88 seizures, use or abuse of psychoactive medications or any medication or condition which might, in
89 the opinion of the study medical director either: 1) make participation dangerous to the subject or to
90 others, or 2) affect the results. Subjects with recent antibiotic or anabolic steroid or corticosteroids
91 were also excluded. They maintained their habitual diet, and physical activity throughout the study.
92 Adverse events and serious adverse events were reported throughout the whole study.

93 2.2. Intervention

94 Each participant had five on-site visits, consisting of a screening phase, during which the subject
 95 eligibility was assessed, and a total of four intervention phases. During the intervention phase, each
 96 participant was studied on four separate days with the order of study products randomly assigned
 97 via a Williams Square 4x4 design to one of four sequences: #1#2C#3, #2#3#1C, #3C#2#1 or C#1#3#2, in
 98 which to receive the four interventions study product. Subjects crossed over to the other study
 99 product after a washout period consisting of a minimum of four days but no more than 14 days
 100 between interventions. In the day preceding each study visit, participants consumed a standardized
 101 dinner consisting of two frozen meals (total nutritionals for both meals: Hungry-Man® Fajita
 102 Chicken, per serving: Calories 960, Carbohydrates 158g, Protein 60g, Fat 16g), followed by a 12h long
 103 overnight fast. Subjects were instructed to drink water ad libitum. A 24h dietary recall was collected
 104 by the investigator or delegate through interview of the subject. A photocopy of the 24h recall
 105 collected was provided to the subject so that the diet could be duplicated before each subsequent
 106 visit.

107 On the morning of each study visit of the intervention phase, participants had an indwelling
 108 catheter inserted into a forearm vein by a registered nurse and the first blood sample (fasting) was
 109 collected. After the fasting sample was collected, the participant was given a study beverage mixed
 110 with 360 mL of water and instructed to consume this over 10 minutes. Additional blood samples were
 111 collected at 15 min, 30 min, 1h, 2h, 3h and 4h (+/- 5 min) after the consumption of the study beverage.
 112 Blood samples were collected into 4ml K₂EDTA tubes. After a wash-out period of four to 14 days, the
 113 experiment was repeated with the participants consuming the other formulations.

114 2.3. Study Products

115 The study products consisted of dairy (Control) and plant-based proteins (3 test products) in a
 116 sweetened flavor system. The control product was a whey protein isolate (Optimum Nutrition,
 117 Downers Grove, IL). All three plant-based blends included pea protein (PurisPea, Minneapolis, MN)
 118 and pumpkin protein (Austrade Inc., Palm Beach Gardens, FL). Blend #2 contained, in addition to
 119 the pea and pumpkin protein: sunflower protein (Austrade Inc., Palm Beach Gardens, FL) and
 120 coconut protein (Austrade Inc., Palm Beach Gardens, FL). Blend #3 represented a hydrolysis of Blend
 121 #1, in that the pea and pumpkin proteins were hydrolyzed (<15%) utilizing a commercially available,
 122 food-grade enzyme (Novozymes North America, Franklinton, North Carolina). The content of each
 123 of the study products used are displayed in Table 1 below. The plant-based blends were formulated
 124 to meet a 1.0 PDCAAS and matched the level of leucine to WPI.

125 **Table 1:** Composition of plant-based protein blends compared to WPI.

Study product comparison				
	#1	#2	#3	C
Total protein (g) for condition	34	33	34	24
Total leucine content (g)	2.6	2.6	2.6	2.6
PDCAAS	1.0	1.0	1.0	1.0
Total eAA content (g)	12	12	12	12

126 #1 = Protein Blend #1 (Test) - Pea Pumpkin; #2 = Protein Blend #2 (Test) - Pea Pumpkin Sunflower Coconut; #3 =
 127 Protein Blend #3 (Test) Pea Pumpkin (hydrolysate); C = Control - Whey Protein Isolate (WPI).

128 2.4. Measurement of blood Amino Acids

129 All 9 eAA were measured in the blood (as nmol/mL) (histidine, isoleucine, leucine, lysine,
 130 methionine, phenylalanine, tryptophan, threonine, valine) for 4 hours (fasting, T₁₅, T₃₀, T₆₀, T₁₂₀, T₁₈₀,
 131 T₂₄₀). The blood amino acids were analyzed on a Waters Acquity UPLC System. A 200 μ L aliquot
 132 of the blood was deproteinized using 190 μ L of HPLC grade acetonitrile. 10 μ L of 25 μ mol/mL

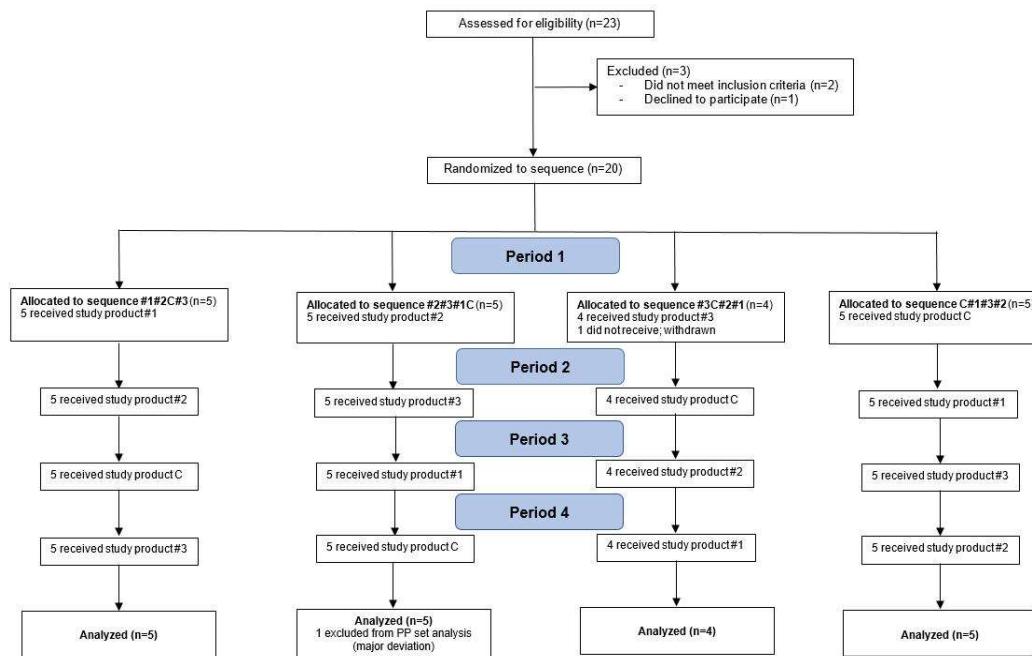
133 Norleucine was added as an internal standard. The solution was thoroughly vortex-mixed and
134 centrifuged at 10 X 1000g for 15 minutes to remove the precipitated proteins. Then, 40 μ L of the
135 deproteinized blood (supernatant) was transferred into a 6 X 55 mm glass culture tube and dried
136 under vacuum using a centrifugal evaporator. After drying, the sample was treated with a redrying
137 solution consisting of methanol: water: triethylamine (2:2:1), vortex-mixed and dried under vacuum.
138 Then the sample was derivatized for 15 minutes at room temperature with a derivatizing solution
139 made up of methanol: water: triethylamine: phenylisothiocyanate (7:1:1:1). After 15 minutes, the
140 derivatizing solution was removed under vacuum. The derivatized sample was again washed with
141 the redrying solution, vortex-mixed and dried under vacuum. The derivatized sample was dissolved
142 in 100 μ L of sample diluent (pH 7.40) and 3 μ L was injected into the column, running on a modified
143 Pico-Tag gradient using proprietary buffers (Pico-Tag Eluent 1 & Eluent 2) from Waters. Column
144 temperature was at 48° C. The derivatized amino acids were detected at 254 nm. The Waters Acquity
145 Ultra Performance Liquid Chromatography (UPLC) system employed consists of a Binary Solvent
146 Manager, a Sample Manager, a TUV Detector and a Waters Acquity UPLC BEH C18 column (2.1 X
147 100 mm). Data was collected, stored and processed using Waters Empower 3 Chromatography
148 software. Drying was done using a Tomy CC-181 Centrifugal Concentrator with an Oerlikon
149 TRIVAC D8B Vacuum pump.

150 2.5. Outcomes

151 Primary endpoint was defined as the total sum of blood eAA concentration over 4 hours as the
152 incremental Area Under the Curve (iAUC). iAUC was defined as blood eAA values above the
153 baseline value ($T_{fasting}$). Secondary endpoints were the Leucine iAUC over 4 hours, the observed
154 maximum amount (C_{max}) (nmol/mL) and the time (minute) to reach C_{max} (T_{max}) of Leucine over 4
155 hours.

156 2.6. Sample size

157 There were no data available regarding the expected difference between the three Test products
158 and Control nor data regarding the expected residual error variance associated with the primary
159 characteristic to be studied (i.e. total sum blood eAA incremental Area Under the Curve (iAUC) over
160 4-hours). As a consequence, the adequacy of the trial size was assessed using a range of plausible
161 Coefficient of Variations (CV) from 15% to 35%, by steps of 5%. Using these values, the power of the
162 trial to show equivalence for a pair of products in a 4x4 Williams crossover design given a sample
163 size of 16, a desired type I error at alpha (α) level of 0.1, and two-sided with 5000 simulations keeping
164 CVs of 15 to 20%, resulted in a power of 86-98%. We anticipated a screening failure rate of 50% and
165 a drop-out rate of 20% therefore, approximately 40 subjects were planned to be screened. Thus, a total
166 of 20 randomized subjects were calculated to reach a target of 16 completed subjects based on the
167 assumption given above.


168 2.7. Statistical methods

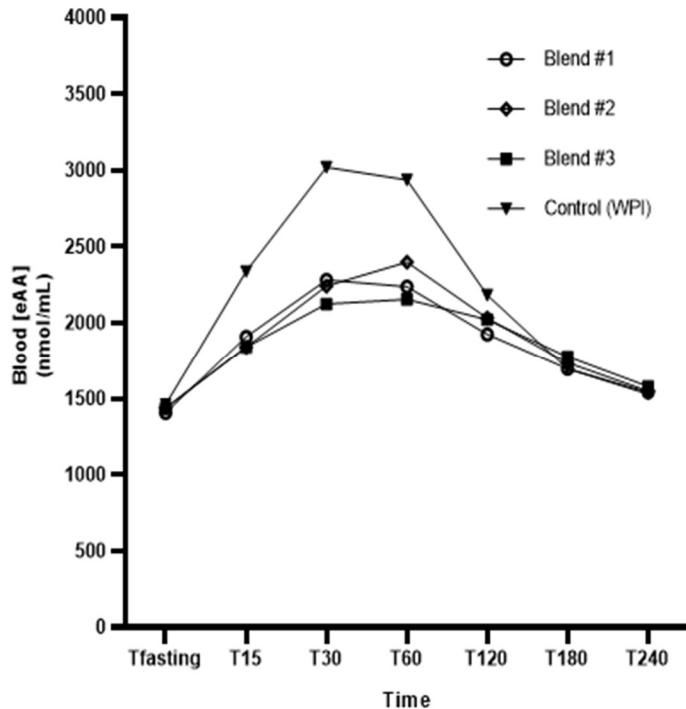
169 Descriptive statistics overall and by randomized sequence were generated to summarize the
170 baseline characteristics, demography, study conduct parameters (compliance to study products,
171 study durations, consumption of forbidden dietary products and treatments). The primary outcome
172 parameter was analyzed on the log scale with an analysis of variance (ANOVA) model with fixed
173 effect terms for sequence, product, period and subject within-sequence fitted as a random effect. The
174 incremental area under the curve (iAUC) above the baseline value versus time (minutes) was
175 determined using the trapezoidal rule for each study condition over the 4-hour period following
176 ingestion in assessing the bio-equivalence (defined here as the response of blood eAA). Next, Least
177 Square Means (LS-Means) by study product were extracted from the analysis and back transformed
178 to provide Geometric Least Square Means (GLS-Means). For the difference between Test and
179 Control products, LS-Means were extracted using the estimate statement in PROC MIXED, together
180 with the associated 90% two-sided Confidence Interval (CI). These differences in LS-Means and CIs

181 were back-transformed to present the ratio of Test to Control GLS-Means and associated 90% CI. For
 182 bio-equivalence to be demonstrated, the entirety of the 90% CI for the ratio of Test to Control GLS-
 183 Means must lie within the range of 0.80 to 1.25. The same approach was performed for secondary
 184 endpoints (Leucine iAUC and C_{max} over 4-hours). For the Leucine T_{max}, no logarithmic transformation
 185 was applied; the LS-Means were estimated using the ANOVA model described above and the 90%
 186 CI for the ratio of Test to Control was estimated with the Fieller's theorem [10]. The analyses were
 187 performed using SAS System package (SAS Institute Inc.), Version 9.4.

188 **3. Results**

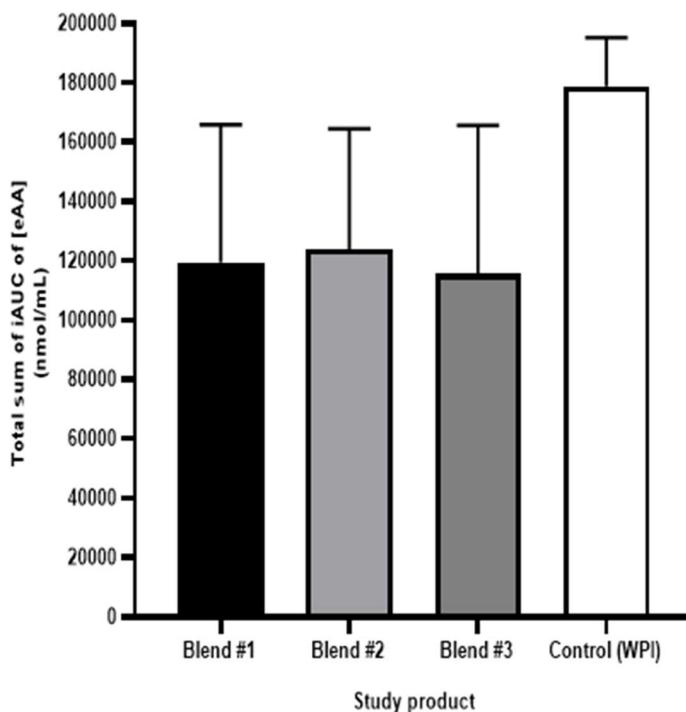
189 Primary and secondary endpoints were reported on 18 subjects (per protocol), as illustrated by
 190 the CONSORT flow diagram (Figure 1). No significant differences between the sequence were
 191 observed in baseline and clinical characteristics at the start of the study. The subjects' characteristics
 192 overall, and by sequence, are displayed in Table 2. The compliance was perfect; all subjects took the
 193 four study products in the order according to the planned randomization sequences and within 10
 194 minutes after fasting blood sample withdrawal.

195
 196 **Figure 1:** Flow of participants through the study.


197 **Table 2:** Baseline and clinical characteristics overall and by sequence - PP population (N=18).

	#1#2C#3 (N=5)	#2#3#1C (N=4)	#3C#2#1 (N=4)	C#1#3#2 (N=5)	All (N=18)
Age (years)	25.2 (6.22)	27.5 (3.42)	27.5 (3.32)	22.4 (3.97)	25.4 (4.64)
BMI (kg/m²)	23.3 (2.79)	23.2 (5.22)	27.0 (2.26)	24.3 (2.45)	24.4 (3.35)
SBP (mmHg)	127.8 (6.38)	123.0 (11.69)	127.3 (12.28)	124.6 (9.50)	125.7 (9.25)
DBP (mmHg)	72.8 (6.06)	74.8 (9.64)	73.5 (5.80)	67.0 (10.37)	71.8 (8.13)

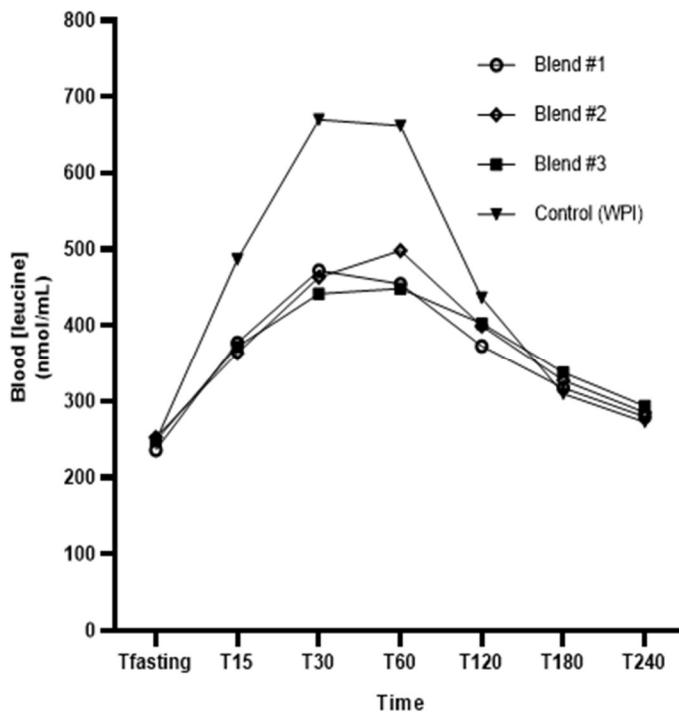
198 #1 = Protein Blend #1 (Test) - Pea Pumpkin; #2 = Protein Blend #2 (Test) - Pea Pumpkin Sunflower Coconut; #3 =
 199 Protein Blend #3 (Test) Pea Pumpkin (hydrolysate); BMI = Body Mass Index; C = Control - Whey Protein Isolate
 200 (WPI); DBP = Diastolic Blood Pressure; SBP = Systolic Blood Pressure. Results are displayed as mean (SD).


201 The total sum of blood eAA iAUC over 4 hours were lower (~30 to 40%) in plant-based products
 202 compared to WPI product. Figure 2a displays the total eAA concentration by each of the conditions
 203 over the duration of the 4 hours following ingestion. In Figure 2b, the total sum of iAUC of plasma

204 eAA over the 4-hour periods after ingestion of each of the study products is shown; all three of the
 205 plant-based protein blends had significantly different total iAUC values compared to the WPI.

206

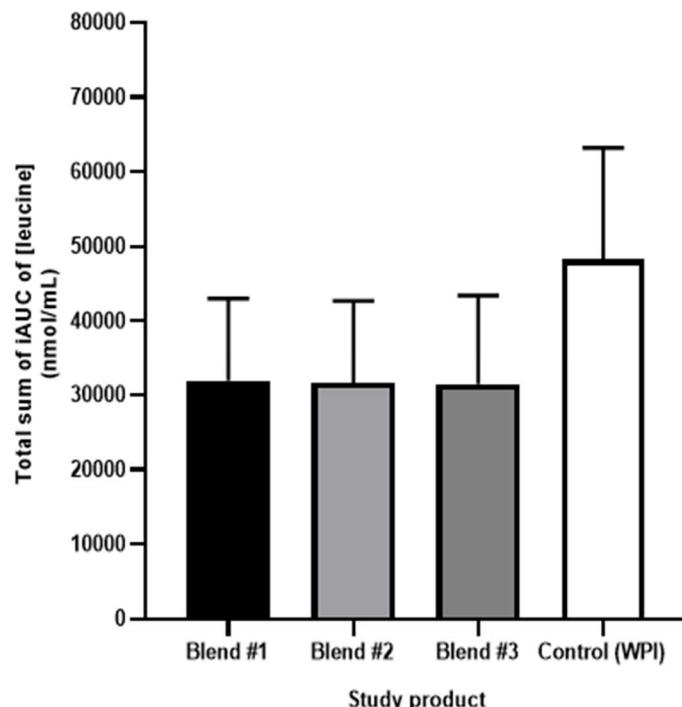
207 **Figure 2a:** Mean concentration of blood eAA over 4 hours following ingestion of each study product.



208

209 **Figure 2b:** Mean and 95%CI total sum plasma eAA iAUC (nmol/mL) over 4-hours by study product.
 210 The area under the curve above baseline vs. time (min) was obtained by using the trapezoidal rule.

211 The differences in eAA between the plant-based protein blends and WPI were confirmed with
212 the model estimates of the three ratios and 90% CI Blend #1 (pea + pumpkin): 0.66 [0.58 – 0.76]; Blend
213 #2: 0.71 [0.62 – 0.82]; Blend #3 (pea + pumpkin hydrolysate): 0.60 [0.52 – 0.69] when compared to WPI.
214 Equivalence could not be concluded between any plant-based product and WPI since, in each
215 instance, the 90% confidence interval did not fall entirely within the range of [0.80 – 1.25].


216 Leucine levels in blood over 4 hours of plant-based products versus WPI are shown in Figure 3a
217 and the total iAUC of leucine concentrations for the duration of the study are displayed in Figure 3b
218 by study product. The study products were not found to be bio-equivalent with respective ratios and
219 90% CI Blend #1: 0.66 [0.59 – 0.73]; Blend #2: 0.67 [0.61 – 0.75]; Blend #3: 0.62 [0.56 – 0.69]. These values
220 are shown in table 3. The study product by period profiles revealed that the maximal concentration
221 observed (C_{max}) over 4-hours was higher in the WPI product group with mean (SD) values between
222 periods in a range of 647.5 (116.2) to 761.8 (142.1) nmol/mL as compared to the plant-based products
223 where mean C_{max} were in a range of 434.1 (28.6) to 561.8 (53.8) nmol/mL (Figure 3a; Table 3). The
224 observed time to reach C_{max} (T_{max}) was numerically similar between the Blend #1, Blend #3 and WPI
225 with mean (SD) of 42.5 (16.5), 53.3 (28.3) and 45.0 (15.4) minutes, respectively, as compared to Blend
226 #2 with a T_{max} mean of 70.0 (29.1) minutes.

227

228

Figure 3a: Mean blood leucine over 4 hours per time point of each study product.

229

230
231

Figure 3b: Mean and 95%CI total sum leucine iAUC (nmol/mL) by study product, obtained using the trapezoidal rule.

232

Table 3. Leucine T_{max} and C_{max} for each study product

Study product	Leucine T_{max} over 4 hours (min) (SD)	Leucine C_{max} over 4 hours (nmol/mL) (SD)
#1	42.5 (16.5)	492.6 (47.5)*
#2	70.0 (29.1)*	508.6 (63.9)*
#3	53.3 (28.3)	462.1 (45.9)*
C	45.0 (15.4)	713.7 (105.5)

233 #1 = Protein Blend #1 (Test) - Pea Pumpkin; #2 = Protein Blend #2 (Test) - Pea Pumpkin Sunflower Coconut; #3 =
234 Protein Blend #3 (Test) Pea Pumpkin (hydrolysate); C = Control - Whey Protein Isolate (WPI)

235 *p-value<0.001, pairwise Student t-test of the LS-Means Difference Tests compared to Control

236 Among the 19 subjects who received at least one dose of study products, no adverse event
237 related to the study products intake was observed in this study.

238 4. Discussion

239 This study represents the first human investigation in which blood eAA responses to high-
240 quality, plant-based protein blends (PDCAAS=1.0), matched for leucine content, were compared to
241 whey protein. The primary findings from this study were that three plant-based protein blends were
242 not bio-equivalent to the WPI control, as measured over 4-hours post-consumption, by iAUC of blood
243 eAA.

244 Few studies exist comparing the metabolic fate of plant-based proteins (beyond soy) to animal-
245 based protein, and those that do exist generally have been conducted on single-source plant-based
246 proteins, for various outcomes. Purpura *et al.* provided subjects with 48g of RPI or WPI and measured
247 the total blood amino acid response over four hours. RPI showed a non-significant 6.8% lower total
248 amino acid concentration in the blood based on AUC in comparison to WPI, indicating a similar
249 appearance of amino acids in the blood between plant and animal-based protein. Amino acids were

250 only measured hourly, thus capturing the earlier peak blood concentration would have been missed.
251 In the present study, subjects were given 33-34g of plant-based protein or 24g WPI, with matched
252 leucine levels (2.6 grams) [6]. Compared to previous studies, we were able to significantly reduce the
253 gram amount of protein while still matching the leucine content of the WPI utilizing a plant-based
254 protein blend. However, the blood eAA response was not shown to be bio-equivalent to that of WPI
255 as evidenced by a 30-40% lower in total sum eAA iAUC over 4 hours.

256 A unique aspect to our study was that our protein blends were all standardized to a 1.0 PDCAAS
257 and 2.6 g of leucine, as the leucine threshold amount that triggers the stimulation of MPS
258 approximates between two and three grams of leucine per meal in healthy young adults [11-13].
259 Other studies using single-source plant proteins have utilized significantly greater protein quantity
260 to match the leucine content of animal-based proteins. Reidy *et al.* found that, when matched for
261 leucine content, a blend of WPI with soy protein isolate was able to stimulate muscle growth to a
262 similar extent as WPI alone. Nevertheless, the WPI group had a higher peak leucine concentration at
263 40 and 60 minutes post-ingestion than the WPI with soy protein isolate group. Though the
264 intervention was not purely plant-based, this study shows that protein blends with matched leucine
265 content to dairy protein can positively effect MPS, even with a lower post-ingestion peak leucine
266 concentration [14]. Gorissen *et al.* provided 60 grams wheat protein hydrolysate to match the leucine
267 content (4.4 grams) of 35 grams of WPI. Despite equal leucine, WPI resulted in significantly greater
268 blood leucine concentrations compared to wheat protein hydrolysate. However, wheat protein
269 hydrolysate did increase myofibrillar protein synthesis rates above basal rates [7]. In the present
270 study, we were able to provide less absolute protein than these previous studies, while matching
271 leucine levels. Though our study did not directly measure MPS, as a surrogate measure and
272 secondary endpoint, we measured the blood leucine kinetic response (C_{max} and T_{max}). Like previous
273 studies, the leucine concentration in the blood from our plant-based interventions was not bio-
274 equivalent to WPI. However, an interesting finding was that the leucine T_{max} of Blend #1 and Blend
275 #3 were similar to WPI. Additionally, data across the plant-based protein blends showed an
276 approximate two-fold increase in leucine concentration from fasting levels. From a physiological
277 standpoint, the leucine data provide evidence of a rapid hyperleucinemia which is a critical response
278 associated with postprandial MPS [1]. Future studies are required to assess the ability of high-quality
279 plant-based protein blends to stimulate MPS.

280 PDCAAS is the mathematical product of the true fecal nitrogen digestibility coefficient and the
281 eAA amino-acid profile of the protein sources [15]. We initially calculated PDCAAS scores of the
282 plant-based protein blends to that of WPI, a value of 1.0. Given that plant proteins are deficient in
283 one or more of the essential amino acids when compared to animal proteins, we compensated in our
284 formulas by adding more grams of protein to the plant-based blends to increase the leucine content
285 to match WPI [15].

286 Naturally-occurring dietary antinutritional factors found in plant-based proteins (such as
287 phytates, tannins, and trypsin inhibitors) have been shown to negatively impact the digestibility and
288 bioavailability of consumed dietary protein derived amino acids [16]. However, the functional
289 properties of food proteins can be improved by processes, such as partial enzymatic hydrolysis [17].
290 Gorissen *et al.* found that wheat protein hydrolysate was similarly digested and absorbed as micellar
291 casein measured by stable isotopes methodology. A more transient, yet substantial postprandial
292 increase in blood amino acid availability was observed with the wheat protein hydrolysate, even
293 though an equal amount of whey protein resulted in a more prominent postprandial increase in blood
294 eAA concentrations. Therefore, intact dairy protein resulted in higher blood eAA concentrations
295 compared to a plant-based protein hydrolysate [7]. In the current study, we too implemented a
296 hydrolysate version of a plant-based protein blend. Similarly, the mild hydrolysis (<15%) that was
297 achieved was not significant enough to achieve bio-equivalence to the WPI. The properties of
298 protein hydrolysates are closely related to the degree of hydrolysis (DH). Although greater
299 hydrolysis may have promoted improved blood eAA kinetics, it typically results in negative
300 bitterness and flavor changes [17]. Balancing organoleptic attributes and degree of hydrolysis was

301 determined as a limitation. Future studies may investigate a higher DH with plant proteins for
302 impact on blood eAA kinetics.

303 The postprandial kinetics of dietary amino acids may have also impacted our results, as it has
304 been demonstrated that plant-based proteins are sequestered into tissues at different rates compared
305 to dairy-based proteins [18]. Differing amino acid composition and lower digestibility, as compared
306 to whey, have been shown to directly impact nitrogen metabolism [18]. Bos *et al.* found that when
307 compared to milk amino acids, soy amino acids were digested more rapidly and were favorably
308 directed toward deamination pathways and liver protein synthesis. The blood amino acid
309 concentrations rose significantly and peaked one to two hours after ingestion of soy, whereas milk
310 caused a less pronounced rise in blood amino acid concentrations that occurred later [18]. Further,
311 animal models have found that ingestion of wheat protein resulted in higher free amino acid
312 concentration in the liver than the ingestion of representative casein and egg mixtures [19]. Based on
313 this data, we can hypothesize that the significant influx of amino acids after soy consumption, results
314 in a greater increase of deamination in the liver, and thus those amino acids are less available in the
315 blood for a shorter time, as compared to milk protein. Therefore, differences in the rate of amino acid
316 appearance in the blood may result from the differential uptake of plant-based protein derived amino
317 acids, which could be a reason why we saw differences in the appearance of blood eAAs in our study
318 when compared to WPI over four hours.

319 5. Conclusions

320 We conclude that three high quality (defined as PDCAAS equal to 1.0) plant-based protein
321 blends, standardized for leucine content did not achieve bio-equivalence to WPI, as measured by
322 total iAUC of blood eAA concentrations over 4 hours following ingestions. However, promising
323 leucine kinetic data may help inform future studies. Additionally, the plant-based protein blends
324 were safe and able to be absorbed by the blood stream with a good efficiency, thus proving to be an
325 invaluable alternative to the consumption of animal proteins. Further studies may investigate the
326 capacity, upon supplementation, to improve both sports performances and MPS, comparing the
327 effects of plant-based protein blends and animal proteins.

328 **Author Contributions:** Conceptualization, J.L.B. and D.R.B.; Supervision and Analytical Support, T.S., D.R.B.,
329 J.D., and E.N.; Methodology, Y.M.K. and E.H.Y.; Study Investigation and Data Curation, E.N.; Formal Analysis,
330 L.Q.; Writing – Original Draft Preparation, J.L.B., D.R.B., and L.Q.; Writing – Review & Editing, all authors.

331 **Funding:** This research was funded by Danone Research and Sequel Naturals.

332 **Acknowledgments:** In this section you can acknowledge any support given which is not covered by the author
333 contribution or funding sections. This may include administrative and technical support, or donations in kind
334 (e.g., materials used for experiments).

335 **Conflicts of Interest:** J.L.B., Y.M.K., E.H.Y., T.S., and D.R.B. are employees of Danone North America; J.D. was
336 a previous employee of Sequel Naturals; L.Q. is an employee of Danone Research; E.N. was a clinical trial
337 coordinator employed by Excelya as a contractor to Danone Research who led the research trials, she declares
338 no conflicts of interest. This study was funded with support from Danone Research and Sequel Naturals. To
339 minimize all potential conflict of interest, this study was double-blinded and conducted at INQUIS Clinical
340 Research (formerly Glycemic Index Labs, Inc.) in Toronto, Canada.

341

342 **References**

- 343 1. van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant- versus animal-based
344 protein consumption. *J Nutr* 2015 Sep;145(9):1981-91.
- 345 2. F.A.O. Food and Agriculture Organization of the United Nations/World Health Organization. Protein
346 Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation, FAO Food and Nutrition: Paper
347 51. Rome, Italy: Food and Agriculture Organization of the United Nations; 1991.
- 348 3. Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.;
349 Smith-Ryan, A.E.; Kreider, R.B., *et al.* International Society of Sports Nutrition Position Stand: nutrient
350 timing. *J Int Soc Sports Nutr* 2017. Aug 29;14:33.
- 351 4. Cermak, N.M.; Res, P.T.; de Groot, L.C.; Saris, W.H.; van Loon, L.J. Protein supplementation augments the
352 adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. *Am J Clin Nutr*.
353 2012;96:1454-64.
- 354 5. Garlick, P.J. The role of leucine in the regulation of protein metabolism. *J Nutr.* Jun; 135(6 Suppl): 1553S-6S.
- 355 6. Purpura, M.; Lowery, R.P.; Joy, J.M.; De Souza, E.O.; Kalman, D.S.; Jäger, R.; Wilsm JM. A comparison of
356 blood amino acid concentrations following ingestion of rice and whey protein isolate: a double-blind
357 crossover study. *Journal of Nutrition and Health Sciences* 2017; Nov; 1 (3).
- 358 7. Gorissen, S.H.; Horstman, A.M.; Franssen, R.; Crombag, J.J.; Langer, H.; Bierau, J.; Respondek, F.; van Loon,
359 L.J. Ingestion of wheat protein increases in vivo muscle protein synthesis rates in healthy older men in a
360 randomized trial. *J Nutr.* 2016 Sep;146(9):1651-9.
- 361 8. Norton, L.E.; Wilson, G.J.; Layman, D.K.; Moulton, C.J.; Garlick, P.J. Leucine content of dietary proteins
362 is a determinant of postprandial skeletal muscle protein synthesis in adult rats. *Nutr Metab (Lond)*. 2012
363 Jul; 9(1): 67.
- 364 9. Joy, J.M.; Lowery, R.P.; Wilson, J.M.; Purpura, M.; de Souza, E.O.; Wilson, S.M.; Kalman, D.S.; Dudeck, J.E.;
365 Jäger, R. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise
366 performance. *Nut J.* 2013 Jun;12 :86.
- 367 10. Fieller, E.C. "Some problems in interval estimation". *J R Stat Soc, Series B* 1954, 16 (2): 175–185.
- 368 11. Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Timmerman, K.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Excess
369 leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women.
370 *J Nutr.* 2010 Nov;140(11):1970-6.
- 371 12. Churchward-Venne, T.A.; Breen, L.; Di Donato, D.M.; Hector, A.J.; Mitchell, C.J.; Moore, D.R.; Stellingwerff,
372 T.; Breuille, D.; Offord, E.A.; Baker, S.K., *et al.* Leucine supplementation of a low-protein mixed
373 macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind,
374 randomized trial. *Am J Clin Nutr.* 2014 Feb;99(2):276-86.
- 375 13. Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss,
376 T.N.; Ferrando, A.A.; Arent, S.M., *et al.* International Society of Sports Nutrition Position Stand: protein and
377 exercise. *J Int Soc Sports Nutr.* 2017 Jun;14:20.
- 378 14. Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry,
379 C.S.; Borack, M.S.; Cope, M.B.; Mukherjea, R., *et al.* Protein blend ingestion following resistance exercise
380 promotes human muscle protein synthesis. *J Nutr.* 2013; 143(4):410-6.
- 381 15. Marinangeli, C.P.F.; House, J.D. Potential impact of the digestible indispensable amino acid score as a
382 measure of protein quality on dietary regulations and health. *Nutr Rev.* 2017 Aug; 75(8):658-667.
- 383 16. Sarwar Gilani, G.; Wu Xiao, C.; Cockell, K.A. Impact of antinutritional factors in food proteins on the
384 digestibility of protein and the bioavailability of amino acids and on protein quality. *Br J Nutr.* 2012
385 Aug;108 Suppl 2:S315-32.
- 386 17. Nielsen, P.M. Functionality of protein hydrolysate. In *Food Proteins and their Applications*. Damodaran, S.,
387 Paraf, A., Eds.; Marcel Dekker, Inc.: New York, New York, United States, 1997; pp. 443-472.
- 388 18. Bos, C.; Metges, C.C.; Gaudichon, C.; Petzke, K.J.; Pueyo, M.E.; Morens, C.; Everwant, J.; Benamouzig, R.;
389 Tomé, D. Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after
390 soy or milk protein ingestion in humans. *J Nutr.* 2003 May;133(5):1308-15.
- 391 19. Tujioka, K.; Ohsumi, M.; Hayase, K.; Yokogoshi, H. Effect of the quality of dietary amino acids composition
392 on the urea synthesis in rats. *J Nutr Sci Vitaminol (Tokyo)* 2011;57:48-55.